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We extend the Lifshitz theory of the Casimir force to the case of two parallel magnetic metal plates
possessing a spatially nonlocal dielectric response. By solving Maxwell equations in the configuration of
an electromagnetic wave incident on the boundary plane of a magnetic metal semispace, the exact surface
impedances are expressed in terms of its magnetic permeability and longitudinal and transverse dielectric
functions. This allows application of the Lifshitz theory with reflection coefficients written via the surface
impedances for calculation of the Casimir pressure between magnetic metal (Ni) plates whose dielectric
responses are described by the alternative nonlocal response functions introduced for the case of
nonmagnetic media. It is shown that at separations from 100 to 800 nm the Casimir pressures computed
using the alternative nonlocal and local plasma response functions differ by less than 1%. At separations of
a few micrometers, the predictions of these two approaches differ between themselves and between that one
obtained using the Drude function by several tens of percent. We also compute the gradient of the Casimir
force between Ni-coated surfaces of a sphere and a plate using the alternative nonlocal response functions
and find a very good agreement with the measurement data. Implications of the obtained results determined
by the off-shell quantum fluctuations to a resolution of longstanding problems in the Casimir physics are
discussed.
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I. INTRODUCTION

An attractive force between two parallel uncharged ideal
metal planes in vacuum was predicted by H. B. G. Casimir
[1] and is referred to by his name. As an effect caused by
the zero-point oscillations of quantum fields, the Casimir
force found a wide application in both elementary particle
physics and cosmology. Specifically, the Casimir energy of
quark and gluon fields contributes some part of the total
energy of hadrons in the bag model [2,3]. The Casimir
effect provides a mechanism for the compactification of
extra dimensions in Kaluza-Klein field theories [4], affects
the evolution of cosmological models with nontrivial top-
ology [5,6], and allows us to place strong constraints on
non-Newtonian gravity and light elementary particles
[7–9]. The Casimir force has also become the topic of a
large body of research in atomic and condensed matter
physics [10–16].
There are two main approaches to theory of the Casimir

effect. The first of them, which goes back to Casimir [1], is
based on quantum field theory. In order to find the Casimir
energy in the framework of this approach, one should
consider the quantum field in a restricted quantization

volume, determine the energy eigenvalues, sum them up,
and apply the appropriate regularization and renormaliza-
tion procedures for obtaining the finite result [1,17–21].
The second approach, which is based on quantum statistical
physics, goes back to Lifshitz [22,23]. This approach uses
the concept of a fluctuating field created by stochastic
currents existing inside the bodies bounding the quantiza-
tion volume. According to the fluctuation-dissipation
theorem, the spectral distribution of fluctuations is
expressed via the imaginary part of a response function
of the boundary materials to quantum fluctuations which
permits to find an expression for the stress tensor and
finally for the Casimir interaction.
Both approaches lead to the Lifshitz formulas for the

Casimir free energy and force between two thick plates
(semispaces) described by the frequency-dependent dielec-
tric permittivities as response functions. In Ref. [24] the
Lifshitz formulas were generalized to the case of magnetic
media. There is, however, an important difference between
the two approaches. The quantum field theoretical
approach is the most rigorous when the boundary problem
under consideration has real eigenvalues. This is the case
for the ideal metal boundaries, in applications to the
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elementary particle physics and cosmology, and also for
some idealized dielectrics and metals whose dielectric
functions are constant or described by the dissipationless
plasma model, respectively. To derive the Lifshitz formula
for more realistic boundary bodies possessing dissipation,
the quantum field theoretical approach was combined with
some auxiliary electrodynamic problem [25]. By contrast,
the statistical physics derivation results in the Lifshitz
formula solely for the dissipative media where the dielectric
function possesses a nonzero imaginary part leading to the
complex eigenvalues of the boundary problem. This is in
rather poor agreement with the fact that a substitution of
real dielectric permittivity of the plasma model in the
Lifshitz formula results in a nonzero Casimir force.
Repeated precise experiments on measuring the Casimir

interaction between metallic test bodies [26–38] revealed a
puzzling problem. It turned out that theoretical predictions
of the Lifshitz theory are excluded by the measurement data
if the dielectric response of a metal at low frequencies is
described by the well-tested dissipative Drude function
possessing a nonzero imaginary part, as required by the
statistical physics derivation of the Lifshitz formula. The
same experiments [26–38] were found to be in a very good
agreement with calculations using the Lifshitz formula if
the low-frequency dielectric response of the boundary
bodies is described by the real plasma function which
disregards dissipation and should be inapplicable at low
frequencies (at sufficiently high frequencies, where the
optical data of interacting bodies are available, the response
functions along the imaginary frequency axis in both cases
were found using the Kramers-Kronig relations from the
measured complex index of refraction [11,13–16]).
It is meaningful also that the Lifshitz theory using the

Drude response function violates the Nernst heat theorem
for metals with perfect crystal lattice which is a truly
equilibrium system with a nondegenerate ground state [39–
42] (an agreement is restored for only the crystal lattices
containing some fraction of impurities [43–45]). The
Lifshitz theory using the plasma response function satisfies
the Nernst theorem [39–42]. All unexpected experimental
and theoretical results mentioned above are valid for the
boundary bodies with both nonmagnetic [26–30,35–41]
and magnetic [31–34,42] metals. Many attempts have been
undertaken in order to solve this problem (see Ref. [46] for
a review of different approaches suggested in the literature).
One of this approaches addresses to the spatial non-

locality which occurs in the screening effects or the
anomalous skin effect [47–50]. The exact impedances
taking the spatial nonlocality into account were found in
Refs. [48,49] for the case of nonmagnetic metals. Using the
respective reflection coefficients in the Lifshitz theory, it
was shown [51,52] that the spatial nonlocality associated
with the anomalous skin effect gives only a minor con-
tribution to the Casimir force.

