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We study the effect of scattering gravitational radiation off the static background curvature, up to second
order in Newton constant, known in the literature as tail and tail-of-tail processes, for generic electric and
magnetic multipoles. Starting from the multipole expansion of composite compact objects, and as expected
due to the known electric quadrupole case, both long- and short-distance (UV) divergences are
encountered. The former disappear from properly defined observables, the latter are renormalized, and
their associated logarithms give rise to a classical renormalization group flow. UV divergences alert for
incompleteness of the multipolar description of the composite source and are expected not to be present in a
UV-complete theory, as explicitly derived in the literature for the case of conservative dynamics.
Logarithmic terms from tail-of-tail processes associated to generic magnetic multipoles are computed
in this work for the first time.
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I. INTRODUCTION

The recent detections of gravitational waves emitted by
compact binary coalescences [1–3], observed by the LIGO
[4] and Virgo [5] large interferometric detectors, made the
compelling case for improving the knowledge of binary
system dynamics, as its features are imprinted in the details
of the detected waveforms.
The starting point of this work is the multipolar action,

describing the coupling of a compact source to an external
gravitational field in general relativity. When the multipoles
describe a composite source with internal velocity v and
size r, like in the case of compact binary coalescence, the
multipolar expansion parameter is v, and in this case the
gravitational radiation emitted by a time-varying multipole
has angular frequency ω ∼ v=r.
Building on the multipole expansion, we study a specific

class of post-Minkowskian (PM) corrections up to second
order in theNewton constantGN . AtOðGNÞ beyond leading-
order emission, one encounters leading nonlinear hereditary
effects, i.e., terms depending on the history of the source

rather than on an instantaneous state at retarded time.
Historically, these have been divided into memory and tail
effects [6], the former arising from scattering of radiation
onto radiation [7], the latter from scattering of radiation onto
the static background curvature sourced by the total mass E
of the system [8]. The denominations are related to the nature
of the phenomenological effects they have on thewaveform:
The tail part of the waveform arrives later than the “wave
front,” being delayed by the scattering, and then smoothly
fades off with time; the memory part is a persistent zero-
frequency effect which is still present well after the wave
front has passed.
While hereditary in the waveform, radiation-radiation

scattering leads to a vanishing effect in the emitted flux [9]
and to an instantaneous (i.e., nonhereditary) contribution to
the conservative energy [10]; tail effects, on the other hand,
give a hereditary contribution to the waveform [8] and to the
conservative energy [11] (later confirmed in Ref. [12]) while
givingan instantaneous contribution to the fluxemission from
circular orbits [13]. The scattering of radiation off the angular-
momentum-dependent static background curvature leads to
instantaneous terms both in the waveform [14] and in the
conservative energy shift [10] and no contribution to the flux.
In particular, only the (mass) tail-corrected emission pro-

cess involves a large-distance, or infrared (IR), divergence,
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as thoroughly explained in Ref. [13], which, however,
disappears from suitably defined observables. In the wave-
form, the IR tail divergences are relatively imaginary with
respect to the leading order, and they exponentiate to a pure
phase, so disappearing from the flux. While, in principle,
still showing up in the waveform, analogous to the well-
known infinite phase shift induced by the Coulomb
potential in scattering amplitudes [15], one has to consider
that actual detections do not measure the instantaneous
absolute value of the phase but phase differences between
different times, and the infinity cancels out of any observ-
able quantity [16]. Note, however, that finite contributions
of the tail effect for different multipoles are different, and
their nonzero difference is physical, while the IR divergent
part is common to all multipoles [17] and cancels out in the
difference.
Note that observability of the finite shift in the waveform

phase generated by the tail effect has already been inves-
tigated long ago in Refs. [18,19], and, unfortunately, the
possibility of it being measured is scarce, as such an effect
appears as GNEω ∼ v3 correction to the leading-order
phase which goes as v−5, hence a fourth-order post-
Newtonian (PN) effect [19], where v2 ∼GNE=r is the
expansion parameter of the PN approximation. Current
knowledge of PN-expanded waveforms stops at 3.5PN
order; see Ref. [9] for a review and Ref. [20] for the most
recent tests on real data. Note that finite contributions of the
tail affect the waveform phase at the same order as a shift
Δt in the arrival time of the signal, which enters the phase
with a term ∼2πfΔt ∼ v3ðΔt=GNEÞ.
The main focus of the present work is the analysis of

(mass) tail-of-tail effects at waveform level or, equivalently,
in the language of field theory, in one-point amplitudes.
They come with both IR and UV divergences; the former
are consistent with the exponentiation to a phase of the
simple tail IR divergences, and the latter have associated
logarithmic terms that give rise to renormalization group
equations, which can be integrated to compute all-orders
leading logarithmic corrections, as already done for the
logarithms from the electric quadrupole case [21].
In particular, we generalize the computation of loga-

rithmic terms in tail-of-tail processes, already known in the
electric case from the results obtained in Ref. [22] for the
mass quadrupole and in Ref. [8] for all the electric multi-
poles, to magnetic multipoles at all orders. While sharing

the same topology, diagrams of increasing multipole order
become more intricate because of the presence of an
increasing number of momenta. In PN scaling, moving
from a multipole to the following one adds a power of v to
the coupling; hence, tail diagrams involving the electric
(magnetic) 2n-multipole affect one-point amplitudes start-
ing at 1=2þ n=2 (1þ n=2) PN order. Multipoles corrected
by gravitational self-interactions are also called in the
literature radiative multipoles [9], to differentiate from
source multipoles, which instead designate the source
terms in the fundamental multipolar expansions.
Note, however, that, when multipoles of composite

objects like binary systems are expressed in terms of
individual binary constituents, they can naturally be
expanded in v2, i.e., in a PN series, whose terms are
determined by a matching procedure, which for the mass
quadrupole has been completed in an effective field
theory (EFT) framework up to second PN order [23] and
to fourth PN order in the multipolar-post-Minkowskian
approach [24].
By analogy with the conservative dynamics case treated

in detail in Ref. [25], we expect that the UV divergence in
the tail-of-tail process will be canceled by analogous
divergences in the expression of the PN-corrected source
multipoles, to leave a finite, consistent result. After all, the
multipole expansion is bound to fail at a short enough
distance, i.e., when the actual internal structure of the
composite system becomes important.
The paper is structured as follows: In Sec. II, we give an

overview of the method, treating in detail the known case of
tail process, building on which we obtain new results for
the tail-of-tail process in Sec. III. Section IV concludes the
present work with a discussion of the results.

