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Unruh-DeWitt (UDW) detectors that couple locally to a quantum field are an important tool for
operationally studying field properties. Here, we study the response of an inertial UDW detector to a
nonrelativistic particle state of a massive scalar field and we find that the transition probability of the
detector splits into the vacuum contribution and the matter contribution. We show that the matter part
oscillates with the interaction time duration and the oscillation period depends on the difference between
the mass of the particle and the energy gap of the detector; a strong resonance pattern for the transition
probability is found when such a difference equals zero. We compare the matter-part contribution with the
nonrelativistic probability density of the particle and find that they provide qualitatively similar description
of the particle.
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I. INTRODUCTION

A conceptual idealized particle detector model in the
context of quantum field theory was initially proposed by
Unruh [1] to resolve the ambiguity of defining a physical
particle state in a general spacetime background. Later,
DeWitt simplified this model by introducing a local two-
level system moving along a classical trajectory to replace
the field description of the detector [2], which is now
known as Unruh-DeWitt (UDW) detector. The UDW
detector has a simple interpretation of particles; the
transition from the ground state to the excited state of
the two-level system is regarded as an absorption of the
field quanta, and therefore the detection of a particle of
the field.
One of the most well-known examples of the UDW

detector’s application is the proof of the Unruh effect [1],
which states that from the perspective of an uniformly
accelerated observer, the Minkowski spacetime vacuum
state is a thermal state. As a simple and useful tool, the
UDW detector has also received considerable attention in
many other areas, including the study of black hole
thermodynamics [3,4], Lorentz-violating dispersion rela-
tions [5–7], finite spacial extensions of the detector and the
corresponding regularization schemes [8–12], and the
coupling to a fermionic field [13–16] (for more examples,
see recent reviews [17–19] and references therein). More
recently, UDW detectors have been used extensively in the
so-called entanglement harvesting protocol [20], where a
pair of UDW detectors coupled to a quantum field can be
used to extract the vacuum entanglement of the field, and

therefore to probe the nontrivial field properties in a wide
range of scenarios [21–34].
However, despite many successful applications of the

UDW detectors, most works primarily focus on the vacuum
state of a massless quantum field, with a few exceptions for
the massive field and single excitation state [35,36]. As a
type of particle detector, it is of natural interest to ask how
does the UDW detector respond to the field state that
represents the matter/particle distribution, and what are the
properties of such field state that can be operationally
accessed by coupling the field to the UWD detector.
Despite the fact that the excitation state exhibits quite
different theoretical properties (including the entanglement
entropy [37] and phase transition [38]) these questions are
also directly related to the problem of measuring the
quantum field as it is known that the projective measure-
ment does not directly generalize to the framework of
quantum field theory [39–42], while the particle detector
based model can be promising to formulate the measure-
ment process [43]. It is the purpose of this paper to
investigate the transition probability of the UDW detector
in the presence of a nonrelativistic particle as a starting
point of such attempt, where the transition probability can
be interpreted as the probability of finding the particle at the
position of the detector.
Working with a nonrelativistic particle state allows us to

compare the transition probability of the UDW detector
with the well-understood probability density of the corre-
sponding free Gaussian wave packet in the nonrelativistic
quantum mechanical description, which is proportional to
the energy density of the field in the nonrelativistic limit as
we show in Sec. II. To keep the model simple with a focus
on particle properties, we consider a massive scalar field
living in the two-dimensional Minkowski spacetime, where*qidong.xu.gr@dartmouth.edu
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we can consider the interaction to have a sharp switch-on
and switch-off instead of introducing technical details of
smearing the detector over time. We find that the total
transition probability of the detector splits into the vacuum
contribution and the matter contribution, and we show that
the matter contribution gives a qualitatively similar descrip-
tion to the probability density of the particle. Such a result
indicates that our detector model can serve as a faithful field
theoretic measurement model for the single-particle detec-
tion. Unique features inherent to the detector model are
found as the matter-part contribution oscillates with the
interaction time whose period is determined by the differ-
ence between the energy gap of the detector and the mass of
the particle. Moreover, we observe that there is a strong
resonance pattern for the transition probability when the
energy gap of the detector is tuned to the mass of the
particle.
The paper is organized as follows. In Sec. II we give a

