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Mass-radius relations of homogeneous cold spheres are obtained for six solid materials commonly found
in terrestrial planets. An additional degeneracy in the (exo)planet profiles is discussed together with their
properties concluded from our findings in the framework of Palatini fðRÞ gravity. Moreover, a new test of
gravity has been proposed: The results presented here will allow us to test and constrain models of gravity
by the use of seismic data acquired from earthquakes and marsquakes.
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I. INTRODUCTION

General relativity (GR) has been tested experimentally
on a number of occasions [1]. Just recently, the existence of
one of the most astonishing predictions made by Einstein’s
theory, black holes, has been confirmed by detecting
gravitational waves coming from a merger of two of them
[2]. Also, the shadow of a supermassive black hole in the
center of M87 galaxy has been recently observed directly
[3–6] (see Ref. [7] for a review). Despite all these triumphs,
GR cannot account for various cosmological and astro-
physical phenomena in a satisfactory way. A lot of effort
has been dedicated to constructing alternative models
capable of solving the dark matter and dark energy problem
[8–13], shedding some light on spacetime singularities
[14], or providing unification scenarios at high energies
[15,16]. Another problem concerns the observed maximum
masses of compact objects that exceed theoretical predic-
tions [17–20] and the mass of a binary black hole
merger [21,22].
In this work, we use the fact that many models of

gravitation—in particular, fðRÞ Palatini gravity (see Sec. II
for a short review of the model)—slightly alter the non-
relativistic limit of (sub)stellar structural equations by
introducing new (geometric) terms proportional to func-
tions of energy density [23–25] (for a review, see
Refs. [26,27]). Modified nonrelativistic equations in the
context of stars and brown dwarfs have already been widely
used by the physics community, mainly to obtain limiting
masses, such as, e.g., the Chandrasekhar mass for white
dwarf stars [28–33], the minimum Main Sequence mass1

[34–37], or the minimum mass for deuterium burning [38].
Moreover, modified gravity also impacts the early evolu-
tion of low-mass stars [39], the post–Main Sequence stage
of population II stars [40], and the cooling processes of
brown dwarfs [41], as well as altering the age-estimation
procedures based on the lithium depletion method [42].
Therefore, using modified equations describing a spheri

cal-symmetric object, we reveal an additional degeneracy
induced by metric-affine gravity in the mass-radius rela-
tions for a cold homogeneous sphere. Such an object can be
treated as a single-layer (exo)planet, and it is useful to
demonstrate that the modified gravity effects also take part
in the planetary description. To show that, we use equations
of state in analytical form for six solid materials, and
modified hydrostatic equilibrium equations presented in
Sec. III and the Appendix. We also discuss a possible
singularity caused by a particular combination of an
equation of state and the theory parameter, and we argue
that for a physical system such as a star or a planet, this
problem will not appear. In Sec. IV, we numerically solve
the equations and demonstrate the mass-radius relations
and density profiles obtained for the Palatini quadratic
model. Section V is devoted to a description of a new test of
gravity with the use of our results and seismic data from
earthquakes and marsquakes. In the last section, we draw
our conclusions.
Let us notice that so far, (exo)planets have been used to

test and constrain theories of gravity only in the context
of precessions of planetary perihelion in the Solar System
—see, e.g., Refs. [43–54], and modifications to Kepler’s
third law by introducing corrections to Kepler’s third
law [55,56].
We use ð−þþþÞ signature convention and κ2 ¼

8πG=c4.
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1That is, a star reaches the Main Sequence when the energy

produced in the star’s core by hydrogen burning is balancing the
gravitational contraction.
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II. PALATINI f ðRÞ GRAVITY

In the metric approach to fðRÞ gravity, where one
replaces the Einstein-Hilbert Lagrangian with a general
function of the curvature scalar, a metric tensor is the only
object mediating the gravitational interaction. It is possible,
however, to introduce an independent connection and split
up spacetime structure into metric and affine components.
Such an approach is called “Palatini,” and it exhibits some
advantages over the metric formulations [57–60].
The action is given by

S½g;Γ;ψm� ¼
1

2κ2

Z ffiffiffiffiffiffi
−g

p
fðRÞd4xþ Smatter½g;ψm�; ð1Þ

whereR ¼ gμνRμνðΓÞ is the Palatini curvature scalar, built
from both the metric and the independent connections, and
ψm represents the matter fields.
Varying the action with respect to the metric tensor

yields

f0ðRÞRμν −
1

2
fðRÞgμν ¼ κ2Tμν; ð2Þ

with Tμν ¼ − 2ffiffiffiffi−gp δSm
δgμν

and the prime denoting differentiation

with respect to the curvature. One can contract Eq. (2) with
the metric and relate the Palatini curvature to the trace of the
energy-momentum tensor:

f0ðRÞR − 2fðRÞ ¼ κ2T: ð3Þ

We immediately notice that the relation between the
curvature and the trace becomes purely algebraic, which
means that, for a particular choice of the function f, it is
possible to solve it.
In order to obtain the relation between the connection

and the metric tensor, one needs to vary with respect to it
and obtain the following:

∇βð
ffiffiffiffiffiffi
−g

p
f0ðRðTÞÞgμνÞ ¼ 0; ð4Þ

where the covariant derivative is defined using the inde-
pendent connection. If one defines a new metric tensor,
conformally related to gμν,

hμν ¼ f0ðRðTÞÞgμν ð5Þ

then Eq. (4) can be written as

∇βð
ffiffiffiffiffiffi
−h

p
hμνÞ ¼ 0; ð6Þ

and by a well-known theorem, this means that the con-
nection Γα

μν is Levi-Civita with respect to the metric hμν
[61–63]. Therefore, the “independent” connection turns out
to be an auxiliary field and can be integrated out. All
relevant degrees of freedom are related to the metric tensor.

