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We study the compatibility between conformal symmetry, together with unitarity, and continuous
higher-form symmetries. We show that the d-dimensional, unitary, conformal field theories are not
consistent with continuous p-form symmetries for certain ðd; pÞ, assuming that the corresponding
conserved current is a conformal primary operator. We further discuss several dynamical applications of
this constraint.
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I. INTRODUCTION

As quantum field theories (QFT) are subject to the
renormalization group (RG) flow[1], we are naturally
interested in its special points, one of which is the fixed
point(s) at the end. Fixed-point theories are scale invariant
by definition, but they often enjoy even larger symmetries:
gapless theories are often conformal field theories (CFT),
and gapped theories are often topological quantum field
theories (TQFT), where the latter include the trivially
gapped theory with only one vacuum as a special case.
To examine these fixed-point theories, it is useful to find
some universal features of the QFT that persist along the
RG flow, and it has been widely appreciated that the global
symmetries and their ’t Hooft anomalies are the two
prominent features. In the simplest cases, the presence
of nontrivial ’t Hooft anomalies implies that the IR fixed
point cannot be a trivial theory with a symmetric ground
state on an arbitrary spatial manifold [2–4]. However, it is
natural to ask whether and how one can further constrain
the fixed-point theories, beyond just knowing whether they
can be trivial or not. The answer seems to be affirmative; for
gapped IR fixed points, it has recently been realized that
certain systems with discrete global symmetries cannot
flow into a symmetry-preserving TQFT in the IR [5–7].
The aim of this paper is to find such more-refined

constraints for gapless fixed points, focusing on continuous
higher-form symmetries. As a main result, we find that
d-dimensional unitary CFTs are not compatible with

continuous p-form symmetries for some ðd; pÞ pairs.
Some special instances have been discussed in the liter-
ature; for d ¼ 6, supersymmetric CFTs are not compatible
with continuous 1-form symmetry [8], and for d ¼ 4, CFTs
are compatible with continuous 1-form symmetry only
when it is chiral [9]. To the best of our knowledge, the
discussion for generic ðd; pÞ without imposing supersym-
metry has not been presented explicitly in the literature, and
the purpose of our work is to fill this gap. The incompat-
ibility between unitary CFTs and certain higher-form
symmetries can also be used to reinterpret some of the
known results that certain free field theories are scale
invariant but not conformal [10,11].
The paper is organized as follows. In Sec. II, we review

the conformal algebra and its representations. In Sec. III,
we examine the scaling dimensions of the conserved
currents for the continuous p-form symmetries and find
that some of them violate the unitarity bounds and thus are
forbidden in unitary CFTs. We also apply the result to
various examples and mention the consequences. In the
Appendix, we list additional constraints under the presence
of supersymmetry.

II. CONFORMAL ALGEBRA AND ITS
REPRESENTATION

To set up the notations, let us start by reviewing the
conformal algebra and its representation. Throughout, we
work in Euclidean space, with an all-positive signature.
We follow the convention in [12].

A. Conformal algebra

The conformal symmetry algebra in d spacetime dimen-
sions is soðdþ 1; 1Þ. The generators are the translations
Pμ, the rotations Mμν, the scaling D, and the special
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conformal transformations Kμ, and they obey the following
algebra:

½Mμν;Mαβ� ¼ −iðημβMνα þ ηναMμβ − ημαMνβ − ηνβMμαÞ;
½Mμν; Pα� ¼ −iðηναPμ − ημαPνÞ;
½Mμν; D� ¼ 0;

½Mμν; Kα� ¼ −iðηναKμ − ημαKνÞ;
½D;Pμ� ¼ −iPμ;

½D;Kμ� ¼ iKμ;

½D;D� ¼ 0;

½Pμ; Pν� ¼ 0;

½Pμ; Kν� ¼ −2iðημνDþMμνÞ;
½Kμ; Kν� ¼ 0; ð2:1Þ

where ημν is the metric with the Euclidean signature.

