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Several formulations of the first order approach to unimodular gravity are presented. There is always a
particular one such that it is classically equivalent to the second order formulation; this we call educated. It
is often at variance with the naive approach, in which the Lagrangian is taken as given exactly by the same
expression as in the second order formulation; only the number and character of the independent variables
changes. Namely, typically some of the momenta are now considered as coordinates. The ensuing
Hamiltonians are thereby discussed, and their physical differences pointed out.
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I. INTRODUCTION

It is well known that every second order equation of
motion (EoM) can be written in first order language (FO)
just by introducing new dependent variables. This is
usually believed to hold true when there are infinite
variables, like in field theory. Nevertheless, recently some
curious behavior have been pointed out when the gravita-
tional field is considered. Namely, it would seem that there
is a crucial difference between Lagrangians linear in
curvature (Einstein-Hilbert) and Lagrangians involving
higher orders in curvature. In the latter case, FO is not
equivalent to the usual second order approach (SO), and
the connection field encapsulates many different spin
components [1].
This is indeed a fact when the same Lagrangian that is

usually worked out in SO is considered as FO; this just
means that the metric and the connection are treated as fully
independent fields. This will dub herewith as the naive
approach or naive FO. The reason is that is it always
possible to build up a slightly more complicated FO
Lagrangian, such that its EoM are completely equivalent
as those obtained in the usual SO approach. This we shall
dub educated FO. We shall give many examples in the
body of the paper.
A simple example, a naive FO for Einstein-Hilbert

Lagrangian, would be

S¼
Z ffiffiffiffiffi

jgj
p

dnxgμνð∂λΓλ
μν−∂μΓλ

νλþΓσ
σλΓλ

μν−Γλ
μσΓσ

νλÞ; ð1Þ

and a educated FO,

S ¼
Z ffiffiffiffiffi

jgj
p

dnx

�
gμνð∂λΓλ

μν − ∂μΓλ
νλ þ Γσ

σλΓλ
μν − Γλ

μσΓσ
νλÞ

þ λμντ

�
1

2
gτσð−∂σgμν þ ∂μgνσ þ ∂νgσμÞ − Γτ

μν

��
; ð2Þ

where λμντ is a Lagrange multiplier.1

We have also recently studied a modification of general
relativity, unimodular gravity ([2] and references therein) in
which the set of admissible metrics is restricted to those
with unit determinant. The symmetries of the theory are
thereby reduced from the set of all diffeomorphisms,
DiffðMÞ, to those that preserve the unimodular condition,
namely the transverse ones TDiffðMÞ. Those transverse
vector fields generate the subgroup of volume preserving
diffeomorphisms. We shall always employ the notation,

γμν; ð3Þ

to denote a metric, such that

γ ≡ det γμν ¼ −1: ð4Þ

Sometimes it is useful to generate an unimodular metric out
of an arbitrary one by means of a Weyl rescaling,

γμν ≡ g−1=ngμν: ð5Þ

In this paper, the expressions linear or quadratic are
employed always as referring toRiemann’s curvature tensor.
Our aim in this paper is to elaborate on those ambi-

guities, introducing educated FO and computing, in

*enrique.alvarez@uam.es
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1Throughout this work, we follow the Landau-Lifshitz space-
like conventions, in particular, the metric is ημν ¼ ðþ;−;−;−Þ
and Rμ

νρσ ¼ ∂ρΓ
μ
νσ − � � �; we omit the factor − 1

2κ2
in the Einstein-

Hilbert action.
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particular, the corresponding Hamiltonians. The point is
that in any diffeomorphism invariant theory, the total
Hamiltonian is a constraint that must be put equal to zero.
It is often the case that at least for asymptotically flat space-
times, the physical energy is embodied in a boundary term,
precisely the sort of thing that changes in every “equiv-
alent” formulation of the physical theory.
A general observation [3] is the following. The second

order variation of any Lagrangian depending on the metric
and the connection field is symbollically,

δS ¼
Z

δS
δΓ

δΓ
δg

þ δS
δg

; ð6Þ

whereas the first order one read

δS
δΓ

¼ 0

δS
δg

¼ 0: ð7Þ

This clearly shows that FO implies SO; the opposite is
untrue.
The determination of a Hamiltonian for the gravitational

field is an old problem [4–6]. As has been already pointed
out, the bulk Hamiltonian vanishes (again, this is actually a
generic property of all diffeomorphism invariant theories),
and this is the origin of the constraints to be imposed in any
canonical quantization of the gravitational field (confer, for
example, [7] and references therein).
We will try to be quite specific on the subtle differences

between general relativity and unimodular gravity in this
respect.

Let us stress again that there is also a boundary term
which is quite important because it fully determines the
numerical value of the energy associated to asymptotically
at gravitational fields, (ADM) [5]. We also would like to
give a detailed computation in this case, which could
depend on the precise formulation of the theory. Although
we will devote an initial section to introduce the problem in
an explicit physicist notation using components, the main
part of the paper will be written in a more covariant
formalism using frame fields and differential forms. This is
almost mandatory once higher order (in curvature)
Lagrangians are considered, in which case the component
notation becomes exceedingly cumbersome.