Just like its metric counterpart, Palatini fðRÞ has a
scalar-tensor representation, which can be obtained by
means of the Legendre transformation:

S½g;Φ;Γ;ψm� ¼
1

2κ2

Z ffiffiffiffiffiffi
−g

p ½ΦR − VðΦÞ�d4x

þ Smatter½g;ψm�; ð7Þ

where Φ ¼ df=dR and VðΦÞ ¼ f0ðRðΦÞÞRðΦÞ−
fðRðΦÞÞ. It can significantly simplify the problems ana-
lyzed [64–68]. The connection, building the Ricci tensor,
can be expressed in terms of the scalar field Φ and the
metric tensor gμν, yielding

S½g;Φ;ψm� ¼
1

2κ2

Z ffiffiffiffiffiffi
−g

p h
ΦRþ 3

2Φ
ð∂ΦÞ2 − VðΦÞ

i
d4x

þ Smatter½g;ψm�; ð8Þ

which is, effectively, a fully metric theory.
Palatini fðRÞ theory is a special case of a more general

class of modified gravity, represented by the following
action functional:

S½g;Φ;Γ;ψm� ¼
1

2κ2

Z ffiffiffiffiffiffi
−g

p ½AðΦÞRðg;ΓÞ − BðΦÞð∂ΦÞ2

− VðΦÞ�d4xþ Smatter½e2αðΦÞg;ψm�: ð9Þ

Here, in order to keep the considerations at the most general
level possible, we do not specify if the curvature is fully
metric, or constructed à la Palatini. As one can see, there
are four functions of the scalar field entering the action.
When specifying the functions, one gets a particular scalar-
tensor theory. By means of field equations, one can
establish an equivalence between Palatini and metric
approaches to this class of modified gravity; such repre-
sentations will have different values of the scalar field
functions.
By comparing Eqs. (7) and (9), one can identify the

functions defining general Palatini fðRÞ gravity in the
metric scalar-tensor representation:

AðΦÞ ¼ Φ; BðΦÞ ¼ −
3

2Φ
;

VðΦÞ ¼ VðΦÞ; αðΦÞ ¼ 0: ð10Þ

[The potential VðΦÞ was introduced in Eq. (7).] Since the
potential is the only unspecified function of the scalar field,
all the information about the f function will be stored
therein.
For any scalar-tensor theory, either in the metric, or in the

Palatini formalism, one can introduce quantities whose
values remain the same under a Weyl (or conformal)
transformation of the metric tensor and a reparametrization
of the scalar field, defined by Refs. [69–75]
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�
ḡμν ¼ e2γðΦÞgμν
Φ̄ ¼ f̄ðΦÞ

; ð11Þ

where γðΦÞ is some function of the scalar field. Performing a
conformal change might be treated as a mathematical tool
allowing one to choose a set of scalar field functions, for
which solving field equations will be particularly simple;
expressing relevant quantities in terms of invariants might
provide a framework for the analysis of different approaches
and theories within one framework.
The invariants used in this work are defined as follows:

I1ðΦÞ ¼ AðΦÞ
e2αðΦÞ ; ð12Þ

I2ðΦÞ ¼ VðΦÞ
A2ðΦÞ ; ð13Þ

dI
dΦ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B
A

þ δΓ

�
3A0

2A

�
2

s
; ð14Þ

where δΓ is 1 for metric theory, and 0 for Palatini. The
prime denotes differentiation with respect to the sca-
lar field.
As one can see, the invariants are functions of the scalar

field in the most general case. The Palatini fðRÞ is somewhat
special in this regard, since the scalar field is nondynamical
and can be algebraically related to the trace of the energy-
momentum tensor. To see this, let us notice that varying
Eq. (7) with respect to the scalar field gives

R − V 0ðΦÞ ¼ 0; ð15Þ

which then can be used in Eq. (3) to relate Φ and T. For
perfect fluid, T ¼ −c2ρþ 3p, and therefore all invariants
can be shown as functions of the trace:

I iðΦðTÞÞ ¼ I ið−c2ρþ 3pÞ; ð16Þ

as soon will be demonstrated [cf. Eq. (23)].

