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Some remarks on the Hamiltonian for unimodular gravity
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Several formulations of the first order approach to unimodular gravity are presented. There is always a
particular one such that it is classically equivalent to the second order formulation; this we call educated. 1t
is often at variance with the naive approach, in which the Lagrangian is taken as given exactly by the same
expression as in the second order formulation; only the number and character of the independent variables
changes. Namely, typically some of the momenta are now considered as coordinates. The ensuing
Hamiltonians are thereby discussed, and their physical differences pointed out.
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I. INTRODUCTION

It is well known that every second order equation of
motion (EoM) can be written in first order language (FO)
just by introducing new dependent variables. This is
usually believed to hold true when there are infinite
variables, like in field theory. Nevertheless, recently some
curious behavior have been pointed out when the gravita-
tional field is considered. Namely, it would seem that there
is a crucial difference between Lagrangians linear in
curvature (Einstein-Hilbert) and Lagrangians involving
higher orders in curvature. In the latter case, FO is not
equivalent to the usual second order approach (SO), and
the connection field encapsulates many different spin
components [1].

This is indeed a fact when the same Lagrangian that is
usually worked out in SO is considered as FO; this just
means that the metric and the connection are treated as fully
independent fields. This will dub herewith as the naive
approach or naive FO. The reason is that is it always
possible to build up a slightly more complicated FO
Lagrangian, such that its EoM are completely equivalent
as those obtained in the usual SO approach. This we shall
dub educated FO. We shall give many examples in the
body of the paper.

A simple example, a naive FO for Einstein-Hilbert
Lagrangian, would be

$= [ VIl (0.8} ~0,5 4 T =ThTE). (1)
and a educated FO,
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s= [ Vil o - o8, + Tk - T
(1
2 (3070 + 1o+ 0,90 T ) b )

where 2* is a Lagrange multiplier."

We have also recently studied a modification of general
relativity, unimodular gravity ([2] and references therein) in
which the set of admissible metrics is restricted to those
with unit determinant. The symmetries of the theory are
thereby reduced from the set of all diffeomorphisms,
Diff(M), to those that preserve the unimodular condition,
namely the transverse ones TDiff(M). Those transverse
vector fields generate the subgroup of volume preserving
diffeomorphisms. We shall always employ the notation,

Yo 3)
to denote a metric, such that
y =dety,, = —1. (4)

Sometimes it is useful to generate an unimodular metric out
of an arbitrary one by means of a Weyl rescaling,

G- (5)

In this paper, the expressions linear or quadratic are
employed always as referring to Riemann’s curvature tensor.
Our aim in this paper is to elaborate on those ambi-
guities, introducing educated FO and computing, in

Y=g "

'"Throughout this work, we follow the Landau-Lifshitz space-
like conventions, in particular, the metric is 7,, = (+.—. -, —)
and Rt = 8,,F’,f(, — -+ +; we omit the factor — ﬁ in the Einstein-
Hilbert action.
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particular, the corresponding Hamiltonians. The point is
that in any diffeomorphism invariant theory, the total
Hamiltonian is a constraint that must be put equal to zero.
It is often the case that at least for asymptotically flat space-
times, the physical energy is embodied in a boundary term,
precisely the sort of thing that changes in every “equiv-
alent” formulation of the physical theory.

A general observation [3] is the following. The second
order variation of any Lagrangian depending on the metric
and the connection field is symbollically,

osol’ oS

NS= | —=——+—, 6
ol 6g * og (6)
whereas the first order one read
oS
=0
or
oS
—=0 7
5 ™

This clearly shows that FO implies SO; the opposite is
untrue.

The determination of a Hamiltonian for the gravitational
field is an old problem [4—6]. As has been already pointed
out, the bulk Hamiltonian vanishes (again, this is actually a
generic property of all diffeomorphism invariant theories),
and this is the origin of the constraints to be imposed in any
canonical quantization of the gravitational field (confer, for
example, [7] and references therein).