II. THEORIES LINEAR IN CURVATURE. THE
EINSTEIN-HILBERT LAGRANGIAN

A. The Einstein-Hilbert Lagrangian

The Einstein-Hilbert Lagrangian in FO formalism is

LEH ¼
ffiffiffiffiffi
jgj

p
gμνð∂λΓλ

μν − ∂νΓλ
λμ þ Γλ

τλΓτ
μν − Γλ

τμΓτ
λνÞ: ð8Þ

A related action principle (educated version) that would
be equivalent to Einstein-Hilbert’s would read

LEH ¼ −Γλ
μν∂λð

ffiffiffiffiffi
jgj

p
gμνÞ þ Γλ

λμ∂νð
ffiffiffiffiffi
jgj

p
gμνÞ

þ
ffiffiffiffiffi
jgj

p
gμνðΓλ

τλΓτ
μν − Γλ

τμΓτ
λνÞ: ð9Þ

The variation respect to the metric reads

− Γλ
μν∂λ

� ffiffiffiffiffi
jgj

p �
1

2
gμνh − hμν

��
þ Γλ

λμ∂ν

� ffiffiffiffiffi
jgj

p �
1

2
gμνh − hμν

��

−
ffiffiffiffiffi
jgj

p �
ðΓλ

τλΓτ
μν − Γλ

τμΓτ
λνÞ −

1

2
gμνgαβðΓλ

τλΓτ
αβ − Γλ

ταΓτ
λβÞ

�
hμν ¼ 0; ð10Þ

under integration by parts, we recover the Einstein field equation,

1

2
Rh − Rμνhμν ¼ −Gμνhμν ¼ 0; ð11Þ

and the variation respect to the connection of the Lagrangian reads

�
−∂að

ffiffiffiffiffi
jgj

p
gbcÞþδba∂dð

ffiffiffiffiffi
jgj

p
gcdÞ−1

2

ffiffiffiffiffi
jgj

p
gμνðδcμΓb

aνþδbμΓc
aνþδbνΓc

aμþδcνΓb
aμ−δcaΓb

μν−δbaΓc
μν−δbμδ

c
νΓλ

aλ−δcμδ
b
νΓλ

aλÞ
�
Aa
bc¼0;

ð12Þ

which using

∂λð
ffiffiffiffiffi
jgj

p
gμνÞ ¼

ffiffiffiffiffi
jgj

p
ðgμνΓτ

τλ − gτνΓμ
τλ − gμτΓν

τλÞ ð13Þ

reduces to zero. This fact shows [8] that the linear
Lagrangian does not need an educated form, in the sense
that the naive FO is already equivalent to SO.
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Let us examine now what is the situation in the
unimodular setting. Consider a linear unimodular metric
in FO, γμν and some associated torsionless connection, ωμ

νλ.
We are interested in the action,

S≡
Z

dnxγνσð∂μω
μ
νσ − ∂σω

μ
νμ þ ωμ

λμω
λ
νσ − ωμ

λσω
λ
νμÞ; ð14Þ

where the covariant derivative acts on the covariant indices
only. Please note that the Levi-Civita connection associated
to the unimodular metric satisfies

ωσ ≡ ωλ
λσ ¼ 0 ð15Þ

and

ωσ ≡ γαβωσ
αβ ¼ ∂λω

σλ: ð16Þ

In terms of an arbitrary nonunitary metric [2], gμν

γμν ≡ g−
1
ngμν; ð17Þ

this formulation introduces a redundant Weyl gauge
symmetry,

gμν → Ω2ðxÞgμν: ð18Þ

The Levi-Civita connection associated to γμν is

ωμ
νρ ¼ Γμ

νρ þ 1

2n
gμλ

�∂λg
g

gνρ −
∂νg
g

gλρ −
∂ρg

g
gνλ

�
; ð19Þ

where Γμ
νρ is the Levi-Civita connection associated to the

general metric gμν, that is, Christoffel’s symbols.
Next, we present our notation for the ADM formalism

[5,7,9]. The metric tensor gμν of spacetime induces a metric
hμν on the spatial hypersurface

P
t,

hμν ¼ gμν þ nμnν; ð20Þ

where nμ is the unit normal. The extrinsic curvature tensor
of the spatial hypersurface

P
t is defined as

Kμν ¼ ∇μnν þ nμaν ¼ ∇μnν þ nμnλ∇λnν: ð21Þ

The extrinsic curvature can be written as the Lie derivative
of the induced metric hμν on

P
t along the unit normal

n to
P

t,

Kμν ¼
1

2
Lnhμν; ð22Þ

and the decomposition of the scalar curvature R of
spacetime can be written as

R ¼ ð3ÞRþ KμνKμν − K2 þ 2∇μðnμK − aμÞ: ð23Þ

In the given ADM coordinate base, the components of
the metric of spacetime read

g00 ¼ N2 g0i ¼ Ni gij ¼ hij; ð24Þ

the extrinsic curvature tensor (22) is written as

Kij ¼
1

2
Lnhij ¼

1

2N
ð∂thij −DiNj −DjNiÞ: ð25Þ

(1) Einstein Hilbert in second order
What happens in second order UG [10] is that the

lapse is not an independent dynamical variable,
because

N2jhj ¼ 1; ð26Þ

where

h≡ det gðn−1Þij ≡ det hij: ð27Þ

This means that it is not compulsory to impose the
Hamiltonian constraint,

H ¼ 0 ð28Þ

fHðxÞ;Hðx0Þg ¼ ðHiðxÞ þHiðx0ÞÞ∂iδðx − x0Þ
fHiðxÞ;Hðx0Þg ∼HðxÞ∂iδðx − x0Þ
fHiðxÞ;Hjðx0Þg ∼Hiðx0Þ∂jδðx − x0Þ

þHjðxÞ∂iδðx − x0Þ; ð29Þ

but only the weaker condition,

H ¼ λ; ð30Þ

where λ is determined by the physical boundary
conditions. This is the usual unimodular setting [1]
in Hamiltonian language.