III. PALATINI PLANETS

A. Equations of state for cold low-mass spheres

In the following work, we will use equations of states
(EOSs) for six different solid materials (see Tables I and II).
The first one concerns a case with the assumption of

uniform or zero temperature, with pressures below
200 GPa. For such conditions, we are equipped with the
analytical form of the EOS given by the fits to the
experimental data:

p ¼ 3

2
K0ðη7=3 − η5=3Þ

�
1þ 3

4
ðK0

0 − 4Þðη2=3 − 1Þ
�
; ð17Þ

where η ¼ ρ=ρ0 is the compression ratio with respect to the
ambient density ρ0 (that is, the density at zero pressure),
and K0 ¼ −Vð∂p=∂VÞT is the bulk modulus of the
material (the inverse of the compressibility) [76], while
K0

0 and K00
0 are the first and second pressure derivatives,

respectively. Since most of the experiments are limited to
p < 150 GPa and temperatures less than 2000 K, we will
take that as the starting value at the core of the planet. The
above EOS is called the third-order finite strain Birch-
Murgnagham equation of state (BME) [77,78]. In Table I,
there are only two materials which we are using in this
work—see our discussion in Sec. IV; for more fits for
various materials, see, e.g., Refs. [78,79].
For p≳ 104 GPa, the electron degeneracy becomes

important. The common approach is to match Eq. (17)
with the Thomas-Fermi-Dirac equation of state (TFD
EOS) [80–83] with a density-dependent correlation
energy term added [84] in order to take into account
interactions between electrons themselves, obeying the
Pauli exclusion principle and moving in the Coulomb
field of the nuclei. However, it turns out that the merger of
the BME and TFD equations of state can be approximated
by a modified polytropic equation of state [79], called
the Seager-Kuchner-Hier-Majumder-Militzer equation of
state (SKHM EOS),

ρðpÞ ¼ ρ0 þ cpn; ð18Þ

whose best-fit parameters ρ0, c, and n are given in
Table II. The reason for such a modification, given here
by the added ρ0, is to include the incompressibility of
solids and liquids at low pressures. Equation (18) with the
given fits for the considered solid materials is valid for the
pressure range p < 107 GPa.

TABLE I. Best-fit parameters for the BME [Eq. (17)]; for more
materials, see, e.g., Table 4.1 in Ref. [78] and Table 1 in Ref. [79].

Material ρ0 (Mgm−3) K0 (GPa) K0
0

FeðαÞ 7.86 162.5 5.5
ðMg;FeÞSiO3 4.26 266 3.9

TABLE II. Best-fit parameters for the SKHM EOS [Eq. (18)]
obtained in Ref. [79].

Material ρ0 (kgm−3) c (kgm−3 Pa−n) n

FeðαÞ 8300 0.00349 0.528
MgSiO3 4100 0.00161 0.541
ðMg;FeÞSiO3 4260 0.00127 0.549
H2O (ice) 1460 0.00311 0.513
C (graphite) 2250 0.00350 0.514
SiC 3220 0.00172 0.537

METRIC-AFFINE GRAVITY EFFECTS ON TERRESTRIAL … PHYS. REV. D 104, 084097 (2021)

084097-3



B. General structural equations

It was shown that the full relativistic hydrostatic equi-
librium equation for the quadratic model in Palatini fðRÞ
gravity,

fðRÞ ¼ Rþ βR2;

is given by Refs. [24,68]:

p0 ¼
�
−
GMðrÞ
c2r2I1=2

1

ðc2ρþ pÞ
�
1 −

2GMðrÞ
c2rI1=2

1

�
−1

×
�
1þ 4πI

3
2

1r
3

c2MðrÞ
�
p
I2
1

þ I2

2κ2

���

×

�
r
2
∂r ln I1 þ 1

�
þ ð−c2ρþ 5pÞ∂r ln I1: ð19Þ

As was already mentioned, the invariants now are functions
of the trace of the energy-momentum tensor, since, for the
quadratic model,

1þ 2βR ¼ Φ; ð20Þ

so that Eq. (3) becomes

−Φþ 1

4β
¼ κ2T; ð21Þ

allowing one to write

Φ ¼ 1 − 4βκ2ð−c2ρþ 3pÞ: ð22Þ

Then, one gets:

I1 ¼ Φ ¼ 1þ 4βκ2ðc2ρ − 3pÞ; ð23Þ

I2 ¼
ðΦ − 1Þ2
4βΦ2

¼ 4βκ4ðc2ρ − 3pÞ2
ð1þ 4βκ2ðc2ρ − 3pÞÞ2 ; ð24Þ

where the prime denotes a derivative with respect to the
r coordinate. The mass function, after applying the above
forms of the invariants, is

MðrÞ ¼
Z

r

0

4πr̃2
ρ − 2c−2βκ2ðc2ρ − 3pÞ2
ð1þ 4βκ2ðc2ρ − 3pÞÞ1=2

×

�
1þ r̃

2
∂ r̃ ln ð1þ 4βκ2ðc2ρ − 3pÞÞ

�
dr̃: ð25Þ

This formula expresses the fact that, in modified gravity
theories, the mass function is also altered. One would
assume that the total mass should be obtained by integrat-
ing the density over a sufficiently large region of space. In
the case of GR, the procedure assumes integrating from
r ¼ 0 to r ¼ RS, where RS is the radius of the compact

object. Metric fðRÞ gravity predicts, however, that there
will be differences between the mass enclosed in a sphere
of radius RS and that measured by a distant observer
(at r ¼ ∞), since the mass formula includes additional
terms coming from modification of the theory [85]. This
fact alone shows that one must carefully specify what mass
definition one is using. In the present paper, we focus on
masses contained within a sphere of radius r ¼ RS, as the
effect of a gravisphere is not present in Palatini fðRÞ
gravity, since in the vacuum all contributions from energy
density and pressure vanish. However, the theory does
introduce extra terms in the interior solutions which carry
information about the gravitational energy of the system
[86]. We have compared the modified mass function
[Eq. (25)] with the usual one for the low-mass cases
discussed in the paper, which results in a conclusion that
the effect of additional terms in Eq. (25) is minuscule, as
presented in Fig. 1. The situation can differ in the case of
compact objects, though, and should be carefully studied.
Let us notice that the above equations are exact—that is,

no approximation has been applied yet. In what follows, we
will use a redefined Starobinsky parameter:

α ≔ 2c2κ2β: ð26Þ

It should be commented that this defined parameter has a
very small value compared to the Starobinsky parameter β,
whose value must be large in order to take into account the
higher-curvature term, given here by R2.
Since the conformal transformation (given by the invari-

ant I1 in our model) was used in order to get the equations
written with respect to the physical quantities, the mass and
hydrostatic equilibrium equations are singular for a par-
ticular value of the parameter α, which depends on energy
density and pressure:

αsing ¼ −
1

2ðρ − 3p
c2 Þ

: ð27Þ

A possible singular behavior of the additional terms
in TOV equations provided by particular equations of state
in different models of gravity has been already detected in
previous works [87–92]. Such a feature arises from the fact
that the modifications often provide new matter-dependent
contributions to the hydrostatic equilibrium equation and
stability conditions [39,68], via algebraic relation between
scalar curvature and matter, as happens in models of metric-
affine gravity considered here, or a modified Klein-Gordon
equation, relating the dynamics of the scalar field2 with the
ordinary matter sources.
Moreover, it should be taken into account that the

singular value of the parameter changes with the energy

2This is an extra degree of freedom in a given scalar-tensor
theory.
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density and pressure, according to their profiles—that is, it
will have much a smaller value in the core than near the
object’s surface. Therefore, one should always be very
careful when choosing a particular negative value of the
parameter α, taking into account the given equation of state
and the range of densities/pressures through an examined
object. In our case, we are not even close to the singular
value, as we would have to consider densities much higher
than the ones present in the planetary interiors (and together
with the considered EOSs describing planetary composi-
tions) in order to have parameter values that make the
equations singular.

C. Structural equation for terrestrial planets

Since we are dealing with planets, the terms proportional
to p=c2 are negligible when compared to the energy
density, and hence Eq. (19) reduces to

p0 ¼ −
GMρ

r2I1=2
1

�
1 −

2GM

c2rI1=2
1

�
−1

×

�
1þ 4πI

3
2

1r
3

c2M
I2

2κ2

��
r
2
∂r ln I1 þ 1

�
− c2ρ∂r ln I1; ð28Þ

with

I1 ¼ 1þ 2αρ; I2 ¼
2ακ2c2ρ2

ð1þ 2αρÞ2 :

The nonrelativistic mass is then

MðrÞ ¼
Z

r

0

4πr̃2
ρ − αρ2

ð1þ 2αρÞ1=2

×

�
1þ r̃

2
∂ r̃ ln ð1þ 2αρÞ

�
dr̃; ð29Þ

while the singular value of the parameter α can be
approximated as

αsing ¼ −
1

2ρ
: ð30Þ

This is not the common nonrelativistic limit (we have just
neglected the pressure p contribution); the geometric term as
well as the gravitational pressure contribution coming from
the invariants I1 and I2 are still present. The reason for this
is that when one expands the equations around α ¼ 0, which
as we discussed, will be a very small value in our case, one
loses the discussed information about the singular behavior
of the equations related to the particular value(s) of the
parameter, and moreover, as we have checked (see the
discussion and equations in the Appendix), the nonphysical
profiles occur for the positive α in the case of large planets.
Because of that fact, we will use the above equations in order

FIG. 1. Mass as a function of the radius of a spherically symmetric object composed of ðMg;FeÞSio3 in Palatini theory for two
different values of the parameter α. The red curve represents mass computed by integrating the standard equationM0 ¼ 4πr2ρ, whereas
the blue dashed line was calculated using Eq. (25). As is clear from the plot, these two curves overlap; numerical results differ by one
part in 109, which is roughly 4–5 orders of magnitude greater than the parameter α.
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to include planets with larger masses—that is, to allow the
planets to reach the mass limit when the electron degeneracy
must be taken into account.
The structural equations used in the numerical analysis

described in Sec. IV are given in the Appendix.

IV. PLANET PROFILES AND NUMERICS

In order to obtain a mass-radius relationship for planets,
we integrate Eq. (28) and the mass relation of Eq. (25)
(expressed as a derivative). The additional information,
allowing one to relate energy density and pressure, is
provided by a suitable equation of state. The exact form of
the equations used for the case of a polytropic equation of
state can be found in the Appendix.
For a given value of the parameter α, the equations were

integrated using the fourth-order Runge-Kutta method.
The initial conditions at R ¼ 0 were Mð0Þ ¼ 0 and
ρð0Þ ¼ ρc > ρ0, and the integration has been carried out
for a wide range of possible central densities, starting from
a little above ρ0 for a given material, and finishing at the
point where electron degeneracy must be taken into
account. The process of integrating for a particular value
of ρc ends when the density drops to its ambient value—
i.e., ρ0. At this moment, the final mass and radius are read
off, and a single point is placed in the mass-radius diagram.
After obtaining all relevant data, we change the value of α
and repeat the procedure.