II. METHOD

A. Generalities

We will proceed from and expand along the lines of
Ref. [13], which applies to the radiative gravitational sector
the EFT approach developed in Ref. [26], known as
nonrelativistic general relativity.
At a large distance from the source, its interaction with

gravity can be encoded in terms of multipoles as in the
following effective Lagrangian, whose form is uniquely
dictated by the symmetries and scaling of the theory1:

Smult ¼
Z

dt

�
1

2
Eh00 −

1

2
ϵijkLih0j;k −

1

2
IijEij −

1

6
IijkEij;k þ

2

3
JijBij þ � � �

�

¼
Z

dt

�
1

2
Eh00 −

1

2
ϵijkLih0j;k −

X
r≥0

ðcðIÞr Iiji1…ir∂i1…∂irEij − cðJÞr Jiji1…ir∂i1…∂irBijÞ
�
; ð1Þ

1We use the mostly plus metric signature and the speed of light c ¼ 1 throughout the paper. Latin indices run over f1; 2; 3g and are
raised and lowered by Kronecker deltas.

ALMEIDA, FOFFA, and STURANI PHYS. REV. D 104, 084095 (2021)

084095-2



with [27]

cðIÞr ¼ 1

ðrþ 2Þ! ; cðJÞr ¼ 2ðrþ 2Þ
ðrþ 3Þ! ; ð2Þ

where E and Li are, respectively, energy and angular
momentum, Iiji1…ir (Jiji1…ir) are generic electric (magnetic)
source 2n-poles for n ≥ 2, n ¼ rþ 2 (i.e., from quadrupole
on), and Eij and Bij denote, respectively, the electric and
magnetic part of the Riemann tensor.2

In case one is interested in applications to compact
binary systems, the source multipoles appearing in Eq. (1)
can be explicitly related to individual constituents’ param-
eters by means of a matching procedure, as done up to 2PN
for the mass quadrupole Iij within the EFT approach in
Ref. [23] and to higher orders within the multipolar
Minkowskian formalism; see [17,24,28–30], and referen-
ces therein.
In the present work, we are mainly interested in the

universal properties (i.e., not depending on the short-scale
features of the source) of the gravitational waveform, so our
focus will not be on the matching procedure but rather on
the study of emission amplitudes, as expressed in terms of
the generic multipoles Iiji1…ir and Jiji1…ir , with particular
emphasis on the divergences appearing in dimensional
regularization and on the associated logarithmic terms. We
are also not studying here conservative effects associated to
emission and reabsorption of radiative modes, for which we
refer to Refs. [10,31].
We work in the harmonic gauge, as in Refs. [9,32],

which is equivalent to using the following form for the pure
(bulk) gravity action:

Sbulk ¼ 2Λ2

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
RðgÞ − 1

2
ΓμΓμ

�
; ð3Þ

where RðgÞ is the Ricci scalar, Γμ ≡ gρσΓμ
ρσ , Γμ

ρσ being the
standard Christoffel coefficients, and Λ−2 ≡ 32πGNμ

3−d.
Note that for the number of purely spatial dimensions d ≠ 3
an inverse length μ appears, as it is necessary to relate Λ,
which has dimensions ðmass=lengthd−2Þ1=2, to the ordinary
3þ 1-dimensional Newton constant GN .
We find it useful to decompose the metric via a Kaluza-

Klein parameterization [33]:

gμν ¼ e2ϕ=Λ
� −1 Aj=Λ

Ai=Λ e−cdϕ=Λγij − AiAj=Λ2

�
; ð4Þ

with γij ≡ δij þ σij=Λ, and cd ≡ 2
ðd−1Þ
ðd−2Þ. In this decom-

position, one can write at linear order

ΛEij ≃ −
1

2
ðσ̈ij − _Ai;j − _Aj;iÞ þ ϕ;ij þ

δij
d − 2

ϕ̈þOðh2Þ;

ΛBij ≃
1

4
ϵikl½ _σjk;l − _σjl;k þ Al;jk − Ak;jl

þ 2

d − 2
ð _ϕ;kδjl − _ϕ;lδjlÞ� þOðh2Þ; ð5Þ

where h denotes the generic metric perturbation around
Minkowski spacetime.
The radiative, transverse-traceless part of the metric

perturbation corresponds to the transverse-traceless part
of σij (also denoted σij for simplicity), and the leading-
order amplitude for emission of gravitational mode with
on-shell 4-momentum ðω;kÞ, with ω2 ¼ k2, by a generic
electric ðIÞ or magnetic ðJÞ multipole can be written as3

iA0ðω;kÞ ¼
X
r

ð−iÞrþ1

2Λ
σ�ijðω;kÞki1…kir

× ½crðIÞω2Iiji1…irðωÞ þ cðJÞr ωϵiklklJjki1…irðωÞ�;
ð6Þ

with its corresponding Feynman diagrams in Fig. 1.
By applying standard tools for Feynman diagram com-

putations, one can derive OðGNÞ and OðG2
NÞ corrections to

the emission amplitude in Eq. (6), which will be shown in
the next sections. The explicit expression for propagators
and interaction vertices can be read from Ref. [34] and will
not be reported here, with the only modification that for
emission processes retarded Green’s functions have to be
used, which can be represented as

GRðω;kÞ ¼ lim
a→0þ

1

ðωþ iaÞ2 − k2
; ð7Þ

FIG. 1. Feynman diagram representing the leading-order emis-
sion amplitude.

