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In many astrophysical scenarios the charge of the black hole is often neglected due to unrealistically
large values of the charge required for the Reissner-Nordström spacetime metric. However, black holes may
possess small electric charge due to various selective accretion mechanisms. In this paper we investigate the
effect of a small hypothetical electric charge of a Schwarzschild black hole on the ionization of a freely
falling neutral particle and subsequent escape of the ionized particle from the black hole. We show that the
energy of ionized particle can grow ultrahigh and discuss distinguishing signatures of particle acceleration
by weakly charged black holes. We also discuss a possible application of the proposed mechanism as an
alternative cosmic ray acceleration scenario. In particular we show that the Galactic center supermassive
black hole is capable to act as a PeVatron of protons. The presented mechanism can serve as a simple toy
model of a nonrotating compact object acting as a particle accelerator with a potential astrophysical
implementations related to the cosmic ray physics and beyond.
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I. WEAKLY CHARGED BLACK HOLE

Recently, it has been pointed out that the ionization or
decay of neutral particles in the vicinity of rotating Kerr
black hole immersed into external magnetic field can lead
to the acceleration of ionized particles to ultrahigh energies,
with the Lorentz γ-factors of particles that may exceeding
1012 near supermassive black holes in realistically plausible
conditions [1,2]. The formalism of the mentioned accel-
eration mechanism is based on the magnetic Penrose
process [3,4] in its novel, ultra-efficient regime, in which
the energy of ionized particles drives away the rotational
energy of the black hole through electromagnetic inter-
action. It has been claimed that the mechanism might be
responsible for the production of the highest-energy cosmic
ray particles [1] with energy exceeding 1020 eV when
applied to realistic supermassive black hole candidates. The
process, however, requires the rotation of the black hole
and the presence of an external magnetic field.
In this paper we investigate whether the acceleration

of ionized particles can be achieved in a more simplified
settings, namely, in the vicinity of a nonrotating
Schwarzschild black hole with a radial test electric field.
By a test electric field we denote the field, whose energy-
momentum tensor can be neglected in the description of the
gravitational field of the black hole. This implies that the
electric field influences on the dynamics of charged
particles only, being negligible for the geodesics of neutral

particles. Such a simplified setup is motivated by the
following reasons.
First of all, the no-hair theorem of black hole physics

states that the spacetime around black holes can be fully
described by at most three metric parameters—black hole
mass, spin, and electric charge [5]. The latter is usually
neglected in astrophysical scenarios, justified on the one
hand, by unrealistically large values of the charge required
for its visible effect on the spacetime metric and on the
other hand by the quick discharge of any charge excess by
an accretion of a plasma surrounding a black hole. Indeed,
one can compare the gravitational radius of a black hole
with the characteristic length of the charge QG of the
Reissner-Nordström black hole, which gives the maximum
charge of the black hole per solar mass1

ffiffiffiffiffiffiffiffiffiffi
Q2

GG
c4

s
¼ 2GM

c2
; ð1Þ

⇒ QG ¼ 2G1=2M ≈ 1030
M
M⊙

Fr: ð2Þ

This value of the charge is unattainable in any known
astrophysically relevant scenario. Moreover, a neutraliza-
tion of such a hypothetical charge QG would require an
accretion of a net charge with the total mass of accreted
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1Hereafter in this section we use the esu-cgs system of units, in
which the electrostatic unit of charge is given by 1 Fr≡ 1 esu ¼
1 cm3=2 g1=2 s−1. In SI system of units, 1 C ¼ 3 × 109 Fr.
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charged particles of MQ ¼ mp;eQG=e, where the indices
denote protons and electrons, respectively, and e is an
elementary charge. Luminosity of a black hole surrounded
by plasma or an accretion disk can be derived from infalling
matter such as L ¼ ϵ _Mc2, where _M is the accretion rate and
ϵ is the fraction of the rest mass energy radiated away. On
the other hand, from the balance of gravitational force and
radiation pressure in the vicinity of a black hole one can
derive the Eddington luminosity for fully-ionized hydrogen
plasma surrounding a black hole in the form

