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We investigate a particular regularization of big bang singularity, which remains within the domain
of 4-dimensional general relativity but allowing for degenerate metrics. We study the geodesics and
geodesic congruences in the modified Friedmann-Lemaitre-Robertson-Walker universe. In particular, we
calculate the expansion of timelike and null geodesic congruences. Based on these results, we also briefly
discuss the cosmological singularity theorems.
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I. INTRODUCTION

The expanding universe could be described by the
Friedmann solution [1,2] of Einsteins gravitational field
equation. However, this solution has a big bang singularity
with divergent energy density. Also, it possesses incom-
plete geodesics according to the Hawking and Hawking-
Penrose cosmological singularity theorems [3–5].
Recently, a particular regularization of the Friedmann

big bang singularity has been proposed by Klinkhamer in
Ref. [6]. This regularization is obtained within the realm
of four-dimensional general relativity but allowing for
degenerate metrics. The Friedmann big bang singularity
is replaced by a three-dimensional defect of spacetime with
topology R3. Physical quantities, such as matter energy
density and Ricci curvature scalar, are finite in the modified
Friedmann-Lemaitre-Robertson-Walker (FLRW) universe.
In fact, the regularized big bang singularity can give rise to
a nonsingular bouncing cosmology [7–9]. Potential exper-
imental signatures of the nonsingular bounce are discussed
by Klinkhamer and the present author [7]. Also, the work of
Ref. [8] has shown that the nonsingular bounce is stable
under linear cosmological perturbations of the metric and
matter. For more physical analysis of the nonsingular
bouncing cosmology, see Ref. [10].
The aim of the present paper is to study the geodesics and

geodesic congruences in the background of the modified
FLRW universe. In particular, we focus on the expansion of
geodesic congruence, which is divergent at the Friedmann
big bang singularity.
The outline of this paper is as follows. In Sec. II, we

review a particular regularization of the big bang singu-
larity and give the solution for cosmic scale factor in the
modified FLRW universe. In Sec. III, we study the geo-
desics in the modified FLRW universe and present the

solution for timelike geodesics. Subsequently, in Sec. IV,
we investigate three kinds of geodesic congruences.
Then, we discuss the Hawking and Hawking-Penrose
cosmological singularity theorems. A brief summary is
given in Sec. V.

II. REGULARIZED BIG BANG SINGULARITY

The particular regularization of the Friedmann big
bang singularity is based on the following Ansatz for
metric [6,7]:

ds2jRWK ≡ gμνðxÞdxμdxνjRWK

¼ −
T2

b2 þ T2
dT2 þ a2ðTÞδijdxidxj; ð2:1aÞ

b > 0; ð2:1bÞ

T ∈ ð−∞;∞Þ; ð2:1cÞ

xi ∈ ð−∞;∞Þ; ð2:1dÞ

where we set c ¼ 1 and let the spatial indices i, j run
over f1; 2; 3g.
In fact, (2.1a) is a modified version of the spatially flat

Robertson-Walker (RW) metric. First, it gives the standard
spatially flat RW metric when T ≠ 0 if b ¼ 0. Second,
for a nonvanishing parameter b [as required by (2.1b)], we
could define

tðTÞ ¼
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p
; for T ≥ 0;

− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p
; for T ≤ 0:

ð2:2Þ

Then, (2.1a) can be written in a standard spatially flat RW
metric form:*ziliang.wang@just.edu.cn
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ds2jRWK ¼ −dt2 þ ã2ðtÞδijdxidxj; ð2:3aÞ

t ∈ ð−∞;−b� ∪ ½b;þ∞Þ: ð2:3bÞ
Several remarks are in order. First, t, as a function of the

cosmic time T, is multivalued at T ¼ 0 (t ¼ −b and t ¼ b
correspond to the single point T ¼ 0), which leads to the
fact that the differential structure of the metric (2.1a) is
different from the one of the metric (2.3a). See Refs. [6,7]
for more related discussions.
Second, the metric from (2.1a) is degenerate: det gμν ¼ 0

at T ¼ 0, and the corresponding T ¼ 0 (t ¼ �b) spacetime
slice is a three-dimensional spacetime defect with charac-
teristic length b. The terminology “spacetime defect” is
chosen to emphasize the analogy with a defect in a crystal.
(Supposing that we cool a liquid rapidly, then the resulting
crystal might be imperfect, containing crystallographic
defects. In a similar way, a spacetime defect might be a
remnant when classical spacetime emerges from some form
of “quantum phase”.) See Refs. [6,11,12] for further
discussion on the spacetime defect and Ref. [13] for a
discussion on mathematical aspects of degenerate metrics.
Third, the coordinate t in (2.3a) is the proper time of