Recently the spatially nonlocal complex functions were
proposed [53] which describe nearly the same response of a
metal to the electromagnetic fluctuations on the mass shell,
as does the Drude model, but a significantly different
response to quantum fluctuations off the mass shell. The
suggested alternative response functions do not aim dealing
with small deviations from locality which occur for the
anomalous skin effect or screening effects [47–50] in
electromagnetic fields on the mass shell. They seek a more
adequate description of the quantum fluctuations off the
mass shell which are not immediately observable but
contribute significantly to the Casimir effect. The alter-
native response functions of Ref. [53] take the proper
account of dissipation, obey the Kramers-Kronig relations,
and describe correctly reflection of the on-shell electro-
magnetic waves on metallic surfaces in optical experi-
ments. It was shown [53] that the Lifshitz theory using the
exact impedances of Refs. [48,49] obtained from the
alternative nonlocal response functions is brought into
agreement with experiments on measuring the Casimir
interaction between bodies made of nonmagnetic metal.
What is more, according to the results of Ref. [54], the
proposed alternative nonlocal response functions bring the
Lifshitz theory in agreement with the Nernst heat theorem
both for metals with perfect crystal lattices and for metals
with impurities.
In this paper, a formulation of the Lifshitz theory in terms

of surface impedances, which allows an account of the
spatially nonlocal dielectric response, is extended to the
case of quantization volumes bounded by magnetic metal
bodies. By solving Maxwell equations in the configuration
of an electromagnetic wave incident on a magnetic metal
semispace, we find the exact nonlocal impedances for two
polarizations of the incident field and respective reflection
coefficients. The obtained results are used to calculate the
Casimir pressure between two parallel magnetic metal
(Ni) plates whose dielectric response is described by the
alternative nonlocal functions introduced in Refs. [53,54].
It is shown that at separations of a few hundred nanometers
the computed pressures are nearly the same as are given by
the Lifshitz theory using the dissipationless plasma model.
At separations of several micrometers predictions of the
Lifshitz theory using the alternative nonlocal response are
smaller in magnitude than those computed using the plasma
and Drude responses. Thus, at separation of 4 μm the
Casimir pressure computed using the alternative nonlocal
response comprises 70% and 57% of the pressure com-
puted using the plasma and Drude response functions,
respectively.
We have also computed the gradient of the Casimir force

in the experimental configuration of Refs. [32,33], i.e.,
between a Ni-coated sphere and a Ni-coated plate, using the
alternative nonlocal response functions at low frequencies
and the available optical data of Ni. The obtained results are
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shown to be in a very good agreement with the measure-
ment data over the entire range of separations from 223 to
550 nm. Thus, the alternative nonlocal response functions
to quantum fluctuations, which take into account the
dissipation of conduction electrons at low frequencies,
bring the Lifshitz theory in agreement with the measure-
ment data not only for nonmagnetic metals but for magnetic
ones as well.
The paper is organized as follows. In Sec. II, we derive

the exact impedances for magnetic media possessing the
spatially nonlocal dielectric response. Section III contains
our computational results for the Casimir pressure between
two parallel magnetic metal plates described by both
nonlocal and local response functions. Section IV presents
a comparison between experiment and theory. In Sec. V, the
reader will find our conclusions and a discussion.

II. EXACT IMPEDANCES FOR THE SPATIALLY
NONLOCAL DIELECTRIC RESPONSE OF

MAGNETIC MEDIA

We consider a magnetic metal possessing the spatially
nonlocal dielectric properties which fills in the semispace
z > 0 (see Fig. 1 where the y axis is directed downwards
perpendicular to the xz plane). Let the wave vector k ¼
ðkx; ky; kzÞ of an electromagnetic wave incident on the
plane z ¼ 0 under some angle to the z-axis belongs to the
xz plane, so that ky ¼ 0. Then, the electric field with
transverse magnetic polarization,ETM, is perpendicular to k
and also lies in the xz plane whereas the transverse electric
field, ETE, is perpendicular to it and directed downwards
(see Fig. 1).
The Maxwell equations inside the magnetic medium

with no external charges and currents take the standard
form

rotE ¼ −
1

c
∂B
∂t ; ð1Þ

rotH ¼ 1

c
∂D
∂t ; ð2Þ

divB ¼ 0; divD ¼ 0; ð3Þ

where E is the electric field, B is the magnetic induction,H
is the magnetic field, and D is the electric displacement.
With our choice of the coordinate system, all these fields
have the form

Fðt; rÞ ¼ Fðt; r;ω; kxÞ ¼ Fðz;ω; kxÞe−iωtþikxx: ð4Þ

Below we briefly repeat a derivation of the exact imped-
ances performed in Ref. [49] for nonmagnetic media
making the corresponding generalizations to the magnetic
case where necessary. Note that in experiments on meas-
uring the Casimir interaction magnetic metal is

nonmagnetized in order to avoid an impact of the additional
magnetic force. In doing so our choice ky ¼ 0 is not
restrictive because we consider a homogeneous isotropic
mediumwhere the preferential direction is fixed only by the
wave vector leading to tensor character of the dielectric
properties (see below). As a result, in the end of derivation
one can replace kx with k⊥ ¼ ðk2x þ k2yÞ1=2.
We start from the derivation of exact surface impedance

for the TE polarization of the electromagnetic field which is
defined as [48,49,52,55]

ZTEðω; k⊥Þ ¼ −
Eyðþ0;ω; k⊥Þ
Hxðþ0;ω; k⊥Þ

: ð5Þ

For the TE-polarized field ETEðt; rÞ ¼ ð0; Eyðt; rÞ; 0Þ
and from Eq. (1) using Eq. (4) we obtain

Bxðz;ω; kxÞ ¼
ic
ω

dEyðz;ω; kxÞ
dz

;

Bzðz;ω; kxÞ ¼
ckx
ω

Eyðz;ω; kxÞ: ð6Þ

From this it follows that both equalities in Eq. (3) are
satisfied automatically.
Now we consider the respective magnetic field

Hðt; rÞ ¼ ðHxðt; rÞ; 0; Hzðt; rÞÞ and electric displacement
DTEðt; rÞ ¼ ð0; Dyðt; rÞ; 0Þ. Using Eq. (4), from Eq. (2) one
finds

dHxðz;ω; kxÞ
dz

− ikxHzðz;ω; kxÞ ¼ −
iω
c
Dyðz;ω; kxÞ: ð7Þ

Below we assume that the effects of spatial dispersion
are important for only dielectric properties of our medium

FIG. 1. Choice of the coordinate system in the configuration of
an electromagnetic wave with a wave vector k incident from
vacuum on the plane z ¼ 0 of magnetic medium filling in the
semispace z > 0 (see the text for further discussion).
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and are unrelated to its magnetic properties. Then for the
fields under consideration depending on t as expð−iωtÞ it
holds