quick review of the field description for a nonrelativistic
particle and calculate its energy density. In Sec. III, after
introducing the UDW model and a quick review of the
transition probability for the detector in the vacuum, we
present our main results on the matter-part contribution to
the transition probability. Both analytical results for the
detector coinciding with the particle and numerical results
for more general scenarios, are discussed. A comparison
between the vacuum contribution and the matter-part
contribution has also been explored with different param-
eter choices. Section IV gives concluding remarks of the
paper. Throughout this paper, we use natural units ℏ ¼
c ¼ 1 and the metric of the two-dimensional Minkowski
spacetime has signature ð−;þÞ.

II. SINGLE PARTICLE DESCRIPTION IN THE
TWO-DIMENSIONAL MINKOWSKI SPACETIME

In this section, we briefly review the quantum field
description of a nonrelativistic particle. Consider a free real
scalar field ϕðt; xÞ of mass m in two-dimensional
Minkowski spacetime, which satisfies the Klein-Gordan
equation

ð−□þm2Þϕðt; xÞ ¼ 0; ð1Þ

where □ ≔ ∂ν∂ν is the d’Alembertian operator. Solving
this field equation and imposing the canonical quantization
for the field, the expression of the field operator can be
obtained as

ϕðt; xÞ ¼
Z

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ22ωk

p ðaðkÞeikμxμ þ a†ðkÞe−ikμxμÞ; ð2Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
is the energy of a single mode, and

the creation and annihilation operators satisfy the usual
commutation rule

½aðkÞ; a†ðk0Þ� ¼ δðk − k0Þ: ð3Þ

A nonrelativistic particle localized at x0 and with
momentum k0 can be described by the initial field state [44]

jψð0Þi ¼ N
Z

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ22ωk

p e−
1

2σ2
ðk−k0Þ2−ikx0a†ðkÞj0i; ð4Þ

where N is the normalization constant. The field state
description of the particle is nonrelativistic to a good
approximation provided the characteristic radius satisfies
σ−1 ≫ m−1 and the momentum k0 satisfies jk0j ≪ m.
Under these conditions, the normalization constant is
approximately jNj ¼ 2π1=4

ffiffiffiffiffiffiffiffiffi
m=σ

p
.

A natural way to see that such an initial state provides a
similar description to a free-localized Gaussian wave
packet, with position x0 and momentum k0, in nonrelativ-
istic quantum mechanics is to compare the expectation
value of the energy density T00 ¼ 1

2
½m2ϕ2 þ _ϕ2 þ ð∂ϕ∂xÞ2�

for the initial state with the time-dependent probability
density of the corresponding wave function. In the non-
relativistic limit, the expectation value of the energy density
approximately reduces to a simpler form; hT00i ¼ m2hϕ2i,
where we have neglected the vacuum energy terms and also
the ð∂ϕ∂xÞ2 term since it is proportional to k20 (which is small
compared with m2). Note that we also employed the fact
that the expectation value of the time derivative term
reduces to 1

2
m2hϕ2i in such a limit.

As derived in Appendix A, the expectation value of ϕ2

for jψð0Þi is given by

hψð0Þjϕðt; xÞ2jψð0Þi

¼ 1

m

�
σ2

πð1þ ðσ2tm Þ2Þ

�1
2

exp

�
−σ2

ðx − x0 −
k0t
m Þ2

1þ ðσ2tm Þ2
�
; ð5Þ

which coincides with the nonrelativistic probability density
up to a constant m−1 (for a quantum mechanical descrip-
tion, see Appendix B). From Eq. (5), we see the variance of
the energy density (probability density) grows with time t,
indicating the particle state spreads spatially over time.