LEdd ¼
4πGMmpc

σT
≈ 1.26 × 1038

�
M
M⊙

�
erg=s: ð3Þ

Defining charged matter accretion rate as the fraction of
total accretion rate, _MQ ¼ δ · _M, one can derive the
neutralization timescale of the maximally charged black
hole in the following form

tQ;acc ¼
4

3

e3ϵmp;e

G1=2c3δmpm2
e
≈ 2.5 × 10−2

�
mp;e

mp

��
ϵ

δ

�
s; ð4Þ

which is estimated for a positive black hole charge. In case
of a negative charge of the black hole, the timescale is
≈1835 times faster. Both ϵ and δ have values in the range
(0, 1) and in many cases are of similar orders of magnitude.
This implies that in all astrophysically relevant settings any
net charge of a black hole would be neutralized relatively
quickly unless there is a mechanism preventing the black
hole from neutralization. Some of such mechanisms are
briefly mentioned below. Thus, the Reissner-Nordström
spacetime metric is interesting, but astrophysically not
viable. An exception can be represented by the Reissner-
Nordström spacetime having a zero electric and nonzero
magnetic charge due to a special character of interaction
with electrically charged matter [6].
There exists several astrophysical scenarios based on a

selective accretion, in which an astrophysical black hole
may possess a small electric charge [7–14]. Since protons
are about 1836 times more massive than electrons, the
balance between the gravitational and Coulombic forces for
the particles close to the surface of the compact object is
obtained when the black hole acquires a positive net electric
charge of the order of Q ∼ 3 × 1011 Fr per solar mass
[8,11]. Moreover, matter surrounding black hole can be
ionized and charged by the irradiating photons taking away
some electrons [9]. In that case, following the above
described argument, the charge of the black hole is likely
positive, being of the order of Q ∼ 1011 Fr per solar mass.
Another famous mechanism of charging of black holes is
theWald’s mechanism [10], in which the charge is naturally
induced by the twisting of magnetic field lines due to the
frame-dragging effect of the rotation of the black hole. As a
result, both the black hole and surrounding magnetosphere
should acquire equal and opposite charge of the order of

Q ∼ 1018 Fr per solar mass [see, e.g., [7,10,15]]. In all
cases, the charge of the black hole is much weaker than its
maximal theoretical limit (2) by many orders of magnitude.
Therefore, astrophysical black holes can be considered as
weakly charged, i.e., the gravitational effect of the charge
on the spacetime metric can be rightly neglected. Thus,
depending on whether the black hole is spinning or not, the
realistic value of the black hole’s charge may vary between
the values

1011
M
M⊙

Fr ≲QBH ≲ 1018
M
M⊙

Fr: ð5Þ

For more details and estimates, the reader may refer to the
works [11,12] and references therein, where various black
hole charging scenarios are compared and the results are
applied to the Galactic center black hole.
The presence of an induced electric field and corre-

sponding electric charge of a black hole plays an important
role in the mechanisms of the rotational energy extraction
from black holes, such as Blandford-Znajek mechanism
[16] and magnetic Penrose process [2]. Discharge of the
induced charge by accreting charged matter drives away the
black hole’s rotational energy. The character of the electric
field around magnetized Kerr black hole is not spherically
symmetric, it is rather of quadrupole character. Therefore,
in most of the realistic particle acceleration scenarios, such
as the production of relativistic jets, it is assumed that the
black hole is spinning.
In this paper, we raise a question as to whether the

charged particles can be accelerated to large γ-factors ≫ 1
by nonspinning Schwarzschild black holes or in the case
when the rotation of the black hole is very slow for the
operation of the rotational energy extraction mechanisms.
For that we assume that the black hole is nonrotating with a
small electric charge of the above described limits, whose
gravitational contribution is negligible. We aim to calculate
the energy of the charged particle after the ionization of a
neutral particle in the black hole’s vicinity.
Hereafter we use the signature ð−;þ;þ;þÞ, and the

system of geometric units, in which G ¼ 1 ¼ c, unless the
constants are written explicitly and given in esu-cgs system
of units.