Bx;zðz;ω; kxÞ ¼ μðωÞHx;zðz;ω; kxÞ; ð8Þ

where μðωÞ is the frequency-dependent magnetic per-
meability of a metal filling the semispace z > 0.
Substituting Eq. (8) in Eq. (7), one obtains

1

μðωÞ
dBxðz;ω; kxÞ

dz
−

ikx
μðωÞBzðz;ω; kxÞ

þ iω
c
Dyðz;ω; kxÞ ¼ 0: ð9Þ

Taking into account Eq. (6), this equation can be
rewritten as

d2Eyðz;ω; kxÞ
dz2

− k2xEyðz;ω; kxÞ

þ μðωÞω
2

c2
Dyðz;ω; kxÞ ¼ 0: ð10Þ

The above equations are valid inside a medium, i.e., for
z > 0. In order to take into account the effects of spatial
dispersion, one should use the condition of space homo-
geneity [55,56]. To satisfy this condition, we assume that
our medium fills in not a semispace, as in Fig. 1, but all of
space −∞ < z < ∞. In so doing it is assumed that
electrons are reflected specularly on the plane z ¼ 0,
i.e., the following conditions are satisfied [49]:

Ex;yðz;ω; kxÞ ¼ Ex;yð−z;ω; kxÞ;
Ezðz;ω; kxÞ ¼ −Ezð−z;ω; kxÞ;

Dx;yðz;ω; kxÞ ¼ Dx;yð−z;ω; kxÞ;
Dzðz;ω; kxÞ ¼ −Dzð−z;ω; kxÞ: ð11Þ

Under these conditions one can perform the Fourier
transform of all fields along the z-axis defined as

eFðω; kx; kzÞ ¼ Z
∞

−∞
dzFðz;ω; kxÞe−ikzz ð12Þ

and the inverse Fourier transform

Fðz;ω; kxÞ ¼
1

2π

Z
∞

−∞
dkzeFðω; kx; kzÞeikzz: ð13Þ

Calculating the Fourier transform of both sides of
Eq. (10), one obtains

Iðω; kx; kzÞ − k2xẼyðω; kx; kzÞ

þ μðωÞω
2

c2
D̃yðω; kx; kzÞ ¼ 0; ð14Þ

where the following notation is introduced

Iðω; kx; kzÞ≡
Z

∞

−∞
dz

d2Eyðz;ω; kxÞ
dz2

e−ikzz

¼
Z

∞

0

d

�
dEyðz;ω; kxÞ

dz

�
e−ikzz

þ
Z

0

−∞
d

�
dEyðz;ω; kxÞ

dz

�
e−ikzz: ð15Þ

Integrating on the right-hand side of Eq. (15) by parts for
two times with account of Eqs. (11) and (12), we find

Iðω; kx; kzÞ ¼ −k2zẼyðω; kx; kzÞ − 2
dEyðþ0;ω; kxÞ

dz
; ð16Þ

where the last term on the right-hand side originates from a
discontinuity of the derivative dEyðz;ω; kxÞ=dz at z ¼ 0.
Substituting Eq. (16) in Eq. (14), one obtains

− ðk2x þ k2zÞẼyðω; kx; kzÞ þ μðωÞω
2

c2
D̃yðω; kx; kzÞ

¼ 2
dEyðþ0;ω; kxÞ

dz
: ð17Þ

On the other hand, from the first equality in Eq. (6) and
Eq. (8) taken at z ¼ þ0 we arrive at

dEyðþ0;ω; kxÞ
dz

¼ −iμðωÞω
c
Hxðþ0;ω; kxÞ: ð18Þ

Taking into account that we deal with the TE polariza-
tion, ETE ⊥ k, it holds [55,56]

D̃yðω; kx; kzÞ ¼ εTrðω; kÞẼyðω; kx; kzÞ; ð19Þ

where εTrðω; kÞ is the transverse dielectric permittivity.
Substituting Eqs. (18) and (19) in Eq. (17), one finds

Ẽyðω;kx;kzÞ
Hxðþ0;ω;kxÞ

¼−2i
μðωÞωc

μðωÞεTrðω;kÞω2−c2ðk2xþk2zÞ
: ð20Þ

For any choice of the coordinate system in the z ¼ 0
plane one should replace kx with k⊥ in Eq. (20). After this
replacement, we make the inverse Fourier transform (13) on
both sides of Eq. (20) and putting z ¼ þ0 obtain the final
result for the TE surface impedance defined in Eq. (5)

ZTEðω;k⊥Þ¼ i
μðωÞωc

π

Z
∞

−∞

dkz
μðωÞεTrðω;kÞω2−c2k2

; ð21Þ
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where k2 ¼ k2⊥ þ k2z . For a nonmagnetic medium,
μðωÞ ¼ 1, the result (21) coincides with that obtained in
Refs. [48,49].
We are coming now to the derivation of exact surface

impedance for the TM polarization of the electromagnetic
field which is defined as [48,49,52,55]

ZTMðω; k⊥Þ ¼
Exðþ0;ω; k⊥Þ
Hyðþ0;ω; k⊥Þ

: ð22Þ

The TM polarized field ETMðt; rÞ ¼ ðExðt; rÞ; 0; Ezðt; rÞÞ
has two nonzero components (see Fig. 1). This makes the
case of TM polarization more complicated. Taking into
account that all field components are given by Eq. (4), one
finds BTMðt; rÞ ¼ ð0; Byðt; rÞ; 0Þ and Eq. (1) takes the form

dExðz;ω; kxÞ
dz

− ikxEzðz;ω; kxÞ ¼
iω
c
Byðz;ω; kxÞ: ð23Þ

In a similar way, we have HTMðt; rÞ ¼ ð0; Hyðt; rÞ; 0Þ
and DTMðt; rÞ ¼ ðDxðt; rÞ; 0; Dzðt; rÞÞ where all compo-
nents are given by Eq. (4). As a result, Eq. (2) leads to

dHyðz;ω; kxÞ
dz

¼ iω
c
Dxðz;ω; kxÞ;

kxHyðz;ω; kxÞ ¼ −
ω

c
Dzðz;ω; kxÞ: ð24Þ

Taking into account that, in addition to Eq. (8), it also
holds

Byðz;ω; kxÞ ¼ μðωÞHyðz;ω; kxÞ; ð25Þ

we bring Eq. (24) to the form

dByðz;ω; kxÞ
dz

− iμðωÞω
c
Dxðz;ω; kxÞ ¼ 0;