(future-directed) comoving observers. So, (2.2) also rep-
resents the relation between the coordinate T and the proper
time of comoving observers. We stress that the defect
mentioned in the second remark actually appears in the
direction of (proper) time. The possible origin of this defect
will be discussed in Sec. V. For a similar type but a space
defect, see Ref. [11] and references therein.
For convenience, we will call the modified spatially flat

RW metric as Robertson-Walker-Klinkhamer (RWK) met-
ric in the remainder of this paper. Similarly, the corre-
sponding modified FLRW universe will be called FLRWK
universe.
With the metric (2.1) and taking the energy-momentum

tensor of a homogeneous perfect fluid [with energy density
ρðTÞ, pressure PðTÞ, and a constant equation-of-state
parameter w], the Einstein equation leads to the following
modified spatially flat Friedmann equations:

�
1þ b2

T2

��
1

aðTÞ
daðTÞ
dT

�
2

¼ 8πGN

3
ρðTÞ; ð2:4aÞ

b2 þ T2

T2

�
1

aðTÞ
d2aðTÞ
dT2

þ 1

2

�
1

aðTÞ
daðTÞ
dT

�
2
�

−
b2

T3

1

aðTÞ
daðTÞ
dT

¼ −4πGNPðTÞ; ð2:4bÞ

d
da

ða3ρðaÞÞ þ 3a2P ¼ 0; ð2:4cÞ
PðTÞ
ρðTÞ ¼ w ¼ const; ð2:4dÞ

where GN is Newtons gravitational coupling constant.

The modified Friedmann equations (2.4a) and (2.4b) are
singular differential equations (the singularities appear at
T ¼ 0) but they have a nonsingular solution, which will be
given shortly. For comparison, remind that the standard
Friedmann equations are nonsingular differential equations
with a singular solution (the singularity is called the big bang
singularity.) For more discussions on the mathematical struc-
ture of the modified Friedmann equations, see Refs. [6,8].
In general, the solution for aðTÞ could be even or odd

in T [6]. The T-odd solution could be of interest for a
CPT-symmetric universe [14]. The T-even solution, with
positive definite cosmic scale factor, naturally gives a
nonsingular bouncing universe [7,8]. Energy density and
curvature scalars (Kretschmann curvature scalar and Ricci
curvature scalar) are found to be finite at T ¼ 0 [6–8] for
the FLRWK universe.
For a radiation-dominated universe (w ¼ 1=3) and a

matter-dominated universe (w ¼ 0), the T-even solutions
for aðTÞ read [6,7]

aðTÞjðw¼1=3Þ
FLRWK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

b2 þ T2
0

4

s
; ð2:5aÞ

aðTÞjðw¼0Þ
FLRWK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

b2 þ T2
0

3

s
; ð2:5bÞ

with normalization aðT0Þ ¼ 1 for T0 > 0.
The odd solutions for aðTÞ are given by the right-hand side

of (2.5) for T > 0 and the samewith an overall minus sign for
T < 0. The focus of this paper is on the T-even solutions, but
wewill see that the conclusions based on theT-even solutions
also apply to the T-odd solutions for aðTÞ.

III. GEODESICS IN THE FLRWK UNIVERSE

At the beginning of this section, we will show that, for
the RWK metric (2.1), timelike and null geodesics are all
straight lines. Specifically, particles will travel on straight
lines in the coordinate system fx0 ≡ T; x1; x2; x3g.
Notice that the geodesic equation can be written as

dUρ

dλ
−
1

2

∂gνβ
∂xρ UνUβ ¼ 0; ð3:1Þ

with λ being the proper time for massive particle or the
affine parameter for massless particle. (Note that the proper
time for a massless particle is not well defined; the
parameter λ should be understood as the time told by
some other freely falling clock.)
Uμ in (3.1) is defined by