We will try to be quite specific on the subtle differences
between general relativity and unimodular gravity in this
respect.

|

Let us stress again that there is also a boundary term
which is quite important because it fully determines the
numerical value of the energy associated to asymptotically
at gravitational fields, (ADM) [5]. We also would like to
give a detailed computation in this case, which could
depend on the precise formulation of the theory. Although
we will devote an initial section to introduce the problem in
an explicit physicist notation using components, the main
part of the paper will be written in a more covariant
formalism using frame fields and differential forms. This is
almost mandatory once higher order (in curvature)
Lagrangians are considered, in which case the component
notation becomes exceedingly cumbersome.

II. THEORIES LINEAR IN CURVATURE. THE
EINSTEIN-HILBERT LAGRANGIAN

A. The Einstein-Hilbert Lagrangian

The Einstein-Hilbert Lagrangian in FO formalism is

Ly = /|glg™ (9,1, — 61/@# I —Talh). (8)

A related action principle (educated version) that would
be equivalent to Einstein-Hilbert’s would read

EEH = _Fﬁual(\/mgﬂy) + Fﬁyau(\/mgﬂy)
+ Vgl (T4 5, = T4T%, ). 9)

The variation respect to the metric reads

1 1
T, (V@ (5 ¢h— W)) +1%,0, (%l?l (5 #h - hlw>>

1
- |g| <(Fiﬁl—7w - F/rlyl—zy) - Egyuga/} (Fiﬂrgﬂ - iariﬁ)> h =0,

(10)

under integration by parts, we recover the Einstein field equation,

1
2

Rh =R, h" = =G, i =0,

(11)

and the variation respect to the connection of the Lagrangian reads

1 .
=04(V/19l9") + 8404 |9|9”d)—§\/|9|9"”(5,3F2y+53FZU+5’5F2,,+5§FZ,4—521%—521“,3»—5,3551”21—5,5551“@) Ap. =0,

which using

81(\/|-QT )= \/‘—QT(QWFQ - g“’l“’;ﬁ -gT%) (13)

(12)

[

reduces to zero. This fact shows [8] that the linear
Lagrangian does not need an educated form, in the sense
that the naive FO is already equivalent to SO.
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Let us examine now what is the situation in the
unimodular setting. Consider a linear unimodular metric
in FO, 7, and some associated torsionless connection, @/,
We are interested in the action,

S = /d”xy”"(aﬂa)’lfg — Dpiy + @@}y — ay@f,),  (14)

where the covariant derivative acts on the covariant indices
only. Please note that the Levi-Civita connection associated
to the unimodular metric satisfies

ws=w', =0 (15)
and
o =yPaf, = 0,07 (16)
In terms of an arbitrary nonunitary metric (2], g,,

Yuw = G "G (17)

this formulation introduces a redundant Weyl gauge
symmetry,

Guv = Qz(x)gﬂy' (18)

The Levi-Civita connection associated to y,, is

1 0,9 0,9 0,9
a)gp = rgp + %gﬂl <§gup - 79/1;7 - %gul ’ (19)

where I, is the Levi-Civita connection associated to the
general metric g,,, that is, Christoffel’s symbols.

Next, we present our notation for the ADM formalism
[5,7,9]. The metric tensor g, of spacetime induces a metric
h,, on the spatial hypersurface }

h/w = 9w + n,n,, (20)

where n,, is the unit normal. The extrinsic curvature tensor
of the spatial hypersurface >, is defined as

K, =V, +n,a,=V,n,+nn'Vn, (21

The extrinsic curvature can be written as the Lie derivative
of the induced metric /,, on ), along the unit normal

nto .,
1
K, = Eﬁnhw, (22)

and the decomposition of the scalar curvature R of
spacetime can be written as

R=0CR+K, K" —K*+2V,(n"K —a"). (23)

In the given ADM coordinate base, the components of
the metric of spacetime read

Joo = N? 90i = N; 9ij = hija (24)

the extrinsic curvature tensor (22) is written as

1 1

Ki' ‘Cnhlj:ﬁ

(1) Einstein Hilbert in second order
What happens in second order UG [10] is that the
lapse is not an independent dynamical variable,
because

N?|h| =1, (26)
where

h=detg!"") = deth. (27)
This means that it is not compulsory to impose the
Hamiltonian constraint,