A. The Birch-Murgnagham equation of state

Using the BME [Eq. (17)] applied to the hydrostatic
equilibrium and mass equations [Eqs. (19) and (25),
respectively], one obtains the radius-mass curves and
density profiles with respect to each material. Since this
EOS is suitable only for the low-pressure regime, the

maximal masses should not cross that of the Earth, and
even the Earth’s core (p ¼ 364 GPa according to the
PREM model [93]) should not be modeled by it.
Therefore, the curves just before reaching the Earth’s mass
are extrapolated, and they do not describe a realistic mass-
radius relation for Earth-sized and larger planets.
Our analysis demonstrates in the mass-radius plots that the

Newtonian and modified gravity curves of the homogeneous
cold spheres overlap. Because of that fact, we plot only the
iron and silicate curves (see Figs. 2 and 3), which are the
main abundant materials of the rocky planets in our Solar
System. But let us notice that the density profiles do differ
even for very small masses (α ¼ 0—that is, the GR/
Newtonian case—is given by the black curve), making it
possible to use this feature to constrain theories of gravity.We
discuss this finding in detail in Sec. V.
However, as will be seen in the next subsection, for

terrestrial planets with masses and radii bigger than those in
the Solar System, wewill deal with an extra degeneracy in the
radius-mass relations provided by modified gravity.

B. The SKHM (modified polytropic) equation of state

Since the BME [Eq. (17)] does not reproduce reliable
results even for the innermost layers of the Earth, we will
focus now on the modified polytropic EOS [Eq. (18)],
which takes into account the electron degeneracy and
interactions between electrons, as well as the particles’
motion in the Coulomb field of the nuclei. Such an EOS can
be used for the pressure range p < 107 GPa; therefore, it is
our maximal central value in the numerical approach,
expressed by ρc obtained from Eq. (18).
Our results are given by the plots in Figs. 4–9—that is,

mass-radius relations and density profiles for the six most
common solid materials found in rocky planets: iron, water

FIG. 2. Mass-radius relation and density profile plots for homogeneous cold spheres of iron for different values of the parameter α
(α ¼ 0 gives a GR/Newtonian planet), obtained from the Birch-Murgnagham equation of state with the use of the modified hydrostatic
equilibrium equations.
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ice, two varieties of silicate, silicon carbide, and graphite.
Black curves (α ¼ 0) represent the GR/Newtonian case.
The curves’ flattening on the mass-radius plots in Figs. 4–9,
related to the constant planets’ radii and even decreasing
their values for larger masses, occurs because of electron
degeneracy, whose pressure becomes important at high
mass (see the discussion in Ref. [94]).
We have also designated the positions on the figures for

four rocky (Earth, Venus, Mars, and Mercury) and two ice-
giant planets (Uranus and Neptune) of the Solar System, as
well as a few exoplanets: super-Mercuries [95,96] on the iron
curves (Fig. 4) and super-Earths [96–98] on the silicate
curves (Figs. 6 and 7). As we observe, the Earth-like planets

can be found along the silicate curves, while Mercury-like
ones are found along the iron curves, because those materials
are the most abundant in their interiors. Uranus and Neptune
are situated significantly above the water-ice curves3 because
of their high abundances of helium, which cannot be modeled
by the equations of state used in this work [79,94]. Although
our studies are related to toy-model planets—that is, we
consider only homogeneous planets without taking into
account multiple layers of different compositions—the most
important result obtained via this analysis is an additional

FIG. 3. Mass-radius relation and density profile plots for homogeneous cold spheres of silicate ðMg;FeÞSiO3 for different values of
the parameter α (α ¼ 0 gives a GR/Newtonian planet), obtained from the Birch-Murgnagham equation of state with the use of the
modified hydrostatic equilibrium equations.

FIG. 4. Mass-radius relation and density profile plots for homogeneous cold spheres of iron for different values of the parameter α
(where α ¼ 0 gives a GR/Newtonian planet), obtained from the SKHM equation of state with the use of the modified hydrostatic
equilibrium equations. Mercury and a few super-Mercury exoplanets are depicted [95,96].

3They are found between the water-ice and the helium curves,
though the latter is not depicted here.
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degeneracy in the mass-radius relations caused by modified
gravity models. In the GR/Newtonian case, when one deals
with a planet having multiple layers of varied compositions,
different mass fractions of, for instance, iron cores and silicate
mantles can provide the same total radius for a transiting
planet of the same mass [79]. Apart from this, we have
demonstrated that a similar degeneracy will appear when one
applies modified structural equations. A curve of a given
material obtained from a model different from the GR/
Newtonian gravity model is shifted with respect to the
GR/Newtonian curve, and it can overlap with a mixture of
two or more materials whose curve was plotted using GR/
Newtonian equations.
Moreover, let us notice that, even for the Birch-

Murgnagham EOS considered in the above subsection, we

are dealing with a notable difference between GR/Newtonian
curves and modified gravity curves for the density profiles.
That fact can be used to test and to constrain models of
gravity when we are equipped with seismic data coming from
earthquakes and marsquakes—see the discussion in the next
section.