Uμ ≡ dxμ

dλ
; ð3:2Þ

which is the four-velocity vector for a massive particle or
energy-momentum four-vector for a massless particle.
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Recall that

g00 ¼
−T2

T2 þ b2
; ð3:3aÞ

gij ¼ a2ðTÞδij; ð3:3bÞ
which are independent of spatial coordinates.
With (3.3), we could obtain from the geodesic equa-

tion (3.1) that

dUi

dλ
¼ 0; ð3:4Þ

i.e., spatial components of Uμ are constants along the
geodesic in the coordinate system fT; x1; x2; x3g. For
convenience, we write these constants as

U1 ≡ c1; U2 ≡ c2; U3 ≡ c3: ð3:5Þ

From the definition of Ui, we have

dx1

dλ
¼ c1

a2ðTÞ ; ð3:6aÞ

dx2

dλ
¼ c2

a2ðTÞ ; ð3:6bÞ

dx3

dλ
¼ c3

a2ðTÞ ; ð3:6cÞ

from which we can get

dxi

dxj
¼ dxi=dλ

dxj=dλ
¼ ci

cj
: ð3:7Þ

From (3.7), we could obtain the following parametric
representation of a straight line in 3-space

x1 ¼ x1; ð3:8aÞ

x2 ¼ c2
c1

x1 þ b2; ð3:8bÞ

x2 ¼ c3
c1

x1 þ b3; ð3:8cÞ

with x1 being the parameter and b2;3 real constants.
Since particles travel on straight lines in the coordinate

system fT; x1; x2; x3g, without loss of generality, we can
consider geodesics that start at T ¼ T1 < 0 and end at
T ¼ T0 > 0, while moving in the x1 ≡ X direction. So, we
take c2 ¼ c3 ¼ 0 and c1 > 0 in (3.5).
Notice that

dX
dT

¼ dX=dλ
dT=dλ

¼ U1

U0
; ð3:9Þ

and the normalization

gμνUμUν ¼ N; ð3:10Þ
with N ¼ 0 for massless particles and N ¼ −1 for massive
particles. Then, we have

ðU0Þ2 ¼
�
−N þ c21

a2

�
b2 þ T2

T2
: ð3:11Þ

Taking into account (3.11), (3.9) gives

dX ¼ c1=a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−N þ c21=a

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

b2 þ T2

s
dT: ð3:12Þ

For null geodesic N ¼ 0, (3.12) reduces to

dX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2

a2ðTÞðb2 þ T2Þ

s
dT; ð3:13Þ

which agrees with Eq. (3.1) in Ref. [7]. The solution for
null geodesics has been derived in Ref. [7], so we will focus
on timelike geodesics.
For radiation-dominated universe, the T-even solution

for aðTÞ is given by (2.5a) (Remark that, since (3.13)
depends on a2ðTÞ, the solution for XðTÞ will be the same
for T-odd and T-even solution of aðTÞ.) In this case, the
solution for timelike geodesics is as follows:

XðTÞ ¼

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

þ2c1FðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þT2

b2þT2
0

q
þc2

1

r
ffiffiffiffiffiffiffiffi

1

b2þT2

p
ðb2þT2

b2þT2
0

Þ3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
1ffiffiffiffiffiffiffiffi

b2þT2

b2þT2
0

q þ1

s þ c4; for T > 0;

−2c1FðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þT2

b2þT2
0

q
þc2

1

r
ffiffiffiffiffiffiffiffi

1

b2þT2

p
ðb2þT2

b2þT2
0

Þ3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
1ffiffiffiffiffiffiffiffi

b2þT2

b2þT2
0

q þ1

s þ c5; for T ≤ 0;

ð3:14Þ
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where

FðTÞ ¼ tanh−1

0
BB@

ffiffiffiffiffiffiffiffiffiffi
b2þT2

b2þT2
0

4

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2þT2

b2þT2
0

q
þ c21

r
1
CCA: ð3:15Þ

In (3.14), c4 is an arbitrary real constant and

c5 ¼ 4b
c1Fð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

b2þT2
0

q
þ c21

r

ð b2

b2þT2
0

Þ3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
1ffiffiffiffiffiffiffiffi
b2

b2þT2
0

q þ 1

s þ c4: ð3:16Þ

A plot of timelike geodesic is given in Fig. 1.
We conclude that particles can travel from the prebounce

phase to the postbounce phase which generalizes the
conclusion in Sec. III.A of Ref. [7].

IV. GEODESIC CONGRUENCES
IN THE FLRWK UNIVERSE

In this section, we will study timelike and null geodesic
congruences in the FLRWK universe and discuss the
Hawking and Penrose singularity theorems.