III. TRANSITION PROBABILITY OF THE
UNRUH-DEWITT DETECTOR

The pointlike Unruh-Dewitt detector can be thought as a
two-level system moving along some timelike spacetime
trajectory xDðτÞ where τ is the proper time of the detector.
The Hilbert space of the detector is spanned by the ground
state j0Di and the excited j1Di separated by an energy gap
Ω. The detector couples to the scalar field locally through
the interaction Hamiltonian

HintðτÞ ¼ λχðτÞðeiΩτσþ þ e−iΩτσ−Þϕ½xDðτÞ�; ð6Þ
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where λ is the coupling strength, σþ ¼ j1Dih0Dj and σ− ¼
j0Dih1Dj are ladder operators acting on the detector’s
Hilbert space, and χðtÞ is a compact switching function
which controls the switch-on and switch-off moments of
the interaction.
In the following, we shall consider an inertial detector at

rest at the origin of the coordinate system with its worldline
given by the Minkowski coordinate,1

xDðτÞ ¼ ðτ; 0Þ: ð7Þ

Such a worldline has the simple interpretation that the
particle position x0 is also the separation distance between
the particle and the detector.

A. Transition probability in the vacuum background

Supposing that the detector and the field states are
initially prepared in the ground state j0Di and the vacuum
state j0i before the interaction, then the transition proba-
bility for the detector to jump to the excited state j1Di after
the interaction has ceased is given to the leading order of
the coupling constant by [10]

Pv ¼ λ2
Z

dτdτ0χðτÞχðτ0Þe−iΩðτ−τ0ÞWvðxDðτÞ; xDðτ0ÞÞ; ð8Þ

where WvðxDðτÞ; xDðτ0ÞÞ ≔ h0jϕðxDðτÞÞϕðxDðτ0ÞÞj0i is
the pull back of the vacuum Wightman function to the
detector’s worldline.
We remark that the vacuum Wightman function in

general should be regarded a distribution on the spacetime
and one usually needs to consider a smooth switching
function χðτÞ to cure the possible divergence in Eq. (8) in
order to obtain unambiguous results for the transition
probability. However, as a special case in the two-dimen-
sional Minkowski spacetime for the free massive scalar
field, the coincidence singularity of the vacuum Wightman
function is only logarithmic [45] and we can consider a
sharp switching function,

χðτÞ ¼ Θðτ − τiÞΘðτf − τÞ; ð9Þ

where ΘðτÞ is the Heaviside step function, and τi (τf)
indicates the switch-on (off) moment while Pv remains well
defined. Note that we have implicitly assumed that τf ≥ τi,
i.e., we always first switch on the interaction and then
switch it off with a finite-interaction time duration
Δτ ≔ τf − τi.
The pullback of the vacuum Wightman function for a

massive scalar field in the two-dimensional Minkowski
spacetime to the detector’s worldline is [14,35]

Wvðτ; τ0Þ ¼
1

2π
K0ðm½ϵþ iðτ − τ0Þ�Þ; ð10Þ

where K0 is the modified Bessel function of the second
kind with limit ϵ → 0þ understood.
The transition probability Pv then can be found as [35]

Pv ¼ −
λ2

2m2

Z
Δτ̃

0

duðΔτ̃ − uÞ

× ½J0ðuÞ sinðμuÞ þ Y0ðuÞ cosðμuÞ�; ð11Þ

where Δτ̃ ¼ mðτf − τiÞ, μ ¼ Ω=m, and J0 and Y0 are the
Bessel’s function of the first kind and the second kind,
respectively.

B. Transition probability in the presence
of a particle

Now we are ready to discuss the transition probability of
the detector in the presence of a nonrelativistic particle.
Supposing that the field state is prepared as in Eq. (4) at
τ ¼ 0 with the detector in its ground state j0Di and
adopting the switching function χðτÞ in Eq. (9) with
τi ≥ 0, the transition probability for the detector to the
leading order of the coupling strength is [10]