II. DYNAMICS OF CHARGED PARTICLE

A. Background setup and equations of motion

We start from the Schwarzschild spacetime metric

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð6Þ

where fðrÞ is the lapse function parametrized by the black
hole mass M as follows

fðrÞ ¼ 1 −
2M
r

: ð7Þ
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Let us assume the presence of the radial electric field
with corresponding small electric charge Q at the center of
the coordinate. In this case, the only nonzero covariant
component of the electromagnetic four-potential Aμ ¼
ðAt; 0; 0; 0Þ has the following simple form

At ¼ −
Q
r
: ð8Þ

The antisymmetric tensor of the electromagnetic fieldFαβ ¼
Aβ;α − Aα;β has only one independent nonzero component

Ftr ¼ −Frt ¼ −
Q
r2
: ð9Þ

Let us now consider the motion of a charged particle of
mass m and charge q in the combined background
gravitational and electric fields. The motion of a charged
particle is governed by the Lorentz equation in curved
spacetime

duμ

dτ
þ Γμ

αβu
αuβ −

q
m
Fμ

νuν ¼ 0; ð10Þ

where uμ is the four-velocity of the particle, τ is the proper
time of the particle and Γμ

αβ are the Christoffel symbols.
Due to symmetries of the background Schwarzschild

metric one can introduce two integrals of motion, corre-
sponding to the temporal and spatial components of
the canonical four-momentum of the charged particle
Pα ¼ muα þ qAα,

Pt

m
¼ −E ≡ −

E
m

¼ ut −
qQ
mr

; ð11Þ

Pϕ

m
¼ L≡ L

m
¼ uϕ; ð12Þ

where E and L denote specific energy and specific angular
momentum of the charged particle. Since both gravitational
and electric fields are spherically symmetric and there is no
preferred plane of the motion, one can fix the motion of the
charged particle to the equatorial plane (θ ¼ π=2), without
loss of generality. Thus, three nonvanishing components of
the equation of motion (10) can be found in the form

dut

dτ
¼ ur½Qr − 2MðerþQÞ�

rðr − 2MÞ2 ; ð13Þ

dur

dτ
¼ eQ

r2
þ L2ðr − 2MÞ

r4
−
M½e2 − ðurÞ2�
rðr − 2MÞ ; ð14Þ

duϕ

dτ
¼ −

2Lur

r3
; ð15Þ

where e ¼ E −
qQ
mr

: ð16Þ

Equations (13)–(15) are ordinary differential equations,
which can be easily solved numerically.

B. Effective potential

Using the normalization condition for a massive particle
uμuμ ¼ −1, one can derive the effective potential for the
charged particle moving around a weakly charged
Schwarzschild black hole in the form

VeffðrÞ ¼
Q
r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ

�
1þ L2

r2

�s
; ð17Þ

whereQ ¼ Qq=m is a parameter characterizing the electric
interaction between the charges of the particle and black
hole. Without loss of generality we set the mass of the black
hole to be equal to unity, i.e., M ¼ 1.
Since the right-hand side of the effective potential (17) is

always positive one can distinguish two qualitatively
different situations depending on the sign of the parameter
Q. When Q > 0, the charges of the particle and black hole
have the same sign, so the electric interaction is repulsive.
In the opposite case, when Q < 0, the charges of the
particle and black hole have different signs, so the electric
interaction is attractive. The term L2 under the root of
Eq. (17) means that the clockwise and counter-clockwise
directions of the motion are equivalent.
The radial profile of the effective potential is shown in