B. Representation of operators at the origin

In conformal symmetry theory, the local fields O can be
organized into representations of the conformal algebra
(2.1). Under the radial quantization, there is a natural
correspondence between a local fieldOð0Þ at the origin and
a state at the past infinity,

Oð0Þ ↔ jOi≡Oð0Þj0i ð2:2Þ

where j0i is the vacuum state. The Hermiticity conditions
for the conformal symmetry generators are

M†
μν ¼ Mμν;

P†
μ ¼ Kμ;

K†
μ ¼ Pμ;

D† ¼ −D: ð2:3Þ

To specify the representation, one first needs to deter-
mine the Cartan subalgebra of (2.1) or, equivalently, the
maximal commuting subset of the generators. A convenient
choice for such a subset is fD;M12;M34;…;M2m−1;2mg for
m ¼ bd

2
c; then, each operator O (and hence each state jOi)

is labeled by the scaling dimension ΔO and the highest
weight1 ½fhig�O of the soðdÞ representation. The other
generators are the “ladder” operators that raise or lower

them. For example, the momentum operator is represented
in the standard way,

½Pμ;OðxÞ�jx¼0 ¼ −i∂μOðxÞjx¼0 ↔ PμjOi ¼ −i∂μjOi;
ð2:4Þ

and therefore, PμjOi has a scaling dimension ðΔO þ 1Þ. In
the following, we also restrict Oð0Þ to be a conformal
primary operator, which is defined to commute with the
generators of special conformal transformations Kμ, and
the corresponding state is annihilated by Kμ,

½Kμ;Oð0Þ� ¼ 0 ↔ KμjOi ¼ 0: ð2:5Þ

III. CONSTRAINT ON UNITARY CFT FROM
HIGHER-FORM SYMMETRIES

In this section, we consider the scaling dimensionΔJ and
the highest weights ½fhig�J of the conserved currents
associated with continuous higher-form symmetries, and
we check whether they satisfy the unitarity bounds of the
conformal representation.

A. Unitarity bound in CFT

As discussed in Sec. II, the state-operator correspon-
dence maps a conformal primary operatorO to a conformal
primary state jOi, and correspondingly, each state is
labeled by the scaling dimension ΔO and the highest
weights ½fhig�O. Here, the unitarity requires all states to
have non-negative norms, i.e., hOjOi ≥ 0 in Euclidean
spacetime. For the descendant state

Q
n
i¼1 Pνi jOi, this can

be rephrased as all the eigenvalues of the matrix

TABLE I. Unitarity bounds of local primary operators from the
non-negativity of the norms of their first descendants. The highest
weights hi are all in terms of the orthogonal basis.

d Lorentz algebra Representation Unitarity bound ΔO ≥

3 soð3Þ ½h�O 0 ðh ¼ 0Þ
1 ðh ¼ 1

2
Þ

hþ 1 ðh ≥ 1Þ
4 soð4Þ ½h1; h2�O 0 ðh1 ¼ h2 ¼ 0Þ

h1 þ 1 ðh1 > 0; h2 ¼ 0Þ
h2 þ 1 (h1 ¼ 0; h2 > 0)

h1 þ h2 þ 2 (h1 > 0; h2 > 0)

5 soð5Þ ½h1; h2�O 0 (h1 ¼ h2 ¼ 0)
2 ðh1 ¼ h2 ¼ 1

2
Þ

h1 þ 2 (h1 ¼ h2 ≠ 0; 1
2
)

h1 þ 3 (h1 > h2)

6 soð6Þ ½h1; h2; h3�O 0 ðh1 ¼ h2 ¼ h3 ¼ 0Þ
h1 þ 2 ðh1 ¼ h2 ¼ jh3j ≠ 0Þ
h1 þ 3 ðh1 ¼ h2 > jh3jÞ

h1 þ 4 ðh1 > h2Þ

1Here, we adopt the orthogonal basis (rather than the
fundamental-weight basis associated with the Dynkin labels),
where hi ∈ 1

2
Z and h1 ≥ � � � ≥ hm for generic d, following [12].

[Note that for d ¼ 4, the representations will be labeled in terms
of suð2Þ × suð2Þ.] For more details of the representation theory,
including the relation between two bases, see standard textbooks
(e.g., [13]).
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hOj
Yn
j¼1

Kμj

Yn
i¼1

Pνi jOi ð3:1Þ

should be non-negative. The constraint for n ¼ 1 has been
completely solved in [14] for d ¼ 4, and in [12] for general
dimensions, which we summarize in Table I. It turns out
that there are no further constraints coming from n ≥ 2
unless O is a Lorentz scalar [i.e., soðdÞ singlet] [14].