Pp ¼ λ2
Z

τf

τi

Z
τf

τi

dτdτ0e−iΩðτ−τ0Þ

× hψð0ÞjϕðxDðτÞÞϕðxDðτ0ÞÞjψð0Þi: ð12Þ

The two-point function in Eq. (12) can be expressed as a
sum of the vacuum contribution and the matter contribution
(see derivation in Appendix A)

hψð0ÞjϕðxDðτÞÞϕðxDðτ0ÞÞjψð0Þi
¼ Wvðτ; τ0Þ þWmðτ; τ0Þ; ð13Þ

where

Wmðτ; τ0Þ ¼
1

2
ffiffiffi
π

p
mσ

e−imðτ−τ0Þ−k2
0

σ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð 1
σ2
þ iτ

mÞð 1σ2 − iτ0
mÞ

q

× exp

�ðk0
σ2
− ix0Þ2

2ð 1
σ2
þ iτ

mÞ
þ ðk0

σ2
þ ix0Þ2

2ð 1
σ2
− iτ0

mÞ

�

þ fτ ⇔ τ0g: ð14Þ

Note that to reach Eq. (14), we have taken the non-
relativistic limit approximation. Substituting Eq. (14) into
Eq. (12), we then obtain the transition probability as a sum
of the vacuum contribution and the matter-part contribution

1Without loss of generality, one can always go to the reference
frame of the detector, provided that the relative speed between the
particle and the detector is nonrelativistic.
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Pp ¼ Pv þ Pm

¼ Pv þ λ2
Z

τf

τi

Z
τf

τi

dτdτ0e−iΩðτ−τ0ÞWmðτ; τ0Þ: ð15Þ

The expression of Pm is a complicated integral which
does not admit an analytical form in general. In the
following two subsections, we shall first discuss a special
case of x0 ¼ 0 and k0 ¼ 0, where analytical results can be
obtained and then we employ numerical methods to study
the dependence of Pm on other parameters.

1. Analytical results

In case of x0 ¼ 0 and k0 ¼ 0, the pointlike detector
essentially overlaps with the particle and the matter part
contribution to the two-point function simplifies to

Wmðτ; τ0Þ ¼
1

2
ffiffiffi
π

p
mσ

e−imðτ−τ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð 1
σ2
þ iτ

mÞð 1σ2 − iτ0
mÞ

q
þ fτ ⇔ τ0g: ð16Þ

Substituting Eq. (16) into Eq. (12), we find

Pm ¼ λ2

2
ffiffiffi
π

p
mσ

Z
τf

τi

Z
τf

τi

dτdτ0e−iΩðτ−τ0Þ

×

�
e−imðτ−τ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð 1
σ2
þ iτ

mÞð 1σ2 − iτ0
mÞ

q þ fτ ⇔ τ0g
�

¼ λ2m
2

ffiffiffi
π

p
σ3

ðjIðτf;ΩÞ − Iðτi;ΩÞj2 þ fΩ ⇔ −ΩgÞ; ð17Þ

where we have introduced function Iðτ;ΩÞ defined as

Iðτ;ΩÞ ≔ e
2mðmþΩÞ

σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iτσ2

m

r

× E1
2

�
mðmþ ΩÞ

σ2
þ iðmþΩÞτ

�
; ð18Þ

with E1=2 being the exponential integral.
We now discuss properties of Pm in Eq. (17). From

Eq. (17) we see that Pm is invariant under the change of
Ω → −Ω, indicating that the matter part contribution to the
transition probability is the same for both the excitation and
the deexcitation of the detector.2 As a matter of fact, this
conclusion also applies to particles with nonzero momen-
tum k0 and position x0, since Wmðτ; τ0Þ is a symmetrical
function of τ and τ0 and the transformation of Ω → −Ω in
Eq. (12) amounts to the exchange of variables τ and τ0 in the
integral, which then gives the same result. We note that

the vacuum Wightman function Wvðτ; τ0Þ is, however,
nonsymmetrical.
A closer study of the function Iðτ;ΩÞ reveals more

details on how Pm depends on time τ and energy gap Ω. In
the long-time limit τf → þ∞ (which corresponds to
infinite interaction time duration Δτ → þ∞), Iðτf;ΩÞ
approaches zero asymptotically, resulting in Pm an initial
time τi dependent quantity. This asymptotic property of the
Iðτ;ΩÞ function also means that Pm decreases as τi gets
larger with a fixed-interaction time duration, which is in
agreement with the fact that the particle state spreads
spatially over time with a decreasing energy/probability
density. We note that the exponential integral has an
oscillatory dependence on its imaginary component, and
therefore Pm also oscillates with interaction time duration
Δτ. For a positive value of Ω, the first term in Eq. (17) is
dominated by the second term and the period of Pm is
approximately given by T ¼ 2π=ðm − ΩÞ. Moreover, as we
shall see in the following, there is a strong resonance effect
at Ω ¼ m where Pm obtains its peak value.
We plot Pm as a function of the dimensionless interaction