2Terms proportional to the center of mass position and velocity
in the multipole expansions have been neglected. We denote by
an overdot the time derivative and by ϵijk the three-dimensional
Levi-Civita tensor. If the d-dimensional Levi-Civita tensor is used
instead, one has ϵijkϵilm ¼ ðd − 2Þðδjlδkm − δjmδklÞ and the extra
d − 2 factor must be compensated by an inverse rescaling of the
magnetic multipoles Jiji1…ir .

3Our choice for the metric signature implies that uppercase
spatial indices are equivalent to lowercase ones. Taking advan-
tage of this fact, we will allow a little abuse of notation in indices
position to make equations more appeasing to the eye.
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and in all propagators in the rest of this paper we will
denote by a an arbitrary small, positive quantity. The
gravitational field can be obtained (at leading order) in
Fourier space by multiplying the (leading-order) amplitude
(6) by the retarded Green’s function (7), as it is causally

determined by the source. Boundary conditions are speci-
fied by the pole displacement in the inverse space repre-
sentation of the Green’s function; hence, their effect shows
up only for the region of momenta having jkj ¼ ω.4

B. Tails

The computation of the tail amplitude involving the
energy and the electric quadrupole was first derived in
Ref. [8], and it has been rederived in Ref. [13] with
effective field theory methods; here, we report the results
involving generic electric and magnetic multipoles, as
represented in Fig. 2 as a warm-up for subsequent calcu-
lations. Note that the gravitational mode attached to the
conserved energy E has a vanishing time component.

Adopting the notation
R
q ≡

R ddq
ð2πÞd, in the electric case

one has ðω2 ¼ k2Þ

iAðeÞ
r−tailðω;kÞ ¼ ð−iÞrþ1

�
EcðIÞr

4Λ3

�
Iiji1…irðωÞ

Z
q

1

½q2 − ðωþ iaÞ2�
1

ðk − qÞ2 × qi1…qir

×

�
ω4δaiδbj þ 2ω2qiðk − qÞaδbj þ

2

cd
qiqjðk − qÞaðk − qÞb

�
σ�abðω;kÞ

≃ iAðeÞ
r0 ðω;kÞðiGNEωÞ

�
−
ðωþ iaÞ2

μ̃2

�
ϵIR=2

�
2

ϵIR
− 2κrþ2 þOðϵIRÞ

�
; ð8Þ

where AðeÞ
r0 is the electric part of the 22þr-multipole in Eq. (6), ϵ≡ d − 3, μ̃2 ≡ πμ2e−γ , with γ the Euler constant,

κrþ2 ≡ 2r2 þ 13rþ 22

ðrþ 2Þðrþ 3Þðrþ 4Þ þHr; ð9Þ

and Hr is the rth harmonic number defined by Hr ≡P
r
i¼1 1=i. The second line in Eq. (8) is determined by the bulk

interactions of the tail diagram, which depends on σ2ϕ, σAϕ, and σϕ2 interactions contained in the Einstein-Hilbert action.
Expanding also the factor ½−ðωþ iaÞ2=μ̃2�ϵ=2 in Eq. (8) for ϵ → 0, recalling the cut in the negative real semiaxis of the ω
complex plane, one finally gets5

iAðeÞ
r−tailðω;kÞ ≃ iAðeÞ

r0 ðω;kÞðiGNEωÞ
�
2

ϵIR
− 2κrþ2 − iπsgnðωÞ þ log

�
ω2

μ̃2

��
: ð10Þ

An analogous calculation for the magnetic multipole gives

iAðmÞ
r−tailðω;kÞ ¼ ð−iÞrþ1

�
EcðJÞr

4Λ3

�
ωϵiklJjki1…irðωÞ

Z
q

1

½q2 − ðωþ iaÞ2�
1

ðk − qÞ2 × qi1…qir

× ql½ω2δaj þ qjðk − qÞa�σ�aiðω;kÞ

≃ iAðmÞ
r0 ðω;kÞðiGNEωÞ

�
2

ϵIR
− 2πrþ2 − iπsgnðωÞ þ log

�
ω2

μ̃2

��
; ð11Þ

FIG. 2. Feynman diagram representing the tail emission am-
plitude.

4Note that in Ref. [13] Feynman Green’s functions have been adopted instead. As pointed out in Ref. [12], such a prescription does
not generally allow one to obtain the correct imaginary part of the amplitude (see also footnote 5).

5Note the presence of the sgnðωÞ term in Eq. (10), which is necessary to ensure that the tail corrections satisfy the reality property
A�ðωÞ ¼ Að−ωÞ, to ensure a real waveform in direct space. Had one used Feynman Green’s function, one would have had ðω2 þ iaÞ
replacing ðωþ iaÞ2 in Eq. (8), then obtaining −iπ instead of −iπsgnðωÞ in Eq. (10).
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with

πrþ2 ≡ rþ 1

ðrþ 2Þðrþ 3Þ þHrþ1: ð12Þ

The integrals have been computed using the formulas
reported in the Appendix, and the divergences encountered
here are of the IR type, hence the index “IR” to ϵ in Eqs. (8),
(10), and (11). They are the leading order of an unobserv-
able divergent phase term common to all multipoles; the
finite terms proportional to κrþ2; πrþ2 (first computed in
Ref. [35]) are also exponentiated to a phase [16], which is,
however, multipole dependent and so, in principle, observ-
able. Note that the contribution of the −iπsgnðωÞ term in
the square brackets is real relative to A0; hence, it is the
only contribution from the tail process to the emission flux
at GNEω ∼ v3 order.
The amplitudes (8) and (11) are proportional to wave-

forms; hence, they can be inverse-Fourier transformed to
give the waveforms in the time domain, with the result that
the logarithmic terms in ω are responsible for nonlocal
terms in direct space (i.e., in time) first individuated in
Ref. [8]. Note that the IR divergence arises from the loop
integral displayed in Eq. (8), as it is clearly shown by
changing the integration variable to q0 ≡ q − k:

AtailjIR−divðωÞ ∝
Z
q0

1

ð2k · q0 þ q02Þq02 ; ð13Þ

and it is present only for terms whose numerator, which is
set to unity for clarity in Eq. (13), is nonvanishing for
q0 → 0. An analog process can be considered by replacing
the energy E insertion of the tail diagram with the angular
momentum L, which, however, comes with one gradient,
i.e., one power of q0 [see Eq. (1)], thus having no
divergence and producing a local result both in Fourier
and in direct space, as can be explicitly checked in
Ref. [29]; for this reason, it has been dubbed “failed”
angular momentum tail in Ref. [10].
Another qualitatively different process, the memory, can

be considered at OðGNÞ order. It can be obtained by
replacing the conserved quantity source insertion of the

tail diagram (E or L) with a time-dependent multipole I0 or
J0, giving rise to an amplitude of the type

AmemoryðωÞ

∝
Z

dω0

2π

Z
q

Iðω−ω0ÞI0ðω0Þ
½q2 − ðω−ω0 þ iaÞ2�½ðk− qÞ2 − ðω0 þ iaÞ2� ;

ð14Þ

which is not divergent but gives rise to a product of (Fourier
transformed) dynamical multipoles, which in direct space
involve a convolution in time [29]. In particular, the
contribution from Iðω − ω0ÞI0ðω0Þ for ω → 0 gives rise
to a nonvanishing zero-frequency effect, the memory
effect [7].

III. RESULTS FOR THE TAIL-OF-TAIL
PROCESS

We derive in this section the divergent and logarithmic
parts of the more challenging tail-of-tail contributions, at
second order in GNEω beyond leading order (equivalent to
relative 3PN for binary systems), which is where UV
divergences make their first appearance.
The tail-of-tail contribution to the radiative multipole

has been derived in detail in Ref. [36] and in Ref. [13] for
the electric quadrupole case only (terms E2 × Iij) within
EFT methods, which we generalize in this section to the
E2 × ðI; JÞ case, for electric and magnetic multipoles of
any order.
The tail-of-tail process receives contributions from three

different diagrams given in Fig. 3.
The diagrams in Figs. 3(a) and 3(b) can be computed

using standard integration techniques, bringing pure UV
divergences for any multipole, as described in Ref. [13] for
the quadrupole case, as can be shown as follows. After the
first loop integration over p, which can be performed via
the first equation in (A1), and after dropping the tensor
structure for clarity, one is left with an integral similar to the
tail one of Eq. (13):

(a) (b) (c)

FIG. 3. Feynman diagrams describing the tail-of-tail process. We label explicitly in the figure only the space components of the
momenta, the time component being ω, with ω2 ¼ k2 for wavy lines and vanishing for dashed straight lines.
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Aa;b−tail2 jdiv ∼
Z
q

1

½q2 − ðωþ iaÞ2�½ðk − qÞ2�m−d=2 ¼
Z
q0

1

½2k · q0 þ q02�½q02�m−d=2 ; ð15Þ

which, however, has the crucial difference from Eq. (13) of having m a positive integer, giving a half-integer exponent for
the q02 term, hence leading to a pure UV divergence, when combined with the q02 part of the ð2k · q0 þ q02Þ propagator, and
no IR divergence. As noted in Ref. [13], such diagrams correspond to the scattering of the emitted radiation with the 1=r2

relativistic correction to the static potential.
The diagrams in Figs. 3(a) and 3(b) give for the electric and magnetic case (see the Appendix for details)

iAðe;mÞ
a;b−tail2ðω;kÞ ≃ iAðe;mÞ

r0 ðω;kÞðGNEωÞ2
�
−
ðωþ iaÞ2

μ̃2

�
ϵUV

�
αðe;mÞ
a;b ðrÞ
ϵUV

þOðϵ0Þ
�
; ð16Þ

αðeÞa ðrÞ≡ 2r3 þ 3r2 − rþ 1

ð2r − 1Þð2rþ 1Þð2rþ 3Þð2rþ 5Þ ; ð17Þ

αðeÞb ðrÞ≡ −2
ð16r3 þ 56r2 þ 24r − 31Þ

ð2r − 1Þð2rþ 1Þð2rþ 3Þð2rþ 5Þ ; ð18Þ

αðmÞ
a ðrÞ≡ 2r3 þ 11r2 þ 21rþ 17

ð2rþ 1Þð2rþ 3Þð2rþ 5Þð2rþ 7Þ ; ð19Þ

αðmÞ
b ðrÞ≡ −2

ð16r3 þ 104r2 þ 187r − 74Þ
ð2rþ 1Þð2rþ 3Þð2rþ 5Þð2rþ 7Þ : ð20Þ

For the more intricate diagram in Fig. 3(c), which can be decomposed in terms of the same master integrals (A1), we
report its amplitude before integration, split in terms of the gravitational polarization propagating in the internal wavy lines
of the diagram in Fig. 3(c) ðω2 ¼ k2Þ. For the electric case, one has

iAðeÞ
c ðω;kÞ ¼ ð−iÞrþ1

�
−
E2cðIÞr

4Λ5

�
ω2Iiji1…irðωÞ

×
Z
p;q

qi1…qir
½q2 − ðωþ iaÞ2�½p2 − ðωþ iaÞ2�ðp − qÞ2ðp − kÞ2

× σ�abðω;kÞ
�
−
1

2
ω4δiaδjb fσ2g

þ ω2½qaqj − 2paqj þ papj�δib fAσg

−
1

cd
qiqjpapb fϕ2g

þ 1

cd
qi½qjqa − 2qjpa þ pjpa�pb fϕAg

þ 1

cd
½ðq − pÞipjpapb − qiqjðq − pÞaqb� fϕσg

þ qi½qjpb − qbpj þ ðp · qÞδbj�pa fA2g
�

ð21Þ

≃iAðeÞ
r0 ðω;kÞðGNEωÞ2

�
−
ðωþ iaÞ2

μ̃2

�
ϵ
�
−

2

ϵ2IR
þ αðeÞc ðrÞ

ϵ

�
;