(2) Einstein Hilbert in naive first order
It has already been pointed out that it has been

proved in [8] that even the naive FO Einstein-Hilbert
is equivalent to the usual SO Einstein’s equations.
As for the Hamiltonian, there are several possibil-
ities. We could, for example, start with the
Lagrangian of GR in naive FO ADM form (and
neglecting boundary terms),

LEH ¼ N
ffiffiffi
h

p
½ð3ÞRþ KijKij − K2�; ð31Þ

where the variables are the spatial metric hij and the
extrinsic curvature, Kij. With these assumptions all
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momenta vanish, and the Hamiltonian just coincides
with the potential.

(3) Einstein Hilbert in educated first order
Let us instead start with the Lagrangian of GR in

educated FO ADM form [7,9] (and neglecting
boundary terms),

LEH ¼ N
ffiffiffi
h

p �
ð3ÞRþ 1

N
Kijð∂thij −DiNj −DjNiÞ

− KijKij − 2KT þ K2

�
; ð32Þ

where Di is the induced covariant derivative in
the three manifold Σt, and we have defined
T ≡ 1

2N h
ijð∂thij −DiNj −DjNiÞ. The EoM for

the field Kij implies

1

N
ð∂thij−DiNj−DjNiÞ−2Kij−2hijTþ2hijK¼0;

ð33Þ

then

Kij ¼
1

2N
ð∂thij −DiNj −DjNiÞ; ð34Þ

with T ¼ K; note if we reintroduce the expression of
Kij in (32), we recover the standard SO Lagrangian
in ADM variables, and the conjugate momenta
pij are

Ni → pi ¼ 0

Kij → pij ¼ 0

hij → pij ¼
ffiffiffi
h

p
Kij; ð35Þ

therefore, the Hamiltonian,

HEH ¼ −N
ffiffiffi
h

p ð3ÞRþ pijðDiNj þDjNiÞ

þ Nffiffiffi
h

p ðpijpij þ p2Þ: ð36Þ

(4) Unimodular Einstein Hilbert in second order
Again here the unimodular constraint,

N
ffiffiffi
h

p
¼ 1 ð37Þ

implies that the unimodular Lagrangian reads

LUG ¼ ð3ÞRþ 1

N
Kijð∂thij −DiNj −DjNiÞ

− KijKij − 2KT þ K2; ð38Þ

and the conjugate momenta pij are

Ni → pi ¼ 0

Kij → pij ¼ 0

hij → pij ¼ 1

N
Kij; ð39Þ

and the Hamiltonian,

HUG¼ð3ÞRþpijðDiNjþDjNiÞþN2ðpijpijþp2Þ:
ð40Þ

(5) Unimodular educated first order
The unimodular version of (9) yields

LUE ¼ −Γλ
μν∂λðγμνÞ þ Γλ

λμ∂νðγμνÞ
− γμνðΓλ

τμΓτ
λν − Γλ

τλΓτ
μνÞ; ð41Þ

the conjugate momenta pij are

Γλ
μν → pμν

λ ¼ 0

γ00 → p00 ¼ −Γ0
00 þ Γλ

λ0

γ0i → p0i ¼ −Γ0
0i þ Γλ

λi

γij → pij ¼ −Γ0
ij; ð42Þ

and the Hamiltonian reads

HUE ¼ Γi
μν∂iγ

μν − Γλ
λμ∂iγ

iμ þ γμνðΓλ
τμΓτ

λν − Γλ
τλΓτ

μνÞ:
ð43Þ

B. Schrödinger’s Lagrangian

The Einstein-Hilbert Lagrangian, can be written as

LEH ¼
ffiffiffiffiffi
jgj

p
R ¼ ∂λð

ffiffiffiffiffi
jgj

p
gμνΓλ

μνÞ − ∂νð
ffiffiffiffiffi
jgj

p
gμνΓλ

λμÞ þ LS;

ð44Þ

where

∂λð
ffiffiffiffiffi
jgj

p
gμνÞ ¼

ffiffiffiffiffi
jgj

p
ðgμνΓτ

τλ − gτνΓμ
τλ − gμτΓν

τλÞ; ð45Þ

then, up to a total derivative,

LS ¼
ffiffiffiffiffi
jgj

p
gμνLμν ¼

ffiffiffiffiffi
jgj

p
gμνðΓλ

τμΓτ
λν − Γλ

τλΓτ
μνÞ; ð46Þ

which is just the ΓΓ Schrödinger’s [11] Lagrangian. It is
then plain that the Einstein-Hilbert and Schrödinger’s
Lagrangian differ by a total derivative, so that they
yield the same equations of motion when considered in
second order.
The energy-momentum tensor of Schrödinger’s

Lagrangian is
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Tμ
ν ¼ ∂LS

∂ð∂μgαβÞ
∂νgαβ − LSδ

μ
ν

¼
ffiffiffi
g

p
2

½2Γμ
αβ − Γμ

ρσgρσgαβ − δμαΓλ
βλ − δμβΓλ

αλ�gαβ ;ν
− δμν

ffiffiffiffiffi
jgj

p
gαβðΓλ

ταΓτ
λβ − Γλ

τλΓτ
αβÞ: ð47Þ

It is curious that it corresponds to the so-called Einstein
energy pseudo tensor [6], which in first order formalism,
reduces to

Tμ
ν ¼ −LSδ

μ
ν : ð48Þ

What about Schrödinger’s Lagrangian considered as a
first order one? The dependence on the variables Γα

βγ and
gμν is algebraic, so that the Lagrangian is equivalent to the
Hamiltonian,