time duration Δτσ and the energy gap Ω=σ with different
switch-on moments τi in Figs. 1 and 2. From Fig. 1, we see
Pm oscillates with a period approximately of 2π=ðm=σ −
Ω=σÞ ¼ 2σ and its peak value gradually decreases over
time as we remarked previously. Comparing different
switch-on moments τiσ, we see the transition probability
gets smaller for larger values of τiσ with a fixed-interaction
time duration. For a comparison with the vacuum contri-
bution, the dependence on the interaction duration of Pv is
also plotted in Fig. 1, and it can be seen that the amplitude
of Pv is much smaller than Pm here. Figure 2 shows the
symmetrical dependence of Pm on the dimensionless
energy gap Ω=σ. Moreover, we see from Fig. 2 that there
is a strong resonance effect for Pm when the energy gap of

FIG. 1. The matter-part contribution to the transition proba-
bility Pm and the vacuum-part contribution Pv are plotted as
functions of the dimensionless interaction time duration Δτσ. We
see that both Pm and Pv oscillate with the time duration and its
peak value decreases gradually over time.

2If Ω is a negative quantity, j1Di effectively becomes the
ground state with j0Di being the excited state.
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the detector is tuned to Ω ¼ �m. Such resonance should
come as no surprise since the nonrelativistic particle would
have the same energy as the excited state of the detector in
this case. Again, Fig. 2 reveals a smaller Pm with larger
values of the starting time moment τiσ with other param-
eters fixed.
In Fig. 3 we compare the dependence on the dimension-

less energy gap Ω=σ for Pm and Pv. It is seen that for
positive values of Ω=σ, Pv is dominated by Pm when the
energy gap of the detector is close to the resonance
condition Ω ¼ m, which is in agreement with Fig. 1.
However, for negative values of Ω=σ, Pv is significantly
larger than Pm with its peak around Ω ¼ −m [35],
indicating that the detector has much higher probability

to deexcite compared with the excitation rate in the
presence of a vacuum and it is less sensitive to the
matter-part contribution for the deexcitation.
We end this subsection with some more discussion on

the resonance effect for Pm. Takingm ¼ Ω, the second term
in Eq. (17) is in fact ill defined since E1=2ð0Þ is formally
infinite. This apparent infinity is due to the improper
treatment of the integration in Eq. (17). Taking m ¼ Ω
in the integral, we obtain

Pm ¼ λ2m
2

ffiffiffi
π

p
σ3

�
jIðτf;ΩÞ − Iðτi;ΩÞj2

þ
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

iτfσ2

m

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

iτiσ2

m

r ����2
�
: ð19Þ

The expression of Pm in Eq. (19) is, however, also
problematical if one considers large differences between
τf and τi as Pm can gets larger than one. Such divergence
implies that in the resonance condition, the first-order result
for the transition probability is invalid for long-interaction
time duration and one has to take into account the
contribution from higher-order terms. We note that such
first-order divergence is due to the stronger infrared
divergence in the lower-dimensional quantum field theory.
The power of the denominator in Eq. (16) increases with
the dimension of the spacetime, and therefore Eq. (19)
would converge in higher-dimensional spacetimes.