αðeÞc ðrÞ≡ 2

�
ðrþ 1Þ 128r

6 þ 1728r5 þ 8968r4 þ 21490r3 þ 20607r2 − 1228r − 8628

ðrþ 2Þðrþ 3Þðrþ 4Þð2r − 1Þð2rþ 1Þð2rþ 3Þð2rþ 5Þð2rþ 7Þ þ 2Hr

�
; ð22Þ

and for the magnetic case:
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iAðmÞ
c ðω;kÞ ¼ ð−iÞrþ1

�
E2cðJÞr

8Λ5

�
ωϵiklJjki1…irðωÞ

×
Z
p;q

qlqi1…qir
½q2 − ðωþ iaÞ2�½p2 − ðωþ iaÞ2�ðp − qÞ2ðp − kÞ2

× σ�abðω;kÞ
�
þω4δiaδjb fσ2g

þ ω2½ðq − pÞjpaδib − pipaδjb − qjðq − pÞaδib� fAσg

−
1

cd
½piðq − pÞj þ pjðq − pÞi�papb fϕσg

−
1

cd
qjpipapb fAϕg

− qjpa½ðp · qÞδbi − piqb� fA2g
�

≃ iAðmÞ
r0 ðω;kÞðGNEωÞ2

�
−
ðωþ iaÞ2

μ̃2

�
ϵ
�
−

2

ϵ2IR
þ αðmÞ

c ðrÞ
ϵ

�
;

αðmÞ
c ðrÞ≡ 4

�
32r6 þ 448r5 þ 2396r4 þ 6268r3 þ 8433r2 þ 5430rþ 1269

ðrþ 2Þðrþ 3Þð2rþ 1Þð2rþ 3Þð2rþ 5Þð2rþ 7Þð2rþ 9Þ þHrþ1

�
: ð23Þ

While leaving the details of the computation to the
Appendix, we highlight that, contrarily to the single pole
that contains both UV and IR divergences, the double pole
(due uniquely to the fσ2g contribution) is purely IR and
universal, as expected from the exponentiation of the
simple tail IR divergence. Indeed, expanding the divergent
phase at order ðGNEωÞ2, one obtains schematically

eiGNEωð 2
ϵIR

−2ρðe;mÞÞ ≃ 1þ iGNEω

�
2

ϵIR
− 2ρðe;mÞ

�

− ðGNEωÞ2
�

2

ϵ2IR
−
4ρðe;mÞ

ϵIR
þOðϵ0IRÞ

�

þOððGNEωÞ3Þ; ð24Þ
i.e., the knowledge of the Oðϵ0IRÞ tail term, in Eq. (24)
indicated generically with ρðe;mÞ in the term linear in
GNEω, allows one to isolate the simple pole IR divergence
of the tail-of-tail process (quadratic piece inGNEω), which,
in turn, can be subtracted from Eqs. (21) and (23) to finally
identify the UV one.

IV. SUMMARY AND DISCUSSION

The general structure of the emission amplitude, includ-
ing post-Minkowskian multipolar corrections, is

iAðω;kÞ ¼ ei
ϕIRðωÞ
ϵIR

X
r

ð−iÞrþ1

2Λ
σ�ijðω;kÞki1…kir

× ½crðIÞω2Iiji1…ir
rad ðωÞ þ cðJÞr ωϵiklklJ

jki1…ir
rad ðωÞ�;

ð25Þ

where ðI; JÞjki1���irrad are the so-called radiative multipoles and

ϕIRðωÞ≡ 2GNEω

�
ω2

μ̃2

�
ϵIR=2 ð26Þ

is the coefficient of the IR pole, which is, however,
unobservable, because it represents a global phase shift
common to every multipolar contribution of the emission
amplitude. Likewise unobservable is the logarithmic term
generated in ϕIR=ϵIR at ϵ0IR order.
Differently from IR divergences, UV ones make their

first appearance at second PM order and have an important
physical interpretation, as they signal the breakdown of the
point particle approximation for the composite object and
must be regularized. Applying standard regularization and
renormalization procedures, one can obtain physical results
from our UV-divergent amplitude. Note that, while such
procedures have been first developed and are routinely used
in quantum field theory, they can be also applied here to our
completely classical setting, as they depend on the field
theory nature of the problem.
The divergence can be absorbed in the definition of the

(divergent) bare source multipoles ðI; JÞiji1…ir
B , related to

the renormalized, finite source multipoles ðI; JÞiji1…ir
R by a

divergent factor:

Iiji1…ir
B ðωÞ ¼

�
1 −

βðeÞðrÞ
2ϵUV

ðGNEωÞ2
�
Iiji1…ir
R ðω; μÞ ð27Þ

and analogously for the magnetic multipoles. From the
calculation of the previous section, we found

GRAVITATIONAL MULTIPOLE RENORMALIZATION PHYS. REV. D 104, 084095 (2021)

084095-7



βðeÞðrÞ≡ 2ðαðeÞa þ αðeÞb þ αðeÞc − 4κrþ2Þ ¼ −2
15r4 þ 150r3 þ 568r2 þ 965rþ 642

ðrþ 2Þðrþ 3Þð2rþ 3Þð2rþ 5Þð2rþ 7Þ ; ð28Þ

βðmÞðrÞ≡ 2ðαðmÞ
a þ αðmÞ

b þ αðmÞ
c − 4πrþ2Þ

¼ −2
60r6 þ 900r5 þ 5535r4 þ 17306r3 þ 28228r2 þ 22101rþ 5778

ðrþ 2Þðrþ 3Þð2rþ 1Þð2rþ 3Þð2rþ 5Þð2rþ 7Þð2rþ 9Þ ; ð29Þ

where the electric coefficients βðeÞðrÞ have been first determined in Ref. [8] and we have computed in this work for the first
time the expression for the magnetic ones βðmÞðrÞ.
Substituting for ðI; JÞ in the amplitudes of the previous section the bare source multipoles ðI; JÞB expression (27), one

finds finite expressions for the amplitudes in terms of the renormalized multipoles. Hence, up to the second post-
Minkowskian order, radiative multipoles entering the physical amplitude (25) can be related to renormalized source
multipoles via

