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Quantum dynamics of coherent states is studied within quantum field theory using two complementary
methods: by organizing the evolution as a Taylor series in elapsed time and by perturbative expansion in
coupling within the interaction-picture formalism. One of the important aspects of our analysis consists in
utilizing the operators and the vacuum of interacting theory in constructing the states, without invoking
asymptotic particles. Focusing on a coherent state describing a spatially homogeneous field configuration,
it is demonstrated that both adopted methods successfully account for nonlinear classical dynamics, giving
distinguishable quantum effects. In particular, according to the time-expansion analysis the initial field
acceleration, with which the field departs from its initial expectation value, is governed by the tree-level
potential with renormalized mass and bare coupling constant. The interaction-picture computation, instead,
can be manipulated to give the nonlinear dynamics, determined in terms of renormalized coupling and
mass. However, it results in a logarithmic initial-time singularity in the field acceleration, reminiscent of the
similar behavior encountered within semiclassical formalism, for certain choices of the initial state for
fluctuations. Within our coherent-state analysis, the above-mentioned peculiarities are artifacts of an
expansion: in the first case over infinitesimal time, while in the second case in the coupling constant.
Despite this, we show that the evolution obtained within the interaction-picture analysis is valid for an
extended period of time. Moreover, on top of the desired classical dynamics, it serves us with interesting
quantum corrections, previously proposed by Dvali-Gomez-Zell.
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I. INTRODUCTION

As it is well known, the classical field configurations
merely serve as an approximate description of the system.
Within the framework of quantum field theory, the ultimate
description of the state is given by a quantum state, which is
an element of the physical Hilbert space. Although the
classical description is extremely accurate for macroscopic
systems, there could still be some cumulative quantum
effects that could become relevant in time. In [1–6], the
quantum corpuscular approach to classical backgrounds
was developed, and it was shown that the coherent state
description of time-dependent systems leads to a new type
of quantum effects, which, in certain cases, can result in a
complete breakdown of the classical description. This was
shown to have potentially important ramifications for
systems such as black holes, de Sitter spacetime, and
cosmic inflation, predicting new deviations from

semiclassical evolution. The importance of these consid-
erations in the context of the beginning of inflation was
discussed in [7].1

To be specific, let us begin by recapping the argument of
[6]. In a weakly interacting theory possessing a dimension-
less quantum coupling α ≪ 1, one may consider a system
in a quantum state with the large occupation number N.
Initially, the dynamics of such a system should be well
approximated by its classical equations of motion. Usually,
one may define a classical collective coupling αN, which
characterizes the strength of classical nonlinearities in the
equation of motion and consequently sets the classical
timescale tcl, after which nonlinear corrections to the
classical dynamics become important, even if initially
the system was prepared in a state well-described by free
waves. Quantum mechanically, the latter corresponds to the
expectation value of the quantum field in a coherent state,
with the mean occupation number determined by the
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1See also [8], where the origin of the observed density
perturbations was identified, within the proposal of [5], as the
quantum uncertainty in the number of inflaton constituents (with
a significantly screened mass gap, due to collective gravitational
effects) within the Hubble patch.
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amplitude of the wave in question. It was argued in [6] that
the quantum scattering among the constituent quanta
should lead to the decoherence of the coherent state, which
in turn might cause a quantum departure from the classical
evolution, with a timescale of significant deviation esti-
mated as

tq ¼
tcl
α
; ð1:1Þ

referred to as quantum break time in [6].2 There, these
concepts were shown to take a particularly simple form,
when applied to the massive scalar field with quartic self-
interaction. For this system, a harmonically oscillating
homogeneous field represents an accurate solution to the
full nonlinear equation on timescales

t ≪ tcl ≡ 1

ωðαNÞ ; ð1:2Þ

where, according to the notation of [6], ω is the classical
frequency of harmonic oscillations, the quantum coupling
α≡ ℏλ is connected to the classical parameter λ of quartic
nonlinearity (with α → 0 in the classical limit of vanishing
Planck’s constant ℏ → 0), and the occupation number
(within the Compton volume ∼ω−3) N ¼ A2

ℏω2 is determined
in terms of the amplitude A of the classical wave, implying
the independence of tcl from ℏ. Representing the classical
background as a coherent state of zero-momentum particles
and estimating the rate of quantum breaking using 2 → 2
scattering of constituent quanta, it was shown in [6] that the
quantum break time reduces to the general expression (1.1).
Although tq ≫ tcl, it was argued in [6] that the gradual
quantum decoherence is a cumulative effect and should
persist even after one properly accounts for the classical
nonlinearities, extending the regime of validity beyond
(1.2). Similar results were reproduced for axions in [9].
Recently, analogous conclusions on quantum breaking
were drawn in [10,11], based on a numerical analysis
within the so-called 2-particle-irreducible (2PI) formalism
for (1þ 1)-dimensional self-interacting scalar field theory
with a conserved charge.
The adoption of these arguments to certain physical

systems has staggering ramifications, as we have men-
tioned at the beginning of this section. Focusing on cosmic
inflation, for concreteness, we reiterate the proposal of [5]
and its consequences for the paradigm. Let us further
restrict the discussion to the so-called “m2ϕ2 model,” for
simplicity. At the end of the slow-roll phase, the scalar
field begins to oscillate and behaves as a nonrelativistic
condensate. A quantum state corresponding to such a con-
figuration consists of a large number of zero-momentum

ϕ particles. The gravitational background sourced by such a
quantum condensate was argued to represent some sort of a
condensate as well, constructed around the Minkowski
vacuum by gravitational degrees of freedom. The motiva-
tion for the latter is obvious: if one were to drain the scalar
condensate, the gravitational configuration would approach
the Minkowski space. Rewinding time to the slow-roll
stage of inflation, the similar description was suggested to
hold. Although, due to significant change in the classical
dynamics, the degrees of freedom making up the con-
densates can go significantly off-shell. In [5], the properties
of the gravitational condensate, i.e., the dispersion relation
of constituents, was determined by demanding the repro-
duction of the semiclassical properties of the quasi–de
Sitter space. Quantum processes such as particle production
during inflation were identified as the scattering among the
condensate constituents. For example, the microscopic
process behind the production of gravitational waves
was identified as the annihilation of the quanta making
up the gravitational background. This led to the conclusion
that if these processes last long enough, the quantum
depletion of the background should become significant
and invalidate the semiclassical description. In fact, it was
established that if inflaton starts out in the regime of
slow-roll eternal inflation (self-reproduction), the dynamics
should become fully quantum before the scalar field
reaches the bottom of the potential and ends inflation.
The goal of this work is to start taking first steps toward

establishing the link between the S-matrix estimates of [5]
and the rigorous real-time dynamics of coherent states for
setups such as cosmic inflation. As it will become clear
shortly, the scope of the current work is limited and is by no
means directly applicable to cosmological frameworks.
However, our analysis provides an important foundation
for more sophisticated analysis by pinpointing the possible
advantages of designing the states in its entirety.
In general, approaches to computing the corrections to

the classical evolution fall into two main categories. The
most commonly used one is the semiclassical analysis, in
which one studies the evolution of perturbations around the
classical background and evaluates the semiclassical back-
reaction on the latter. The expansion, within these methods,
can be organized with respect to different parameters (e.g.,
coupling, ℏ, and many others), and a plethora of different
effects can be captured (for instance, the 2PI approach
capturing thermalization). See [12–20] and references
therein for interesting work on the subject. A useful
overview of such methods, along with a complete list of
relevant references can be found in [21]. The goal of this
article is not to utilize these methods per se, but instead we
will be questioning some of their underlying assumptions,
as it will become clear. The other category consists of
replacing the classical background by a coherent state
(since coherent states represent a proper quantum counter-
part of classical field configurations) of a large number of

2However, it was shown in [4] that the quantum break time is
in general shorter for systems near criticality (i.e., αN ¼ 1) and
possessing a semiclassical Lyapunov exponent.
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quanta and studying the evolution as a multiparticle
scattering process [1–6]. In cases when classical evolution
is not significantly affected by interactions, the said state
is made of on-shell (asymptotic) particles, as discussed
above.3 In the opposite situation, the latter approach
requires invoking off-shell degrees of freedom [5,6], with
the off-shell-ness connected with the properties (e.g.,
dispersion relation) of the constituent quanta being related
to the classical background and continuously changing in
case of nontrivial classical evolution.
The approach adopted in this work belongs to the second

category. The distinguishing feature is the construction
of coherent states out of the vacuum of the interacting
theory, canonical field operator, and its conjugate momen-
tum, without invoking an asymptotic approximation for
them.4Our work is, in spirit, very similar to the study of
[25], where the quantum mechanical analog case was
analyzed. Within our method, the initial construction is
exact and valid to all orders in perturbation theory.
Eventually, we are forced to perform a loop expansion
for practical reasons. We show that for the leading order
quantum effects it would have sufficed to construct the
coherent state in terms of asymptotic particles, but our
improved construction still helps with some intermediate
technical steps. Furthermore, the adopted construction
ensures the consistency of the perturbative expansion for
the state and the dynamics; e.g., for two-loop calculation
the coupling dependence of the state appears to be relevant.
Moreover, we perform a rigorous computation of nonlinear
contributions to the classical dynamics and its quantum
entourage, reproducing the Dvali-Gomez-Zell formula (1.1)
for the quantum break time.
In this work, we therefore study the quantum evolution

of a coherent state in an interacting quantum field theory.
The analysis is performed for a scalar field with quartic
self-interaction, but can be straightforwardly extended to
other theories (to be presented elsewhere). In particular, we
study the Lagrangian5

L ¼ −Λ −
1

2
Zð∂μϕ̂Þ2 −

1

2
Zm2ϕ̂2 −

λ

4!
Z2ϕ̂4; ð1:3Þ

where Λ, Z, m, and λ are the bare vacuum energy, field
normalization, mass, and coupling constant, respectively,
with all of them expected to be infinite, as usual (keeping in
mind that Z does not get a correction at one-loop, within the
theory at hand). The parameters are considered to be such
that there is a single nondegenerate vacuum with a
vanishing field value.

Just as in textbook calculations, we assume that there
exists a vacuum state jΩi with a unit norm, which is the
Hamiltonian eigenstate with the lowest possible eigenvalue.
Then, the coherent state corresponding to a classical field
configuration with ϕclðxÞ and πclðxÞ can be constructed as

jCi ¼ e−i
R

d3xðϕclðxÞπ̂ðxÞ−πclðxÞϕ̂ðxÞÞjΩi; ð1:4Þ

with π standing for the conjugate momentum. The con-
venient property of this state is that it has a unit norm and
satisfies the following to all orders in λ at the initial moment
of time t ¼ 0:

hCjϕ̂jCiðt ¼ 0Þ ¼ ϕclðxÞ; ð1:5Þ

hCjπ̂jCiðt ¼ 0Þ ¼ πclðxÞ: ð1:6Þ

We adopt two complementary methods for studying the
dynamics:

(I) Instead of applying standard field-theoretical meth-
ods, we propose a new approach based on the
evaluation of physical quantities in a Taylor series
in time t, elapsed since the initial moment. We
calculate the first several terms of the expansion,
giving it initially in the form that is valid to all orders
in the coupling constant. Examining the coherent-
state-expectation value of the field operator, we find
that all manifestly finite contributions are identical to
the iterative solution to the classical equation of
motion, at each calculated order in t. Remarkably,
these are supplemented with terms involving vac-
uum expectation values of singular operators, some
of which can be absorbed via the renormalization of
parameters, while the others need to be resummed
together with higher order terms in t. We also found
that the initial acceleration of this one-point function
does not seem to be governed by the effective
potential (à la Coleman-Weinberg [26]) contra-
dicting the standard intuition. Presumably, this too
needs to be resolved through the resummation. On
the flip side, one advantage of the method in
question is the absence of the so-called initial-time
singularity, which one tends to encounter within
semiclassical techniques for certain initial states for
fluctuations; for a relevant discussion of the latter
and the proposed resolutions see [21,27–30].