H=0 (28)

{H(x). H(x)} = (H'(x) + HI(x))9;6(x — x')
{Hi(x), H(x)} ~ H(x)0;5(x — X)
{Hi(x), Hy (')} ~ Hi(x')9;6(x = x')
+H;(x)0;6(x — x'), (29)

but only the weaker condition,
H =2, (30)

where 1 is determined by the physical boundary
conditions. This is the usual unimodular setting [1]
in Hamiltonian language.
(2) Einstein Hilbert in naive first order

It has already been pointed out that it has been
proved in [8] that even the naive FO Einstein-Hilbert
is equivalent to the usual SO Einstein’s equations.
As for the Hamiltonian, there are several possibil-
ities. We could, for example, start with the
Lagrangian of GR in naive FO ADM form (and
neglecting boundary terms),

Ley = NVH[OR + K,;K7 - K?,  (31)

where the variables are the spatial metric /;; and the
extrinsic curvature, K;;. With these assumptions all

084096-3
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3

“)

momenta vanish, and the Hamiltonian just coincides
with the potential.
Einstein Hilbert in educated first order

Let us instead start with the Lagrangian of GR in
educated FO ADM form [7,9] (and neglecting
boundary terms),

1.
Len = NVh {(S)R + NK'-/(athij - D;N; — D;N;)

—Kin"/—ZKT—sz}, (32)
where D; is the induced covariant derivative in
the three manifold X%,, and we have defined
Tzﬁh’u(?thij _Dle _Dle) The EOM fOr
the field K" implies

1
(33)
then
1

with T = K; note if we reintroduce the expression of
K;; in (32), we recover the standard SO Lagrangian
in ADM variables, and the conjugate momenta
pJ are

N; — Pi =0
K — p7=0
hi; = p' = VhKj;, (35)
therefore, the Hamiltonian,
N .
+ i (pip" + p?). (36)
Unimodular Einstein Hilbert in second order
Again here the unimodular constraint,
NVh=1 (37)
implies that the unimodular Lagrangian reads
1 ..
‘CUG - (3)R + NK”(athij - D,Nj - DJN1>
- K;;K' —2KT + K, (38)

and the conjugate momenta p'/ are

Ni—p'=0
Kij_’pijzo

|
hij = pV ==K

N ijs (39)

and the Hamiltonian,
Hyg=CR +p"(D;N;+D;N,) +N2(pijpij +p?).
(40)

(5) Unimodular educated first order
The unimodular version of (9) yields

‘CUE = _Fﬁua/1<yﬂy) + Fﬁ”ab(}/ﬂ”>

- yﬂy (Fi/ll—‘zl/ - Fiirrvl

7 (41)

the conjugate momenta p"/ are
I, - pi'=0
voo = p% = ~Tgy + T
voi = P =~ + Fﬁi

0
vij = pY =15,

(42)
and the Hamiltonian reads

Hyp =}, 00" = T,0i" + (T35, = T4LTT,).
(43)

B. Schrodinger’s Lagrangian

The Einstein-Hilbert Lagrangian, can be written as

Loy = ]gIR = 84(\/@(7‘”%) - 3y(\/mgﬂyrﬁﬂ) + Ls,

(44)
where
81(\/H Y) = \/E(g’wr;l - 9Ty, — ¢ T%),  (45)
then, up to a total derivative,
Ls = V1gl9" 8 = Vlglg" (T35, = T4IT.).  (46)

which is just the I'T" Schrodinger’s [11] Lagrangian. It is
then plain that the Einstein-Hilbert and Schrodinger’s
Lagrangian differ by a total derivative, so that they
yield the same equations of motion when considered in
second order.