2. Numerical results

The integration for Pm with nonzero initial position x0
and momentum k0 can hardly be evaluated analytically.
With the dependence on time τ and energy gapΩ discussed
in the previous subsection, we shall employ numerical
methods in this subsection to focus on exploring the
dependence of Pm on x0 and k0.
Some comments are in order here before we discuss the

numerical plots. Similar to the energy/probability density in
Eq. (5), it can be seen from Eq. (14) that Wmðτ; τ0Þ roughly
decreases exponentially with the square of the particle
position x0, and thereforePmwould also fall off exponentially
with larger value of x0. Furthermore, since Pv is independent
of the particle position x0, in case of sufficiently large
separation between the particle and the detector, the vacuum
contribution would dominate the matter contribution.
Figure 4 displays the numerical plot of Pm. Figure 4(a) is

a density plot of Pm as a function of the dimensionless
initial particle position x0σ and the particle momentum
k0=σ, from which one can see that for each fixed value of
the momentum k0=σ, there is a corresponding peak of the
probability in the position space. As the particle deviates
from such a peak position, Pm falls off in both directions
quickly. Furthermore, we see that as the momentum k0=σ
increases in the positive direction, the peak of the Pm in the
position space moves in the opposite direction to the

FIG. 2. The matter-part contribution to the transition proba-
bility Pm is plotted as a function of the dimensionless detector
energy gap Ω=σ. We see a symmetrical dependence of Pm on the
energy gap with its peak values obtained in the resonance
condition Ω ¼ �m.

FIG. 3. The matter-part contribution to the transition probability
Pm and the vacuum-part contributionPv are plotted as functions of
the dimensionless energy gap Ω=σ. We see that Pm dominates Pv
for positivevalues of the energy gap in the resonance region, and for
negative values of the energy gap Pv gets significantly larger than
Pm with its peak around Ω ¼ −m.
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negative values for x0σ. Figure 4(b) depicts a more detailed
numerical study on Pm as a function of the initial particle
position x0σ with different momentum k0=σ, as well as the
vacuum contribution to the transition probability Pv. We
see that as the detector sits sufficiently far from the particle,
the vacuum contribution Pv gets greater than the matter
contribution Pm and eventually dominates it. Moreover, it
can be seen more clearly that for zero momentum, Pm falls
off exponentially in both directions in a symmetrical
fashion, and in the case of the nonzero momentum for
the particle, the peak of Pm is shifted in the corresponding

direction by a certain value as we have seen in Fig. 4(a). We
remark that such behavior agrees with the energy/proba-
bility density dependence in the phase space of the particle.
Intuitively one would expect that Pm should be larger if the
particle is moving towards the detector during the inter-
action time interval in contrast to the case when it’s moving
away from the detector since the average energy/probability
density during the interaction time interval at the position of
the detector is greater in the former case.
However, the similarity between the nonrelativistic

probability density and Pm should only be understood in
a qualitative sense. To compare the matter part contribution
to the transition probability of the detector with the non-
relativistic probability density of the particle, we define
the averaged probability density at the position of the
detector as

Pavg ≔
m

τf − τi

Z
τf

τi

dτhψð0Þjϕðτ; 0Þϕðτ; 0Þjψð0Þi; ð20Þ

where we have used the fact that the expectation value of ϕ2

coincides with the nonrelativistic probability density up to a
constant m−1. Figure 5 shows the normalized ratio plot of
Pavg=Pm versus the initial particle position x0σ with
different momentum k0=σ, where an implicit normalization
constant has been taken such that Pavg=Pm equals 1 for
x0 ¼ 0 and k0 ¼ 0. It can be seen that these two quantities
do not have a strict linear relationship and the matter-part
contribution Pm decays slower over the separation distance
between the detector and the particle compared with Pavg.

IV. CONCLUSION AND OUTLOOK

In this work we studied in detail the transition probability
of the UDW detector in the presence of a nonrelativistic
particle. We introduced an initial state of a massive scalar

FIG. 5. The normalized ratio of Pavg=Pm is plotted as a function
of the dimensionless initial particle position x0σ with different
momentum k0=σ. The normalization is taken such that
Pavg=Pm ¼ 1 for x0σ ¼ 0 and k0=σ ¼ 0.