Iiji1…ir
rad ðωÞ ≃ Iiji1…ir

R ðω; μÞe−2iGNEωκrþ2

×

�
1þ πGN jωjEþ βðeÞðrÞ

2
ðGNEωÞ2

�
log

ω2

μ̃2
þOðϵ0Þ

��
ð30Þ

and analogously for the magnetic case. In this renormal-
ization procedure, which relies on large-scale physics and
does not depend on the specific UV structure of the system,
the finite Oðϵ0Þ contribution is left undetermined and must
be fixed by comparison with observations or a fine-grained
description of the source.
The leading-order (real) tail correction πGNEjωj is

multipole independent and is generated by the imaginary
part of the ϵ−1IR ð−ðωþ iaÞ2ÞϵIR term, which is finite for
ϵIR → 0, as derived in Sec. II B. At the same post-
Minkowskian order of the leading tail, there are further
finite contributions, not displayed in Eq. (30), coming from
the angular momentum (failed) tail and the memory effect,
which for compact binaries are suppressed with respect to
the leading order in the post-Newtonian expansion by a
factor of v2. The expression of such terms in the time
domain can be found in Ref. [17] for the first multipoles
(r ¼ 0, 1). As to the finite phases proportional to κrþ2 and
πrþ2, they are, in principle, observable as discussed in the
introduction, because they are not universal.
Note that, as the physical emission amplitude is directly

related to the radiative multipoles ðI; JÞrad and cannot
depend on the arbitrary renormalization scale μ, the
renormalized multipoles must acquire at 2PM order a μ
dependence to compensate the explicit dependence on μ of
the expression (30), hence the argument μ added to ðI; JÞR
already in Eq. (27).
This leads to the renormalization group equation

dIiji1…ir
R ðω; μÞ
d log μ

¼ βðeÞðrÞðGNEωÞ2Iiji1…ir
R ðω; μÞ; ð31Þ

which is solved by [13]

Iiji1…ir
R ðω; μÞ ¼

�
μ

μ0

�
βðeÞðrÞðGNEωÞ2

Iiji1…ir
R ðω; μ0Þ ð32Þ

and analogously for the magnetic multipoles Jiji1…ir
R ðω; μÞ.

The above equationsmakemanifest the role of βðe;mÞðrÞ as
beta functions controlling the running of the radiative
multipoles. The renormalization group equation of the
electric quadrupole [21] has been used to resum an infinite
series of leading logarithmic terms in the gauge-invariant
expression for energy and angular momentum of compact
binaries. While the phenomenological impact for gravita-
tional waveforms is expected to be modest (we remind that
the lowest-order UV logarithms enter thewaveform is 3PN),
with the beta functions known at all multipole orders it is
possible to compute the leading logarithmic terms in the
energy, which are of the type ðM2 logÞn × ðdnþ2IL=dtnþ2Þ2,
at subleading PN orders. This allows the possibility of
additional, highly nontrivial checks with the PN-expanded
version of extreme mass ratio results, in analogy to what is
done in Ref. [21] at leading PN order, where terms given in
Ref. [37] for n ≤ 7 (contributing to the energy of circular
orbit up to 22PN order) could be explicitly checked.
Knowledge of all the beta functions allows for an

extension of this approach. In particular, before the present
work, only the first magnetic coefficient βðmÞð0Þ coefficient
was known and found to be equal to the electric one;
according to our finding, this equality is accidental and
does not hold for other multipoles.
In the case of compact binaries, alternatively to the

universal renormalization procedure, one can exploit the
explicit knowledge of the system at small scales, as has
been done in the 4PN study of the conservative sector [25],
to cancel the UV divergence from the multipolar dynamics
(also called the far zone) with an IR divergence coming
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from the PN-expanded dynamics of individual binary
components interacting via the exchange of longitudinal
gravitational modes (the near zone). In this case, the
cancellation should come from the explicit determination
of the sourcemultipoles in terms of the binary constituents’
variables at 3PN order, as preliminary confirmed by
Ref. [38], and the previously undetermined Oðϵ0Þ term
appearing in Eq. (30) is expected to be unambiguously
predicted in terms of the UV details of the system.
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APPENDIX: USEFUL INTEGRALS

All integrals involved in tail diagram computations, as
well as in amplitudes (a) and (b) of the tail-of-tail process,
can be derived (eventually after iteration) from the follow-
ing standard one-loop scalar master integrals:

JabðqÞ≡
Z
p

1

p2aðp − qÞ2b ¼ ðq2Þd=2−a−b Γðaþ b − d=2ÞΓðd=2 − aÞΓðd=2 − bÞ
ð4πÞd=2ΓðaÞΓðbÞΓðd − a − bÞ ;

IaðωÞ≡
Z
q

1

½ðk − qÞ2�a½q2 − ðωþ iaÞ2� ¼ ½−ðωþ iaÞ2�d=2−a−1 Γðaþ 1 − d=2ÞΓðd − 2a − 1Þ
ð4πÞd=2Γðd − a − 1Þ ; ðA1Þ

where in the Ia equation it is understood that k2 ¼ ω2. The eventual presence of tensorial structures at the numerator is
accounted by the usual scalarization procedure plus some combinatorics. For instance, borrowing notation from Ref. [39],

Z
q

qi1…qin
½ðk − qÞ2�a½q2 − ðωþ iaÞ2�b ¼

X½n=2�
m¼0

Sa;bðn;mÞ;