The energy-momentum
Lagrangian is

tensor of Schrodinger’s

084096-4
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0L
T,lf = —811911 -L 65
a(aﬂgaﬂ) / s
9 o a
= Yot~ Thepoguy - 4, - ST,

— /1919 (Thal5y = T Thp). (47)
It is curious that it corresponds to the so-called Einstein

energy pseudo tensor [6], which in first order formalism,
reduces to

Ty = —Lg5),. (48)

What about Schrodinger’s Lagrangian considered as a

first order one? The dependence on the variables I'; and

gy 1s algebraic, so that the Lagrangian is equivalent to the
Hamiltonian,

(1) Letus now include physical sources for the graviton,

T#, and for the connection field, jgy in Schro-
dinger’s Lagrangian,

[’Smatter = \/g(gﬂyguu + g/wT/w + F;y]gy) (50)

The variation with respect to the metric® of (50)
yields

1 1
oLs = /1] (—sﬂ” 3 8 =T 5Ty
1 va Py
+ Egﬂ rﬂy.}(l 59/411' (53)
The trace of the EoM yields
(n=2)(8+T) + nl'y, jol = 0; (54)

in the absence of sources, this implies

g =0. (55)

*There is a small subtlety here. The variation of the scalar
T=g*T, = g,T" is

6Ty # 69, T . (51)

The explanation is that it is not equivalent to assume 67" =
than to assume 67, = 0. Indeed,

6T = 59(1/17%' + 69/}/1sz + g{z,ugﬁy(sT}w' (52)

Here, we are assuming 6T,“, =0.

084096-5

(i)

Neglecting for the time being the connection source,
the EoM for the graviton field reads

8, +T,, =0. (56)

The variation of (50) with respect to the con-
nection yields

1 ‘ ‘ ‘ ‘
SLg= {5 ¢8I, 4851, + 60T, + 65T,

—52%—52F;y—5ﬁésrﬁg—6ﬁéfriz]+jZC}AzC,

(57)
where Aj . = oI, then
200 4 20’ — 5o g Th, — ShgeT,
—2g"T, + 25 =0 (58)
trace (58), with 6%
g1 = n)Tg, +2j54 = 0. (59)
Now we trace (58), with g,
(4 =2m)%, = 29409 T + 2gpcja’ = 0. (60)
Let us work out the linear approximation,
G = My + KRy
I, =0+ A%, (61)

where we just have seen that

1 1
QL) = SHT =T, + EhAfw e (62)

At any rate, it is plain that without sources,

g =0, (63)
it does then seem impossible to recover Newton’s
equation in the appropiate linear limit in FO. We
have just seen that in SO, we recover Einstein’s
equations exactly. The reason for this apparent
contradiction is that the difference between
Schrodinger and Einstein-Hilbert Lagrangians is a
total derivative only when considered in SO, but it is
not when considered in FO.

This then illustrates a dramatic instance of a
nonequivalence of FO and SO approaches in a
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theory of gravity linear in curvature. The standard
lore [8] was that FO and SO were equivalent for
theories linear un curvature (such as the standard
Einstein-Hilbert Lagrangian), and nonequivalence
appears only in theories involving higher powers of
Riemann’s tensor.

In conclusion, whereas the I'—T" Lagrangian
correctly reproduce Einstein’s equations when con-
sidered in SO, it predicts flat space in vacuum as the
only solution in FO. No gravitational waves exist in
this formulation.

III. THEORIES QUADRATIC IN CURVATURE

Quadratic theories can be written in the general form,

1 ! / J !
5= [ VU el VP2 (R 1) (64

where the tensor PW/W/W’/"”/ [g] depends only on the metric
Jap and its inverse g*”. Let us work out the basic example,
where

! ool el

Py o7 [g) = 8107 7 (65)

Other contractions of Riemann’s tensor can be worked out
along similar rules. An educated first order version of the
action principle is given by promoting R*,,, to an inde-
pendent variable together with the connection I' and the
metric tensor g,

1
S = 5/ dnx\/ |g‘{R”upogﬂagﬂﬁRy/mﬁ

4 2RMDP0'((§)/)F’;O- - agr‘lljp + ngrﬁo. — Fﬁl”r‘ﬁp)} (66)

In FO, it is not necessary to introduce auxiliary fields as in
[12]. We shall assume that the field R,”” has the sym-
metries of Riemann’s tensor.