Fig. 1. One can see that the effect of the charge parameterQ
is similar to those of the angular momentumL, i.e., increas-
ing (or decreasing) both parameters Q and L one can
increase (or decrease) the value of the effective
potential. It is interesting to note that taking into account
the parameter Q can mimic the effect of angular momen-
tum (compare, e.g., the red curve in the middle plot
with a very similar blue curve on the right plot of
the Fig. 1).
The stationary points of the effective potential VeffðrÞ is

given by the equation

∂rVeffðrÞ ¼ 0: ð18Þ

Note that in the case of the weakly charged Schwarzschild
black hole all the local extrema of the effective potential
Veff are located in the equatorial plane θ ¼ π=2.
Equation (18) leads to a polynomial equation of the fourth
order in the radial coordinate

r2ðJ − 1Þ þ L2ðr − 3Þ ¼ 0; ð19Þ

where J ¼ Q
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − 2ÞðL2 þ r2Þ

r

r
: ð20Þ
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The solution of Eq. (19) has four roots ofL and two of them
are independent

L2
� ¼ r

ðr − 3Þ2
�
−Q2 − 3rþQ2r

2
þ r2

�Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 12rþ 4r2

p �
1 −

r
2

��
; ð21Þ

C. Angular velocity measured at infinity

Noticing that in the equatorial plane the four velocity
takes the form uα ¼ utð1; v; 0;ΩÞ, where v ¼ dr=dt, Ω ¼
dϕ=dt and using the normalization condition uαuα ¼ −k,
where k ¼ 1 for massive particles and k ¼ 0 for massless
particles, we can obtain the following equation

ðutÞ2ðf−1ðrÞv2 − fðrÞ þ Ω2r2Þ ¼ −k: ð22Þ

Simplifying equation above, we can easily derive equation
for angular velocity measured by a static observer at
infinity Ω ¼ dϕ=dt

Ω ¼ � 1

utr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðutÞ2ðfðrÞ − f−1ðrÞv2Þ − kf2ðrÞ

q
: ð23Þ

The possible values of Ω are limited to

Ω− ≤ Ω ≤ Ωþ; Ω� ¼ �
ffiffiffiffiffiffiffiffiffi
fðrÞp
r

; ð24Þ

corresponding to the photon motion.

D. Innermost stable circular orbit

The innermost stable circular orbit (ISCO) in the
Schwarzschild spacetime is located at rISCO ¼ 6M. In
the case when the electric charge is included, it will be
shifted from rISCO ¼ 6M. Local extremum of the function
L� determine the ISCO, its radius, angular momentum, and

energy. The ISCO can also be found from the condition of
∂2
rVeffðr;L;QÞ ¼ 0, which gives

L2r2ðJðr − 2Þ þ 2Þ þ r4ðJðr − 2Þ − rþ 3Þ
þ L4ððr − 3Þrþ 3Þ ¼ 0: ð25Þ

Solving this equation with respect to r gives us four
solutions for the ISCO with only two of them being real
and independent.
One can also calculate the velocity v of the charged

particle at the ISCO, which is given by the formula

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ r2ISCO=L
2
ISCO

s
: ð26Þ

Dependence of the ISCO position risco on the charge
parameter Q and the change of the values of LISCO and
v on the ISCO position are shown in Fig. 2. ISCO is
increasing for both positive and negative Q. Similar results
have been also obtained recently by [17], where the ISCO
in a similar setting is properly discussed.

III. ENERGY OF IONIZED PARTICLE

A. Conservation laws

Let us now consider the decay of a particle 1 into two
fragments (2 and 3) close to the event horizon of a weakly
charged Schwarzschild black hole at the equatorial plane.
One can write the following conservation laws before and
after decay

E1 ¼E2þE3; L1 ¼ L2þL3; q1 ¼ q2þq3; ð27Þ

m1 _r1 ¼ m2 _r2 þm3 _r3; m1 ⩾m2 þm3; ð28Þ

where dot indicates derivatives with respect to the particle’s
proper time τ. Using the above conservation laws, one can
find the equation

FIG. 1. Radial dependence of the effective potential Veff for a charged particle around a weakly charged nonrotating black hole in the
equatorial plane θ ¼ π=2 for different values of the parameters L and Q.
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m1u
ϕ
1 ¼ m2u

ϕ
2 þm3u

ϕ
3 : ð29Þ

Noticing that uϕ ¼ Ωut ¼ Ωe=fðrÞ, where ei ¼
ðEi þ qiAtÞ=mi, with i ¼ 1, 2, 3 indicating the particle’s
number, the Eq. (29) will take the following from

Ω1m1e1 ¼ Ω2m2e2 þ Ω3m3e3: ð30Þ

Solving the above equation with respect to the energy of
one of the fragments, e.g., E3 we find

E3 ¼
Ω1 − Ω2

Ω3 − Ω2

ðE1 þ q1AtÞ − q3At; ð31Þ

where Ωi ¼ dϕi=dt is an angular velocity of ith particle,
given by (23), with restricted values (24).