H ≡ V ¼ −L: ð49Þ

(i) Let us now include physical sources for the graviton,
Tμν, and for the connection field, jβγα in Schrö-
dinger’s Lagrangian,

LSmatter ≡ ffiffiffi
g

p ðgμνLμν þ gμνTμν þ Γα
βγj

βγ
α Þ: ð50Þ

The variation with respect to the metric2 of (50)
yields

δLS ¼
ffiffiffiffiffi
jgj

p �
−Lμν þ 1

2
Lgμν − Tμν þ 1

2
Tgμν

þ 1

2
gμνΓα

βγj
βγ
α

�
δgμν: ð53Þ

The trace of the EoM yields

ðn − 2ÞðLþ TÞ þ nΓα
βγj

βγ
α ¼ 0; ð54Þ

in the absence of sources, this implies

L ¼ 0: ð55Þ

Neglecting for the time being the connection source,
the EoM for the graviton field reads

Lμν þ Tμν ¼ 0: ð56Þ

The variation of (50) with respect to the con-
nection yields

δLS¼
�
1

2
gμν½δcμΓb

aνþδbμΓc
aνþδbνΓc

aμþδcνΓb
aμ

−δcaΓb
μν−δbaΓc

μν−δbμδ
c
νΓλ

aλ−δcμδ
b
νΓλ

aλ�þjbca

�
Aa
bc;

ð57Þ

where Aa
bc ¼ δΓa

bc, then

2Γbjc
a þ 2Γcjb

a − δcagμνΓb
μν − δbagμνΓc

μν

− 2gbcΓλ
aλ þ 2jbca ¼ 0 ð58Þ

trace (58), with δac

gμν½ð1 − nÞΓc
μν þ 2jcλλ � ¼ 0: ð59Þ

Now we trace (58), with gcb

ð4 − 2nÞΓλ
aλ − 2gacgμνΓc

μν þ 2gbcjbca ¼ 0: ð60Þ

(ii) Let us work out the linear approximation,

gμν ¼ ημν þ κhμν

Γα
βγ ¼ 0þ Aα

βγ; ð61Þ

where we just have seen that

LðLÞ ¼ 1

2
hT − hμνTμν þ

1

2
hAλ

μνj
μν
λ : ð62Þ

At any rate, it is plain that without sources,

LðLÞ
αβ ¼ 0; ð63Þ

it does then seem impossible to recover Newton’s
equation in the appropiate linear limit in FO. We
have just seen that in SO, we recover Einstein’s
equations exactly. The reason for this apparent
contradiction is that the difference between
Schrödinger and Einstein-Hilbert Lagrangians is a
total derivative only when considered in SO, but it is
not when considered in FO.

This then illustrates a dramatic instance of a
nonequivalence of FO and SO approaches in a

2There is a small subtlety here. The variation of the scalar
T ≡ gμνTμν ¼ gμνTμν is

δgμνTμν ≠ δgμνTμν: ð51Þ

The explanation is that it is not equivalent to assume δTμν ¼ 0
than to assume δTμν ¼ 0. Indeed,

δTμν ¼ δgαλTλ
β þ δgβλTλ

α þ gαμgβνδTμν: ð52Þ

Here, we are assuming δTμν ¼ 0.
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theory of gravity linear in curvature. The standard
lore [8] was that FO and SO were equivalent for
theories linear un curvature (such as the standard
Einstein-Hilbert Lagrangian), and nonequivalence
appears only in theories involving higher powers of
Riemann’s tensor.
In conclusion, whereas the Γ − Γ Lagrangian

correctly reproduce Einstein’s equations when con-
sidered in SO, it predicts flat space in vacuum as the
only solution in FO. No gravitational waves exist in
this formulation.

III. THEORIES QUADRATIC IN CURVATURE

Quadratic theories can be written in the general form,

S¼1

2

Z
dnx

ffiffiffiffiffi
jgj

p
fRμ

νρσ½Γ�Pμμ0
νν0ρρ0σσ0 ½g�Rμ0

ν0ρ0σ0 ½Γ�g; ð64Þ

where the tensor Pμμ0
νν0ρρ0σσ0 ½g� depends only on the metric

gαβ and its inverse gαβ. Let us work out the basic example,
where

Pμμ0
νν0ρρ0σσ0 ½g� ¼ δμ

0
μ δνμ0g

ρρ0gσσ
0
: ð65Þ

Other contractions of Riemann’s tensor can be worked out
along similar rules. An educated first order version of the
action principle is given by promoting Rμ

νρσ to an inde-
pendent variable together with the connection Γ and the
metric tensor g,

S ¼ 1

2

Z
dnx

ffiffiffiffiffi
jgj

p
fRμ

νρσgραgσβRν
μαβ

þ 2Rμ
νρσð∂ρΓ

μ
νσ − ∂σΓ

μ
νρ þ Γμ

λρΓλ
νσ − Γμ

λσΓλ
νρÞg: ð66Þ

In FO, it is not necessary to introduce auxiliary fields as in
[12]. We shall assume that the field Rμ