kxByðz;ω; kxÞ þ μðωÞω
c
Dzðz;ω; kxÞ ¼ 0: ð26Þ

We express Byðz;ω; kxÞ from the second equality in
Eq. (26) and substitute to the right-hand side of Eq. (23).
The result is

ikx
dExðz;ω; kxÞ

dz
þ k2xEzðz;ω; kxÞ

− μðωÞω
2

c2
Dzðz;ω; kxÞ ¼ 0: ð27Þ

Now we differentiate both sides of Eq. (23) with respect
to z and, using the first equality in Eq. (26), obtain

d2Exðz;ω; kxÞ
dz2

− ikx
∂Ezðz;ω; kxÞ

∂z
þ μðωÞω

2

c2
Dxðz;ω; kxÞ ¼ 0: ð28Þ

The Fourier transform of Eq. (27) with account of
Eq. (11) leads to

kxkzẼxðω; kx; kzÞ − k2xẼzðω; kx; kzÞ

þ μðωÞω
2

c2
D̃zðω; kx; kzÞ ¼ 0: ð29Þ

The Fourier transform of Eq. (28) can be written in the
form

I1ðω; kx; kzÞ − ikxI2ðω; kx; kzÞ

þ μðωÞω
2

c2
D̃xðω; kx; kzÞ ¼ 0; ð30Þ

where the integrals

I1ðω; kx; kzÞ≡
Z

∞

−∞

d2Exðz;ω; kxÞ
dz2

e−ikzzdz;

I2ðω; kx; kzÞ≡
Z

∞

−∞

∂Ezðz;ω; kxÞ
∂z e−ikzzdz ð31Þ

are calculated similar to Eqs. (15) and (16) under conditions
(11) with the results

I1ðω; kx; kzÞ ¼ −2
dExðþ0;ω; kxÞ

dz
− k2zẼxðω; kx; kzÞ;

I2ðω; kx; kzÞ ¼ −2Ezðþ0;ω; kxÞ þ ikzẼzðω; kx; kzÞ: ð32Þ

The additional terms on the right-hand side of these
equalities originate from the discontinuities of the quan-
tities dExðz;ω; kxÞ=dz and Ezðz;ω; kxÞ at z ¼ 0.
Substituting Eq. (32) in Eq. (30), we obtain

− k2zẼxðω; kx; kzÞ þ kxkzẼzðω; kx; kzÞ

þ μðωÞω
2

c2
D̃xðω; kx; kzÞ

¼ 2
dExðþ0;ω; kxÞ

dz
− 2ikxEzðþ0;ω; kxÞ: ð33Þ

With account of Eq. (25), the first Maxwell equation (23)
taken at z ¼ þ0 is

dExðþ0;ω; kxÞ
dz

− ikxEzðþ0;ω; kxÞ

¼ iμðωÞω
c
Hyðþ0;ω; kxÞ: ð34Þ
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Substituting this in Eq. (33), one obtains

−k2zẼxðω;kx;kzÞþkxkzẼzðω;kx;kzÞ

þμðωÞω
2

c2
D̃xðω;kx;kzÞ¼ 2iμðωÞω

c
Hyðþ0;ω;kxÞ: ð35Þ

Equations (29) and (35) taken together give the pos-
sibility to find the surface impedance ZTM defined in
Eq. (22). In the presence of spatial dispersion, the quantities
D̃xðω; kx; kzÞ and D̃zðω; kx; kzÞ are the linear combinations
of Ẽxðω; kx; kzÞ and Ẽzðω; kx; kzÞ where the components of
the dielectric tensor serve as the coefficients [55,56]

D̃xðω; kx; kzÞ ¼ εxxẼxðω; kx; kzÞ þ εxzẼzðω; kx; kzÞ;
D̃zðω; kx; kzÞ ¼ εzxẼxðω; kx; kzÞ þ εzzẼzðω; kx; kzÞ: ð36Þ

In Ref. [49] the tensor εij was diagonalized by rotating the
coordinate system ðx; zÞ about y axis by the angle φ such
that sinφ ¼ kx=k, cosφ ¼ kz=k. In the rotated coordinates
ðx0; z0Þ the wave vector k is directed along the z0-axis and
the dielectric tensor takes a diagonal form with the
components εTr and εL where εL is the longitudinal
dielectric permittivity (we omit for brevity the arguments
ω and k in components of the dielectric tensor).
In Ref. [49] it was shown that

εxx ¼
1

k2x þ k2z
ðεTrk2z þ εLk2xÞ;

εzz ¼
1

k2x þ k2z
ðεTrk2x þ εLk2zÞ;

εxz ¼ εzx ¼ ðεL − εTrÞ kxkz
k2x þ k2z

: ð37Þ

With account of (36), we rewrite Eqs. (29) and (35) in the
following equivalent form:

�
kxkz þ μðωÞω

2

c2
εzx

�
Ẽxðω; kx; kzÞ þ

�
−k2x þ μðωÞω

2

c2
εzz

�
Ẽzðω; kx; kzÞ ¼ 0;�

−k2z þ μðωÞω
2

c2
εxx

�
Ẽxðω; kx; kzÞ þ

�
kxkz þ μðωÞω

2

c2
εxz

�
Ẽzðω; kx; kzÞ ¼ 2iμðωÞω

c
Hyðþ0;ω; kxÞ: ð38Þ

By solving this system of linear equations with respect to Ẽxðω; kx; kzÞ and using Eq. (37) for the components of a
nondiagonal dielectric tensor, we obtain

Ẽxðω; kx; kzÞ
Hyðþ0;ω; kxÞ

¼ 2i
cωμðωÞ
k2x þ k2z

�
k2x

μðωÞω2εLðω; kÞ þ
k2z

μðωÞω2εTrðω; kÞ − c2ðk2x þ k2zÞ
�
: ð39Þ

By replacing here kx with k⊥, as was already done in the
case of the TE polarization, and performing the inverse
Fourier transform, we find the TM surface impedance (22)
for a magnetic medium

ZTMðω; k⊥Þ ¼ i
cωμðωÞ

π

Z
∞

−∞

dkz
k2

�
k2⊥

μðωÞω2εLðω; kÞ

þ k2z
μðωÞω2εTrðω; kÞ − c2k2

�
: ð40Þ

For a nonmagnetic medium, this result coincides with
respective results of Refs. [48,49].
For calculation of the Casimir interaction in the frame-

work of the Lifshitz theory (see the next section), one needs
the values of surface impedances at the pure imaginary
Matsubara frequencies iξl, where ξl ¼ 2πkBTl=ℏ, kB is the
Boltzmann constant, T is the temperature, and l ¼
0; 1; 2;… is an integer number. Substituting ω ¼ iξl in
Eqs. (21) and (40), one obtains