B. Maximum energy of ionized particle

To maximize the energy of ionized particle we choose
the particle 1 to be neutral, i.e., q1 ¼ 0. We are also free to
choose the energy of the particle 1, which we set to its rest
mass energy, i.e., E1 ¼ m1 or E ¼ 1. In this case, the
angular velocity (23) for the particle 1 will take the
following simple form

Ω1 ¼
1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr − 2Þ

p
: ð32Þ

Without loss of generality we choose the ionized particle to
be the particle 3. The energy of the ionized particle is
maximal, when the term ðΩ1 −Ω2Þ=ðΩ3 −Ω2Þ is maxi-
mized. This occurs when we set the angular momentum of
fragments to their limiting values. Then we find

Ω1 − Ω2

Ω3 − Ω2

����
max

¼ 1ffiffiffiffiffiffiffiffiffi
2rion

p þ 1

2
; ð33Þ

where rion is the ionization radius. We see that the ratio (33)
decreases with increasing rion and is maximal when rion
coincides with the event horizon. Thus, at rion ¼ 2, the ratio
(33) is equal to unity. Finally, we write the expression for
the energy of ionized particle in the form

E3 ¼
�

1ffiffiffiffiffiffiffiffiffi
2rion

p þ 1

2

�
E1 þ

q3Q
rion

: ð34Þ

One can see that the energy of the ionized particle is
maximal when q3 and Q have the same sign, which is also
the expected result—the charged particle is accelerated due
to the Coulombic repulsion force acting between the black
hole and the particle. It is useful to define the ratio between
the energies of ionized and neutral particles, which would
represent the efficiency of the acceleration process. Writing
the black hole mass and the speed of light explicitly and
substituting q3 ¼ Ze andm1 ≈ Amn, where Z and A are the
atomic and mass numbers, e is an elementary charge and
mn is the nucleon mass, we find

E3

E1

¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM

2c2rion

s
þ ZeQ
Amnc2rion

: ð35Þ

The ionized particle is accelerated only when the right-hand
side of the Eq. (35) is greater than unity. If the ionization
point appears near the event horizon, rion ≈ 2GM=c2, then
the condition E3 > E1 is satisfied for arbitrary positive
values of the black hole charge, Q > 0. If the ionization
point occurs at the ISCO radius, i.e., rion ¼ 6GM=c2, for
the energy of ionized particle to be greater than the energy
of infalling neutral particle, E3 > E1, the charge of the
black hole has to satisfy the following condition
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FIG. 2. Left: position of the ISCO of charged particle in the dependence on the charge parameter Q. Middle: Angular momentum of
charged particle at ISCO against ISCO position. Right: velocity of charged particle at ISCO. In all plots the red lines correspond to the
positive charge parameter Q > 0, while the black curves correspond to the negative charge parameter Q < 0.
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Q≳ 5.8 × 1011
A
Z

M
M⊙

Fr; ð36Þ

which is slightly greater than the lower limit of the
estimated realistic limits of the black hole charge, given
by (5).
In Fig. 3 (left) we plot the efficiency of the acceleration

mechanism (ratio of the energies of ionized and infalling
particles with Z=A ¼ 1) against the value of the black
hole’s charge per solar mass at various ionization points.
The efficiency grows considerably with increasing value of
the black hole’s charge and slightly decreases with increas-
ing the distance between the black hole and the ionization
point. In Fig. 3 (right) we show the dependence of the
energy ratio on the ionization rate Z=A for a fixed value of
the black hole charge. Let us estimate the maximal energy
of ionized particle, which can be accelerated by the non-
rotating weakly charged black hole. From (35) and using
the uppermost realistic limit of the charge (5) we get