In fact, the Lagrangian EoM ensure that it is given on
shell by the Riemann tensor corresponding to the dynami-
cal connection T,

Rt = 0,106 — 0,10, + T pl“,’}ﬁ - (67)

vp*
The canonical momenta are given by

9w = pH ~0

vpo
Rﬂvprf = Py Pe~0

0y = Pyl = VIgl (R + R,™). (68)

This object is symmetric in (vi), and as usual, greek
indices run from (0...n — 1), and latin indices from the
middle of the alphabet run from 1...n — 1. When contracted
with some other tensor with those symmetries, it is not

necessary to make those explicit. Let us define the auxiliary
variable,

qzi =V |g|(R/4D0i - Rﬂioy)' (69)

In conclusion,

14

. 1 . .
0i _ Vi _ Vi
S

now we need to substitute certain components of
Riemann’s tensor by the corresponding momenta. The
computation becomes heavy, and we refrain from repro-
ducing it here; we shall give a simplified treatment using
differential forms momentarily.

(70)

IV. COVARIANT APPROACH IN TERMS OF THE
FRAME FIELD AND THE SPIN CONNECTION

When discussing a Hamiltonian formalism, it is unavoid-
able to introduce a noncovariant distinction between space
and time. This can be done however in such a way that as
many symmetries as possible are respected. The time
direction will be characterized by a vector field,

Z=279, (71)

then acting on any exact form,
izda = £Z(1 - diza =qa- diza (72)

(£7a is the generalization of the concept of time derivative).
It is always possible to locally choose an adapted coor-
dinates, such that Z = 9, with i,dt = 1. It is then natural
[6] to define the time and space projections on an arbitrary
form a as

joN
1]

iza

a—dt A a, (73)

a
The induced projections on the exterior differential read
da=da+di A da=da+di A (a—da). (74)

It will also prove convenient to decompose the differential
operator d = dx* A 0, = dt A 9, +dx* A ), and we
define

d=dt Ad+d, (75)

with d = £,.

After this small introduction, let us write down the
variation of the first order Lagrangian. Our purpose is to get
an expression for the associated Hamiltonian by particu-
larizing later for an explicit form of the variation,

084096-6
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5‘CFO 4 5£FO

) .
spf  op Tk

5Lro = Y [d(5¢k A i) + 845 A
(76)
This formula does not assume anything about the variation.

Consider the particular case of a time translation, that is, a
Lie derivative along the vector field Z,

Sk = £,¢F. (77)

It follows in general that

dizLro = £7Lr0 = Z {d(fzﬁbk A i)

0Lro , OLro

£,0F A
AN s o

A £Zpk:| . (78)
This means that there is a first integral,

H(Z) = Z£z¢k A pr —izLro, (79)
that satisfies the identity,

z +
op opi

—dH(Z) =) [.fzqﬁ" A A£7pe]. (80)

It is a conserved current on shell, which its explicit
expression is

H(Z) = [d(iz¢* A pi) + iz¢* A dpy
+ d¢k A izpk + le] (81)

can be written like a displacement vector plus a total
differential,

H(Z)=Z7'H, + dB(Z), (82)
where
B(Z) = i* A py (83)

compare the differential of this expression dH = dZV A
H,+ Z'dH, with (80). We learn that

. 0Lro | 6Lro

Nizpr|,  (84)

so that H, itself vanishes on shell, and all contribution to
the energy comes from the boundary term, B(Z).

A. Einstein-Hilbert theory

In terms of the frame one forms,3
e’ = ejdx, (85)

and the curvature two form,

1
~Rypdx* A dx, (86)

Rabzz

the Einstein-Hilbert action can be written [1] as the integral
over spacetime,

S:/e”AebA*Rab:/Rab/\*(e“/\eb), (87)

where the curvature is expressed in terms on the connection
one forms,

Oyl = Ogp, dxF. (88)
Note @w,p, = —Wpqy, then
Rab = da)ab + Wge N wcb' (89)

In second order formalism, the connection one forms are
determined by the torsionless condition,

de® + %, N e’ =0, (90)

but in this paper, we would like to stick to the first order
formalism, in which o is an independent field.
Let us explain in detail how this comes about.