B. Unitarity bounds for conserved
currents of higher-form symmetry

A continuous p-form global symmetry is accompanied
by a (pþ 1)-form current J ¼ Jμ1���μpþ1dxμ1 ∧ … ∧ dxμpþ1 ,
which is conserved,

d � J ¼ ∂μ1J
μ1���μpþ1 ¼ 0; ð3:2Þ

and the pþ 1 indices are fully antisymmetrized [15]. The
conserved charge is defined by integrating �J over a
ðd − p − 1Þ-dimensional submanifold Σd−p−1,

Q ¼
Z
Σd−p−1

�J; ð3:3Þ

and the charged operators are supported on p-cycles linked
by Σd−p−1. The background field for the p-form symmetry
is (pþ 1)-form Bðpþ1Þ, which couples to the action via the
coupling term

Z
Bðpþ1Þ � J: ð3:4Þ

This term is invariant under the background gauge trans-
formation Bðpþ1Þ → Bðpþ1Þ þ dλðpÞ, due to the conserva-
tion condition (3.2).
We will assume that, when a CFT has continuous p-form

symmetryG,2 there is at least one operator charged under it.
This implies that the conserved current should not be a
derivative of another operator, since otherwise the chargeQ

vanishes, meaning that there is no charged operator in the
theory; hence, the symmetry is decoupled [16]. In other
words, the current should be a conformal primary operator.
Furthermore, by applying the state-operator correspon-
dence to the conservation condition (3.2), one finds that
the first descendant of the primary state jJi is a null state.
Hence, jJi belongs to a short conformal multiplet, and the
unitarity bound tabulated in Table I must be saturated.
Note that the symmetry charge Q, by definition, has to

commute with the conformal algebra. In particular, the
scaling dimension of Q has to vanish, ΔQ ¼ 0, and this
fixes the scaling dimensionof the corresponding current to be
ΔJ ¼ d − p − 1. In Table II, we enumerate these, along with
the soðdÞ representation labeled by the highest weights. By
comparing with the unitarity bounds in Table I, we can
determine the pairs ðd; pÞ which are not compatible with
unitary CFT, as summarized in Table III. For instance, when
d ¼ 3, the current for the 1-form symmetry violates the
unitarity bound since ΔJ ¼ 1 < hþ 1 ¼ 2. We will refer to
the symmetry whose conserved current violates the unitarity
bound as the “forbidden” symmetry.We summarize ourmain
result as a theorem:
Theorem. A unitary CFT cannot have the forbidden

p-form symmetry (✗) whose conserved current is the
conformal primary operator.
The cases ðd; pÞ ¼ ð4; 1Þ and (6, 2) deserve additional

comments; in these two cases, the conserved currents are in
reducible representations of Lorentz symmetry and can be

TABLE II. Scaling dimensions and soðdÞ Lorentz representations of the conserved currents of p-form symmetry
in d ¼ 3; 4; 5; 6.

d ¼ 3 d ¼ 4 d ¼ 5 d ¼ 6

ΔJ ½h�J ΔJ ½h1; h2�J ΔJ ½h1; h2�J ΔJ ½h1; h2; h3�J
p ¼ 0; Jμ 2 [1] 3 ½1

2
; 1
2
� 4 [1, 0] 5 [1, 0, 0]

p ¼ 1; Jμν 1 [1] 2 ½1; 0� ⊕ ½0; 1� 3 [1, 1] 4 [1, 1, 0]
p ¼ 2; Jμνρ 1 ½1

2
; 1
2
� 2 [1, 1] 3 ½1; 1; 1� ⊕ ½1; 1;−1�

p ¼ 3; Jμνρσ 1 [1, 0] 2 [1, 1, 0]
p ¼ 4; Jμνρση 1 [1, 0, 0]