νρσ has the sym-
metries of Riemann’s tensor.
In fact, the Lagrangian EoM ensure that it is given on

shell by the Riemann tensor corresponding to the dynami-
cal connection Γ,

Rμ
νρσ½Γ�≡ ∂ρΓ

μ
νσ − ∂σΓ

μ
νρ þ Γμ

λρΓλ
νσ − Γμ

λσΓλ
νρ: ð67Þ

The canonical momenta are given by

gμν → pμν ∼ 0

Rμ
νρσ → pμ

νρσ ∼ 0

Γμ
νi → pνi

μ ¼
ffiffiffiffiffi
jgj

p
ðRμ

ν0i þ Rμ
i0νÞ: ð68Þ

This object is symmetric in ðνiÞ, and as usual, greek
indices run from ð0…n − 1Þ, and latin indices from the
middle of the alphabet run from 1…n − 1. When contracted
with some other tensor with those symmetries, it is not

necessary to make those explicit. Let us define the auxiliary
variable,

qνiμ ≡ ffiffiffiffiffi
jgj

p
ðRμ

ν0i − Rμ
i0νÞ: ð69Þ

In conclusion,

Rμ
ν0i ¼ 1

2
ffiffiffiffiffijgjp ðqνiμ − pνi

μ Þ; ð70Þ

now we need to substitute certain components of
Riemann’s tensor by the corresponding momenta. The
computation becomes heavy, and we refrain from repro-
ducing it here; we shall give a simplified treatment using
differential forms momentarily.

IV. COVARIANT APPROACH IN TERMS OF THE
FRAME FIELD AND THE SPIN CONNECTION

When discussing a Hamiltonian formalism, it is unavoid-
able to introduce a noncovariant distinction between space
and time. This can be done however in such a way that as
many symmetries as possible are respected. The time
direction will be characterized by a vector field,

Z≡ Zμ∂μ; ð71Þ

then acting on any exact form,

iZdα ¼ £Zα − diZα≡ _α − diZα ð72Þ

(£Zα is the generalization of the concept of time derivative).
It is always possible to locally choose an adapted coor-
dinates, such that Z ¼ ∂t with iZdt ¼ 1. It is then natural
[6] to define the time and space projections on an arbitrary
form α as

α̂≡ iZα

α≡ α − dt ∧ α̂t: ð73Þ

The induced projections on the exterior differential read

dα≡ dαþ dt ∧ cdα ¼ dαþ dt ∧ ð _α − dα̂Þ: ð74Þ

It will also prove convenient to decompose the differential
operator d ¼ dxμ ∧ ∂μ ¼ dt ∧ ∂t þ dxk ∧ ∂k, and we
define

d≡ dt ∧ d̂þ d; ð75Þ

with d̂≡ £Z.
After this small introduction, let us write down the

variation of the first order Lagrangian. Our purpose is to get
an expression for the associated Hamiltonian by particu-
larizing later for an explicit form of the variation,
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δLFO ¼
X�

dðδϕk ∧ pkÞ þ δϕk ∧ δLFO

δϕk þ δLFO

δpk
∧ δpk

�
:

ð76Þ

This formula does not assume anything about the variation.
Consider the particular case of a time translation, that is, a
Lie derivative along the vector field Z,

δϕk ¼ £Zϕk: ð77Þ

It follows in general that

diZLFO ¼ £ZLFO ¼
X�

dð£Zϕk ∧ pkÞ

þ £Zϕk ∧ δLFO

δϕk þ δLFO

δpk
∧ £Zpk

�
: ð78Þ

This means that there is a first integral,

HðZÞ≡X
£Zϕk ∧ pk − iZLFO; ð79Þ

that satisfies the identity,

−dHðZÞ ¼
X�

£Zϕk ∧ δLFO

δϕk þ δLFO

δpk
∧ £Zpk

�
: ð80Þ

It is a conserved current on shell, which its explicit
expression is

HðZÞ ¼
X

½dðiZϕk ∧ pkÞ þ iZϕk ∧ dpk

þ dϕk ∧ iZpk þ iZΛ� ð81Þ

can be written like a displacement vector plus a total
differential,

HðZÞ≡ ZμHμ þ dBðZÞ; ð82Þ

where

BðZÞ ¼
X

iZϕk ∧ pk ð83Þ

compare the differential of this expression dH ¼ dZμ ∧
Hμ þ ZμdHμ with (80). We learn that

ZμHμ ¼
X�

−iZϕk ∧ δLFO

δϕk þ δLFO

δpk
∧ iZpk

�
; ð84Þ

so that Hμ itself vanishes on shell, and all contribution to
the energy comes from the boundary term, BðZÞ.

A. Einstein-Hilbert theory

In terms of the frame one forms,3

ea ≡ eaμdxμ; ð85Þ

and the curvature two form,

Rab ≡ 1

2
Rabμνdxμ ∧ dxν; ð86Þ

the Einstein-Hilbert action can be written [1] as the integral
over spacetime,

S ¼
Z

ea ∧ eb ∧ �Rab ¼
Z

Rab ∧ �ðea ∧ ebÞ; ð87Þ

where the curvature is expressed in terms on the connection
one forms,

ωab ≡ ωabμdxμ: ð88Þ

Note ωabμ ¼ −ωbaμ, then

Rab ≡ dωab þ ωac ∧ ωc
b: ð89Þ

In second order formalism, the connection one forms are
determined by the torsionless condition,

dea þ ωa
b ∧ eb ¼ 0; ð90Þ

but in this paper, we would like to stick to the first order
formalism, in which ω is an independent field.
Let us explain in detail how this comes about.