FIG. 4. (a) The matter contribution to the transition probability
Pm is plotted as a function of the dimensionless initial particle
position x0σ and the particle momentum k0=σ. We see the peak of
the probability moves in the opposite directions in the position
space as the momentum increases in the positive direction. (b) A
more study of Pm is plotted versus initial particle position x0σ with
different momentum k0=σ. The switch-on moments in both (a) and
(b) are τiσ ¼ 0.
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field that represents a nonrelativistic particle and we calcu-
lated its energy density which is shown to be proportional to
the corresponding nonrelativistic probability density.
Coupling the UDW detector to such an initial field state,

we found that the transition probability splits into the
vacuum contribution and the matter-part contribution. An
analytical result for the matter-part contribution is obtained
in the special case when the particle coincides with the
detector during the interaction. It was shown that the matter
contribution oscillates with the interaction time duration,
with its peak gradually decreasing over time to its initial
time-dependent asymptotic value. The frequency of the
oscillation is determined by the difference between the
mass of the particle and the energy gap of the detector.
When the mass equals the energy gap, we found a strong
resonance effect for the transition probability. The com-
parison between the vacuum contribution and the matter
part contribution was performed and we found that for the
excitation of the detector, the matter contribution would
mostly dominate the vacuum contribution, while for the
deexcitation of the detector the situation is reversed. We
employed numerical methods to investigate the more
general scenarios when the particle does not coincide with
the detector and we found that the matter-part contribution
behaves similarly to the averaged energy density of the
particle at the position of the detector during the interaction.
Such similarity, as we have checked, should only be
understood in a qualitative sense.
Although we have done the analysis in a two-

dimensional flat spacetime, we expect that most properties

of the matter contribution to the transition probability are
still valid in higher-dimensional spacetime, as the two-point
functions for a nonrelativistic particle state share similar
structures. Our work has paved the way for operationally
investigating field properties in the presence of matter. It
would be interesting to extend the analysis to either more
general matter distribution scenarios (such as superposition
or entangled-excitation state) or different interaction types.
In particular, it is worth investigating if there exists a type of
interaction between the detector and the field that repro-
duces the exact nonrelativistic probability result. Finally,
we notice that it is also interesting to explore how the
entanglement properties of the field are influenced by the
matter presence as seen by a pair of the UDW detectors,
which we postpone to the future work.
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APPENDIX A: DERIVATION OF THE TWO
POINT FUNCTION

The purpose of this section is twofold. We shall first
derive the expectation value of ϕ2 as in Eq. (5) and then
calculate the two point function as in Eq. (14).
Using the expression of the initial field state in Eq. (4)

and sandwiching two field operators in between, we have

hψð0Þjϕðx; tÞϕðx0; t0Þjψð0Þi ¼ jNj2
Z

dk1
ð2πÞ1=2ð2ωk1Þ1=2

e−
1

2σ2
ðk1−k0Þ2−ik1r0

Z
dk2

ð2πÞ1=2ð2ωk2Þ1=2
e−

1

2σ2
ðk2−k0Þ2þik2r0

×
Z

dk

ð2πÞ1=2ð2ωkÞ1=2
Z

dk0

ð2πÞ1=2ð2ωk0 Þ1=2
h0jaðk2ÞðaðkÞa†ðk0Þeixμkμ−ix0μk0μ

þ a†ðkÞaðk0Þeix0μk0μ−ikμxμÞÞa†ðk1Þj0i; ðA1Þ
where we have dropped odd multiples of creation/anihilation operators since they give vanishing result. Using the
commutation relation ½aðkÞ; a†ðk0Þ� ¼ δðk − k0Þ, the expectation values of the operator products in Eq. (A1) can be
simplified to

h0jaðk2ÞaðkÞa†ðk0Þa†ðk1Þj0i ¼ δðk − k0Þδðk1 − k2Þ þ δðk − k1Þδðk0 − k2Þ; ðA2Þ
and

h0jaðk2Þa†ðkÞaðk0Þa†ðk1Þj0i ¼ δðk1 − k0Þδðk2 − kÞ: ðA3Þ
Substituting Eq. (A2) and Eq. (A3) into Eq. (A1) we then have