Emax
ion ≈ 1.01 × 106Z

Q
1018 Fr

M⊙

M
GeV; ð37Þ

or, equivalently ≈1620 erg. The ratio of energies of
ionized and neutral particles, in this case, is equal to
Emax
ion =En ≈ 106. In sharp contrast to the magnetic

Penrose process [1,2], where the energy of ionized particles
is increasing with increasing the black hole mass; in the
case of a nonrotating weakly charged black hole the energy
of a charged particle is inversely proportional to the mass of
the black hole. Therefore, the maximal energy is deter-
mined by the limiting value of the charge to mass ratio of
the black holeQ=M [see, the limits (5) and the charge of the
ionized particle Ze]. This implies that the maximal energy
of ionized particles accelerated by the weakly charged

nonrotating black hole is similar for both stellar mass and
supermassive black holes.2

IV. POSSIBLE APPLICATION:
HIGH-ENERGY COSMIC RAYS

In Ref. [1], it has been proposed that the ultra-efficient
regime of the magnetic Penrose process, which requires the
presence of an external magnetic field in the vicinity of a
rotating black hole can be relevant for the explanation of the
origin of the ultrahigh-energy cosmic rays (UHECRs).
UHECRs are the phenomena composed from individual
charged particles with detected energies exceeding
1020 eV, whose production mechanism remains unknown.
In this section we show that similar acceleration can be
achieved in a more simplified setup of a weakly charged
nonrotating black hole. In Fig. 4 we demonstrate the
constraints on the black hole mass and charge to serve
as an accelerator of charged particles (protons) of a certain
energy. As it is expected, increasing the black hole charge
for a given black hole mass one can reach the UHECR
orders of energies. A central charge of the black hole, in this
case, is still smaller than the maximal theoretical charge
limit by many orders of magnitude.
As an example, in Fig. 4 we depict the acceleration

capability of the Galactic center supermassive black hole
Sgr A*, whose charge has been constrained in [12]. In
particular, the constraint shows that Sgr A* is capable to
act as a PeVatron of charged particles with the energy of
accelerated protons being of the order of 1015 eV. It is
interesting to note that this energy coincides with the knee
of the cosmic ray spectrum, above which the particle’s flux
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FIG. 3. Ratio of energies of ionized and neutral particles plotted against the black hole charge Q (left) and the ionization rate Z=A
(right). The curves denote different positions of the ionization point: rion ¼ 2GM=c2 (solid), rion ¼ 4GM=c2 (dashed) and rion ¼
6GM=c2 (dot-dashed).

2Note that in the weakly magnetized rotating black hole case
[2], the energy of ionized particle grows proportionally to the
black hole’s mass and magnetic field strength Eion ∼ BM.
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is considerably suppressed, suggesting the change in the
cosmic ray source. The result is also similar to that obtained
in the magnetic field and rotating black hole case [1], thus
the presented mechanism can serve as another cosmic-ray
acceleration mechanism and alternative explanation of the
cosmic-ray knee when applied to the Galactic supermassive
center black hole Sgr A*.

V. CONCLUSIONS

In this paper we proposed a simple mechanism of
acceleration of particles to high energies by the ionization
of neutral particles in the vicinity of a nonrotating
Schwarzschild black hole carrying small electric charges,
whose gravitational effect on the spacetime metric is
negligible. We started from the description of the motion
of a charged particle and showed that the effective potential
in the case of a weakly charged black hole increases (or
decreases) with increasing (or decreasing) the electric
interaction parameter Q. We found that the innermost
stable circular orbit of the charged particle increases for
both positive and negative values of the parameter Q. The
results are in accord with previous similar studies by
[11,17,18].
We have found that the energy of ionized particles can be