S ¼ 1

2

Z
ϵabcdea ∧ eb ∧ Rcd

¼ 1

4

Z
ϵabcdeaμebνRcd

ρσdxμ ∧ dxν ∧ dxρ ∧ dxσ ð91Þ

but

dxμ ∧ dxν ∧ dxρ ∧ dxσ ¼ dnx
ffiffiffiffiffi
jgj

p
ϵμνρσ ð92Þ

S ¼ 1

4

Z
dnx

ffiffiffiffiffi
jgj

p
ϵμνρσϵμνcdRcd

ρσ

¼ 1

2

Z
dnx

ffiffiffiffiffi
jgj

p
δρσcdR

cd
ρσ ¼

Z
dnx

ffiffiffiffiffi
jgj

p
R: ð93Þ

3Flat or Lorentz indices are raised or lowered with the flat
metric ηab, whereas Einstein or curved indices do that with the
metric gμν.
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The conjugate momenta are given by

ea → pa ≡ ∂L
∂dea ¼ 0

ωab → pab ≡ ∂L
∂dωab

¼ �ðea ∧ ebÞ; ð94Þ

then the Legendre transform is performed though the
construct [6],

Λ≡X
dϕi∧pi−L

¼dωab∧pab−ðdωabþωa
e∧ωebÞ∧�ðea∧ebÞ

¼−ωa
e∧ωeb∧pab: ð95Þ

This defines a first order Lagrangian, namely,

LFO≡
X

dϕi∧pi−Λ

¼dωab∧pabþωae∧ωe
b∧pab¼Rab∧pab; ð96Þ

which EoM read

δLFO

δea
¼ 0

δLFO

δωab ¼ −dpab þ ωc
a ∧ pcb − ωc

b ∧ pac

δLFO

δpab
¼ Rab: ð97Þ

In our case,

HðZÞ≡X
£ðZÞϕi ∧ pi − iZLFO

¼ £ðZÞωab ∧ pab − iZðpab ∧ RabÞ; ð98Þ

the displacement piece of the Hamiltonian, is then given in
this language by the vector valued three form,

Hμ ¼ −ωab
μ ∧ ð−dpab þ ωc

a ∧ pcb − ωc
b ∧ pacÞ

þ Rab ∧ pabμ: ð99Þ

It follows that the one forms pabμ are given in terms of the
frame by

pabμ ¼
1

2
ϵabcdðecμed − edμecÞ; ð100Þ

this then the form that the Hamiltonian constraint and
momentum constraints take in this formalism. The boun-
dary term, (83), is given by the two form,

B ¼ iZωab ∧ pab ¼
1

2
ϵabcdωabμZμ ∧ ec ∧ ed: ð101Þ

Particularizing for Schwarzschild’s metric,

ds2 ¼ f2ðrÞdt2 − dr2

f2ðrÞ − r2dθ2 − r2 sin2 θdϕ2; ð102Þ

where fðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − rs

r

p
, with rs ¼ 2GM, then the frame

field read

e0 ¼ fðrÞdt

e1 ¼ dr
fðrÞ

e2 ¼ rdθ

e3 ¼ r sin θdϕ ð103Þ

in such a way that the nontrivial connection one forms are
given by

ω0
1 ¼ f0ðrÞe0

ω2
1 ¼

fðrÞ
r

e2

ω3
1 ¼

fðrÞ
r

e3

ω3
2 ¼

cot θ
r

e3: ð104Þ

The integral of the boundary over the two sphere S2∞ at
infinity,

t ¼ constant

r ¼ R ↑ ∞ ð105Þ

reads

Z
S2∞

B ¼ rsπdtðZÞ ¼
κ2 M⊙

4
dtðZÞ: ð106Þ

B. Unimodular gravity

In [1], it has been proved that if the simplest FO
Lagrangian,

SUG ¼
Z

Rab ∧ �ðêa ∧ êbÞ ð107Þ

is chosen where

êa ≡ e−1=nea; ð108Þ

then there is on shell a nonvanishing torsion, which
however vanishes in the Weyl gauge e ¼ 1. The reason
is that this Lagrangian is Weyl invariant with inert spin
connection, but the torsionless condition is not.
One way out is to impose a nontrivial Weyl trans-

formation of the spin connection in such a way that the
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torsionless condition is Weyl invariant. The resulting
Lagrangian has the drawback in that it depends not only
on êa but also on e.
The simplest alternative would probably be to consider

again the Lagrangian (107) but with the Weyl dependent
connection. This is what will be implicitly done here,
although we shall not be interested in the Weyl symmetry in
this paper. Then,

SUG ¼
Z

Rab ∧ �ðe−2=nea ∧ ebÞ; ð109Þ

in this case, the conjugate momenta is

pab ≡ �ðe−2=nea ∧ ebÞ: ð110Þ

Therefore, the Legendre transform result

Λ¼ dωab ∧ pab − ðdωab þωac ∧ ωc
bÞ ∧ �ðe−2=nea ∧ ebÞ

¼ −ωac ∧ ωc
b ∧ pab; ð111Þ

so that

LFO ¼ dωab ∧ pab þ ωac ∧ ωc
b ∧ pab; ð112Þ

which is exactly the same as before. The displacement
piece of the Hamiltonian is then given in this language by
the vector-valued three form,

Hμ ¼ −ωab
μ ∧ ð−dpab þ ωc

a ∧ pcb − ωc
b ∧ pacÞ

þ Rab ∧ pabμ: ð113Þ

It follows that the one forms pabμ are given in terms of the
frame by

pabμ ¼
1

2
ϵabcdðêcμêd − êdμêcÞ: ð114Þ

This then the form that the Hamiltonian constraint and
momentum constraints take in this formalism. The explicit
expression obviously coincide with the general-relativistic
ones in the Weyl gauge e ¼ 1, and when the vector Z is
chosen in the ADM manner like