(II) In an attempt to extend the analysis to finite time
intervals and to ameliorate the above-mentioned
puzzle with leftover divergencies, we have reana-
lyzed the evolution of the one-point expectation
value in a coherent state using the interaction-picture
approach by performing a coupling expansion
from the beginning. It is demonstrated that the
expectation value of the field operator evolves
according to the classical equations of motion, albeit

3See [22,23] for the earlier work on representing classical
configurations as coherent states.

4Our construction falls within the category of generalized
coherent states; for an overview of various aspects see [24].

5From this point forward, we will be working in units
ℏ ¼ c ¼ 1.
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with renormalized parameters, supplemented with
finite (yet small) quantum corrections. The price for
this elegant result is the logarithmic initial-time
singularity in the second-time derivative of the
one-point function in question, along with the usual
spurious secular divergencies that seem to be under
control for an extended period of time. As we will
show, expanding the result before the final step of
the calculation in a Taylor series in elapsed time, we
recover the results of the previous method. Most
importantly, we will discuss the caveats concerning
this reproduction. Although these results are limited
by a given order of classical nonlinearities, it should
be straightforward to extend them to higher orders.

Furthermore, we use method (I) to evolve the state itself
and compare it to the classically evolved coherent state,
finding the departure after an infinitesimal interval of time
with interesting contributions. In ð3þ 1ÞD, these correc-
tions appear to be divergent, without any obvious regu-
larization in sight that could give a physically sound result.
We are therefore left with the only logical conclusion that
these infinities need to be resummed with higher-order
corrections in infinitesimal time to give a finite final
answer. Although parametrically the corrections at hand
appear to be of interesting form, assertive claims do not
seem possible at this point. However, we show that the
results become finite in ð1þ 1ÞD, providing us with a
tractable departure from the classical evolution.
The goal of this article, is therefore the following: to

build explicitly, at an operatorial level, the simplest possible
coherent state mimicking a classical configuration and to
analyze its dynamics. Our approach is orthogonal to the
commonly used background field methods (e.g., [28]),
where initial conditions for one-point and two-point corre-
lation functions are specified based on semiclassical
reasoning and by requiring the absence of the initial time
singularity. Our work helps to elucidate the points that
are obscured within these methods. In fact, our analysis
demonstrates that if (nonsqueezed, i.e., the simplest)
coherent states constructed consistently, without even
invoking asymptotic degrees of freedom and the free
vacuum, are to be physical, then the so-called “initial-time
singularity” must be an artifact of the perturbative expan-
sion. Or, one would have to proclaim the inconsistency of
nonsqueezed coherent states in the four-dimensional quan-
tum field theory in question.
The article is organized as follows. In Sec. II, the

theoretical framework is described. In Sec. III, the main
results of the time expansion are shown for a concrete
coherent state, corresponding to the homogeneous classical
field configuration. In particular, we evaluate both the
overlap between the quantum and classically evolved coher-
ent states, and the expectation value of some operators.

In Sec. IV,we perform the interaction-picture computation of
the one-point expectation value in the coherent state. Finally,
we summarize the results in Sec. Vand discuss the outlook.
Some of the technical details have been relegated to
appendixes.

II. SETUP

The Hamiltonian corresponding to the Lagrangian den-
sity (1.3) is given by

Ĥ¼
Z

d3x

�
1

2

π̂2

Z
þ 1

2
Zð∂jϕ̂Þ2þ

1

2
Zm2ϕ̂2þ λ

4!
Z2ϕ̂4þΛ

�
;

ð2:1Þ

where the conjugate momentum is given by π̂ ¼ Z∂tϕ̂. We
also have the usual equal-time canonical commutation
relations

½ϕ̂ðx; tÞ; π̂ðy; tÞ� ¼ iδð3Þðx − yÞ; ð2:2Þ

½ϕ̂ðx; tÞ; ϕ̂ðy; tÞ� ¼ ½π̂ðx; tÞ; π̂ðy; tÞ� ¼ 0: ð2:3Þ

Let us begin by constraining the parameters of the theory
so that the energy density of the interacting vacuum jΩi
vanishes, i.e., by requiring

hΩjĤjΩi ¼ 0; ð2:4Þ

with H denoting the Hamiltonian density operator. For
(2.1) we get

hΩjĤjΩi ¼ Λþ 1

2Z
hΩjπ̂2jΩi þ 1

2
ZhΩjð∂jϕ̂Þ2jΩi

þ 1

2
Zm2hΩjϕ̂2jΩi þ λ

4!
Z2hΩjϕ̂4jΩi: ð2:5Þ

This can be made to vanish by adjusting the bare vacuum
energy Λ accordingly.
As already mentioned in the Introduction, the coherent

states of our main interest can be parametrized as

jCi ¼ e−if̂jΩi; with

f̂ ≡
Z

d3xðϕclðxÞπ̂ðx; 0Þ − πclðxÞϕ̂ðx; 0ÞÞ: ð2:6Þ

As the expression speaks for itself,we have presented the state
in the Heisenberg picture; moreover, notice that due to the
definition of the conjugate momentum we have πcl ¼ Z _ϕcl.
The Hamiltonian density (2.1) in a coherent state (2.6)

can readily be obtained, after adjusting the vacuum energy
to zero, reducing to
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hCjĤðxÞjCiðt ¼ 0Þ ¼ Z

�
1

2

π2cl
Z2

þ 1

2
ð∇⃗ϕclÞ2 þ

1

2

�
m2 þ λZ

2
hΩjϕ̂ðxÞ2jΩi

�
ϕ2
cl þ

λ

4!
Zϕ4

cl

�
: ð2:7Þ

Here and throughout this work, we employ the fact
that hΩjϕ̂jΩi ¼ hΩjϕ̂3jΩi ¼ hΩjπ̂jΩi ¼ 0, due to Z2

symmetry.
This looks encouragingly similar to the classical expres-

sion

Hcl ¼
1

2
π2cl þ

1

2
ð∇⃗ϕclÞ2 þ

1

2
m2

phϕ
2
cl þ

λph
4!

ϕ4
cl: ð2:8Þ

However, there are important differences as well. The first
thing to notice is the appearance of the divergent equal-
point two-point function. At this point, one might be
inclined to absorb this divergence into the mass. In other
words, at one-loop order (at which, we expect Z ¼ 1) one
could define a physical mass and coupling as

m2
ph≡?

�
m2 þ λ

2
hΩjϕ̂ðxÞ2jΩi

�
; ð2:9Þ

λph≡? λ; ð2:10Þ

which follows from identifying Hcl with the expectation
value of Ĥ. Although the mass renormalization (2.9) is of
the expected form, the coupling assignment (2.10) seems to

be inconsistent with the standard one for our setup; but we
will come to this point later on.
Before specializing on a coherent state describing a

particular configuration of interest, let us make some
general remarks that will aid us with technical calculations.

A. Heisenberg picture

Among other quantities, one might be interested in the
expectation value of various operators in a coherent state. In
general, it is convenient to discuss these in the Heisenberg
picture. Let us consider the following expectation value:

hCj
Y
i

Oiðϕ̂; π̂; tiÞjCi; ð2:11Þ

with jCi being a coherent state (2.6) constructed using
operators at time t ¼ 0 and Oi standing for a composite
operator at a moment ti; in other words, we have equal time
products within each O. Then it is straightforward to show
that (2.11) can be expressed as a vacuum-expectation value
of shifted operators Oiðϕcl þ ϕ̂; πcl þ π̂; tiÞ evolved from
t ¼ 0 using the background-field-method Hamiltonian
Ĥ½ϕcl þ ϕ̂; πcl þ π̂�. Namely, we have

hCj
Y
i

Oiðϕ̂; π̂; tiÞjCi ¼ hΩj
Y
i

ðeiĤ½ϕclþϕ̂;πclþπ̂�tiOiðϕcl þ ϕ̂; πcl þ π̂; 0Þe−iĤ½ϕclþϕ̂;πclþπ̂�tiÞjΩi; ð2:12Þ

which is quite intuitive as the exponential operator defining
our coherent state (2.6) is a field displacement operator. For
the face value, it appears as if we have evaluated the
expectation value in semiclassical approximation by quan-
tizing perturbations around a fixed classical background
and treating perturbations to be in the vacuum. However,
due to the fact that jΩi is the vacuum of the fundamental
theory rather than the one of a semiclassical theory of
perturbations, the matters are somewhat more complicated.
As we will see on concrete examples, while the dynamics
of correlators is identical to the one inferred from the
background field method, the initial conditions are quite
different. Nevertheless, it is important to show that (2.12) is
exact and holds for any theory. It follows from the
following mathematical identity:

ee
X̂Ŷe−X̂ ¼

X∞
n¼0

1

n!
ðeX̂Ŷe−X̂Þn ¼ eX̂eŶe−X̂; ð2:13Þ

which holds for any operators X̂ and Ŷ, together with the
observation that for equal time operators we have

eif̂Oðϕ̂; π̂; 0Þe−if̂ ¼ Oðϕcl þ ϕ̂; πcl þ π̂; 0Þ; ð2:14Þ

following from the Baker-Campbell-Hausdorff formula.
Regarding the coherent states themselves, we are para-

metrizing them in terms of two functions of spatial
coordinates ϕclðxÞ and πclðxÞ, and a time stamp appearing
on the operators invoked in their construction. Using
(2.13), we can write
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jϕcl; πcl; ti ¼ exp

�
−i

Z
d3xðϕclðxÞπ̂ðx; tÞ − πclðxÞϕ̂ðx; tÞÞ

�
jΩi

¼ exp

�
−i

Z
d3xeiĤtðϕclðxÞπ̂ðx; 0Þ − πclðxÞϕ̂ðx; 0ÞÞe−iĤt

�
jΩi

¼ eiĤt exp

�
−i

Z
d3xðϕclðxÞπ̂ðx; 0Þ − πclðxÞϕ̂ðx; 0ÞÞ

�
e−iĤtjΩi

¼ eiĤtjϕcl; πcl; 0i: ð2:15Þ

Notice that this relation is similar to the one we have for
field (and conjugate momentum) eigenstates in the
Heisenberg picture.

B. Schrödinger picture

Besides expectation values, one is usually interested in
transition amplitudes as well, for which it may be conven-
ient to see how the coherent state itself is evolving.
To see how the coherent state (2.6) evolves in the

Schrödinger picture, we use (2.13) once more to obtain

jCiðtÞ ¼ e−iĤte−if̂jΩi ¼ e−ie
−iĤtf̂eiĤt

e−iEΩtjΩi; ð2:16Þ

with EΩ denoting the vacuum eigenvalue of the
Hamiltonian, which we have been adjusting to zero
(2.4). In other words, the evolved state is the one created
by the same linear combination of ϕ̂ and π̂, but “evolved”
backwards in time. This seems to correspond to a nontrivial
squeezing of the coherent state. Moreover, comparing to
the Heisenberg picture result, time evolution simply scans
through states (2.15), with fixed ϕclðxÞ and πclðxÞ.

III. CONCRETE EXAMPLE: HOMOGENEOUS
BACKGROUND

A state of particular interest is the one corresponding to
the homogeneous field configuration, as being a popular
representative of configurations used in background field
calculations. In particular, we focus on a state that corre-
sponds to a classical homogeneous background with the
following initial conditions:

ϕclðt ¼ 0Þ ¼ ϕ0; ð3:1Þ

πclðt ¼ 0Þ ¼ 0: ð3:2Þ

Here we have chosen vanishing initial momentum for
simplicity. Classically, this background will undergo anhar-
monic oscillations. In order to study the quantum aspects of
this evolution, we need to define the quantum state
corresponding to this classical background.
Following our previous discussion we have (for some

rudimentary discussion see Appendix A)

jCiðt ¼ 0Þ ¼ e−if̂jΩi; with f̂ ≡
Z

d3xϕ0π̂: ð3:3Þ

In the remainder of this section we will compute the rate
of departure of this state from the classical evolution and
the expectation values of different operators.