hψð0Þjϕðx; tÞϕðx0; t0Þjψð0Þi ¼ jNj2
Z

dk1
4πωk1

e−
1

σ2
ðk1−k0Þ2

Z
dk

4πωk
eikμðx−x0Þμ

þ jNj2
Z

dk1
4πωk1

e−
1

2σ2
ðk1−k0Þ2−ik1x0þik1μxμ

Z
dk2
4πωk2

e−
1

2σ2
ðk2−k0Þ2þik2x0−ik2μx0μ

þ jNj2
Z

dk1
4πωk1

e−
1

2σ2
ðk1−k0Þ2−ik1x0þik1μx0μ

Z
dk2
4πωk2

e−
1

2σ2
ðk2−k0Þ2þik2x0−ik2μxμ : ðA4Þ
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As can be easily checked, the first line of Eq. (A4) is just the vacuum Wightman function of the scalar field.
We now first derive the energy density term in Eq. (5). Setting x ¼ x0 and t ¼ t0, Eq. (A4) reduces to

hψð0Þjϕðx; tÞϕðx; tÞjψð0Þi ¼ jNj2
Z

dk1
4πωk1

e−
1

σ2
ðk1−k0Þ2

Z
dk

4πωk
þ 2jNj2

����
Z

dk1
4πωk1

e−
1

2σ2
ðk1−k0Þ2−ik1x0þik1μxμ

����2: ðA5Þ

The first integral corresponds to the infinite vacuum-energy term which we shall ignore. To evaluate the second integral, we
employ the nonrelativistic approximation by expanding the ωkt phase terms to second order in k and making the
approximation ωk ¼ m for the terms appearing in the denominators; the resulting approximate Gaussian integral is

hψð0Þjϕðt; xÞϕðt; xÞjψð0Þi ¼ 1

m

�
σ2

πð1þ ðσ2tm Þ2Þ

�1
2

exp

�
−σ2

ðx − x0 −
k0t
m Þ2

1þ ðσ2tm Þ2
�
; ðA6Þ

which is Eq. (5).
Next we calculate the pull back of the two-point function to the detector worldline which is given in Eq. (7). Replacing

the operator ϕðx; tÞϕðx0; t0Þ by ϕð0; τÞϕð0; τ0Þ in Eq. (A4) and adopting similar approximation methods, we have

hψð0Þjϕð0; τÞϕð0; τ0Þjψð0Þi ¼ Wvðτ; τ0Þ þWmðτ; τ0Þ; ðA7Þ

where Wvðτ; τ0Þ is given in Eq. (10) and Wmðτ; τ0Þ can be found as

Wmðτ; τ0Þ ¼
1

2
ffiffiffi
π

p
mσ

e−imðτ−τ0Þ−k2
0

σ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð 1
σ2
þ iτ

mÞð 1σ2 − iτ0
mÞ

q exp
�ðk0

σ2
− ix0Þ2

2ð 1
σ2
þ iτ

mÞ
þ ðk0

σ2
þ ix0Þ2

2ð 1
σ2
− iτ0

mÞ

�
þ fτ ⇔ τ0g: ðA8Þ

APPENDIX B: A FREE QUANTUM PARTICLE DESCRIPTION

Consider a Gaussian wave-packet state that describes a particle with position x0 and momentum k0

Ψðx; t ¼ 0Þ ¼ N
Z

dke−
1

2σ2
ðk−k0Þ2þikðx−x0Þ ¼ Nð2πσ2Þ3=2e−σ2

2
ðx−x0Þ2eik0ðx−x0Þ ðB1Þ

where N ¼ ð2σπ3=2Þ−3=2 is the normalization constant. The time evolution of the particle state can be obtained by solving
the Schrödinger equation for the free Hamiltonian H ¼ p2=ð2mÞ, and we have

Ψðx; tÞ ¼
�

σffiffiffi
π

p ð1þ itσ2=mÞ
�
1=2

exp

�
−
σ2

2

ðx − x0 − k0t=mÞ2
1þ iσ2t=m

þ ik0ðx − x0Þ − ik20t=ð2mÞ
�
; ðB2Þ

from which one then finds probability density as

jΨðx; tÞj2 ¼
�

σ2

πð1þ ðσ2tm Þ2Þ

�
1=2

exp

�
−σ2

ðx − x0 − k0t=mÞ2
1þ ðσ2tm Þ2

�
: ðB3Þ

We see that this result coincides with the expectation value of ϕ2 in Eq. (5) up to a constant of m.
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