Z ¼ n
∂
∂x0 þ Ni ∂

∂xi ; ð115Þ

we recover the unimodular constraint N
ffiffiffi
h

p ¼ 1.
The boundary term, (83), in the Hamiltonian is now

BUG ¼ iZωab ∧ pab ¼ 1

2
ϵabcdω̂abμZμ ∧ êc ∧ êd; ð116Þ

particularizing to Schwarzschild’s metric,

e ¼ r2 sin θ: ð117Þ

Using the frame field, (103), we obtain the connection,

ω̂01μZμ ¼
�
−

1

2r
fðrÞ þ f0ðrÞ

�
fðrÞdtðZÞ ð118Þ

BUG ¼ 1

2

1

rsin1=2θ

�
−

1

2r
fðrÞ þ f0ðrÞ

�
× fðrÞdtðZÞr2 sin θdθ ∧ dϕ; ð119Þ

but

f0ðrÞ ¼ 1

2fðrÞ
rs
r2

ð120Þ

over the sphere at infinity,Z
S2∞

BUG ¼ −
1

4
dtðZÞ

Z
S2∞

sin1=2θdθ ∧ dϕ

¼ −
ffiffiffiffiffiffi
2π

p �
Γ
�
3

4

��
2

dtðZÞ: ð121Þ

In is instructive in this context to consider the unimodular
frame [13], due to Schwarzschild4 himself,

ds2¼f0dt2−f1dx21−f2

�
dx22
1−x22

þð1−x22Þdx23
�
; ð122Þ

where x1 ¼ r3=3, x2 ¼ − cos θ, x3 ¼ ϕ and

f0ðx1Þ ¼ 1 −
2GM

ð3x1 þ bÞ1=3

f1ðx1Þ ¼
ð3x1 þ bÞ−4=3
1 − 2GM

ð3x1þbÞ1=3

f2ðx1Þ ¼ ð3x1 þ bÞ2=3; ð123Þ

where b is a constant of integration and f0f1f22 ¼ 1, then
the frame field reads

e0 ¼
ffiffiffiffiffi
f0

p
dt

e1 ¼
ffiffiffiffiffi
f1

p
dx1

e2 ¼
ffiffiffiffiffi
f2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x22

p dx2

e3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x22Þf2

q
dx3: ð124Þ

4Please beware of an annoying erratum in Eq. (8) of the
preprint version of [13].
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The boundary term, (83), in the Hamiltonian is now

BUGSch ¼
1

2
ϵabcdω̂abμZμ ∧ êc ∧ êd: ð125Þ

We can derive

de0 ¼ −
GM
f2

dt ∧ e1; ð126Þ

but de0 þ ω0
1 ∧ e1 ¼ 0, we obtain the connection one

form,

ω̂01μZμ ¼ GM
f2

dtðZÞ; ð127Þ

and

BUGSch ¼
GM
2

dtðZÞdx2 ∧ dx3; ð128Þ

over the sphere at infinity,Z
S2∞

BUG¼
GM
2

dtðZÞ
Z
S2∞

sinθdθ∧dϕ¼πrsdtðZÞ: ð129Þ

This result reproduces (106).

C. Schrödinger’s Lagrangian

The Einstein-Hlbert action can be written

S ¼
Z

Rab ∧ �ðea ∧ ebÞ

¼ 1

2

Z
ϵabcdðdωab þ ωaf ∧ ωf

bÞ ∧ ðec ∧ edÞ: ð130Þ

Let us write dðec ∧ edÞ ¼ dec ∧ ed − ec ∧ ded and using
the torsionless condition, (90), obtain

S ¼ 1

2

Z
dnxϵabcdfd½ωab ∧ ðec ∧ edÞ�

þ 2ωab ∧ ωcf ∧ ef ∧ ed þ ωaf ∧ ωf
b ∧ ec ∧ edg

ð131Þ

in terms of the frame components on the connection field,

S ¼ 1

2

Z
dnxϵabcdf2ωabuωcfveu ∧ ev ∧ ef ∧ ed

þ ωafuω
f
bve

u ∧ ev ∧ ec ∧ edg; ð132Þ

where we neglect the total derivative, and

eu ∧ ev ∧ ea ∧ eb ¼ dnxeϵuvab: ð133Þ

We get

S ¼ 1

2

Z
dnxeϵabcdf2ωab

uωc
fvϵuvfd þ ωaf

uωf·v
bϵuvcdg

ð134Þ

but

ϵabcdϵuvfd ¼ δabcuvf

ϵabcdϵuvcd ¼ 2δabuv ð135Þ

and finally,

S ¼ 3

Z
dnxe½ωca

aωb
cb þ ωabcω

cba�: ð136Þ

This is Schrödinger’s Lagrangian in terms of forms. In FO,
there are no nonvanishing momenta, so that the
Hamiltonian is just

HðZÞ ¼ −iZL: ð137Þ

Thereby, there is no boundary term.
Incidentally, the value of the Schrödinger’s Lagrangian

for Schwarzschild’s solution is

L ¼ 6r − 4rs þ 2r cot2 θ
r3

: ð138Þ

D. Quadratic theories

In terms of the one form,

Γμ
ν ≡ Γμ

νλdx
λ; ð139Þ

and the two form,

Rμ
ν ≡ 1

2
Rμ

νρσdxρ ∧ dxσ; ð140Þ

the preceding Lagrangian reads

S ¼
Z

Rμ
ν ∧ �Rν

μ þ 2Rμ
ν ∧ �ðdΓν

μ þ Γν
ρ ∧ Γρ

μÞ; ð141Þ

and the EoM read

δS
δRμ

ν
¼ Rν

μ − ðdΓν
μ þ Γν

ρ ∧ Γρ
μÞ ¼ 0

δS
δΓμ

ν
¼ �2dRν

μ þ Rν
σ ∧ �Γσ

μ − Rλ
μ ∧ �Γν

λ ¼ 0; ð142Þ

because d� ¼ �δ. The corresponding momenta read
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p≡ ∂L
∂dRμ