Sa;bðn;mÞ≡ ½−ðωþ iaÞ2�d=2−a−bþm

2mð4πÞd=2
Γðaþ b − d=2 −mÞΓðaþ n − 2mÞΓðdþ 2m − 2a − bÞ

ΓðaÞΓðbÞΓðdþ n − a − bÞ
× f½δ�m½k�n−2mgi1…in ; ðA2Þ

where f½δ�m½k�n−2mgi1…in is symmetric in its n indices, it involvesm Kronecker deltas and n − 2m occurrences of k vectors,
and ½n=2� is the integer part of n=2. To write the amplitude of the diagrams in Figs. 3(a) and 3(b), we preliminarily define

δ̃abcd ≡ δacδbd þ δadδbc −
2

d − 2
δabδcd; ðA3Þ

Dð1Þ
abcd ¼ δabδcd −

1

2
δacδbd; ðA4Þ

Dð2Þ
abcdef ¼

1

4
δabδceδdf þ

1

2
δcdδaeδbf − δacδbeδdf; ðA5Þ

Dð3Þ
abcdefmn ¼ −

1

4
δabδmnδceδdf −

1

2
δmnδcdδaeδbf þ δmnδacδbeδdf þ

1

2
δamδbnδceδdf

þDð1Þ
arbs × ðδrcδseδmfδnd − δrcδseδmdδnf þ δrmδseδcdδnf − δrcδsmδefδndÞ; ðA6Þ

Dð4Þ
abcdef ¼ 2δaeδbcδdf − δadδbeδcf − 2δafδbeδcd þ δafδbcδde: ðA7Þ

In the diagram in Fig. 3(a), the propagator labeled by q can carry a σ or an A polarization (the others are fixed, as only ϕ
couples to the conserved energy E), the two separate contributions being
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iAðeÞ
a;σðω;kÞ ¼ ð−iÞrþ1E2cðIÞr

16cdΛ5
ω2Iiji1…irðωÞ

Z
q

qi1…qir
ðk − qÞ2½q2 − ðωþ iaÞ2�

Z
p

1

ðp − qÞ2ðk − pÞ2

× ðp − qÞβðp − kÞδDð1Þ
αβγδ

× fDð2Þ
abcdefω

2δ̃abαγ½δicδjdσ�efðω;kÞ þ δieδjfσ
�
cdðω;kÞ�

þDð3Þ
abcdefmn½−δiaδjbððq − kÞmknδ̃cdαγσ�efðω;kÞ þ kmðq − kÞnδ̃efαγσ�cdðω;kÞÞ

þ δicδjdqmðδ̃abαγknσ�efðω;kÞ þ δ̃efαγðq − kÞnσ�abðω;kÞÞ
þ δieδjfqnðδ̃abαγkmσ�cdðω;kÞ þ δ̃cdαγðq − kÞmσ�abðω;kÞÞ�g ðA8Þ

and

iAðeÞ
a;Aðω;kÞ ¼

−ð−iÞrþ1E2cðIÞr

32cdΛ5
ω2Iiji1…irðωÞ

Z
q

qi1…qir
ðk − qÞ2½q2 − ðωþ iaÞ2�

Z
p

1

ðp − qÞ2ðk − pÞ2

×Dð1Þ
αβγδD

ð4Þ
abcdeiqj½ðp − qÞβðp − kÞδ þ ðp − qÞδðp − kÞβ�ðq − kÞcδ̃αγdeσ�abðω;kÞ: ðA9Þ

Similarly, for the magnetic case

iAðmÞ
a;σ ðω;kÞ ¼ ð−iÞrþ1E2cðJÞr

64cdΛ5
ωϵiklJjki1…irðωÞ

Z
q

qi1…qir
ðk − qÞ2½q2 − ðωþ iaÞ2�

Z
p

1

ðp − qÞ2ðk − pÞ2

×Dð1Þ
αβγδql½ðp − qÞβðp − kÞδ þ ðp − qÞδðp − kÞβ�

× fDð2Þ
abcdefω

2δ̃abαγ½δ̃ijcdσ�efðω;kÞ þ δ̃ijefσ
�
cdðω;kÞ�

þDð3Þ
abcdefmn½−δ̃ijabððq − kÞmknδ̃cdαγσ�efðω;kÞ þ kmðq − kÞnδ̃efαγσ�cdðω;kÞÞ

þ δ̃ijcdqmðδ̃abαγknσ�efðω;kÞ þ δ̃efαγðq − kÞnσ�abðω;kÞÞ
þ δ̃ijefqnðδ̃abαγkmσ�cdðω;kÞ þ δ̃cdαγðq − kÞmσ�abðω;kÞÞ�g ðA10Þ

and

iAðmÞ
a;Aðω;kÞ ¼

−ð−iÞrþ1E2cðJÞr

64cdΛ5
ωϵiklJjki1…irðωÞ

Z
q

qi1…qir
ðk − qÞ2½q2 − ðωþ iaÞ2�

Z
p

1

ðp − qÞ2ðk − pÞ2

×Dð1Þ
αβγδD

ð4Þ
abcdeiqlqj½ðp − qÞβðp − kÞδ þ ðp − qÞδðp − kÞβ�ðq − kÞcδ̃αγdeσ�abðω;kÞ: ðA11Þ

The calculation of the diagram in Fig. 3(b) is similar and gives

iAðeÞ
b ðω;kÞ ¼ ð−iÞrþ1

�
E2cðIÞr

16Λ5

�
Iiji1…irðωÞ

Z
q

qi1…qir
½q2 − ðωþ iaÞ2�

Z
p

1

ðp − qÞ2ðk − pÞ2

×

�
δibω

4 þ δib
ω2

cd
ðp − qÞ · ðp − kÞ − 4

cd
ω2ðp − qÞiðp − kÞb

�
σ�bjðω;kÞ; ðA12Þ

iAðmÞ
b ðω;kÞ ¼ ð−iÞrþ1

�
E2cðJÞr

16Λ5

�
ωϵiklJjki1…irðωÞ

Z
q

qi1…qir
½q2 − ðωþ iaÞ2�

Z
p

1

ðp − qÞ2ðk − pÞ2

× ql

�
ω2δaiδbj þ

1

cd
ðp − qÞ · ðp − kÞδaiδbj −

2

cd
ðp − qÞa½ðp − kÞiδbj þ ðp − kÞjδbi�

�
σ�abðω;kÞ: ðA13Þ
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Tail-of-tail amplitude (c) is more complicated, as it involves the following family of two-loop integrals (alwaysω2 ¼ k2):