V. A NEW TEST FOR MODELS OF GRAVITY

As clearly demonstrated, although in the case of the
simplified modeling of a planet as a single-material sphere,
modified gravity affects the internal structure and density
profile of such an object. This fact immediately equips us
with the possibility to test models of gravity when the
internal structure of the planet is well known.

FIG. 5. Mass-radius relation and density profile plots for homogeneous cold spheres of water ice for different values of the parameter α
(where α ¼ 0 gives a GR/Newtonian planet), obtained from the SKHM equation of state with the use of the modified hydrostatic
equilibrium equations. Uranus and Neptune, the giant ice planets, are depicted.

FIG. 6. Mass-radius relation and density profile plots for homogeneous cold spheres of silicate MgSiO3 for different values of the
parameter α (where α ¼ 0 gives a GR/Newtonian planet), obtained from the SKHM equation of state with the use of the modified
hydrostatic equilibrium equations. Mars, Venus, and the Earth, as well as a few terrestrial exoplanets, are depicted [96–98]. The letters
denote TRAPPIST-1 planets, whose physical parameters can be found in Ref. [98].
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When the planet’s density profile ρðrÞ is given, the polar
moment of inertia C can be obtained by the expression

C ¼ 8π

3

Z
R

0

ρðrÞr4dr; ð31Þ

where R is the planet’s radius. Roughly speaking, knowing
a planet’s profile means that the number of differently
composed layers and their boundaries are provided. So far,
the best-known planet’s inner structure is that of the Earth,
endowed by the PREM model [93] and its further improve-
ments [99–101] (see more models at Ref. [102]), whereas
we will be soon equipped with the Mars model given by the

Seismic Experiment for Interior Structure (SEIS)—that is,
from NASA’s MARS InSight Mission’s seismometer [103].
A seismic wave changes when it travels through different

layers of the planet. These changes depend on the material
that the layer is made of, allowing us to describe the
material’s characteristics, such as, for example, bulk modu-
lus K0 (incompressibility), which appears in the EOS
[Eq. (17)] via the velocities of the longitudinal and transverse
elastic waves, or via the seismic parameter [78].
These density profiles, given by the PREMmodel and its

improvements, assume Newtonian gravity. However, as
revealed in our simplified case, the density profiles are also
affected by the model of gravity, giving slightly different

FIG. 7. Mass-radius relation and density profile plots for homogeneous cold spheres of silicate ðMg;FeÞSiO3 for different values of
the parameter α (where α ¼ 0 gives a GR/Newtonian planet), obtained from the SKHM equation of state with the use of the modified
hydrostatic equilibrium equations. Mars, Venus, and the Earth, as well as a few terrestrial exoplanets, are depicted [96–98]. The letters
denote TRAPPIST-1 planets, whose physical parameters can be found in Ref. [98].

FIG. 8. Mass-radius relation and density profile plots for homogeneous cold spheres of silicon carbide for different values of the
parameter α (where α ¼ 0 gives a GR/Newtonian planet), obtained from the SKHM equation of state with the use of the modified
hydrostatic equilibrium equations.
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curves when compared to those obtained with the use of
Newtonian equations. We also suspect that the layers’
thickness will be influenced by a gravity model applied
when more realistic internal structure is used—that is, when
one takes into account the different layer structures of a
given planet. These facts will also have an influence on the
polar moment of inertia [Eq. (31)], giving a different result
for each model of gravity.
On the other hand, a normalized polar planet’s moment

of inertia C=MR2 (where M is the planet’s mass) is a
quantity which can be obtained from the relation for the
precession rate dψ=dt being caused by gravitational tor-
ques from the Sun [104]:

dψ
dt

¼ −
3

2
J2 cos ϵð1 − e2Þ n

2

ω

MR2

C
; ð32Þ

where e is the orbital eccentricity, ϵ is the obliquity, ω is the
rotation rate, and n is the effective mean motion, while
J2MR2 is a factor consisting of the principal moments of
inertia (see, e.g., Refs. [105,106]; J2 is the gravitational
harmonic coefficient). This factor, as well as the other
mentioned quantities, is well known in the case of the Solar
System planets with high accuracy—in particular, for the
Earth [107], as well as for Mars from the Viking [108,109],
Mars Pathfinder [110], and other missions. So far, the
opposite procedure has been applied in order to get to know
the internal structure of a planet, as, for instance, in the
cases of Mercury [111–116] and Venus [117–119]: from
the many proposed density profiles and structural models,
only those survive which give a moment of inertia
[Eq. (31)] compatible with the one provided by the accurate
observational data [Eq. (32)].
In what follows, we propose a procedure which allows

us to constrain models of gravity using the already

available seismic data of the Earth, and of Mars, when
SEIS data obtained from analyzing waves created by
marsquakes, thumps of meteorite impacts, surface vibra-
tions generated by activity in Mars’ atmosphere, and by
weather phenomena (e.g., dust storms [103]) are ready.
Such obtained density profiles in a given model of
gravity, although sometimes carrying uncertainties
regarding the most internal layers (the core), can be used
to compute the polar moment of inertia [Eq. (31)], which
must agree with the high accurate value acquired by
observations [Eq. (32)]. Although Figs. 2 and 3 of the
mass-radius relations do not demonstrate deviations from
the Newtonian model in the case of the Earth and Mars,
there are significant differences in the density profiles for
the used values of the parameter α. It will affect the polar
moment of inertia [Eq. (31)].