ZTEðiξl; k⊥Þ ¼
cξlμl
π

Z
∞

−∞

dkz
μlε

Tr
l ðkÞξ2l þ c2k2

;

ZTMðiξl; k⊥Þ ¼
cξlμl
π

Z
∞

−∞

dkz
k2

�
k2⊥

μlξ
2
l ε

L
l ðkÞ

þ k2z
μlξ

2
l ε

Tr
l ðkÞ þ c2k2

�
; ð41Þ

where εTrl ðkÞ≡εTrðiξl;kÞ, εLl ðkÞ≡εLðiξl;kÞ, andμl ≡ μðiξlÞ.
In terms of the surface impedances (41) the amplitude

reflection coefficients on the boundary plane of magnetic
metal for two polarizations of the electromagnetic field take
the form [48,49,55]

rTMðiξl; k⊥Þ ¼
cql − ξlZTMðiξl; k⊥Þ
cql þ ξlZTMðiξl; k⊥Þ

;

rTEðiξl; k⊥Þ ¼
cqlZTEðiξl; k⊥Þ − ξl
cqlZTEðiξl; k⊥Þ þ ξl

; ð42Þ

where ql ≡ ðk2⊥ þ ξ2l =c
2Þ1=2.

Equations (41) and (42) make it possible to apply the
Lifshitz theory to the case of magnetic metal boundary
plates possessing spatially nonlocal dielectric response.
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III. THE CASIMIR PRESSURE BETWEEN
MAGNETIC METAL PLATES DESCRIBED BY
THE ALTERNATIVE NONLOCAL RESPONSE

FUNCTIONS

As was mentioned in Sec. I, the Lifshitz formula for the
Casimir pressure P between two parallel plates (semi-
spaces) spaced at a distance a was derived within the
quantum-field-theoretical and statistical approaches. In
terms of reflection coefficients on the boundary surfaces
it can be written as [13,22,23]

Pða; TÞ ¼ −
kBT
π

X∞
l¼0

0 Z ∞

0

qlk⊥dk⊥

×
X
α

½r−2α ðiξl; k⊥Þe2aql − 1�−1; ð43Þ

where the prime on the summation sign in l divides the term
with l ¼ 0 by 2 and the sum in α is over two polarizations
of the electromagnetic field, α ¼ TM and α ¼ TE. For
magnetic plates demonstrating a spatially nonlocal dielec-
tric response the reflection coefficients entering Eq. (43) are
given by Eqs. (41) and (42). Note that the Casimir pressure
between metallic plates of more than 100 nm thickness can
be already considered as between semispaces and calcu-
lated using Eq. (43) [13].
We consider the Casimir pressure between two parallel

plates made of magnetic metal Ni which is not magnetized,
so that there is no magnetic force in addition to the Casimir
one. The dielectric response of Ni is supposed to be
spatially nonlocal and described by the alternative response
functions introduced in Ref. [53]

εTrðω; k⊥Þ ¼ 1 −
ω2
p

ωðωþ iγÞ
�
1þ i

vTrk⊥
ω

�
;

εLðω; k⊥Þ ¼ 1 −
ω2
p

ωðωþ iγÞ
�
1þ i

vLk⊥
ω

�−1
: ð44Þ

Here, ωp is the plasma frequency and γ is the relaxation
parameter (the latter depends on T), and vTr, vL are the
constants of the order of Fermi velocity vF ∼ 0.01c.
The distinctive feature of response functions (44) is that

they nearly coincide with the standard local Drude response
function

εDðωÞ ¼ 1 −
ω2
p

ωðωþ iγÞ ð45Þ

for the electromagnetic fields on the mass shell. This is
because

vTr;Lk⊥
ω

∼
vF
c
ck⊥
ω

≤
vF
c

≪ 1: ð46Þ

As a consequence, the alternative response functions (44)
leads to almost the same results, as the Drude function (45),
for the on-shell fields. This is not the case, however, for the
off-shell electromagnetic fields for which the parameter
(46) can be large.
Although the response functions (44) are of phenom-

enological character, they take dissipation into account and
simultaneously satisfy the Kramers-Kronig relations and
lead to an agreement of the Lifshitz theory with experi-
ments on measuring the Casimir interaction between Au
surfaces [53]. According to the results of Ref. [54], the
Casimir entropy calculated using Eq. (44) satisfies the
Nernst heat theorem. Thus, it is of prime importance to test
the alternative response functions (44) in the case of
magnetic media.
For the response functions εTrl and εLl depending only on

k⊥, the integrals in Eq. (41) are easily calculated

ZTEðiξl; k⊥Þ ¼
ξlμlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2k2⊥ þ μlε
Tr
l ðk⊥Þξ2l

q ; ZTMðiξl; k⊥Þ ¼
1

ξl

"
ck⊥

εLl ðk⊥Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2⊥ þ μlε

Tr
l ðk⊥Þξ2l

q
− ck⊥

εTrl ðk⊥Þ

#
: ð47Þ

Substituting Eq. (47) in Eq. (42), one arrives at

rTMðiξl; k⊥Þ ¼
qlεTrl ðk⊥Þ − kTrμ ðiξl; k⊥Þ − k⊥½εTrl ðk⊥Þ − εLl ðk⊥Þ�½εLl ðk⊥Þ�−1
qlεTrl ðk⊥Þ þ kTrμ ðiξl; k⊥Þ þ k⊥½εTrl ðk⊥Þ − εLl ðk⊥Þ�½εLl ðk⊥Þ�−1