TABLE III. We show p-form symmetries that saturate (✓) or
violate (✗) the unitarity bound, in spacetime dimensions
d ¼ 3; 4; 5; 6. “Chiral” means both the self-dual and anti-self-
dual components of the current are conserved, i.e., d � J ¼ 0 and
dJ ¼ 0.

d ¼ 3 d ¼ 4 d ¼ 5 d ¼ 6

p ¼ 0 ✓ ✓ ✓ ✓
p ¼ 1 ✗ ✓: if chiral

✗: otherwise
✓ ✓

p ¼ 2 ✗ ✗ ✓: if chiral
✗: otherwise

p ¼ 3 ✗ ✗
p ¼ 4 ✗

2Since p-form symmetries with p ≥ 1 must be Abelian, G is
either Uð1Þ or R (or multiple copies thereof).
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decomposed into self-dual (SD) and anti-self-dual (ASD)
currents, each of which is irreducible. For instance, for
ðd; pÞ ¼ ð4; 1Þ, the SD and ASD currents are defined as
Jμν� ¼ 1

2
ðJμν � 1

2
ϵμνρσJρσÞ, belonging to irreducible repre-

sentations [1, 0] and [0, 1], respectively. Their scaling
dimensions are identical, i.e., ΔJ ¼ ΔJ� ¼ 2. From the
unitarity bound in Table I, it follows that in a unitary CFT,
both the SD and ASD currents should be conserved,
∂μJ

μ
� ¼ 0. We call such global symmetries and their

currents “chiral.” On the contrary, a unitary CFT in 4d
is not compatible with nonchiral 1-form global symmetries.
Similar comments apply to ðd; pÞ ¼ ð6; 2Þ.

C. Dynamical applications

The conflicts between the conformal symmetry (together
with the unitarity) and higher-form symmetries lead to
several dynamical consequences. Starting from a Lorentz-
invariant d-dimensional QFT with a forbidden continuous
p-form global symmetry G at an arbitrary energy scale, we
ask the following:
(1) UV completion: if there exists a UV fixed point

which flows to the original QFT by turning on
certain G-symmetric relevant operators, can the UV
fixed point be a unitary G-symmetric CFT?

(2) IR fate: if we turn on aG-symmetric relevant coupling
and flow down along the RG, what will the IR fixed
point be? Can it be a unitary G-symmetric CFT?

Below, we propose the following dynamical scenarios;
namely, the UV or IR fixed point theory can be
(1) a unitary CFT, but the p-form symmetry G is

decoupled,
(2) scale invariant but not conformal, and the p-form

symmetry G may or may not decouple,
(3) nonunitary,
(4) gapped TQFT (including a trivial theory).

See Table IV for a comparison between different scenarios.
Some comments are in order.

(i) Scenario 1 is consistent with the unitarity bound
analyses in Sec. III B because there we assumed that
the current does not decouple.

(ii) Scenario 2 appears somewhat exotic since the scale
invariance usually comes with the conformal invari-
ance, whichwas shown to always be the case in d ¼ 2
[17]. However, in higher dimensions, there is no such

proof, and in fact, there are some counterexamples
[10,11,18]. Below, we will clarify that those scale-
invariant but nonconformal theories actually possess
forbidden symmetries, which do not allow them to be
unitary and conformal at the same time.

(iii) Regarding scenario 4, the UV fixed point theory is
unlikely to be a TQFT with a unique vacuum
because the only local operator would be the identity
operator; hence, there is no relevant operator to
trigger the RG flow to the original theory. If there are
multiple vacua, one can analyze the TQFT in one
particular vacuum, and the same conclusion follows.

(iv) Although TQFT is a special case of CFT, it is
actually compatible with continuous p-form sym-
metries forbidden by the unitarity bound. This is
because the current annihilates the vacuum Jj0i ¼ 0,
and therefore h0jJ†DJj0i ¼ 0, where we do not find
the nontrivial inequality following from (3.1).

In the following, we will look into various concrete
examples and see which scenario takes place in each case.