A. Rate of departure

Applying (2.16) to the homogeneous state at hand, we get

jCiðtÞ ¼ e−iϕ0

R
d3xe−iĤtπ̂ðxÞeiĤt jΩi: ð3:4Þ

Here we choose to work in the Schrödinger picture; hence
there is no time label on π. At this point, we are interested in
analyzing the evolution of the state for an infinitesimal time t
and comparing the result to the classical evolution. In
particular, we will be interested in evolving the state up to
t2 order, since this is where interesting effects begin to
emerge. This is done, using

Z
d3xe−iĤtπ̂ðxÞeiĤt ¼

Z
d3x

�
π̂ðxÞ þ t

�
Zm2ϕ̂þ λZ2

3!
ϕ̂3

�
−
t2

2

�
m2π̂ þ λZ

4
ðπ̂ϕ̂2 þ ϕ̂2π̂Þ

��
þOðt3Þ: ð3:5Þ

Now, classically we know how the scalar field evolves in infinitesimal time t. Namely, if at t ¼ 0 we had ϕ ¼ ϕ0 and
_ϕ ¼ 0, then at time t we would have

ϕclðtÞ ¼ ϕ0 −
t2

2

�
m2

phϕ0 þ
λph
3!

ϕ3
0

�
þOðt3Þ: ð3:6Þ
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In order to parametrize the deviation of an evolved
coherent state from a coherent state constructed for the
latter classical background, we calculate the overlap
between (2.16) and

jCcliðtÞ ¼ e−i
R

d3xðϕclðtÞπ̂−πclðtÞϕ̂ÞjΩi: ð3:7Þ

Here, we will assume ϕclðtÞ and πclðtÞ ¼ Z _ϕclðtÞ to be
given by the above-mentioned classical solution, albeit with
renormalized parameters.
By calculating the number of commutators, the above

expression can be written as

hCcljCðtÞi ¼ hΩjeŶðtÞjΩi: ð3:8Þ

In the limit of infinitesimal time we can straightforwardly
evaluate ŶðtÞ up to t2 order, arriving at

ŶðtÞ ¼ it

�
1

2
Zϕ2

0

�
m2

ph −m2 þ λph − λZ

3!
ϕ2
0

�
V þ 1

24
λZ2ϕ4

0V

þZϕ0

�
m2

ph −m2 þ λph − λZ

3!
ϕ2
0

�Z
d3xϕ̂ðxÞ

−ϕ0

Z
d3x

�
λZ2ϕ0

4
ϕ̂2 þ λZ2

3!
ϕ̂3

��

− it2
�
1

2
ϕ0

�
m2

ph −m2 þ λph − λZ

3!
ϕ2
0

�Z
d3xπ̂

−
1

2
ϕ0

Z
d3x

�
λZϕ0

4
ðπ̂ ϕ̂þϕ̂ π̂Þ þ λZ

4
ðπ̂ϕ2 þ ϕ̂2π̂Þ

��

þOðt3Þ; ð3:9Þ

where V denotes the spatial volume, i.e., V ≡ R
d3x. Notice

that if quantum and classical evolutions were identical, then
we would end up with hCcljCðtÞi ¼ 1, of course, after
taking into account a proper relation between the physical
and bare parameters. Notice that this calculation is different
from the infinitesimal-time transition amplitude analysis,
used in path-integral formalism; the latter will be briefly
discussed in Sec. III B.
Let us proceed to calculating the probability for an

evolved state to coincide with the classically evolved state,
resulting in

jhCcljCðtÞij2 ¼ 1 − t2DþOðt3Þ; ð3:10Þ

with

D ¼ ðλZ2Þ2ϕ4
0

16

×
Z

d3x1d3x2½hϕ̂ðx1Þ2ϕ̂ðx2Þ2i − hϕ̂ðx1Þ2ihϕ̂ðx2Þ2i�

þ ðλZ2Þ2ϕ2
0

36

Z
d3x1d3x2hϕ̂ðx1Þ3ϕ̂ðx2Þ3i

−
λZ3

3
ϕ2
0

�
m2

ph −m2 þ λph − λZ

3!
ϕ2
0

�

×
Z

d3x1d3x2hϕ̂ðx1Þϕ̂ðx2Þ3i

þ Z2ϕ2
0

�
m2

ph −m2 þ λph − λZ

3!
ϕ2
0

�
2

×
Z

d3x1d3x2hϕ̂ðx1Þϕ̂ðx2Þi: ð3:11Þ

We would like to stress that in this expression, h� � �i stands
for the vacuum expectation value. Simplifying this expres-
sion to order λ2, we get

D ¼ Z2ϕ2
0

�
m2

ph −m2 −
λZ
2
hϕ̂2i þ λph − λZ

3!
ϕ2
0

�
2

×
Z

d3x1d3x2hϕ̂ðx1Þϕ̂ðx2Þi

þ ðλZ2Þ2ϕ4
0

8

Z
d3x1d3x2hϕ̂ðx1Þϕ̂ðx2Þi2

þ ðλZ2Þ2ϕ2
0

4

Z
d3x1d3x2hϕ̂ðx1Þϕ̂ðx2Þi3 þOðλ3Þ;

ð3:12Þ

where we have dropped terms that were obviously
higher order than desired. Provided that mph and λph
are the renormalized mass and coupling, there is no
possibility for the first line of (3.12) to give λ2

contributions.
Therefore, the expression for D simplifies to the last

two lines of (3.12), keeping in mind that, at the order
we are working, all the expectation values need to be
evaluated within free theory. Now, these remaining
terms look interesting. In particular, the second line
of (3.12) looks like a semiclassical term, as it goes as
ðλNÞ2 (with N ∝ ϕ2

0 being the number of quanta within
the Compton volume), while the third line behaves
as λ2N.
The problem is the evaluation of the integrals. If we

compute them by Fourier transforming the two-point
function and then we exchange the order of momentum
and position integrals, we end up with a divergent result.
The IR divergence can be regulated by taking a finite
volume; however, the integrals are also UV divergent. At
this point the only way around the latter is to proceed via
analytic continuation. For instance, using the Fourier space
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expression for the propagator and exchanging the order of
integration we readily obtain

Z
d3x1d3x2hϕ̂ðx1Þϕ̂ðx2Þi2 ¼

V
4ð2πÞ3

Z
d3k

1

k2 þm2
:

ð3:13Þ

To perform the integration we use dimensional regulari-
zation. After analytically continuing the result back to 3D,
we get

Z
d3x1d3x2hϕ̂ðx1Þϕ̂ðx2Þi2 ¼ −

V
16π

m: ð3:14Þ

The problem with the result is the negative sign on
the right-hand side of (3.14), and a negative contri-
bution to D seems to violate unitarity (notice that for
the face value the left-hand side seems manifestly posi-
tive definite). Analogously, the integral appearing in
the third line of (3.12) can be processed in the Fourier
space as

Z
d3x1d3x2hϕ̂ðx1Þϕ̂ðx2Þi3 ¼

V
8ð2πÞ6

Z
d3k1d3k2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗1 þ k⃗2Þ2 þm2

q : ð3:15Þ

Regretfully, we were unable to evaluate this integral further.
Also, it must be noted that the second line of (3.12) must be
made finite independently from the third line, as they scale
differently in ϕ0.
In the absence of a regularization scheme that yields a

physically sound finite result, it seems our perturbative
expansion in time breaks down here and the resummation is
warranted. In other words, the only conceivable resolution
to the puzzle at hand seems to be the resummation of this
infinity together with higher order terms in t, in order to
hopefully achieve a finite answer.
However, as one can see, the fate of D is dimension

sensitive. In fact, in (1þ 1) dimensions both integrals from
(3.13) and (3.15) converge. The first can easily be com-
puted analytically; the second one, on the other hand,
requires numerical integration. Putting results together, the
expression reduces to

jhCcljCðtÞi2Dj2 ¼ 1 − t2 · λ2ϕ2
0 ·

L
64m

·

�
α

2
þ ϕ2

0

�

þOðλ3; t3Þ; ð3:16Þ

with α ≈ 3 and L denoting the spatial system size.
An important point to notice is the lack of a linear term in

this expression of departure of probability from unity,
which would have been the rate of departure. Instead,
we have the acceleration of departure. This is connected to
the property of infinitesimal transition amplitudes for
coherent states we are about to discuss in the following
section.
Before moving forward to the evolution of a one-point

expectation value, where the treatment of infinities can be
discussed in a clearer way, it is worth pausing to see the fate
of these infinities within path-integral formalism for coher-
ent states. In particular, we will see that the divergencies
similar to those in (3.12) do not pose a problem there.

B. Path integral

Let us now discuss the path-integral formalism for
coherent states. This topic has a long history going back
to [31–34] (see also [24] and references therein). Here, we
simply overview some of the intermediate steps in the
derivation.
The main motivation for this section is to underline the

difference between the philosophy of Sec. III A and the
commonly accepted approach to infinitesimal segments in
the path integral. For the coherent states (2.6) the latter can
be calculated as

hϕ0
c; π0c; tþ dtjϕc; πc; ti
¼ hΩjei

R
d3xðϕ0

cðxÞπ̂ðxÞ−π0cðxÞϕ̂ðxÞÞ · e−iĤdt

· e−i
R

d3xðϕcðxÞπ̂ðxÞ−πcðxÞϕ̂ðxÞÞjΩi; ð3:17Þ

with dt being an infinitesimal time-interval, while
fϕcðxÞ; πcðxÞg and fϕ0

cðxÞ; π0cðxÞg stand for c-number
functions characterizing the initial and final states,
respectively.
We can use the tricks of Sec. II A to show that (3.17) can

be rewritten as

hϕ0
c; π0c; tþ dtjϕc; πc; ti ¼ e

i
2

R
d3zðδϕcðzÞπcðzÞ−ϕcðzÞδπcðzÞÞ

× hΩjei
R

d3xðδϕcðxÞπ̂ðxÞ−δπcðxÞϕ̂ðxÞÞ

× ·e−iĤ½ϕcþϕ̂;πcþπ̂�dtjΩi;

without loss of generality; here, we have introduced the
notation δϕc ≡ ϕ0

c − ϕc and δπc ≡ π0c − πc. Notice that the
Hamiltonian is a functional of shifted fields. At this point, it
has not been assumed that as dt → 0, field variations
should also vanish.
If we were to assume an infinitesimal variation of the

field and its conjugate momentum, then the expression

LASHA BEREZHIANI and MICHAEL ZANTEDESCHI PHYS. REV. D 104, 085007 (2021)

085007-8



would reduce to its familiar form. In other words, treating
δϕc and δπc to be as infinitesimal as dt and working to
linear order in these quantities, we could easily derive the
following simplified transition amplitude:

hϕ0
c; π0c; tþ dtjϕc; πc; tijinfinitesimal

¼ eið−H̄dtþ1
2

R
d3xðδϕcπc−ϕcδπcÞÞ; ð3:18Þ

where the c-number Hamiltonian H̄ is defined as

H̄ ≡
Z

d3x

�
1

2
π2c þ

1

2
ð∇⃗ϕcÞ2

þ 1

2

�
m2 þ λ

2
hΩjϕ̂2jΩi

�
ϕ2
c þ

λ

4!
ϕ4
c

�
: ð3:19Þ

Notice the appearance of the same mass renormalization as
in previous sections. This should give us a pause, since for
the standard path-integral construction, with field eigen-
states, there are no renormalizable infinities emerging at
this stage of the derivation.
However, this assumption of infinitesimal δϕc and δπc

may not be, strictly speaking, warranted for the purposes of
path integral derivation, as for the latter we need inter-
mediate path segments with arbitrary configurations. A
short time interval does not entail that only paths with a
small variation contribute. In the standard path-integral
formalism, this complication is avoided due to the ortho-
normality of the field-eigenstate basis. Plausibly, one can
make the case that most of the contribution comes from
more or less smooth trajectories, but it is an approximation
nonetheless. We need to be extra cautious here, especially
considering that we are after tiny cumulative effects. It must
be stressed that the limit of smooth paths is precisely the
approximation that is used in the literature to construct the
path integral for coherent states [31,35,36].
Let us appreciate the fact that for smooth trajectories the

transition amplitude for an infinitesimal segment takes such
an elegant form (3.18). In the standard case, that is if we
had dealt with field eigenstates, there would have been only
a field configuration labeling states and the path integral
over conjugate momenta on the right-hand side.
In our case, on the other hand, for an infinitesimal-time-

transition amplitude that assumes δϕc and δπc to be OðdtÞ
or smaller, we get a pure phase. This is precisely the reason
why OðtÞ terms are lacking in (3.10).
Going along with the approximation at hand, we can use