VI. DISCUSSION AND CONCLUSIONS

In this work, we have studied homogeneous cold
spheres of low masses in the framework of Palatini
fðRÞ gravity. Those spheres are made of one of the six
solid materials which are the most common substances
found in the terrestrial planets. The mass-radius relations
and density profiles obtained for each of the considered
materials in our analysis have revealed that even for such
low densities as the ones present in the rocky planets,
modified gravity changes the curves, allowing us to draw
interesting conclusions.
The mass-radius relation for homogeneous (and multi-

ple layers’ structure) spheres of various chemical compo-
sitions is an important tool providing an idea of the most
abundant materials which an (exo)planet consists of, when
its mass and radius are known, mainly from the observa-
tions of transiting exoplanets. Although such observations

FIG. 9. Mass-radius relation and density profile plots for homogeneous cold spheres of graphite for different values of the parameter α
(where α ¼ 0 gives a GR/Newtonian planet), obtained from the SKHM equation of state with the use of the modified hydrostatic
equilibrium equations.
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can carry quite big uncertainties in the mass/radius ratios,
once discovered, more powerful telescopes can follow
up with new exoplanets to get more precise data.
Furthermore, we are living in a very exciting epoch—
more and more current and future scientific missions, such
as, for instance, the current Cosmic Vision 2015–2025
(with a special focus on Cheops, Plato, Ariel, and Jupiter
Icy Moons Explorer) [120] with further extensions of
Voyage 2050 [121] from ESA, or the James Webb Space
Telescope [122], Nancy Grace Roman Space Telescope
[123], the Transiting Exoplanet Survey Satellite [124],
Spitzer Space Telescope [125], and NN Explore [126]
from NASA, are/will be collecting data on the Solar
System planets and from other stars’ systems.
Apart from the findings in regard to (exo)planets dis-

cussed in more detail below, we have also examined care-
fully a possible singular behavior of our equations, caused by
the extra terms derived from the Palatini quadratic model
(especially the one related to the conformal transformation
[24,67]). More precisely, an eventual ill behavior of the
hydrostatic equilibrium equations in Eq. (19), leading to
nonphysical behavior of a spherical-symmetric system such
as a planet or a star, could appear for a certain value of the
parameter α. This particular value, as we observe from the
relation in Eq. (27), is related to an equation of state. This is
the reason why one needs to be careful when choosing the
range of the parameter α (in the negative values’ part) such
that the considered EOS will not produce those values.
In conclusion, our results can be summarized by the

following three main points:
(1) Extra degeneracy in the mass-radius relation.—

Apart from the well-known degeneracy in the mass-
radius relation, making the determination of the
number of layers and their properties problematic
already in a GR/Newtonian model [79], modified
gravity introduces another one, caused by the addi-
tional theory parameter. Therefore, a transiting exo-
planet may have slightly different layer structures and
compositions for each of the layers than the ones
predicted by the GR/Newtonian model, especially in
the cases of carbon, water, and silicate planets (see the
next point). Moreover, since iron is the most dense
element out of which a planet can form, exoplanets
with radii smaller than pure iron planets are not
expected to be found. This limit is also well known,
but as we can see in Fig. 4, modified gravity may shift
the curves in the smaller-radius region. Finding more
exoplanets of Mercury’s type with very small radii
[127] could be an additional indication that models
other than general relativity and its Newtonian limit
may have something to say in planetary physics.

(2) Exoplanet properties.—There are a few interesting
properties one can determine about a type of
transiting exoplanets when their masses and radii
are known—the smaller the uncertainties in the mass

and radius estimations,4 the more characteristics of
the exoplanet can be given. For example, as dem-
onstrated in Ref. [79], planets above the water-ice
curve must be richly abundant in the hydrogen and
helium in their envelope; therefore, super-Earth
exoplanets do not possess significant gas envelopes.
As shown in Fig. 5, modified gravity may alter this
conclusion a bit, since the large planets which are
believed to have a considerable amount of those light
elements in their atmospheres could be very poorly
equipped in them in the case of theories of gravity
other than GR/Newtonian.
Moreover, modified gravity can also shed light

on some of the already existing hypotheses and
problems related to planetary physics—such as, for
example, planet migration and our knowledge of
planetary system formation. Planets of certain
structures and compositions are expected to be
found at a particular distance from their host stars.
Water planets (i.e., planets with more than 25%
water ice by mass) can be identified with up to 5%
fractional uncertainty in mass and radius, and they
tend to have large radii [128]. They are usually
found far from their host stars, and that fact,
together with the current model of planetary system
formation, is one of the leading points standing
behind the idea of planet migration if water planets
are found in a closer orbit. Therefore, one rather
expects to detect a water exoplanet at the edge of a
certain host star’s system, while Earth-like planets,
with the silicate main contribution, are supposed to
be found at much smaller distances. This proposi-
tion is derived from the special position of the
water-ice curve on the mass-radius plots, being an
important hint for distinguishing rocky exoplanets
from water ones and those with atmospheres rich in
helium and hydrogen. However, as already marked
out in the previous point, the water-ice curve is
shifted in modified gravity. The (exo)planets lying
close to the GR/Newtonian water curve may in
reality still besolid planets, much less abundant in
water, and not possessing envelopes rich in the light
elements.