;

rTEðiξl; k⊥Þ ¼
qlμl − kTrμ ðiξl; k⊥Þ
qlμl þ kTrμ ðiξl; k⊥Þ

; ð48Þ
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where

kTrμ ðiξl; k⊥Þ ¼
�
k2⊥ þ μlε

Tr
l ðk⊥Þ

ξ2l
c2

�
1=2

ð49Þ

and εTrl , ε
L
l are given by Eq. (44) where one should put

ω ¼ iξl.
Numerical computations of the Casimir pressure were

performed by using Eqs. (43), (44), and (48) at
T ¼ 300 K. For Ni we have used the following values
of all parameters: ℏωp ¼ 4.89 eV, ℏγ ¼ 0.0436 eV
[57,58], μ0 ¼ 110 at T ¼ 300 K [32,33,59], vF ¼ 1.31 ×
106 m=s determined in the approximation of a spherical
Fermi surface, and vTr ¼ vL ¼ 7vF as was used in
Ref. [53] for the best agreement between experiment
and theory for Au test bodies (similar to Ref. [53] the
below results are nearly independent on the value of vL in
the region 0 ≤ vL ≤ 10vF).
It should be noted that the magnetic permeability μðiξlÞ

quickly decreases with l and becomes equal to unity at
frequencies much below the first Matsubara frequency.
Because of this, magnetic properties influence the Casimir
interaction only through the zero-frequency term of the
Lifshitz formula (43) [60]. In the contribution of all terms
with l ≥ 1, one should put μðiξlÞ ¼ 1. It is helpful also that
at ξ0 ¼ 0 the reflection coefficients (48) take an especially
simple form

rTMð0; k⊥Þ ¼
ω2
p

2vLγk⊥ þ ω2
p
;

rTEð0; k⊥Þ ¼
μ0

ffiffiffiffiffiffi
k⊥

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⊥ þ B

p
μ0

ffiffiffiffiffiffi
k⊥

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⊥ þ B

p ; ð50Þ

where B≡ μ0ω
2
pvTr=ðγc2Þ. Interestingly, the magnetic

properties make an impact only on the TE polarization.
The computational results for the magnitude of the

Casimir pressure are shown in Fig. 2 by the bottom line
as a function of separation in the region from 2 to 7 μm. It is
interesting to compare them with similar results obtained
using the standard, spatially local, response functions. In
this case we have

εLl ðkÞ ¼ εTrl ðkÞ ¼ εl ¼ εðiξlÞ; ð51Þ

and Eq. (41) simplifies to

ZTEðiξl; k⊥Þ ¼
ξlμlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2k2⊥ þ μlεlξ
2
l

q ;

ZTMðiξl; k⊥Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2⊥ þ μlεlξ

2
l

q
ξlεl

: ð52Þ

For μl ¼ 1 these impedances were considered in
Ref. [61] where it was shown that they lead to the standard
Fresnel reflection coefficients. In fact a substitution of
Eq. (52) in Eq. (42) results in

rTMðiξl; k⊥Þ ¼
qlεl − kμðiξl; k⊥Þ
qlεl þ kμðiξl; k⊥Þ

;

rTEðiξl; k⊥Þ ¼
qlμl − kμðiξl; k⊥Þ
qlμl þ kμðiξl; k⊥Þ

; ð53Þ

where kμðiξl; k⊥Þ is obtained from kTrμ ðiξl; k⊥Þ defined in
Eq. (49) by replacing of εTrl with εl according to Eq. (51).
Equation (53) presents the standard Fresnel coefficients
commonly used in the Lifshitz theory for both nonmagnetic
(μl ¼ 1) and magnetic plate materials.
For comparison purposes, we also compute the Casimir

pressure (43) between Ni plates using the Fresnel coef-
ficients (53) and local dielectric responses given by the
dissipative Drude (45) and dissipationless plasma response
functions. At the pure imaginary Matsubara frequencies
these functions are given by

εDl ¼ 1þ ω2
p

ξlðξl þ γÞ ; εpl ¼ 1þ ω2
p

ξ2l
: ð54Þ

The computational results as the functions of separation
are presented in Fig. 2 by the top and middle lines,
respectively. In an inset, the region of larger separations
is shown on an enlarged scale. As is seen in Fig. 2, the
alternative nonlocal response functions (bottom line) lead
to markedly smaller theoretical values of the pressure
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FIG. 2. Magnitudes of the Casimir pressure between two
parallel magnetic metal plates computed using the alternative
nonlocal, plasma, and Drude response functions are shown as
functions of separation by the bottom, medium, and top lines,
respectively. The region of larger separations is shown in the inset
on an enlarged scale.
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magnitude jPnlj than jPpj computed using the plasma
function (middle line) and jPDj computed using the
Drude response function over the entire range of separa-
tions from 2 to 7 μm. As an example, at a ¼ 4 μm one has
Pnl=Pp ≈ 0.70 and Pnl=PD ≈ 0.57. At a ¼ 6 μm the same
ratios are equal to Pnl=Pp ≈ 0.66 and Pnl=PD ≈ 0.57.
In order to perform a comparison between the three

response functions over a wider range of separations, in
Fig. 3 we plot the ratios of Pnl and Pp to PD. In so doing,
we have taken into account that at separations below
approximately 1 μm the response functions are influenced
by the interband transitions of electrons. An impact of these
transitions becomes larger when the separation decreases. It
is included in the response functions due to conduction
electrons considered above by replacing the unities after the
signs of equality on the right-hand sides of Eqs. (44) and
(54) with the appropriate function of ξl found by means of
the Kramers-Kronig relations from the measured optical
data of Ni [57] (see Refs. [13,33] for details).
In Fig. 3(a) the ratios Pp=PD and Pnl=PD are shown as

functions of separation by the lower and upper lines in the
region from 100 to 655 nm, respectively. At a ≈ 655 nm
the lines cross each other. At larger separations the ratio

Pp=PD is given by the upper line and the ratio Pnl=PD—by
the lower one. In Fig. 3(b) these lines are shown over the
entire range of separations from 100 nm to 7 μm. Note that
at separations below 100 nm theoretical predictions using
all three response functions nearly coincide.
As is seen in Fig. 3(a), within the separation region from

100 to 800 nm the Casimir pressure between magnetic
metal plates computed using the alternative nonlocal and
local plasma response functions differ by less than 1%. This
should be compared with the fact that almost equal Casimir
pressures predicted by these response functions differ from
that predicted by the Drude function by 2% at a ¼ 100 nm
at by 13% already at a ¼ 800 nm. According to Fig. 3(b),
at separations of a few micrometers the Casimir pressures
predicted by the Lifshitz theory using all three response
functions differ widely. With further increase of separation
the Casimir pressure calculated using the alternative non-
local and plasma response functions approach each other
and the classical limit reached in the case of plates
described by the Drude function and made of an ideal
metal. This, however, holds at separations of the order of
millimeters which are immaterial due to negligibly small
force values.
In the next section, we compare the theoretical predic-

tions obtained using both local and nonlocal response
functions with the measurement data.