1

S = z/eabcde“ A eb AR

1

= Z/eabcdeﬁefRCdp(,dx" Adx” Adx? A dx® (91)

but

dx* A dx¥ A dxP A dx® = d"x+\/|g|e"P° (92)

1
S = Z/ d"x ‘g|€m/p0€;wcdRCdpa

1 -
= [ @ lesre,, = [ aw/lr. (93)

3Flat or Lorentz indices are raised or lowered with the flat
metric 7,;, whereas Einstein or curved indices do that with the
MELric gy,

084096-7
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The conjugate momenta are given by

) oL
¢ T Pe= Hae T
oL
ab — — a b
0= PP =S = A ). (99

then the Legendre transform is performed though the
construct [6],

A=) dgi npi-L
=dw g, A P — (dwg, + ¢ Awyy) Ax(e® Aeb)

=—w,° ANw,, A pl. (95)
This defines a first order Lagrangian, namely,

ﬁFoEzdfﬁi Api—A
:da)ub/\pab+wae/\wehApab:Rab/\pabv (96)

which EoM read

de?
5a)ab

5pab

= _dpab + a)ca N Deb — a)cb A Dac
= R, (97)

In our case,

H(Z) = Z£(Z)¢i A pi —izLyo
=£(Z)0™ A pap = iz(pap A R?),  (98)
the displacement piece of the Hamiltonian, is then given in
this language by the vector valued three form,
H/l = _wabﬂ A (_dpab + @G A pep— @ A pac)
-+ R*® A Pabu- (99)

It follows that the one forms p,, are given in terms of the
frame by

puhﬂ = Eeabcd(e;ed - egec); (IOO)
this then the form that the Hamiltonian constraint and
momentum constraints take in this formalism. The boun-
dary term, (83), is given by the two form,

) 1
B =iz A py, = =€

) Cda)ab”Z" A e A ed.

(101)

Particularizing for Schwarzschild’s metric,

dr?
f(r)

where f(r) = /1 =", with r; = 2GM, then the frame
field read

ds* = f*(r)dt* — — r2d6* — r*sin” Odg¢?,

(102)

e’ = f(r)dt
,_ dr
£(r)
e? = rdf
e’ = rsinfdg (103)

in such a way that the nontrivial connection one forms are
given by

@) = f'(r)e°

w7 = f—(rr) e?
w; = f—:) e
to
w3 = cor e’ (104)

The integral of the boundary over the two sphere S2, at
infinity,

t = constant
r=R1T o (105)
reads
K2 Mg
B = ryndt(Z) = ——di(Z). (106)
5%

B. Unimodular gravity

In [1], it has been proved that if the simplest FO
Lagrangian,

SUG = /Rab A\ *(éa AN éb) (107)

is chosen where

et =e" e, (108)
then there is on shell a nonvanishing torsion, which
however vanishes in the Weyl gauge e = 1. The reason
is that this Lagrangian is Weyl invariant with inert spin
connection, but the torsionless condition is not.

One way out is to impose a nontrivial Weyl trans-
formation of the spin connection in such a way that the

084096-8
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torsionless condition is Weyl invariant. The resulting
Lagrangian has the drawback in that it depends not only
on ¢, but also on e.

The simplest alternative would probably be to consider
again the Lagrangian (107) but with the Weyl dependent
connection. This is what will be implicitly done here,
although we shall not be interested in the Weyl symmetry in
this paper. Then,

Sug = /Rab A x(e™H"e A eb), (109)
in this case, the conjugate momenta is
pl = x(e7?/med A €b). (110)

Therefore, the Legendre transform result

A =dw® A pg, — (do™ + o™ A wL) Ax(e7?/me? A eb)

=" AL A pa, (111)

so that

Lo = do™ A pa, + o Ao A pay,  (112)
which is exactly the same as before. The displacement
piece of the Hamiltonian is then given in this language by
the vector-valued three form,

H, = _a)ab# A (_dpab +wca N Peb— a)cb A puC)

"

+ R A Pabu- (113)
It follows that the one forms p,, are given in terms of the
frame by