(3.18) to construct the path integral over a finite period of
time by piling up a large number of infinitesimal segments
and integrating over intermediate configurations, keeping
in mind that coherent states provide us with a resolution of
identity. In so many words, we can write

hϕ0
c; π0c; t0jϕc; πc; ti

≃
Z

½dμðϕ; πÞ�ei
R

t0
t
dtð
R

d3x _ϕπ−H̄Þ · e
i
2

R
d3x½π0cϕ0

c−πcϕc�;

ð3:20Þ

with the measure ½dμ� defined using the following reso-
lution of identity:

1 ¼
Z

½dμðϕ; πÞ�jϕ; πihϕ; πj; ð3:21Þ

implying the measure is dimensionless; for a detailed
discussion see [24] and references therein (a brief
discussion of Green’s functions in this formalism is given
in Appendix B).
Alternatively, one could follow the standard path-integral

construction, utilizing the resolution of identity by means
of field and conjugate momentum eigenstates. In that case,
the coherent state appears only in wave functions of the
initial and final states,

hϕ0
c; π0c; t0jϕc; πc; ti

¼
Z

DϕDπ exp

�
i
Z

t0

t
d4xðπ _ϕ −Hðϕ; πÞÞ

�

· hΩjϕ − ϕ0
c; t0i · hϕ − ϕc; tjΩi

· e−
i
2

R
d3xðϕcπc−ϕ0

cπ
0
cÞ · ei

R
d3xðϕðtÞπc−ϕðt0Þπ0cÞ: ð3:22Þ

Here, jϕ; ti appearing on the right-hand side represents an
eigenstate of ϕ̂ðtÞ.
Let us finish this section by pointing out important

differences between (3.20) and (3.22). For starters, the
Hamiltonians differ by the infinite contribution that
should be absorbed in the renormalization of mass.
Furthermore, we did not have to assume smooth paths in
the derivation of (3.22), making it somewhat superior to
(3.20). The price of this elegant result is the appearance of
the wave function of the vacuum, which would have to be
calculated perturbatively. These wave functions can be
further simplified by shifting the field configuration of
integration by the classical function satisfying the appro-
priate boundary conditions. The last factor from (3.22)
simply imposes the initial and final conditions on the
conjugate momentum.
Wewill not discuss further the path-integral formalism in

this work. It was mentioned purely for comparative
purposes of its infinitesimal segment to the one computed
in the previous subsection.

C. Expectation value of the field

We would like to calculate the evolution of the expect-
ation value of the field operator in the coherent state (3.3),
that is hCjϕ̂jCiðtÞ, and compare it to its classical counter-
part. Applying the general Heisenberg picture formalism
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we laid out in Sec. II A and expanding the result to order t4,
we arrive at the following expression6:

hCjϕ̂ðxÞjCiðtÞ

¼ ϕ0 −
t2

2

�
ϕ0

�
m2 þ λZ

2
hΩjϕ̂ðxÞ2jΩi

�

þ λZ
3!

ϕ3
0

�
−
t3

3!

�
λ

2
ϕ0hΩjπ̂ ϕ̂þϕ̂ π̂ jΩi

�

þ t4

4!

�
λZϕ0hΩjð∂μϕ̂Þ2 þm2ϕ̂2jΩi

þ ϕ0

�
m4 þ λZm2hΩjϕ̂2jΩi þ 5

2 · 3!
ðλZÞ2hΩjϕ̂4jΩi

�

þ λZ
3!

ϕ3
0ð4m2 þ 5λZhΩjϕ̂2jΩiÞ þ ðλZÞ2

2 · 3!
ϕ5
0

�
þOðt5Þ:

ð3:23Þ

The important point to notice is that the t3 term vanishes
because it can be written as ∂thΩjϕ̂2jΩi, which must vanish
for the Poincaré invariant vacuum.
Let us try renormalizing the parameters at hand in such a

way that makes (3.23) finite at one-loop order. Curiously
enough, the finite part of (3.23) matches the classical
evolution exactly at each order in t; we have checked this
statement explicitly up to t7 corrections. In order to avoid
the accidental mismanagement of classical nonlinearities,
we perform the loop expansion by keeping λ finite but
treating the loop factor λ

16π2
to be small. As a result, in

dimensional regularization, (3.23) reduces to

hCjϕ̂ðxÞjCiðtÞ
				
1−loop

¼ ϕ0 −
t2

2

�
ϕ0m2

ph þ
λ

3!
ϕ3
0

�

þ t4

4!

�
ϕ0m4

ph þ
2λ

3
ϕ3
0m

2
ph þ λϕ3

0Σþ λ2

2 · 3!
ϕ5
0

�
; ð3:24Þ

where m2
ph ≡m2 þ Σ, we have taken into account that

hΩjð∂μϕ̂Þ2 þm2ϕ̂2jΩi ¼ 0, in dimensional regularization
and have set Z ¼ 1, since it acquires corrections only
starting at two-loop in ϕ4 theory.7 Also, in this expression Σ
denotes the usual one-loop bubble integral

Σ≡ λ

2

Z
d4k
ð2πÞ4

−i
k2μ þm2

: ð3:25Þ

In other words, one-loop computation entails keeping terms
linear in Σ only.
The key observation we would like to stress concerns the

initial field acceleration. Being given by the t2 term of
(3.23), it seems to be determined in terms of the renor-
malized mass and the bare coupling constant. The latter
being infinite in the standard renormalization prescription,
our result seems quite strange. One would expect the
renormalized coupling to be the one driving the acceler-
ation from the initial value of the field. In order to make the
point even clearer, let us simply take Hamilton’s operator
equation (in the Heisenberg picture) and find its expect-
ation value in the coherent state (3.3), at the initial time,

� ∂2

∂t2 hCjϕ̂jCi − ΔhCjϕ̂jCi þm2hCjϕ̂jCi

þ λZ
3!

hCjϕ̂3jCi
�
t¼0

¼ 0: ð3:26Þ

The second term vanishes due to the homogeneity of the
coherent state and the vanishing of the one-point vacuum
expectation value. The last two terms also simplify to give a
result identical to the one deduced from (3.23)

∂2

∂t2 hCjϕ̂jCijt¼0 ¼ −ϕ0

�
m2 þ λZ

2
hΩjϕ̂ðxÞ2jΩi

�
−
λZ
3!

ϕ3
0:

ð3:27Þ

It must be emphasized that this expression is exact up to
this point. Even if one could question the validity of the
time-series expansion adopted earlier, Hamilton’s operator
equation serves as a core of any perturbative calculation in
quantum field theory.
The surprising feature of (3.27) lies in the fact that the

initial acceleration of the field value is driven by the bare
coupling constant, rather than the one running as a function
of ϕ0. In other words, the effective potential felt by the field
at t ¼ 0 lacks the logarithmic correction encountered in the
celebrated Coleman-Weinberg’s work [26]. This may not
sound too surprising as the latter deals with constant
backgrounds, while here we are dealing with an oscillating
one (although at the initial moment _ϕ ¼ 0). In general, the
one-loop effective action can be organized in a derivative
expansion

Γ½ϕ� ¼
Z

d4xð−Vðϕ2Þ−Fðϕ2Þð∂μϕÞ2 þPðð∂μϕÞ2Þ þ � � �Þ;

ð3:28Þ

with the ellipsis standing for terms with more than
one derivative per field. For constant and homogeneous
field configurations one legitimately assumes tree-level
values for F and P, while including loop effects in the
potential. For time-dependent backgrounds, on the other

6Some of the relevant commutators can be found in
Appendix C.

7Notice that λ and Z always appear in the λZ combination here.
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hand, one needs to be more cautious. For instance, it is
straightforward to show that up to ∼λ2 terms, at one-loop,
one gets

F ∼ 1þ λ2
ϕ2

m2
and P ∼

λ2

m4
ð∂μϕÞ4; ð3:29Þ

see [37,38] for the relevant discussion. Schematic equa-
tions for the homogeneous field that follow take the
following form:

�
1þ λ2ϕ2

m2
þ λ2 _ϕ2

m4

�
ϕ̈ ¼ −V 0ðϕ2Þϕ − λ2

ϕ

m2
_ϕ2: ð3:30Þ

Although the effective potential depends on renormalized
running coupling, bringing the expression in parentheses
to the right-hand side may significantly affect it. In other
words, some of the derivative terms of the effective
action modify the background field dynamics at the same
level as the radiatively generated potential terms.8 In a
similar fashion, if we were to consider a configuration
with initial _ϕ, the last term on the right-hand side of
(3.30) could give a vanishing contribution to ϕ̈, together
with the combination of the mass term and the third term
in parentheses.
It must be mentioned that the full expression for F

obtained in [37,38] does not seem to lead to the recon-
ciliation with our result for coherent states. In fact, being of
semiclassical nature, there is no reason to expect the
effective field acceleration from (3.28) to reproduce the
fully quantum result. It must simply serve as a lesson, not to
draw conclusions for the dynamical problem based on the
static-background analysis. More detailed discussion of
these points from the effective action perspective is beyond
this work and will be presented elsewhere.
Here, we can shed some light on the possibility of

the above-mentioned idea of potential cancellations
among derivative terms within the coherent state for-
malism by introducing nonvanishing initial momentum
for the field. For this, let us consider the following initial
state:

jCi ¼ e−if̂jΩi; with f̂≡
Z

d3xðϕ0π̂ðx;0Þ− π0ϕ̂ðx;0ÞÞ:

ð3:31Þ

Assuming Z ¼ 1 for notational simplicity and keeping in
mind that it could easily be reintroduced, we get the
following extension of (3.23):

hCjϕ̂ðxÞjCiðtÞ

¼ ϕ0 þ π0 · t −
t2

2

�
ϕ0

�
m2 þ λ

2
hΩjϕ̂ðxÞ2jΩi

�
þ λ

3!
ϕ3
0

�

−
t3

3!

�
π0
�
m2 þ λ

2
hΩjϕ̂ðxÞ2jΩi

�
þ λ

2
ϕ2
0π0

�
þOðt4Þ:

ð3:32Þ
The interesting property of this relation is that the initial
momentum does not enter at t2 order, which seems to
reassure the statements made around (3.30).
Closing the bracket on this somewhat speculative

attempt for the interpretation of our field-acceleration
result, let us go back to (3.23) and think about an alternative
way around the puzzle of having the bare coupling constant
being in control of the initial evolution. Splitting the infinite
bare coupling into the physical one and a counterterm, as
per usual λ ¼ λph þ δλ, one can easily convince oneself that
the only possibility of getting rid of the infinite leftover
term ½− t2

2
δλ
3!
ϕ3
0� is in combination with higher order terms

in t. For example, there is an infinite term of the form
½t4
4!

δλ2

2·3!ϕ
5
0� descending from the last t4 term of (3.23), along

with other similar ones. The question is whether they can be
combined into a function of the combination ½δλϕ2

0t
2�,

vanishing in the infinite limit for the latter. We will tackle
this question of time-series resummation within the inter-
action-picture formalism in Sec. IV.