ν
¼ 0

pν
μ ≡ ∂L

∂dΓμ
ν
¼ 2 � Rν

μ; ð143Þ

therefore, the Legendre transform result,

Λ ¼ dΓμ
ν ∧ pν

μ −
1

4
pν

μ ∧ �pμ
ν − pμ

ν ∧ ðdΓν
μ þ Γν

ρ ∧ Γρ
μÞ

¼ −
1

4
pν

μ ∧ �pμ
ν − pμ

ν ∧ ðΓν
ρ ∧ Γρ

μÞ ð144Þ

and the FO Lagrangian in this language reads

LFO ¼ 1

4
pν

μ ∧ �pμ
ν þ pμ

ν ∧ ðdΓν
μ þ Γν

ρ ∧ Γρ
μÞ: ð145Þ

Therefore, the FO EoM read

δLFO

δΓμ
ν
¼ dpν

μ þ pν
σ ∧ Γσ

μ − pλ
μ ∧ Γν

λ

∂LFO

∂pμ
ν
¼ � 1

4
pν

μ þ ðdΓν
μ þ Γν

ρ ∧ Γρ
μÞ ð146Þ

using the spacetime decomposition, (84),

ZμHμ ¼ −iZΓ
μ
ν ∧ ðdpν

μ þ pν
σ ∧ Γσ

μ − pλ
μ ∧ Γν

λÞ

þ
�
� 1
4
pν

μ þ ðdΓν
μ þ Γν

ρ ∧ Γρ
μÞ
�

∧ iZp
μ
ν : ð147Þ

Then,

Hλ ¼ −Γμ
νλ ∧ ðdpν

μ þ pν
σ ∧ Γσ

μ − pλ
μ ∧ Γν

λÞ

þ 2

�
� 1
4
pν

μ þ ðdΓν
μ þ Γν

ρ ∧ Γρ
μÞ
�

∧ ϵαβλσRμ
ναβdxσ

ð148Þ

because

iZp
μ
ν ¼ iZϵαβρσRμ

ναβdxρ ∧ dxσ ¼ 2ϵαβρσRμ
ναβZρdxσ:

ð149Þ

As is usual in diffeomorphism invariant theories, Hλ itself
vanishes on shell, and all contribution to the energy comes
from the boundary term, (83),

B ¼ iZΓμ
ν ∧ pν

μ ¼ 2Γμ
νλZλ ∧ �Rν

μ

¼ 1

2e
Γμ

νλZλ ∧ ϵνμ
αβRαβρσdxρ ∧ dxσ: ð150Þ

Now we need integrate over the sphere,

B ¼ 1

e
Γμ

νλZλ ∧ ϵνμ
αβRαβ23dx2 ∧ dx3; ð151Þ

particularizing to Schwarzschild metric R2323 ¼
½1 − f2ðrÞ� sin2 θ. Then,

B ¼ 2

e
Γμ

νλZλ ∧ ϵνμ
23½1 − f2ðrÞ�sin2θdθ ∧ dϕ; ð152Þ

again for Schwarzschild,

B ¼ 2

e
½Γ0

10 − Γ1
00�dtðZÞ½1 − f2ðrÞ�r2sin3θdθ ∧ dϕ;

ð153Þ

but Γ0
10 ¼ f0ðrÞ

fðrÞ and Γ1
00 ¼ f4ðrÞΓ0

10

B ¼ 2f0ðrÞ
fðrÞ ½1 − f4ðrÞ�dtðZÞ½1 − f2ðrÞ�sin2θdθ ∧ dϕ;

ð154Þ

with fðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − rs

r

p
over the sphere at infinity, with the

usual assignment,

dtðZÞ ¼ 1; ð155Þ

it yields vanishing Hamiltonian energy. As is well-known,
there are other formulations [14] that assign a finite energy
to those configurations.

V. CONCLUSIONS

We have computed the Hamiltonian corresponding to
different first order versions of unimodular gravity.
It must be stressed that the naive approach, in which the

Lagrangian is taken as given exactly by the same expres-
sion as in the second order approach, with the proviso that
the role of the independent variables is changed, namely the
connection field and the metric field are now to be treated
as independent, we stress, is not always equivalent to the
more usual second order one.
Theories linear in curvature have been studied, both theone

that corresponds to the standard Einstein-Hilbert Lagrangian
aswell as the one related to Schrödinger’s version quadratic in
the connection field. This last version is particularly interest-
ing insofar as it can be viewed as giving a rationale for
(Einstein’s) energy-momentum pseudotensor. While it is in
fact true that both versions differ by a total derivative, it is not
less true that one of the most interesting aspects of the
Hamiltonian in general covariant framework is precisely the
boundary term, also a total derivative, and precisely this
boundary term usually depends on those total derivatives.
Theories quadratic in curvature have also been consid-

ered. In this case, the proliferation of indices quickly
becomes overwhelming. At any rate, the usual formalism
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is unsatisfactory here insofar as it yields vanishing energy
in this case.
It has been found often convenient in this paper to use the

language of frame fields and differential forms. This is the
more true when dealing with theories with Lagrangians
quadratic in curvature, although the formalism saves much
space even in simpler contexts.
We are working in a frame formulation of the ideas in [14]

in order to give a satisfactory definition of energy in the
quadratic case. We hope to be able to report on it in due time.
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