Iin½a1; a2; a3; a4; a5�≡
Z
p;q

1

½q2 − ðωþ iaÞ2�a1 ½p2 − ðωþ iaÞ2�a2ðp − qÞ2a3ðp − kÞ2a4ðq − kÞ2a5 : ðA14Þ

The general expression is long and complicated; here, we focus only on the part which is singular in the d → 3 limit, which
is the relevant one in the renormalization procedure. Using the standard technique of integration by parts implemented by
the software Reduze [40], one can express the main scalar integral as

Iin½1; 1; 1; 1; 0� ¼
1

ω2

3d − 8

4ðd − 3Þ
Z
p;q

1

ðp2 − ðωþ iaÞ2Þðp − qÞ2ðp − kÞ2

þ 1

4ω4

d2 þ 4d − 4

ðd − 3Þ2
Z
p;q

1

ðq2 − ðωþ iaÞ2Þðp2 − ðωþ iaÞ2Þ : ðA15Þ

When reducing tensor integral to scalar ones, the following results are needed, for m; n ∈ N:

Iin½1; 1; 1; 1; 0� ≃ −½128π2ðωþ iaÞ2ϵ2�−1 þOðϵ0Þ;

Iin½1; 1; 1; 1;−n� ≃ −
½4ðωþ iaÞ2�n

n
1

128π2ðωþ iaÞ2ϵþOðϵ0Þ for n ≥ 1;

Iin½1;−m; 1; 1;−n� ≃ −
ð−1Þm½ðωþ iaÞ2�mþnΓðmþ 2nþ 1Þ

64π3=2ϵΓðnþ 1ÞΓðmþ nþ 3
2
Þ þOðϵ0Þ;

Iin½1; 1;−m; 1;−n� ≃ −
½4ðωþ iaÞ2�mþn

32π2ðmþ nþ 1ÞϵþOðϵ0Þ;

Iin½1; 1; 1;−m;−n� ≃ Iin½1; 1;−m; 1;−n� þOðϵ0Þ;
Iin½1; 1; 0; 0;−n� ≃Oðϵ0Þ: ðA16Þ

From there, one can compute the only unknown parameter involved in the following equation:

Z
p;q

qði1…irÞ
DðtailÞ2

≡
Z
p;q

qði1…irÞ
½q2 − ðωþ iaÞ2�½p2 − ðωþ iaÞ2�ðp − qÞ2ðp − kÞ2 ≃

Ar

ω2
kði1…irÞ; ðA17Þ

kði1…irÞ being (still following the notation of Ref. [39]) the symmetric traceless (STF) combination of ki ’s. In detail:

Ar

ω2
kði1…irÞ × ki1…kir ¼ ArCrðω2Þr−1 ¼

Z
p;q

qði1…irÞki1…kir
DðtailÞ2

¼
X½r2�
j¼0

br;jðω2Þj
Z
p;q

ðq2Þjðq · kÞr−2j
DðtailÞ2

¼ ðω2Þr
X½r2�
j¼0

Xr−2j
a1¼0

br;jð−2ω2Þ−a1
�
r − 2j
a1

�
Iin½1; 1; 1; 1;−a1�

≃ −
ðω2Þr−1Cr

128π2

�
1

ϵ2
−
2Hr

ϵ

�
; ðA18Þ

with Hr the harmonic number and

br;j ≡ r!
4jj!ðr − 2jÞ!ð2 − r − d=2Þj

; Cr ≡
X½r2�
i¼0

br;i ¼
Γðdþ r − 2Þ

ðd − 3Þ!!ðdþ 2r − 4Þ!! ;
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ðaÞb being the Pochhammer symbol. Moreover, one needs
to compute integrals like the one above, with the addition of
up to four pi’s and up to two extra qj’s (not involved in the
STF combination with the other qir’s), and this can be
achieved via a tedious but straightforward scalarization
procedure.
For instance, for one extra pi, one can write

Z
p;q

qði1…irÞpi

DðtailÞ2
¼ AðpÞ

r

ω2
kði1…irÞki þ BðpÞ

r δiði1ki2…irÞ; ðA19Þ

and two independent contractions are needed to solve the
linear system. One is the same as above, while another can
be obtained by contracting the index i with one of the STF
indices. The integrals are just slightly more complicated
with respect to the one needed in Eq. (A17). Adding extra
factors to the integrand does not introduce insurmountable
complications.
For one extra, non-STF, q factor, one can proceed in the

same way:

Z
p;q

qði1…irÞqj
DðtailÞ2

¼ AðqÞ
r

ω2
kði1…irÞkj þ BðqÞ

r δjði1ki2…irÞ ðA20Þ

and solve the associated linear system. Actually, by
noticing that

qði1…irÞqj ¼ qði1…irjÞ þ
r

dþ 2r − 2
q2δjði1qi2…irÞ; ðA21Þ

one can straightforwardly deriveZ
p;q

qði1…irÞqj
DðtailÞ2

¼
Z
p;q

qði1…irjÞ
DðtailÞ2

þ r
dþ 2r − 2

Z
p;q

q2
δjði1qi2…irÞ
DðtailÞ2

¼ Arþ1

ω2
kði1…irjÞ þ

r
dþ 2r − 2

Ar−1δjði1ki2…irÞ

¼ Arþ1

ω2
kði1…irÞj þ

r
dþ 2r − 2

½Ar−1 −Arþ1�δjði1ki2…irÞ:

ðA22Þ
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