much greater than initial energy of the neutral particle if
both charges of the ionized particle and the black hole have
the same sign. Thus, similar acceleration process occurring
in the magnetized Kerr black hole spacetime and studied by
[1,19] works also in the weakly charged nonrotating black

hole case. For the realistic upper limit of the black hole
charge given by (5), which is at least 12 orders of
magnitude smaller than the maximal theoretical
Reissner-Nordström limit (2), we have found that the
charged particle with the charge Ze can be accelerated
to the Lorentz γ-factor exceeding Z × 106.
It is necessary to note that the energy of accelerated

charged particles comes at the expense of the electrostatic
energy of the black hole given by its electric charge in
contrast to many black hole energy extraction mechanisms,
which use the rotational energy of the black hole (see, e.g.,
[3,16,20,21]). The electric Penrose process studied in the
current paper is similar to the magnetic Penrose process
proposed in the mid 1980s in [3,4,22,23], where it is the
rotational energy of the black hole that is extracted.
Connection of the magnetic Penrose process with another
famous black hole energy extraction process—the
Blandford-Znajek mechanism [16] was discussed in [24].
Energetics and the energy extraction mechanism in the
charged spacetimemetrics given by the Reissner-Nordstrom
and Kerr-Newman black holes have been studied in [25,26].
It has been shown in [2] that the energy of accelerated
ionized particles in the magnetic Penrose process is propor-
tional to the product of the magnetic field strength and the
black hole mass, i.e., Eion ∼ BMBH. However, in the electric
Penrose process studied in the current paper, this energy is
proportional to the black hole’s charge and inversely
proportional to the black hole’s mass, i.e., Eion ∼Q=MBH.
Therefore, the maximal energy of the ionized particle is
restricted by the upper limit of the charge to mass ratio of a
black hole.
Further we also discussed the possible astrophysical

application of the presented results for the production and
acceleration of the ultrahigh-energy cosmic rays. In Fig. 4
we presented the constraints on the maximum energy of the
cosmic-ray particle accelerated by a nonrotating black hole
with a given mass and charge. It has been shown that the
ultrahigh-energy acceleration does not require the presence
of a strong black hole charge, in a sense that the
Schwarzschild black hole spacetime is sufficient. We have
applied the model to the Galactic center supermassive black
hole Sgr A*, which is the best-known black hole candidate,
and found that the energy of accelerated protons can
slightly exceed 1015 eV, which coincides with the knee
of the cosmic-ray spectrum. The presented results, how-
ever, are quite general and can also potentially operate in
neutron stars. It is especially interesting to look for a similar
acceleration scenario in the electrospheres of pulsars.
Nevertheless, we leave this discussion for further studies.
Despite the similarities between the acceleration proc-

esses described in the current paper and the magnetic
Penrose process of particle acceleration by a rotating black
hole in a magnetic field [1,2], one of the main differences
between the two is that the motion of a charged particle in
the former case is always regular, while in the latter case the
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FIG. 4. Constraints on the black hole mass and its charge to
accelerate protons of various energies (1–1012 GeV), marked by
black lines. The red line corresponds to the maximum theoretical
limit of the Reissner-Nordström charge. The blue vertical line
shows the acceleration capability of an example source, corre-
sponding to a supermassive black hole Sgr A* located at the
Galactic center, whose charge constraints are taken from [12].
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chaotic behavior of escaping charged particles is usually
observed [19,27]. In the presence of external magnetic
field, it is expected that significantly larger numbers of
charged particles escape along the directions given by
magnetic field lines. The character of the induced electric
field around a magnetized rotating Kerr black hole has no
spherical symmetry; it is rather of quadrupole character.
Meanwhile in the field of magnetized Schwarzschild black
holes only redirections in chaotic motion are observed [28],
but no acceleration is possible as no electric part of the field
is induced. In a weakly charged nonrotating black hole
case, the combined gravitational and electric field is
spherically symmetric, therefore one would expect

isotropic statistics of escaping charged particles with no
preferred direction of motion. In general, this can affect the
statistics and interpretation of observed events, being the
distinguishing observational signature of the electric
Penrose process.
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