1. Free compact scalar

Consider a free real compact scalar ϕ with ϕ ∼ ϕþ 2πR
in d spacetime dimensions. The Lagrangian is given by

L ¼ 1

2
ð∂μϕÞ2; ð3:5Þ

and ϕ (and hence the radius R) has the scaling dimension
d−2
2
. This theory enjoys two global symmetries (GðpÞ

denotes the p-form symmetry group G):
(i) Uð1Þð0Þ electric shift symmetry: ϕ → ϕþ λ.
(ii) Uð1Þðd−2Þ topological symmetry: the conserved cur-

rent is Jμ1���μd−1 ¼ 1
2πR ϵ

μ1���μd−1μd∂μdϕ, where we have
normalized the current so that the charge is an
integer.

Let us analyze the RG flow of this theory. For d ¼ 2, the
theory is scale invariant and is also conformal; it is known
as the free boson CFT. For d ≥ 3, the radius R is
dimensionful with a positive scaling dimension, and hence
it grows under the RG flow.
UV fixed point (R → 0).—The radius of ϕ shrinks to

zero, and the electric shift symmetry Uð1Þð0Þ becomes
trivial and vanishes. However, since the scalar is still
compact, the topological symmetry survives, although it

TABLE IV. Summary of dynamical scenarios in the presence of forbidden (✗) symmetry.

Gapless Gapped

Unitary Nonunitary

Conformal Scale invariant

Symmetry not decoupled
(2) (3) (4)

Decoupled (1)
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becomes Rðd−2Þ symmetry. To see how Uð1Þ becomes R
and how it acts on the gapless degrees of freedom, it is
convenient to perform an S-duality transformation. Under
the duality, dϕ is mapped to − 1

2π ð�FÞ, where F ¼ dA for a
(d − 2)-form A. The Lagrangian (3.5) then becomes

L ¼ −
1

8π2
F ∧ �F ð3:6Þ

where A has the scaling dimension ΔA ¼ d−2
2
. Note that for

d ¼ 3, Eq. (3.6) is the standard free Maxwell theory, with A
being a 1-form gauge field. The periodicity of the (d − 2)-
form gauge field is A ∼ Aþ 2πη

R , where η is a (d − 2)-form
flat gauge field with the scaling dimension d − 2, and it
integrates to 1 on Sd−2.
Under the duality, theUð1Þðd−2Þ topological symmetry of

the original theory (3.5) becomes the Uð1Þðd−2Þ electric
shift symmetry of the dual theory (3.6). At the UV fixed
point, the compact Uð1Þ gauge field becomes noncompact,
i.e., an R gauge field. Since the Rðd−2Þ symmetry acts on
the gapless gauge field A, it does not decouple, and the
general result on the unitarity bound in Sec. III B applies;
from Table III, we find that the (d − 2)-form symmetry is
forbidden for all the dimensions d ¼ 3; 4; 5; 6, and we
conclude that the UV fixed point cannot be a unitary CFT
(i.e., scenario 1 is ruled out). Our result is consistent with
the analyses in [10,11,18,19], where it has been explicitly
shown (by computing the correlation function and con-
formal currents) that the theory (3.5) is unitary and scale
invariant but not conformal (i.e., scenario 2 is realized).
IR fixed point (R → ∞).—The radius of ϕ becomes

infinite, and hence one has the theory of a noncompact real
free scalar. The Uð1Þð0Þ electric shift symmetry becomes a
Rð0Þ shift symmetry, while the Uð1Þðd−2Þ topological
symmetry disappears because the current J becomes trivial.
Therefore, the IR theory does not have any higher-form
symmetry, and the unitarity bounds do not provide any
further obstructions to conformal invariance. As shown
explicitly in [10,11,18,19], the noncompact free scalar theory
is a CFT on a flat manifold in any dimension, which is
consistentwith our result.On a curvedmanifold, one needs to
add a term

R
ddxRϕ2 proportional to the scalar curvatureR

to make the conformal symmetry manifest. Note that this
coupling is forbidden when ϕ is compact because it is not
invariant under the shift ϕ → ϕþ 2πR.