D. Curious case of two-point function

Finally we come to the two-point correlation function
calculated in the coherent state

hCðt ¼ 0Þjϕ̂ðx; tÞϕ̂ðy; 0ÞjCðt ¼ 0Þi ¼ ϕ2
0 þ hΩjϕ̂ðx; 0Þϕ̂ðy; 0ÞjΩi þ thΩjπ̂ðx; 0Þϕ̂ðy; 0ÞjΩi

−
t2

2

�
ϕ2
0

�
m2 þ λ

2
hΩjϕ̂2jΩi þ λ

3!
ϕ2
0

�
þ hΩjϕ̂ðy; 0Þ

�
−Δþm2 þ λ

2
ϕ2
0 þ

λ

3!
ϕ̂2ðxÞ

�
ϕ̂ðx; 0ÞjΩi

�

þOðt3Þ: ð3:33Þ

8Let us stress that this statement holds only in cases when the tree-level potential gives a leading contribution to the dynamics and one
is interested in subleading quantum effects. There are supersymmetric inflationary scenarios in which the inflaton field rolls solely due to
radiative corrections to the potential [39,40]. In those cases the derivative corrections to the effective action give a negligible contribution
compared to the quantum potential terms. We would like to thank Gia Dvali for the discussion on this matter.
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Here, the notation jCðt ¼ 0Þi has been invoked to underline
the fact that the coherent state has been constructed using
operators at t ¼ 0, as we are using the Heisenberg picture.
A few interesting comments are in order here:
(i) The first two terms of (3.33) should be compared to

the result of the background field method. In our
case, the second term is a vacuum expectation value,
while in the background field method the latter gets
replaced with a two-point function for perturbations,
the dispersion relation of which depends on the
background configuration.

(ii) On the second line of (3.33), the first term looks
encouraging as it is precisely the combination we
have dealt with in (3.23). In other words, the
renormalization prescription that makes the t2 term
of (3.23) finite takes care of that combination here
as well.

(iii) The second term of the second line of (3.33) is also
quite appealing, as the operator there resembles a
background dependent operator appearing in the
equation of motion for perturbations. It must be
stressed that this result is reminiscent of the general
results regarding Heisenberg picture operators; see
Sec. II A.

Furthermore, we can repackage (3.33) in a simpler form by
means of Hamilton’s equation as

hCðt ¼ 0Þjϕ̂ðx; tÞϕ̂ðy; 0ÞjCðt ¼ 0Þi
¼ ϕ2

0 þ hΩjϕ̂ðx; tÞϕ̂ðy; 0ÞjΩi

−
t2

2

�
ϕ2
0

�
m2 þ λ

2
hΩjϕ̂2jΩi þ λ

3!
ϕ2
0

�

þ λ

2
ϕ2
0hΩjϕ̂ðx; 0Þϕ̂ðy; 0ÞjΩi

�
þOðt3Þ: ð3:34Þ

The first two terms are self-explanatory; radiative correc-
tions must be taken care of as usual in order to make the
second term finite. Namely, at one-loop the mass renorm-
alization must be the standard one. As a result, examining
the second line of (3.34) and comparing it with the one-
point function case, we realize that the divergent part of the
bare coupling, appearing on the second line of (3.34), needs
to be resummed with higher order t terms in a similar
fashion (see the argument at the end of Sec. III C).

IV. INTERACTION PICTURE

In previous sections we have tackled the problem of
evolution from a relatively unconventional side. That is, we
have chosen the time interval as a primary parameter for
organizing the expansion, instead of the coupling. One of
the advantages of that approach is that it is quite straight-
forward to account for classical nonlinearities through the
underlying quantum process.
In this section we would like to pursue a more standard

avenue, involving the expansion in coupling from the
beginning but keeping the time interval of evolution
arbitrary. As we are about to show, this corresponds to
the resummation of the time expansion of Sec. III C at a
given order in the coupling constant.
Focusing on the homogeneous coherent state (3.3)

studied earlier, we are after the evolution of one-point
expectation value

hCjϕ̂ðt; xÞjCi: ð4:1Þ

Using the standard method we can convert this into the
following out-of-time-ordered vacuum expectation value in
the interaction picture:

hCjϕ̂ðt; xÞjCi ¼ lim
T→∞

h0jUðT; 0Þeiϕ0

R
d3x0π̂Ið0;x0ÞUð0; tÞϕ̂Iðt; xÞUðt; 0Þe−iϕ0

R
d3x00π̂Ið0;x00ÞUð0;−TÞj0i

h0jUðT;−TÞj0i :

Here the subscript ’I’ denotes the corresponding operator
to be in the interaction picture, possessing the standard
free-particle expansion in ladder operators, “j0i” stands for
the free-theory vacuum, and U is the usual time-ordered
exponential of the interaction Hamiltonian, i.e., Uðt; t0Þ≡
TfexpðR t

t0
dtHIÞg, with HI ≡ λ=4!

R
d3zϕ̂4

I ðt; zÞ. As it
stands, the expectation value in a coherent state has been
recast as a vacuum expectation value for asymptotic states
with some operator insertions; with the information about
the state being imprinted in the exponential field-displace-
ment operators. The latter have a simple effect on enclosed
operators, that follows from the Baker-Campbell-Hausdorff
identity,

eiϕ0

R
d3x0π̂Ið0;x0Þϕ̂Iðt; xÞe−iϕ0

R
d3x00π̂Ið0;x00Þ

¼ ϕ0 cosðmtÞ þ ϕ̂Iðt; xÞ; ð4:2Þ

where the first term represents a homogeneous solution to
free equations of motion, with the desired initial conditions.
We evaluate the above expression for the one-point

function explicitly up to λ2 order in Appendix D. Since
in this work we are primarily interested in one-loop results,
let us drop higher order contributions and present a clean
result valid up to quadratic order in classical nonlinearities
and to the first order in the loop factor (i.e., in ℏ, if we were
to reinstate it)
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hCjϕ̂ðt; xÞjCi1−loop ¼ ϕ0 cosðmphtÞ −
λϕ3

0

3!

sinðmphtÞð6mphtþ sinð2mphtÞÞ
16m2

ph

þ λ2ϕ5
0

4!226m4
ðð23 − 72m2t2Þ cosðmtÞ − 24 cosð3mtÞ þ cosð5mtÞ

þ 12mtð8 sinðmtÞ − 3 sinð3mtÞÞÞ

þ λ2

2

Z
t

0

dt1

Z
t1

0

dt2

Z
d3p
ð2πÞ3

sinð2Epðt1 − t2ÞÞ
ð2EpÞ2

sinðmðt − t1ÞÞ
m

Φðt1ÞΦðt2Þ2

þOðλ3Þ; ð4:3Þ

where ΦðtÞ≡ ϕ0 cosðmtÞ and mph is defined in the usual
manner as

m2
ph ≡m2 þ λ

2
hϕ̂2

I i: ð4:4Þ

Here the second term is the expectation value in a free
theory vacuum, also known as the “bubble diagram.”
Notice that one can use m and mph interchangeably in
(4.3) everywhere except for the first line, due to the order of
approximation.
Interestingly, and expectantly, our calculation recovers

the classical nonlinear evolution through quantum dynam-
ics, supplemented with quantum corrections. Namely, the
first three terms are precisely what one would obtain by
solving the classical homogeneous equation perturbatively
in λ. The last term, on the other hand, is a one-loop
divergent contribution. It is therefore natural to expect this
divergence to renormalize the coupling constant, as the
mass renormalization has been already taken care of.
Neglecting this prejudice, the fate of the divergence should
be determined by its time dependence, which we are about
to check.
Naively, the momentum integral in the last term of

(4.3) appears to be linearly divergent, which is not the
behavior we would expect for the one-loop diagram
responsible for the coupling constant renormalization.
However, such an assessment fails due to the appearance
of the oscillatory function of energy. After swapping
momentum and time integrals and explicitly performing
the latter, it becomes evident that the divergence is
logarithmic.
In order to verify that the computation of the current

section is up to this point compatible with the time-
expansion analysis of previous sections, we may blatantly
expand (4.3) in the Taylor series to t4 order (preceded by
explicit integration over t1;2). It is a matter of straightfor-
ward computation to show that this leads to the result
identical to (3.24). In other words, the last term of (4.3) is
Oðt4Þ, in time expansion, and thus does not contribute to
the initial field acceleration. For the latter we once again
arrive at

lim
t→0

∂2
t hCjϕ̂ðt; xÞjCi1−loop ¼ −m2

phϕ0 − λ

3!
ϕ3
0: ð4:5Þ

For the physical discussion and potential interpretation of
this result, the reader is redirected to Sec. III C.
At this point one may still wonder whether in the current

interaction-picture computation, the time expansion of the
integrand in the last term of (4.3) is legitimate (due to the
fact that every single term in this expansion seems to
diverge). Instead, let us proceed by isolating the divergent
part and then compute the leftover finite contribution
without time expansion. For this we use the trick that
has been used before in a similar context in [21]. In
particular, in order to rewrite the last term of (4.3) in a
manifestly logarithmically divergent form, we rewrite the
momentum-dependent oscillatory term as

sin ð2Epðt1 − t2ÞÞ ¼
1

2Ep

d
dt2

cos ð2Epðt1 − t2ÞÞ: ð4:6Þ

Integration of this by parts in the integrand of (4.3) leads to
the emergence of three terms: two boundary terms and a
term with derivative acting on Φðt2Þ. The upper boundary
term, after further integration over t1 and remembering that
at this order in our expansion we can replace m with mph,
gives the following contribution:

hCjϕ̂ðt; xÞjCi ⊃ λ2ϕ3
0

2

sin ðmphtÞð6mphtþ sin ð2mphtÞÞ
16m2

ph

×
Z

d3p
ð2πÞ3

1

ð2EpÞ3
: ð4:7Þ

Interestingly, this termexhibits the timedependence identical
to the second term of (4.3), with the momentum integral
corresponding to the one-loop diagram responsible for the
coupling constant renormalization in scattering computa-
tions. Therefore, the contribution in question can be absorbed
by the term linear in λ as a coupling renormalization,
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λph ¼ λ − 3λ2
Z

d3p
ð2πÞ3

1

ð2EpÞ3
: ð4:8Þ

The remarkable outcome of the adopted trick lies in the
fact that the other two terms resulting from integration by
parts are finite. The lower boundary term (henceforth
denoted as FL) descending from the last line of (4.3) gets
expressed through Meijer G functions. The numerical
behavior of this contribution has been depicted in Fig. 1.
Away from the initial moment, it seems to undergo steady
oscillations. However, it exhibits peculiar behavior near
t ¼ 0, namely

lim
t→0

FLðtÞ ¼
λ2ϕ3

0

64π2

�
−
1

2
þ γ þ ln ðmtÞ

�
t2 þOðt4Þ; ð4:9Þ

which implies that the contribution to the field accel-
eration, i.e., ∂2

t hCjϕ̂ðt; xÞjCi, has a logarithmic initial
time singularity. This is believed to be an artifact of the
weak coupling expansion; see [21] and references therein.
Moreover, the unusual behavior we have encountered in
the time-expansion analysis is related to the FLðtÞ
contribution as well. Namely, if we were to expand
the integrand of FLðtÞ in a Taylor series in t, before
momentum integration, we would get a logarithmically
UV-diverging t2 term (which would undo the coupling
renormalization) and a quadratically UV-diverging t4

term. In other words, the peculiar initial time behavior
exhibited by (4.9) seems to be the price for recovering
the standard renormalization prescription.
The remaining term resulting from integrating (4.6) in

the last term of (4.3) consists of two parts. The part that
can be analytically calculated [which we denote as FaðtÞ]
and the one requiring numerical integration [denoted by
FnðtÞ]. Together with FL, they are depicted in Fig. 1,
demonstrating that eventually Fa dominates over the other

contributions. The analytic expression for FaðtÞ takes the
following form:

FaðtÞ ¼
λ2ϕ3

0

32π2
sinðmtÞð2mtþ sinð2mtÞÞ

16m2
: ð4:10Þ

Putting everything together, (4.3) can be written as

hCjϕ̂ðt; xÞjCi1−loop

¼ ϕ0 cosðmphtÞ−
λphϕ

3
0

3!

sinðmphtÞð6mphtþ sinð2mphtÞÞ
16m2

ph

þ λ2phϕ
5
0

4!226m4
ph

ðð23− 72m2
pht

2Þ cosðmphtÞ− 24cosð3mphtÞ

þ cosð5mphtÞ þ 12mphtð8 sinðmphtÞ− 3 sinð3mphtÞÞÞ

þ λ2phϕ
3
0

32π2
sinðmphtÞð2mphtþ sinð2mphtÞÞ

16m2
ph

þFnðtÞ þFLðtÞ

þOðλ3Þ: ð4:11Þ

As one can easily notice, besides the renormalization of
parameters, there are actual quantum corrections to the
classical dynamics. Moreover, the dominant quantum effect
can be evaluated analytically, and it exhibits significant
similarity with the linear classical correction to the dynam-
ics; (ignoring numerical coefficients of order unity) the
former is suppressed by the loop factor. Moreover, it is easy
to see that these contributions are always out of phase, as
depicted in Fig. 2 for convenience. Because of the linear
growth of the correction in question, one might expect it to
eventually dominate over the first term of (4.11). However,
taking into account the secular instability present in
classical corrections, which we know for a fact to be an
artifact of the approximation, one may wonder whether the
observed quantum instability is equally spurious. In fact, at
the level of the carried-out computation, the classical
evolution breaks down (departs from full nonlinear evolu-
tion) around the timescale

tcl ¼
�
λphϕ

2
0

16mph

�−1
: ð4:12Þ

In a similar fashion, if we were to estimate the time it would
take for the quantum contributions to become of order ϕ0,
we would obtain

tq ¼ tcl

�
λph
16π2

�
−1
: ð4:13Þ

It must be stressed that this timescale matches the expres-
sion for the quantum break time given in [6], according to
which, assuming rescattering of the background constitu-
ents to be the underlying process responsible for quantum
breaking, and assuming 2 → 2 scattering to be the simplest

FIG. 1. Numerical comparison of finite quantum corrections
descendent from the last term of (4.3). The blue curve denotes
FL, the orange one corresponds to Fn, and the green one
represents Fa.

LASHA BEREZHIANI and MICHAEL ZANTEDESCHI PHYS. REV. D 104, 085007 (2021)

085007-14



contributing process (treating particles to be collectively
off-shell, thus ignoring the kinematic prohibition of the
process), one would get the rate of quantum depletion to be
given by N=tq where N is the number of particles per the
Compton volume.
Regretfully, more definite statements require going to

higher orders in λ. In particular, we know for a fact that
there are processes that change the total number of
particles, the most elementary one being 4 → 2, with a
rate proportional to λ4; see the discussion in [6]. In other
words, we expect the quantum part of (4.11) to have higher
order corrections in the classical coupling λ. Therefore, it
remains an open question whether the observed quantum
secular instability survives in the resummed theory.

V. SUMMARY AND OUTLOCK

In this work, we have studied the real-time quantum
dynamics of coherent states in the case of an interacting
quantum field theory. One of the vital details about the
setup is the buildup over the vacuum of the interacting
theory, rather than of the free Hamiltonian. In this way
we manage to bypass some of the unnecessary approx-
imations, which in turn helps us to avoid some of the
complications that could arise in the case of inconsistent
perturbative treatment of the dynamics and the state
itself.
In order to establish the gradual departure of physical

observables from their classical trajectories, we have begun
the analysis by organizing the dynamics as a Taylor series
in time elapsed since the initial moment. This method
seemed particularly promising for computing the initial
values of certain physical quantities. Below we recap some
of our central results in this regard.
Considering a coherent state (2.6) corresponding to the

configuration with homogeneous field ϕ0 and its momen-
tum π0, the initial expectation values of the Hamiltonian

density and the field acceleration take the following form at
one-loop9:

hCjĤðxÞjCiðt ¼ 0Þ ¼ 1

2
π20 þ

1

2
mphϕ

2
0 þ

λ

4!
ϕ4
0; ð5:1Þ

∂2
t hCjϕ̂ðxÞjCiðt ¼ 0Þ ¼ −m2

phϕ0 − λ

3!
ϕ3
0; ð5:2Þ

wheremph stands for the renormalized mass. Equation (5.2)
simply follows from the expectation value of Hamilton’s
operator equation, evaluated at the initial moment. The
unexpected property of these results lies in the fact that
these quantities seem to be governed by the tree-level
potential (i.e., no evidence for coupling renormalization at
this level). In fact, as we have argued qualitatively in
Sec. III C, the standard expectation regarding the field
acceleration needs to be reconsidered by including radia-
tively induced derivative interactions in the effective action,
as they seem to contribute to the dynamics as significantly
as the potential terms (irrespective of the rate of the
dynamics). Unfortunately, after all is said and done the
manifestly infinite contributions remain (through the bare
coupling) and need to be disposed off via resummation.
Another interesting observation we would like to bring

attention to concerns the initial-time two-point function. In
particular, the following result holds to all orders in
perturbation theory10:

hCjϕ̂ð0; xÞϕ̂ð0; yÞjCi ¼ ϕ2
0 þ hΩjϕ̂ð0; xÞϕ̂ð0; yÞjΩi: ð5:3Þ

The striking similarity with the background field technique
is obvious here. Note, however, that the second term is a
background independent vacuum two-point function, while
in the semiclassical treatment it comes out to be the
correlator for fluctuations with a background-dependent
dispersion relation.
Moving forward, we have computed first several terms in

the time series of hCjϕ̂ðt; xÞjCiðtÞ, illustrated in (3.23). It is
straightforward to see that the effect of classical non-
linearities is correctly captured by every computed term. In
fact, all finite terms obtained in this expansion seem to
correspond to classical contributions; this statement has
been verified explicitly up to t7 order. We would like to
emphasize that the reproduction of classical contributions
at each order in t is performed in full generality without
resorting to the weak coupling expansion. In this approach,
quantum effects seem to appear in the form of vacuum

FIG. 2. The blue curve denotes the second term of (4.11), while
the green one depicts Fa (rescaled by the loop factor for the
visibility). The plot is displayed in units of λphϕ3

0=m
2
ph.

9Notice that the exact results given by (2.7) and (3.27) are
equally elegant. However, we refrain from making statements
beyond one-loop here, since we have mainly focused our
discussion on the latter.

10The only property of the theory used in deriving this
expression was that the vacuum expectation value of an odd
number of fields vanishes.
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expectation values of singular operators, some of which can
be absorbed by the parameters of the theory, while the
others need to be resummed with higher order terms in t.
Because of the above-mentioned need for the resum-

mation of the time series, we have performed the calcu-
lation of hCjϕ̂ðt; xÞjCiðtÞ within the interaction-picture
framework. Even though the starting point of every single
calculation invokes the infinitesimal time limit of the
Hamiltonian flow, the method in question manages the
resummation of the time series at a given order in
perturbation theory (in a coupling constant), yielding a
result valid for extended periods of time. In particular, we
have evaluated the quantity in question up to λ2 order,
further simplifying the result by dropping two-loop
contributions, leading to (4.11), which includes nonlinear
classical effects up to order λ2 as well as one-loop
quantum corrections; with parameters being renormalized
as per the standard prescription. The appearance of the
standard coupling renormalization, unlike (5.2), shows
potential in terms of recovering the effects of the
Coleman-Weinberg effective potential to some extent,
but for that one needs to extend our one-loop calculation
to higher orders in λ (classical coupling) and perform the
resummation. The outcome of the latter is especially
interesting, due to the appearance of spurious secular
divergencies in (4.11) that are obviously an artifact of the
perturbative calculation. The obtained quantum correc-
tions to the dynamics have interesting properties, with the
most notable ones being the following:

(i) Logarithmic initial-time singularity:

lim
t→0

∂2
t hCjϕ̂ðt; xÞjCi ⊃

λ2ϕ3
0

32π2
lnðmtÞ:

Similar pathologies have been previously encoun-
tered in the literature. Namely, in the background
field methods one sometimes considers the initial
state of perturbations to be given by the free-theory
vacuum for fluctuations leading to initial-time
singularities, which is believed to be an artifact
of the adopted, strictly speaking ill-defined, treat-
ment of the initial state (see the discussion in [21]
and references therein). In our coherent state
calculation, on the other hand, we have not invoked
any free-theory states or operators in the construc-
tion. However, we have shown that the perturbative
expansion of the interaction picture and subsequent
termination of the series at one-loop effectively
reduced our expression to the one we would obtain
if the initial coherent state were built from a free
theory vacuum.

(ii) Growing quantum correction to the classical dy-
namics: It has a form similar to the classical secular
(spurious) instability, albeit with a loop-factor sup-
pression. Therefore, it is incapable of giving a

significant correction to the dynamics; the perturba-
tive expansion breaks down before quantum terms
have time to grow sufficiently. However, if taken for
the face value and compared to the initial field
displacement ϕ0, it leads to the estimate of [6] for
the quantum break time (i.e., the time it takes for the
quantum evolution to depart significantly from the
classical dynamics), which was obtained using
the simplest 2 → 2 rescattering of the constituents
as a source of quantum breaking.

We have also studied the quantum evolution of a
coherent state for infinitesimal time t, and its subsequent
overlap with a coherent state constructed out of the
classically evolved field configuration. We have computed
the probability for a quantum state at time t to coincide with
the aforementioned classical counterpart. The deviation is
schematically given as

jhCcljCðtÞij2 ¼ 1 − t2DþOðt3Þ: ð5:4Þ

The notable fact about this expression is that the probability
departs from unity quadratically in t, which is due to the
fact that the infinitesimal transition amplitude between
coherent states is a pure phase at leading order in t (see the
discussion of Secs. III A and III B). Regretfully, the
coefficient D is divergent in (3þ 1) dimensions and a
resummation of higher order terms in t seems to be
required. However, in (1þ 1) dimensions one gets an
elegant result given by (3.16), which shows that the
characteristic timescale of departure from the classical
path behaves as λ−1. This, on the other hand, corresponds
to a parametrically shorter time than (4.13).
It is quite possible for the computed departure proba-

bility to capture more of the microscopic dynamics than the
one-point function. However, the above-mentioned pecu-
liar result may be an artifact of the infinitesimal-time
approximation. In particular, examining the quantum con-
tribution to (4.11) it is easy to see that, while over
timescales longer than the inverse mass the correction is
linear in time (giving tq ∼ λ−2), for an infinitesimal time
interval the corrections become quadratic in time thus
giving tq ∼ λ−1. In other words, departure rates observed
for infinitesimal time may be part of the oscillatory
behavior, similar to (4.11).
We would like to conclude by briefly mentioning future

directions. Our calculation can be straightforwardly
extended to include higher order corrections in coupling,
which may clarify whether the growing quantum effects
[depicted in (4.11)] are spurious or not. Moreover, as we
have already pointed out, going to higher orders in coupling
may open up another channel of depletion connected to the
particle number changing processes. Alternatively one
could introduce another light particle coupled to ϕ, unlock-
ing the two-particle annihilation channel. It would be
interesting to see how the particle production in the adopted
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coherent state formalism compares to the standard semi-
classical analysis which studies the production of particles
in the time-dependent classical background. These and
other related questions will be discussed elsewhere.
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APPENDIX A: COHERENT STATE:
NORMAL ORDERING

In this Appendix, we would like to discuss a point that
could, in principle, be used to question the legitimacy of the
adopted construction. We have considered the following
coherent state:

jCi ¼ e−if̂jΩi; with f̂ ≡
Z

d3xϕ0π̂; ðA1Þ

focusing on a homogeneous one for simplicity. This may
appear to be problematic because of the same point sin-
gularity. Even though the state defined this way is properly
normalized, i.e., hCjCi ¼ 1, one should keep in mind that
the exponential operator is defined as its Taylor series

jCi ¼
X∞
n¼0

ð−iϕ0Þn
n!