1
Paby = §€abcd(éﬁéd - éﬁéc)- (114)
This then the form that the Hamiltonian constraint and
momentum constraints take in this formalism. The explicit
expression obviously coincide with the general-relativistic
ones in the Weyl gauge e = 1, and when the vector Z is
chosen in the ADM manner like

0 -0
Z=n—- [
n8x0+N ox'’

(115)

we recover the unimodular constraint N \/E =1.
The boundary term, (83), in the Hamiltonian is now

(116)

1
B b _ b A A ~d
Byg = iz, N pY = 56“ cd@apuZV N ¢ N &7,

particularizing to Schwarzschild’s metric,

e = r*siné. (117)

Using the frame field, (103), we obtain the connection,

oup 2 = | =5, 0410 | Fnz) - (118)

T 2rsin20 | 2r

Buo =3 mirig | =370+ 10

x f(r)dt(Z)r?* sin0do A dg, (119)
but
1 r

"(r) = - 120
1) = 55577 (120)

over the sphere at infinity,

1
/ By = —~ dt(Z) / sin'/20d0 A dg
5% 4 s%
3N\ 12

=—V2z {F(Zﬂ di(Z). (121)

In is instructive in this context to consider the unimodular
frame [13], due to Schwarzschild* himself,

d 2
x;2+(1—x%)dx_%>, (122)

dsz_fodfz—fldx%—h(

1-x3
where x; = r*/3, x, = —cos 0, x3 = ¢ and

2GM

pu— 1 T

folx1) (3x, + b)1/3
(3x; + b)™/3
filx) = _IW
(3x,+b)'73

f2(x1) = (3x; + b)*3, (123)

where b is a constant of integration and ff,f3 = 1, then
the frame field reads

e = \/}Edl
el = \/]Tldxl

(124)

*Please beware of an annoying erratum in Eq. (8) of the
preprint version of [13].
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The boundary term, (83), in the Hamiltonian is now

1
BUGSCh = Eeabcd@abﬂzﬂ A ec A éd. (125)

We can derive

GM
de® = ———dt A el
2

(126)

but de® + @°, A e! =0, we obtain the connection one
form,

M
G—dt(Z),
2

W01, 2" = (127)

and

GM
Bugsen = ——di(Z)dxy A dx;,

5 (128)

over the sphere at infinity,

GM
/ Bug =——di(Z) / sin@d A dep = rr,dt(Z).
S2 S2

5 (129)

This result reproduces (106).

C. Schrodinger’s Lagrangian

The Einstein-Hlbert action can be written

S:/Rab/\*(e“ A eb)

1
= —/e“bc”l(da)ab + o, Aaly) A (e A ey).

: (130)

Let us write d(e. A e;) = de. A ey — e, A de, and using
the torsionless condition, (90), obtain

1
S= 5/ d"xe U dlwg, A (e, A ey)]
+ 204 Ao Ael Negt o Nl Neo A egd
(131)

in terms of the frame components on the connection field,

1
S = 2/ d"xe"“ 2w 4,0, 0" A" A el A ey

+ wafua)'zye” ANeAe. A eyl (132)
where we neglect the total derivative, and
e A e’ Aet A el = d'xee" . (133)

We get

1
S = 2/ daneabcd{2wabua)c.f”€m]fd + wafuwf.vbem:cd}
(134)

but

abed __ sabc
e euvfd - 5uvf

€ade€uvcd = 263? ( 135)

and finally,
S=3 / d"xe[we, @, + @), (136)

This is Schrodinger’s Lagrangian in terms of forms. In FO,
there are no nonvanishing momenta, so that the
Hamiltonian is just

H(Z) = —i L. (137)
Thereby, there is no boundary term.