2. Free Maxwell theory

Consider another class of free field theory—free
Maxwell theory. The Lagrangian is

L ¼ −
1

8π2
F ∧ �F ð3:7Þ

where F ¼ dA for a compact Uð1Þ 1-form gauge field A.
The periodicity is A ∼ Aþ 2πη

R , where η is a 1-form flat

gauge field which integrates to 1 on S1, and R is a
dimensionful scalar specifying the (inverse) radius of A.
The theory again enjoys two global symmetries:

(i) Uð1Þð1Þ electric shift symmetry: A → Aþ ξ, where ξ
is a 1-form flat gauge field.

(ii) Uð1Þðd−3Þ topological symmetry: the conserved cur-
rent is Jμ1���μd−2 ¼ R

4π ϵ
μ1���μd−1μdFμd−1μd , where we

have normalized the current so that the charge is
an integer.

Let us analyze the RG flow. The only dimensionful
coupling constant is R with scaling dimension ΔR ¼ 4−d

2
.

When d ¼ 3, ΔR > 0, and R increases under the RG flow;
as discussed in Sec. III C 1, the 3d free Maxwell theory is
dual to free compact scalar theory, and one can directly
refer to the results there. When d ¼ 4, ΔR ¼ 0, and R is
invariant under the RG flow; the theory (3.7) is not only
scale invariant but also conformal, and known as the
Maxwell CFT. Finally, when d ≥ 5, ΔR < 0, and R
decreases under the RG flow. Let us take a closer look
at the fixed points.
UV fixed point (R → ∞).—The Uð1Þð1Þ electric shift

symmetry disappears. By performing the S-duality as in
Sec. III C 1, one can see that the Uð1Þðd−3Þ topological
symmetry becomes Rðd−3Þ and acts as an electric shift
symmetry on the gapless (d − 3)-form dual gauge field.
Note that for d ¼ 5; 6, by comparing with the results in
Table III, the conserved currents violate the unitarity
bound. Hence, the UV fixed point cannot be a unitary
CFT. Our result is again consistent with [10,11,18,19],
where the UV fixed point has been proved to be scale
invariant but not conformal.
IR fixed point (R → 0).—The Uð1Þð1Þ electric symmetry

becomes Rð1Þ, while Uð1Þðd−3Þ decouples. The Rð1Þ sym-
metry is compatible with the unitarity bound for d ≥ 5, and
we cannot rule out the possibility of unitary CFT.

3. Four-derivative Maxwell theory in 6d

In Sec. III C 2, we have noted that the 4d free Maxwell
theory (3.7) is a CFT. In 6d, it has been shown [20,21] that
the four-derivative Maxwell theory

L ¼ 1

4e2
Gμν∇2Gμν ð3:8Þ

is also conformal. Here, G ¼ dB is the field strength of the
1-form gauge field B, and e is the coupling constant. As
always, this 6d theory has two global symmetries:

(i) Uð1Þð1Þ electric shift symmetry: B → Bþ ξ, where ξ
is a 1-form flat gauge field.

(ii) Uð1Þð3Þ topological symmetry: the conserved current
is J ¼ 1

2π � dB.
Both symmetries act nontrivially on the gapless modes. For
the former, it is obvious because it shifts the gauge field B.
For the latter, it is easier to consider the dual theory as in the
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previous examples; the dual theory is also a free theory, with
the quadratic Lagrangian Fð4Þ ∧ ∇−2 � Fð4Þ, where Fð4Þ ¼
dCð3Þ is the 4-form field strength, and the 3-form global
symmetry is just the shift symmetry Cð3Þ → Cð3Þ þ ηð3Þ.
Recalling that the 3-form symmetry Uð1Þð3Þ is not

compatible with the conformal symmetry and the unitarity,
the theory can only be a nonunitary CFT. Indeed, it has
been explicitly computed in [22] that the coefficient of the
two-point correlation function of the stress-energy tensors
in the theory (3.8) is negative, which implies that there
exist negative-norm states and thus the theory is indeed
nonunitary.