Z
d3x1 � � � d3xnπ̂ðx1Þ � � � π̂ðxnÞjΩi:

ðA2Þ

Almost every term in this expansion possesses a singu-
larity; for instance, the operator

Z
d3x1d3x2π̂ðx1Þπ̂ðx2Þ ðA3Þ

is singular. The easiest way to convince oneself in this
statement is to calculate the vacuum expectation value

Z
d3x1d3x2hΩjπ̂ðx1Þπ̂ðx2ÞjΩi; ðA4Þ

which diverges. It is straightforward to show that to the
leading order in perturbation theory it possesses an infrared
divergence (i.e., is proportional to the volume of the
system). The ultraviolate singularity from the overlapping
points, on the other hand, can be regulated. At this point we
may wonder whether singularities must be brushed off term
by term from (A2) using normal ordering. This is a
legitimate point, since there would be no objection against
the state constructed using nonsingular operators acting on
the vacuum. Indeed, let us see what happens when we go
down this road. For illustrative purposes, we will perform
analysis up to a certain order in ϕ0; in particular, we begin
by improving our coherent state as

jCi ¼
�
1 − iϕ0

Z
d3x1π̂ðx1Þ

þ ð−iϕ0Þ2
2

Z
d3x1d3x2∶π̂ðx1Þπ̂ðx2Þ∶

þ ð−iϕ0Þ3
3!

Z
d3x1d3x2d3x3∶π̂ðx1Þπ̂ðx2Þπ̂ðx3Þ∶

þ ð−iϕ0Þ4
4!

Z
d3x1d3x2d3x3d3x4∶π̂ðx1Þπ̂ðx2Þ

× π̂ðx3Þπ̂ðx4Þ∶þ � � �
�
jΩi: ðA5Þ

As one can see, we have simply replaced operators with
their normal ordered versions. See [41,42] for the dis-
cussion on complete normal ordering. For convenience, we
give the explicit expressions that will be of use

∶π̂ðx1Þπ̂ðx2Þ ≔ π̂ðx1Þπ̂ðx2Þ − hΩjπ̂ðx1Þπ̂ðx2ÞjΩi; ðA6Þ

∶π̂ðx1Þπ̂ðx2Þπ̂ðx3Þ ≔ π̂ðx1Þπ̂ðx2Þπ̂ðx3Þ − 3π̂ðx1ÞhΩjπ̂ðx2Þπ̂ðx3ÞjΩi; ðA7Þ

∶π̂ðx1Þπ̂ðx2Þπ̂ðx3Þπ̂ðx4Þ ≔ π̂ðx1Þπ̂ðx2Þπ̂ðx3Þπ̂ðx4Þ − 6∶π̂ðx1Þπ̂ðx2Þ∶hΩjπ̂ðx3Þπ̂ðx4ÞjΩi
− hΩjπ̂ðx1Þπ̂ðx2Þπ̂ðx3Þπ̂ðx4ÞjΩi: ðA8Þ

Here, we have implicitly assumed that both sides are integrated over coordinates. Although we have gotten rid of
singularities, we need to check the normalization. It is easy to see that (A5) does not have a unit norm. Upon normalization
we get
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jCi ¼
�
1 −

ϕ2
0

2

Z
d3y1d3y2hΩjπ̂ðy1Þπ̂ðy2ÞjΩi

þ ϕ4
0

24

Z
d3y1d3y2d3y3d3y4hΩjπ̂ðy1Þπ̂ðy2Þπ̂ðy3Þπ̂ðy4ÞjΩi þ � � �

�

×
�
1 − iϕ0

Z
d3x1π̂ðx1Þ þ

ð−iϕ0Þ2
2

Z
d3x1d3x2∶π̂ðx1Þπ̂ðx2Þ∶

þ ð−iϕ0Þ3
3!

Z
d3x1d3x2d3x3∶π̂ðx1Þπ̂ðx2Þπ̂ðx3Þ∶

þ ð−iϕ0Þ4
4!

Z
d3x1d3x2d3x3d3x4∶π̂ðx1Þπ̂ðx2Þπ̂ðx3Þπ̂ðx4Þ∶þ � � �

�
jΩi: ðA9Þ

The first line represents the normalization factor. It is
straightforward to show that upon expansion this normali-
zation factor simply removes the normal ordering and reduces
(A9) to (A2). In conclusion we are back to square one.
For a noninteracting case, one can easily resum the

normalization factor. In fact, the normalized normal
ordered state in that case reduces to

jCi ¼ e−
ϕ2
0
2

R
d3x1d3x2hπ̂ðx1Þπ̂ðx2Þi∶e−iϕ0

R
d3xπ̂ðxÞ∶jΩi: ðA10Þ

This is precisely what one gets in quantum mechanics.
Expanding in terms creation-annihilation operators we
would arrive at the familiar expression.
In conclusion, the imposition of normal ordering brings

the norm away from 1, which can be fixed by introducing a
constant normalization factor, amounting to the removal of
the normal ordering.

APPENDIX B: PATH-INTEGRAL:
GREEN’S FUNCTIONS

Here, we would like to discuss a generating functional
for Green’s functions within the path-integral formalism
overviewed in Sec. III B. In other words, we are interested
in a path-integral representation of the transition amplitude
with field insertions

hϕout; πout; toutj
Y
k

ϕ̂ðxk; tkÞjϕin; πin; tini;

with tk > tkþ1; ∀ k: ðB1Þ

As usual, we will dissect the time interval into infinitesimal
ones by inserting the resolution of identity, and as a result
some of the segments will add up with a field operator
sandwiched inside. Having already discussed segments
without insertions in Sec. III B, let us focus on the one
with a field insertion

hϕ0
c; π0c; tþ dtjϕ̂ðx; τÞjϕc; πc; ti with τ ∈ ½t; tþ dt�:

ðB2Þ

This element can be straightforwardly evaluated to the
linear order in dt and field variations as

lim
dt→0

hϕ0
c;π0c; tþ dtjϕ̂ðx; τÞjϕc;πc; ti

¼ ½1− idtH̄½ϕc;πc��ϕcðx; tÞ− idt
Z

d3z

�
_πcðzÞhϕ̂ðzÞϕ̂ðxÞi

þ ∂ z⃗ϕcðzÞh∂ z⃗ϕ̂ðzÞϕ̂ðxÞi þm2ϕcðzÞhϕ̂ðzÞϕ̂ðxÞi

þ λ

3!
ϕ3
cðzÞhϕ̂ðzÞϕ̂ðxÞi þ

λ

3!
ϕcðzÞhϕ̂3ðzÞϕ̂ðxÞi

�
; ðB3Þ

where h� � �i stands for the vacuum expectation value. The
second line can be simplified further using Heisenberg’s
operator equation of motion, but it is unnecessary. Notice
that we will, once again, pile up intervals of this kind
together. As a result, the infinitesimal term dtH̄ will turn
into an exponentiated time integral. The infinitesimal term
involving expectation values, on the other hand, receives
only contributions from intervals with field insertions and
thus vanishes in the limit dt → 0.
Therefore, it seems one can make the case for the

familiar path-integral representation for Green’s functions
(as stated in [36])

hϕout; πout; toutj
Y
k

ϕ̂ðxk; tkÞjϕin; πin; tini

≃
Z

½dμðϕ; πÞ�
Y
k

ϕðxk; tkÞei
R

tout
tin

dtð
R

d3x _ϕπ−H̄Þ

× ei
R

d3x½πoutϕout−πinϕin�: ðB4Þ

From this, one can define the generating functional and
quantum effective action as usual, through the Legendre
transform.
Next, we could derive the Coleman-Weinberg potential

using the usual background field method; underlining the
fact that all the complications we have encountered with
infinities in (3.12) are hidden in the “≃” sign appearing
in (B4).
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APPENDIX C: EXPECTATION VALUE OF THE
FIELD OPERATOR

Here we give expressions for the relevant commutation
relation used in Sec. III C to evolve the expectation value of
the field operator using the relations given in Sec. II A and
the Baker-Campbell-Hausdorff formula. In particular,

½Ĥ; ϕ̂ðxÞ� ¼ −
i
Z
π̂; ðC1Þ

½Ĥ; ½Ĥ; ϕ̂ðxÞ�� ¼ −Δϕ̂ðxÞ þm2ϕ̂þ λZ
3!

ϕ̂3

þ
Z

d3z∇⃗ðzÞðδð3Þðx − zÞ∇⃗ðzÞ
ϕ̂ðzÞÞ: ðC2Þ

(The last term is a boundary term, the likes of which wewill
be dropping by assuming that the observable will be
evaluated away from the boundary.)

½Ĥ; ½Ĥ; ½Ĥ; ϕ̂ðxÞ��� ¼ −
i
Z

�
ð−Δþm2Þπ̂þ λZ

4
ðπ̂ϕ̂2 þ ϕ̂2π̂Þ

�
;

ðC3Þ

½Ĥ; ½Ĥ; ½Ĥ; ½Ĥ; ϕ̂ðxÞ���� ¼ ð−Δþm2Þ2ϕ̂

þ λZ
3!

ð−Δþm2Þϕ̂3 þ λZ
2
ϕ̂2ð−Δþm2Þϕ̂

−
λ

4Z
ðπ̂2ϕ̂þ 2π̂ ϕ̂ π̂þϕ̂π̂2Þ þ ðλZÞ2

2 · 3!
ϕ̂5: ðC4Þ

We have used these expressions, together with the fact
that the commutators of shifted operators [appearing in
(2.12)] obey similar relations, in deriving (3.23).

APPENDIX D: INTERACTION-PICTURE
COMPUTATION

Here, we would like to give some of the intermediate
steps used in arriving at the results of Sec. IV. In a nutshell,
this Appendix represents the recount of the standard
interaction-picture steps applied to the evaluation of (4.2).
The operators ϕ̂I and π̂I , appearing in Sec. IV, are the

usual interaction picture operators

ϕ̂Iðt; xÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep

p ðâpeipμxμ þ â†pe−ipμxμÞ
				
x0¼t−t0

;

ðD1Þ

π̂Iðt; xÞ ¼
Z

d3p
ð2πÞ3 ð−iÞ

ffiffiffiffiffiffi
Ep

2

r
ðâpeipμxμ − â†pe−ipμxμÞ

				
x0¼t−t0

;

ðD2Þ

with p0 ¼ Ep ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p⃗2

p
and t0 being a fiducial

moment of time at which the ladder operators have been

defined (not to be confused with the moment of construc-
tion of our coherent state t ¼ 0); as usual t0 drops out from
observables.
The time evolution operator U, connecting the inter-

action-picture operators to ϕ̂ and π̂, is the usual one of
interaction picture

Uðt; t0Þ ¼ Tfe−i
R

t

t0
dt0HIðt0Þg ðD3Þ

¼ 1þ ð−iÞ
Z

t

t0

dt1HIðt1Þ þ ð−iÞ2

×
Z

t

t0

dt1

Z
t1

t0

dt2HIðt1ÞHIðt2Þ þ � � � : ðD4Þ

The last equality follows from the definition of the time-
ordered product. We have chosen to expand it in terms of
nonordered products because the expectation value we are
calculating is also nonordered.
We evaluate the one-point expectation value (4.2) to

order λ2 piece by piece, starting with the inner part

Uð0; tÞϕ̂Iðt; xÞUðt; 0Þ

¼ ϕ̂Iðt; xÞ þ i
λ

3!

Z
t

0

dt1

Z
d3zϕ̂3

I ðt1; zÞDðt1 − t; z − xÞ

þ λ2

3!4!