Incidentally, the value of the Schrodinger’s Lagrangian
for Schwarzschild’s solution is

6r —4r, 4+ 2rcot® 0
[ r rbt rco ' (138)

r

D. Quadratic theories

In terms of the one form,

I =1 dx’, (139)

and the two form,

1
R, = ER”yp(,dxp A dx®, (140)
the preceding Lagrangian reads

S= /R”,, A KR, + 2R, A (dTy + T4 ATY),  (141)

and the EoM read

oS

s = Ry = (d0 T ATY) =0
v

oS v v c A v

SIH = *2dR", + R", A+, = R, A +I =0, (142)
v

because d* = x6. The corresponding momenta read
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_ oL _ 0
P=Bare, =
14 aL 14
Py = g =2xRY; (143)

therefore, the Legendre transform result,

1
A:dl“”,//\p"ﬂ—zp”ﬂ/\*p”b—p’,fA(dF,’j—i-FZ/\Fﬁ)

1
:—Zp”ﬂ/\*p"y—pf/\ (F;’,/\FZ) (144)
and the FO Lagrangian in this language reads
1 o
EFO:ZPVM/\*p”y"f_pllj/\(dFZ+FZAF£4)' (145)
Therefore, the FO EoM read
oL
mljo =dp*y +p'e AT = phy AT
v
0Lro 1
v
using the spacetime decomposition, (84),
Z'H, = —i I A (dp*, + p*s ATG — p*y ATY)
1 ) )
+ <*4p’“” + (dI, + T4 A Fi,)) Nigph. (147)

Then,
Hﬁ = —Ffﬂ A\ (dp”,, + P”a A FZ - Pl;t A Fl/{)
1
+2 (* 2Pt (Al T A Fﬁ)) N €V iaR apdx?
(148)
because

izph = iz€% o RV qpdx? A dx® = 2% | R, s 7P dx°.

(149)

As is usual in diffeomorphism invariant theories, H; itself
vanishes on shell, and all contribution to the energy comes
from the boundary term, (83),

B = iI%, A p¥, =2T%,Z* A *R”,

1
= ZF"MZ’l A €, PR yppedx? A dx®. (150)

appo

Now we need integrate over the sphere,

B = érﬂMZﬂ A€ PRypadx® A dx®,  (151)
particularizing to  Schwarzschild metric  Rj33 =
[1 — f2(r)] sin? 0. Then,

B— %rmzﬁ A e B[ = f2())sin0d0 A d. (152
again for Schwarzschild,
B— % 19,0 = Do de(Z)[1 — F2(r)]Psin30d0 A dg,
(153)
but I}, = % and Iy = f*(r)[Vyg
B= 2}{&5;) (1= F4("]de(Z)[1 = f2(r)]sin20d6 A dep,

(154)

. - e .
with f(r) = y/1 =" over the sphere at infinity, with the
usual assignment,

(155)

it yields vanishing Hamiltonian energy. As is well-known,
there are other formulations [14] that assign a finite energy
to those configurations.

V. CONCLUSIONS

We have computed the Hamiltonian corresponding to
different first order versions of unimodular gravity.

It must be stressed that the naive approach, in which the
Lagrangian is taken as given exactly by the same expres-
sion as in the second order approach, with the proviso that
the role of the independent variables is changed, namely the
connection field and the metric field are now to be treated
as independent, we stress, is not always equivalent to the
more usual second order one.

Theories linear in curvature have been studied, both the one
that corresponds to the standard Einstein-Hilbert Lagrangian
as well as the one related to Schrédinger’s version quadratic in
the connection field. This last version is particularly interest-
ing insofar as it can be viewed as giving a rationale for
(Einstein’s) energy-momentum pseudotensor. While it is in
fact true that both versions differ by a total derivative, it is not
less true that one of the most interesting aspects of the
Hamiltonian in general covariant framework is precisely the
boundary term, also a total derivative, and precisely this
boundary term usually depends on those total derivatives.

Theories quadratic in curvature have also been consid-
ered. In this case, the proliferation of indices quickly
becomes overwhelming. At any rate, the usual formalism
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is unsatisfactory here insofar as it yields vanishing energy
in this case.

It has been found often convenient in this paper to use the
language of frame fields and differential forms. This is the
more true when dealing with theories with Lagrangians
quadratic in curvature, although the formalism saves much
space even in simpler contexts.

We are working in a frame formulation of the ideas in [14]
in order to give a satisfactory definition of energy in the
quadratic case. We hope to be able to report on it in due time.
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