4. QED4

We now proceed to discuss an interacting theory, QED4.
The Lagrangian is

L ¼ −
1

4e2
F ∧ �F þ

XNf

i¼1

ψ̄ ið∂ − i=AÞψ i: ð3:9Þ

The only higher-form global symmetry is the Uð1Þð1Þ
topological symmetry, with the current J ¼ 1

2π � dA. Note
that this symmetry is nonchiral unless the gauge field
decouples from the fermion.
It is well known that the 1-loop beta function of QED4 is

positive for arbitrary Nf. Hence, in the IR, the theory
becomes free, and the fermion and gauge sectors decouple.
In the low-energy limit, the theory flows to a unitary CFT
because both the free Maxwell theory in 4d and the free
fermion are unitary CFTs. This is consistent with our main
result in Sec. III B.
In the UV limit, QED4 is regarded as ill defined because

there is a Landau pole where the coupling constant
diverges. Therefore, it should only be regarded as a low-
energy effective theory. One way to make it well defined in
the UV limit is to embed it into a larger theory (possibly a
non-Abelian gauge theory). Suppose there exists such a
parent theory, and the embedding preserves the nonchiral
Uð1Þð1Þ symmetry in the QED4. Then, our result might be
able to constrain the property of the UV fixed point of the
parent theory. A similar analysis can also be applied
to d ≥ 5.

5. Variant of QED6

Our last example is a variant of QED6, which was
discussed in [20]. The Lagrangian is

L ¼ 1

4e2
Fμν∇2Fμν þ

XNf

i¼1

ψ̄ ið=∂ − i=AÞψ i ð3:10Þ

where the ordinary Maxwell term is replaced by the four-
derivative Maxwell term. As discussed in Sec. III C 3, there
are two global symmetries, but only the Uð1Þð3Þ symmetry

survives once the gauge field couples to the fermion with
charge 1. Since this symmetry is not compatible with the
conformal invariance and the unitarity, it is tempting to use
it to constrain the RG flow of (3.10).
It was computed in [20] that the beta function of (3.10) is

negative, βe ¼ − ϵ
2
e − Nf

120π3
e3 þOðe5Þ, where ϵ ¼ 6 − d is

the parameter introduced in the dimensional regularization.
This means that in the UV limit, the gauge sector decouples
from the fermion, and hence the UV fixed point is the
nonunitary CFT analyzed in Sec. III C 3, tensored with a
unitary free fermion CFT. In the IR, the theory (3.10)
becomes strongly coupled.
If the RG flow does not explicitly break the Uð1Þð3Þ

symmetry, then our main theorem can be used to constrain
the possible scenario of the IR fixed point. Note that
although the pure four-derivative Maxwell term is nonuni-
tary, the IR fixed point may still be unitary, when Nf is
sufficiently large.

IV. CONCLUSION

We showed that for certain ðd; pÞ pairs, d-dimensional
unitary CFTs cannot have continuous p-form symmetries
whose conserved currents are conformal primary operators.
These pairs are labeled by ✗ in Table III, and the dynamical
consequences at the RG fixed points are constrained to be
either of the four scenarios summarized in Table IV. We
then applied this general result to various examples,
including both free and interacting QFTs, and described
the implications.
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APPENDIX: UNITARITY BOUNDS FOR
CONSERVED CURRENTS IN SCFT

Here, we show the constraints from the unitarity bounds
for conserved currents associated with the higher-form
symmetries in superconformal field theories (SCFT). We
assume that the higher-form symmetries commute with the
superconformal algebra, and thus the currents do not carry
R-charges. Because of the additional generators Qα and Sα
compared to the ordinary conformal algebra, there are
additional states, and correspondingly, all the eigenvalues
of the matrix
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hOj
Yn
j¼1

Qαj

Yn
i¼1

Sβi jOi ðA1Þ

should also be non-negative. This gives rise to additional
unitarity bounds [8,12]; as a result, continuous 1-form
symmetries in d ¼ 5, 6 are newly forbidden, and continu-
ous 2-form symmetries in d ¼ 6 newly refuse anti-self-dual
conserved currents. The results are shown in Table V; they
only depend on the existence of the supersymmetry but not
on its amount N in all dimensions.
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