(3) Constraining models using seismic data from the
Earth and Mars.—The significant difference in the
density profiles of Figs. 4–9 between GR/New-
tonian models and those provided by modified
gravity, even for low-mass planets (Figs. 2 and 3),
gives us an excellent opportunity to test and to
constrain the existing models of gravity with the
use of the known Earth and near-future Mars

4These estimations are related to the host star’s properties,
which also depend on the theory of gravity; for more details, see
Refs. [39,42].
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internal structures. The physics of low pressures
and temperatures (in the meaning of planetary
regimes) is much better understood than the phys-
ics of stars and their compact and ultracompact
remnants.5 In Sec. V, we have described the
procedure which, after improving our toy planet’s
models, will be used to constrain given models
of gravity. The polar moments of inertia for the
Solar System planets—in particular, the Earth and
Mars—are known with high accuracy [Eq. (32)],
allowing us to compare them with those obtained
from seismic data and the model of gravity, and
eventually to discard those that are inconsistent
with the observed ones.
Let us notice that our studies predict significant

differences in the layers’ thicknesses even for small
values of the parameter α. They are more noticeable
in the case of the heavier elements. Consequently,
we speculate that the innermost layers, such as
cores and mantles, consisting of mainly iron and
silicates, respectively, will vary more noticeably in
modified gravity models in comparison to the
current ones. However, in order to say more in
regards to that topic, we need to improve our
model, enriching it in multiple layers of different
compositions as suggested by the PREM and other
models, as a starting point. Subsequently, a more
consistent approach will require a reexamination of
the current Earth and Mars models using earth-
quake and marsquake data, together with modified
structure equations. Therefore, when seismic data
are used in order to obtain density profiles in a
given model of gravity—that is, when we know
well enough the materials composing the different
layers of the planet, as well as the layers’ thick-
nesses in the GR/Newtonian and the modified
gravity models—we may use them to examine
the deviations caused by various gravitational
proposals. Such a procedure will enable us to
constrain the modified gravity models with respect
to the given accuracy.
Let us just mention, as a concluding remark to

that point, that so far, only helioseismic data has
been used to constrain modified gravity models
[131,132].

The results presented here and followed by future
investigations will provide an accurate test and constraints
of models of gravity from our nearest playground: the Earth
and Mars. Works regarding this topic are already under
development and will be soon presented to the physics
community.
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APPENDIX: STRUCTURAL EQUATIONS USED
IN THE NUMERICAL ANALYSIS

For the SKHM (modifed polytropic) equation of state

ρðpÞ ¼ ρ0 þ cpn; ðA1Þ
the Palatini hydrostatic equilibrium equation (28) used in
the numerical analysis has the following form:

dρ
dr

¼ −
GMρ

�
4παρ2r3

Mð2αρþ1Þ1=2 þ 1
	

r2ð2αρþ 1Þ1=2
�
1 − 2GM

c2rð2αρþ1Þ1=2
	

×
10

B@ αGMρ

�
4παρ2r3

Mð2αρþ1Þ1=2þ1

	
rð2αρþ1Þ3=2

�
1− 2GM

c2rð2αρþ1Þ1=2

	þ 2αc2ρ
2αρþ1

þ ðρ−ρ0cp
Þ1n−1

cpn

1
CA

;

ðA2Þ
while the mass function is given by Eq. (25).
Let us notice that when we consider a nonrelativistic

limit of the full relativistic equation (19), one performs the
expansion around α ¼ 0. This procedure causes the sign
change in the extra term related to the modification in the
nonrelativistic equation, which for the EOS given above
takes the form

dρ
dr

≈ −
GmðrÞρ

r2
cnðρ−ρ0c Þn−1n ð1 − αρÞ

ð1þ 2α Gm
r cnρÞðρ−ρ0c Þn−1n : ðA3Þ

This is misleading and leads to the nonphysical behav-
ior of the mass-radius and density curves in the case of
large masses (large densities): in such a situation, the term
ð1 − αρÞ may take negative values, changing the sign of
the full expression (A3). It also suggests that a singular
behavior of the equations would happen for positive
values of the parameter α, but as we have already
discussed in Sec. III B, an eventual singularity occurs
for negative values. However, although we have not
demonstrated it here, the nonrelativistic equation (A3)
can be used for low-mass planets, with M=MEarth < 5. In
order to consider higher-mass (exo)planets as well, we
have been using Eq. (A2), where we have simply skipped
pressure terms in the combinations with energy density
ρþ p=c2 ≈ ρ and mass pr3=c2M ≈ 0, as its influence for
the objects we study here is insignificant.

5However, it is not free from issues such as convective
processes, inner core description, and discontinuities between
layers, to mention just a few of them [129,130].
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