IV. COMPARISON BETWEEN
EXPERIMENT AND THEORY

Experiments of Refs. [32,33] are devoted to measure-
ments of the Casimir interaction in the configuration of a
Ni-coated hollow glass sphere with R ¼ 61.71 μm radius
and a Ni-coated Si plate. The Ni coatings on both bodies
were sufficiently thick in order they could be treated as all-
nickel when considering the Casimir interaction. These
experiments were performed in high vacuum at T ¼
300 K by using the dynamic atomic force microscope
based setup operated in the frequency-shift mode.
Because of this, an immediately measured quantity was
the gradient of the Casimir force between a sphere and a
plate F0

spða; TÞ ¼ ∂Fspða; TÞ=∂a.
According to the proximity force approximation, which

is very accurate under the condition a ≪ R (see below), the
gradient of the Casimir force in a sphere-plate geometry is
expressed via the Casimir pressure between two parallel
plates as [11,13]

F0
spða; TÞ ¼ −2πRPða; TÞ: ð55Þ

This gives the possibility to compare the measurement
results with theoretical predictions of the Lifshitz theory for
the Casimir pressure considered in Sec. III.
To perform a comparison between experiment and

theory, one should take into account very small corrections
to the result (55) arising due to the surface roughness on
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FIG. 3. Ratios of the Casimir pressure between two parallel
magnetic metal plates computed using the alternative nonlocal
and plasma response functions to the same pressure computed
using the Drude response function (Pnl=PD and Pp=PD, respec-
tively) are shown by the two lines over the separation regions
(a) from 100 nm to 1.5 μm and (b) from 100 nm to 7 μm. In the
region from from 100 to 655 nm the upper lines are for Pnl=PD
and the lower lines are for Pp=PD, and quite the reverse in the
region from 655 nm to 7 μm.

CASIMIR EFFECT FOR MAGNETIC MEDIA: SPATIALLY … PHYS. REV. D 104, 085001 (2021)

085001-9



metallic coatings of a sphere and a plate [11,13,62,63] and
due to deviations from the proximity force approximation
[64–69].
The root-mean-square roughness on the sphere and plate

surfaces was measured using an atomic force microscope
and found to be δs ¼ 1.5 nm and δp ¼ 1.4 nm, respec-
tively. So small roughness can be taken into account
perturbatively restricting ourselves to the second order in
the small parameters δs;p=a. Then the theoretical force
gradients (55) corrected for the presence of surface rough-
ness are given by [11,13]

F0
Rða; TÞ ¼ −2πRPða; TÞ

�
1þ 10

δ2s þ δ2p
a2

�
: ð56Þ

Note that at a ¼ 300 nm the roughness correction is equal
to only 0.05% of the force gradient and further decreases
with increasing separation. This is much less than the
differences between alternative theoretical predictions.
The final theoretical values of the force gradient are

obtained by taking into account the correction to the
proximity force approximation

F0
theorða; TÞ ¼ F0

Rða; TÞ
�
1þ θða; TÞ a

R

�
; ð57Þ

where, according to the results of Refs. [64–69], the
coefficient θða; TÞ is negative and its magnitude does
not exceed unity in the separation region a < 1 μm.
Thus, this correction is negligibly small at the experimental
separations from 225 to 550 nm. In computations below we
use the same values of θða; TÞ as in Ref. [33].
Nowwecancompare themeasurement datawith theoretical

predictions of the Lifshitz theory using different response
functions ofmagneticmetal plates. InFigs. 4(a)–4(d) themean
measured data for the force gradient are shown as crosses over
the four intervals of separation distances between Ni test
bodies [32]. The arms of the crosses indicate the total
experimental errors determined at a 67% confidence level.
The theoretical predictions of the Lifshitz theory using the

alternative nonlocal response functions (44), computed by
Eqs. (56) and (57) taking proper account of the optical data
of Ni as explained in Sec. III, are shown in Figs. 4(a)–4(d) by
the bottom bands. Thewidth of these bands is determined by
the errors in all theoretical parameters, such as the plasma
frequency, relaxation parameter, sphere radius, etc. The
theoretical bands computed [32] using the local dielectric
response described by the plasma function εpl in Eq. (54) are
indistinguishable from the bottom ones computed using the
alternative nonlocal response functions.
As is seen in Figs. 4(a)–4(d), the bottom theoretical

bands are in a very good agreement with the measurement
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FIG. 4. The mean measured gradients of the Casimir force between a sphere and a plate coated with magnetic metal Ni are shown by
the crosses as functions of separation. The bottom and top theoretical bands are computed within the Lifshitz theory using the alternative
nonlocal response functions and local Drude function, respectively.
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data over the entire range of separations from 223 to
550 nm. The alternative response functions, however, take
into account the relaxation properties of conduction elec-
trons which are disregarded in an unjustified manner when
using the plasma response function.
The theoretical predictions of the Lifshitz theory com-

puted [32] using the local dielectric response given by the
Drude function εDl in Eq. (54) are shown by the top bands in
Figs. 4(a)–4(d). Although the Drude response function
takes proper account of the relaxation properties of con-
duction electrons in the on-shell electromagnetic fields, the
theoretical predictions given by the top bands are excluded
by the measurement data over the separation region from
223 to 420 nm. This can be explained by an assumption that
the Drude function describes incorrectly the dielectric
response to the off-shell electromagnetic fields contributing
to the Casimir effect. One can conclude that the alternative
nonlocal response functions provide a more adequate
response to quantum fluctuations off the mass shell.
Note that at separation distances below 100 nm the
Casimir interaction is largely caused by the contribution
of interband transitions to the dielectric permittivity.
Because of this, at so short separations the discrimination
between very close theoretical predictions obtained using
the dielectric functions εD, εp, and εTr;L is presently
impossible and respective experiments are performed at
larger separations (see Figs. 4 and 5).
We also use another approach to a comparison between

experiment and theory based on the analysis of differences
between theoretical gradients of the Casimir force (57) and
mean measured gradients

ΔF0ðai; TÞ ¼ F0
theorðai; TÞ − F0

exptðai; TÞ; ð58Þ

where ai are the experimental separations at which the
force gradient was measured.
In Fig. 5, the lower set of dots presenting the quantity