Z
d3z1d3z2



−
Z

t

0

dt1

Z
t

t1

dt2ϕ̂
4
I ðt1; z1Þ

× ϕ̂3
I ðt2; z2ÞDðt2 − t; z2 − xÞ

þ
Z

t

0

dt1

Z
t1

0

dt2ϕ̂
3
I ðt1; z1Þϕ̂4

I ðt2; z2ÞDðt1 − t; z1 − xÞ
�

þOðλ3Þ: ðD5Þ

Here, the function D stands for the following commutator:

Dðt1 − t; z − xÞ≡ ½ϕ̂Iðt1; zÞ; ϕ̂Iðt; xÞ�

¼
Z

d3p
ð2πÞ3

1

2Ep
ðeipμðz−xÞμ − e−ipμðz−xÞμÞjp0¼Ep

: ðD6Þ

Moving forward, it is straightforward to show that

eiϕ0

R
d3x0π̂Ið0;x0Þϕ̂Iðt; xÞe−iϕ0

R
d3x00π̂Ið0;x00Þ ¼ ΦðtÞ þ ϕ̂Iðt; xÞ;

with ΦðtÞ≡ ϕ0 cosðmtÞ: ðD7Þ

Notice that the exponential operator still acts as a dis-
placement operator but, unlike earlier calculations, instead
of displacing the field by ϕ0 it does so by the time-
dependent classical configuration of free theory. This is
easy to understand, as field and momentum operators are at
different times here, while in the earlier discussion they
were at equal times; also, operators are the ones of the
interaction picture, hence the appearance of the harmonic
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classical background. (Remember that earlier we saw that
even in full theory one gets a full anharmonic classical
background in a similar calculation, the observation that
was made perturbatively in time.)
Combining everything we have the following:

A≡ eiϕ0

R
d3x0π̂Ið0;x0ÞUð0; tÞϕ̂Iðt; xÞUðt; 0Þe−iϕ0

R
d3x00π̂Ið0;x00Þ

−ΦðtÞ ¼ ϕ̂Iðt; xÞ þ i
λ

3!

Z
t

0

dt1

Z
d3zðΦðt1Þ

þ ϕ̂Iðt1; zÞÞ3Dðt1 − t; z − xÞ

þ λ2

3!4!

Z
d3z1d3z2



−
Z

t

0

dt1

Z
t

t1

dt2ðΦðt1Þ

þ ϕ̂Iðt1; z1ÞÞ4ðΦðt2Þ þ ϕ̂Iðt2; z2ÞÞ3Dðt2 − t; z2 − xÞ

þ
Z

t

0

dt1

Z
t1

0

dt2ðΦðt1Þ þ ϕ̂Iðt1; z1ÞÞ3ðΦðt2Þ

þ ϕ̂Iðt2; z2ÞÞ4Dðt1 − t; z1 − xÞ
�
þOðλ3Þ: ðD8Þ

Another quantity we need to calculate is
UðT; 0ÞÔUð0;−TÞ, with the inserted operator being the
entire previous expression. Since we are interested in order
λ2 corrections and that the leading order term in the above
expression is linear in the field (keeping in mind that the
vacuum expectation value of the odd number of fields
vanishes), we only require the following to the linear order
in coupling

UðT;0ÞÔUð0;−TÞ

¼ Ôþ ð−iÞ
Z

T

0

dτHIðτÞÔþ ð−iÞÔ
Z

0

−T
dτHIðτÞ þOðλ2Þ:

ðD9Þ

Therefore, the entire one-point function takes the follow-
ing form:

hCjϕ̂ðt; xÞjCi

¼ lim
T→∞

1

h0jUðT;−TÞj0i


ΦðtÞh0jUðT;−TÞj0i þ h0jAj0i

þ λ2

3!4!

Z
t

0

dt1

Z
d3zd3yDðt1 − t; z − xÞ

×

�Z
T

−T
dτh0jϕ̂4

I ðτ; yÞj0iΦ3ðt1Þ

þ 3

Z
T

0

dτΦðt1Þh0jϕ̂4
I ðτ; yÞϕ̂2

I ðt1; zÞj0i

þ 3

Z
0

−T
dτΦðt1Þh0jϕ̂2

I ðt1; zÞϕ̂4
I ðτ; yÞj0i

��
; ðD10Þ

with A given by (D8). Notice that some of the disconnected
contributions cancel trivially. One can easily recognize that

the term with the integral over τ ∈ ð−T; TÞ should cancel
with the combination of normalization prefactor and one of
the terms from A, just as disconnected diagrams cancel in
the standard calculations.
Let us begin evaluating h0jAj0i order by order in λ. To

the zeroth order we obviously have simply ΦðtÞ, which is
the classical background of a free theory. The first order
correction is given by

h0jAj0i¼ iλ
Z

t

0

dt1

Z
d3z

�
1

3!
Φ3ðt1Þþ

1

2
Φðt1Þhϕ̂2

I ðt1;zÞi
�

×Dðt1− t;z−xÞþOðλ2Þ: ðD11Þ

From this expression it immediately follows that, after sub-
stituting it into (D10), the order λ part of h0jUðT;−TÞj0i in
combination with the Φ3 term of (D11) cancels with the
first λ2 term. Notice that hϕ̂2

I ðt1; zÞi is an equal time and
point expectation value and as such independent of the
spacetime coordinates. Henceforth, it will be denoted
simply as hϕ̂2

I i. After using the explicit expression for
D, the result simplifies to

h0jAj0i ¼ −
λhϕ̂2

I i
2

· ϕ0

t sinðmtÞ
2m

þ λ

3!

Z
t

0

dt1Φ3ðt1Þ
1

m
sin ðmðt1 − tÞÞ þOðλ2Þ:

ðD12Þ

This result makes perfect physical sense. In fact, the first
term together with ΦðtÞ in (D10) can be repackaged into

ϕ0 cos
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ λ
2
hϕ̂2

I i
q

t
�
, up to λ2 corrections, therefore

corresponding to the mass renormalization. The third term,
on the other hand, is simply the leading order classical
correction due to nonlinearities, which can easily be
integrated to give

Φð1ÞðtÞ ¼ −
λϕ3

0

3!

sinðmtÞð6mtþ sinð2mtÞÞ
16m2

: ðD13Þ

Here, label “(1)” marks the fact that this correction is linear
in coupling.
In order to compute quadratic corrections, we will need

the correlation function

h0jϕ̂Iðt1; z1Þϕ̂Iðt2; z2Þj0i

¼
Z

d3p
ð2πÞ3

1

2Ep
eip⃗·ðz⃗1−z⃗2Þ · e−iEpðt1−t2Þ; ðD14Þ

other correlators that make an appearance in the A term and
follow trivially from Wick’s theorem are
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h0jϕ̂Iðt1; z1Þϕ̂3
I ðt2; z2Þj0i

¼ 3h0jϕ̂Iðt1; z1Þϕ̂Iðt2; z2Þj0i · hϕ̂2
I i; ðD15Þ

h0jϕ̂3
I ðt1; z1Þϕ̂3

I ðt2; z2Þj0i
¼ 6h0jϕ̂Iðt1; z1Þϕ̂Iðt2; z2Þj0i3

þ 3h0jϕ̂Iðt1; z1Þϕ̂Iðt2; z2Þj0i · hϕ̂2
I i2; ðD16Þ

h0jϕ̂4
I ðt1; z1Þϕ̂2

I ðt2; z2Þj0i
¼ 12h0jϕ̂Iðt1; z1Þϕ̂Iðt2; z2Þj0i2hϕ̂2

I i þ 3hϕ̂2
I i3: ðD17Þ

Next we evaluate terms descending from the λ2 part
of (D8), and it is fairly straightforward to show that only
terms with a nontrivial power of h0jϕ̂Iðt1; z1Þϕ̂Iðt2; z2Þj0i
contribute,

h0jAj0ijλ2 ¼ Φð2ÞðtÞ þ F1ðtÞhϕ̂2
I i þ F2ðtÞhϕ̂2

I i2
þ Lcoupling þ Lsunrise: ðD18Þ

Here Φð2ÞðtÞ stands for the quadratic (in λ) corrections to
the classical background and is given by

Φð2ÞðtÞ ¼ λ2ϕ5
0

4!226m4
ðð23 − 72m2t2Þ cosðmtÞ − 24 cosð3mtÞ

þ cosð5mtÞ þ 12mtð8 sinðmtÞ − 3 sinð3mtÞÞÞ:
ðD19Þ

The functions F1;2 are given as follows:

F1ðtÞ ¼ −
λ2ϕ3

0

4!25m4
ð2ð−1þ 6m2t2Þ cosðmtÞ þ 2 cosð3mtÞ

þmtð−13 sinðmtÞ þ 3 sinð3mtÞÞÞ;

F2ðtÞ ¼
λ2ϕ0

32m3
tð−mt cosðmtÞ þ sinðmtÞÞ:

It is straightforward to check that (D19) coincides with the
λ2 contribution to classical dynamics. Moreover, the second
term of (D18) corresponds to one-loop mass renormaliza-
tion in Φð1ÞðtÞ. The third term of (D18), on the other hand,
contributes to two-loop mass renormalization ΦðtÞ. Unlike
our previous results, here we get nontrivial loop diagrams
as well. In particular, Lcoupling involves the loop-integral
corresponding to the renormalization of coupling, Lsunrise
corresponds to the so-called sunrise two-loop diagram. To
be more concrete, for the former we have

Lcoupling ¼
λ2

2

Z
d3p
ð2πÞ3

Z
t

0

dt1

×
Z

t1

0

dt2
sinðEpðt1 − t2ÞÞ

ð2EpÞ2
sin ðmðt − t1ÞÞ

m

× ðΦðt1ÞΦ2ðt2Þ þΦðt1Þhϕ̂2
I iÞ: ðD20Þ

(Notice that terms containing hϕ̂2
I i correspond to the two-

loop diagram, in which one of the propagators in the loop
has an attached bubble.) It is easy to check that if we were
to expand the one-loop part of Lcoupling in the Taylor series
in t, we would find that it is Oðt4Þ. This seems to be
consistent with the results of previous sections.
For the sunrise integral, on the other hand, we have

Lsunrise ¼
λ2

3

Z
d3p
ð2πÞ3

d3p0

ð2πÞ3
1

2Ep · 2Ep0 · 2Epþp0

×
Z

t

0

dt1

Z
t1

0

dt2 sinððEp þEp0 þEpþp0 Þðt1 − t2ÞÞ

×
sin ðmðt− t1ÞÞ

m
Φðt2Þ: ðD21Þ

Combining everything we have gotten so far and renorm-
alizing the mass, we arrive at

ΦðtÞ þ h0jAj0i

¼ ϕ0 cosðmphtÞ −
λϕ3

0

3!

sinðmphtÞð6mphtþ sinð2mphtÞÞ
16m2

ph

þ λ2ϕ5
0

4!226m4
ðð23 − 72m2t2Þ cosðmtÞ − 24 cosð3mtÞ

þ cosð5mtÞ þ 12mtð8 sinðmtÞ − 3 sinð3mtÞÞÞ
þ Lcoupling þ Lsunrise þOðλ3Þ: ðD22Þ

This already looks very promising, but before concluding let us
take care of terms from (D10) with T as a limit of integration.
As a result of straightforward computation, all of the

T-dependent terms cancel, except one, from which T drops
out in the T → ∞ limit. Putting everything together we
have the following:

hCjϕ̂ðt; xÞjCi ¼ ΦðtÞ þ h0jAj0i − λ2hϕ̂2
I i

2m

Z
t

0

dt1

×
Z

d3p
ð2πÞ3

1

ð2EpÞ3
Φðt1Þ sinðmðt1 − tÞÞ

× cosð2Ept1Þ þOðλ3Þ: ðD23Þ
Obviously, the second term in this expression corresponds
to a two-loop correction, similar to Lsunrise, with a one-loop
result nicely summarized in (4.3).
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