ΔF0ðai; TÞ as a function of separation is computed with
theoretical force gradients F0

theor obtained using the alter-
native nonlocal response functions. For the upper set of
dots the gradients F0

theor were obtained using the local
Drude response function. The two solid lines in Fig. 5
indicate the borders of the 67% confidence intervals for the
random quantity ΔF0 in Eq. (58) which take into account
the total experimental and theoretical errors.
As is seen in Fig. 5, all dots belonging to the lower set are

inside the confidence intervals demonstrating a very good
agreement between theory and the measurement data if the
alternative nonlocal response functions are used in computa-
tions.The sameholdswhen the local plasma response function
is used in computations of F0

theor [32,33] which, however,
disregards the relaxation properties of conduction electrons.
From Fig. 5 it is also seen that most of dots belonging to

the upper set, obtained using the local Drude response
function, are outside the confidence intervals over the
separation region from 223 to 420 nm. This means that
the Lifshitz theory using the local Drude response is
experimentally excluded by measuring the Casimir inter-
action between magnetic metal plates.
According to the results of Sec. III, measurements of the

Casimir interactions at separations of a few micrometers
could easily discriminate between theoretical predictions of
the Lifshitz theory obtained using the local plasma and the
alternative nonlocal response functions. This could be
made, for instance, by performing the differential force
measurements proposed in Ref. [70]. At the moment,
however, both these approaches to calculation of the
Casimir force are experimentally consistent and one could
decide between them based on only advantages and draw-
backs in their application to a description of some other
physical phenomena.

V. CONCLUSIONS AND DISCUSSION

In this paper, the Lifshitz theory of the Casimir force was
extended to the case of magnetic metal boundary plates
possessing a spatially nonlocal dielectric response. For this
purpose, we have solved Maxwell equations describing an
electromagnetic wave incident from vacuum on a magnetic
metal semispace and expressed the exact impedances for
two independent polarizations of the electromagnetic field
via the longitudinal and transverse dielectric functions, as
well as via the magnetic permeability of a semispace metal.
The obtained results were used to calculate the Casimir

pressure between magnetic metal (Ni) plates described by
the alternative nonlocal response functions. These func-
tions have been introduced in Refs. [53,54] in an effort to
solve puzzling problems in the Lifshitz theory which was
found to be in contradiction with the measurement data and
fundamental principles of thermodynamics when the much
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FIG. 5. Differences between theoretical Casimir force gradients
between a sphere and a plate coated with magnetic metal Ni
computed either using the alternative nonlocal response functions
(lower set of dots) or the local Drude function (upper set of dots)
and mean experimental force gradients. The borders of the
67% confidence intervals for the force differences are shown
by the two solid lines.
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studied relaxation properties of conduction electrons are
taken into account in calculations by means of the Drude
response function.
The basic idea behind introducing the alternative non-

local response functions is that most of the experimental
information about the electromagnetic response of a metal
is obtained by using the on-shell fields. As to a nonlocal
response to the off-shell fields, the possibilities of exper-
imentally testing it are very limited. For instance, some
information about only the longitudinal response function
εLðω; kÞ can be obtained from measuring the energy loss
and momentum transfer of a beam of high energy electrons
passing through a thin metallic film [55]. This doubts on
applications of the Drude response function with no
modification in the region of electromagnetic fields off
the mass shell, i.e., for ω2 < k2c2, which gives a sizable
contribution to the Casimir effect.
Thus, it is reasonable to look for nonlocal generalizations

of the Drude function which nearly coincide with it for the
on-shell fields but can deviate significantly for electromag-
netic fluctuations off the mass shell. Taking into account
that the plasma response function, leading to an agreement
of the Lifshitz theory with the experimental data and
requirements of thermodynamics, possesses the second
order pole at zero frequency, the same property might be
expected from the sought for response. The phenomeno-
logical alternative response functions introduced in
Refs. [53,54] satisfy these conditions.
Another motivation for using the alternative nonlocal

response functions comes from graphene. At low energies
characteristic for the Casimir effect at not too short
separations, graphene is well described by the Dirac model.
In the framework of this model, the spatially nonlocal
response functions of graphene to both the on-shell and off-
shell fields can be expressed precisely based on first
principles of quantum field theory at nonzero temperature
via the components of the polarization tensor in (2þ 1)-
dimensional space-time (see Refs. [71,72] for the complete
results). In this situation, one expects that the Lifshitz
theory of the Casimir interaction with graphene using its
exact response functions should be in agreement with both
the measurement data and requirements of thermodynam-
ics. These expectations were confirmed by the measure-
ment data of two experiments which were found to be in
excellent agreement with theoretical predictions using the
polarization tensor [73–76]. On the other hand, the Casimir
entropy in graphene systems calculated using the polari-
zation tensor was proven to be in perfect agreement with
the Nernst heat theorem [77–80].

After this discussion, we return to the obtained results. It
was shown that at the experimental separations from 100 to
800 nm the Casimir pressures between two parallel Ni
plates computed by the Lifshitz formula using the alter-
native nonlocal and local plasma response functions differ
by less than 1%. However, at separations of a few
micrometers these two theoretical predictions differ
between themselves and with the prediction obtained using
the local Drude function by several tens of percent. This
opens up possibilities to experimentally check these pre-
dictions in the near future.
We have also compared theoretical gradients of the

Casimir force between a Ni-coated sphere and a Ni-coated
plate, computed using the alternative nonlocal response
functions and the optical data of Ni, with the measurement
data of Refs. [32,33]. The obtained theoretical results were
found in to be in a very good agreement with the
experimental ones over the entire range of separations
from 223 to 550 nm. This agreement is almost identical to
that obtained in Refs. [32,33] using the optical data of Ni
supplemented by the dissipationless plasma response
function at low frequencies [32,33]. It has been known
also [32,33] that the theoretical predictions obtained using
the local Drude response are excluded by the measurement
data over the range of separations from 223 to 420 nm. In
so doing an advantage of the alternative nonlocal response
functions is that they take into account the relaxation
properties of conduction electrons at low frequencies, as
does the Drude function, but, as opposed to the Drude
function, leads to an agreement between experiment and
theory which could be previously reached only by using the
plasma model, i.e., by dropping the relaxation properties of
conduction electrons.
In view of the above, one can conclude that the

alternative nonlocal response functions to quantum fluc-
tuations offer certain advantages over more conventional
local response functions and deserve further investigation.
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