A. Timelike geodesic congruences

Let us start with some definitions. Consider a spacetime
manifold (M; gμν) and an open subset O ⊂ M. A geodesic
congruence in O is a family of curves such that each point
in O lies on one and only one geodesic of this family [15].
Now, let ξμ be the tangent vector field of a geodesic

congruence. Then, the behavior of the congruence can be
described by the expansion θ, the shear σμν and the
twist ωμν. For timelike geodesic congruences, they are
defined as [15]

θ≡ Bμνhμν; ð4:1aÞ

σμν ≡ 1

2
ðBμν þ BνμÞ −

1

3
θhμν; ð4:1bÞ

ωμν ≡ 1

2
ðBμν − BνμÞ; ð4:1cÞ

where

Bμν ≡∇νξμ; ð4:2aÞ

hμν ≡ gμν þ ξμξν: ð4:2bÞ

Since Bμν is “spatial,” i.e.,

Bμνξ
μ ¼ Bμνξ

ν ¼ 0; ð4:3Þ

we have

θ ¼ Bμνgμν ¼ ∇μξ
μ: ð4:4Þ

In a geodesic congruence, θ measures the expansion of
nearby geodesics, i.e., θ > 0 means that the geodesics are
diverging and θ < 0 means the geodesics are converging.
σμν measures the shear and ωμν measure the rotation of
nearby geodesics.
Let us return to the FLRWK universe. The nonvanishing

Christoffel symbols from the metric (2.1) are given by

Γ0
00 ¼

b2

TðT2 þ b2Þ ; ð4:5aÞ

Γ0
ij ¼

b2 þ T2

T2
a _aδij; ð4:5bÞ

Γ0
0j ¼

_a
a
δij; ð4:5cÞ

where the overdot stands for differentiation with respect
to T.
Now, we are able to study the geodesic congruences.

1. Timelike geodesic congruences: Case one

We start with the simplest case. Consider the geodesics
given by the world lines of all comoving observers in the
FLRWK universe. A family of these curves is, of course, a
congruence of timelike geodesics.
The vector field ξμ tangent to the congruence is as

follows:

ξ0ðTÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

T2

r
; ð4:6aÞ

ξi ¼ 0: ð4:6bÞ

FIG. 1. Timelike geodesic (3.14) with b ¼ 1, T0 ¼ 4
ffiffiffi
5

p
,

c1 ¼ 1, and c4 ¼ −18 tanh−1ð1= ffiffiffiffiffi
10

p Þ ¼ −c5.
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We emphasize that ξμ is opposite to the four-velocity of the
comoving observers, as we are interested in the past-
directed geodesic congruence.
Notice that, in this situation, Bμν is equal to the extrinsic

curvature of the constant − T hypersurface and hμν is the
induced metric of that hypersurface.
The nonvanishing components of Bμν and hμν are as

follows:

BijðTÞ ¼ −a _a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

T2

r
δij; ð4:7aÞ

hijðTÞ ¼ gij; ð4:7bÞ

from which we can obtain

θðTÞ ¼ −3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

T2

r
_a
a
; ð4:8aÞ

σμν ¼ 0; ð4:8bÞ

ωμν ¼ 0; ð4:8cÞ

where the overdot stands again for differentiation with
respect to T. Remark that, for T-odd and T-even solutions
of the cosmic scale factor, θðTÞ will be the same.
Even though the shear and twist are vanishing for the

particular congruence discussed here, they can have non-
vanishing value for more general congruences. Still, these
two quantities are less interesting comparing with the
expansion. So, we will focus on the expansion of geodesic
congruences in the remainder of this paper.
For a radiation-dominated universe and a matter-

dominated universe, we have

BijðTÞjðcase1;w¼1=3Þ
FLRWK ¼ −

1

2

T=jTjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

0

p δij; ð4:9aÞ

BijðTÞjðcase1;w¼0Þ
FLRWK ¼−

2

3

T=jTj
ðb2þT2

0Þ2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þT26

p
δij; ð4:9bÞ

and expansion

θðTÞjðcase1;w¼1=3Þ
FLRWK ¼ −

3

2

T=jTjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p ; ð4:10aÞ

θðTÞjðcase1;w¼0Þ
FLRWK ¼ −2

T=jTjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p : ð4:10bÞ

Notice that, in both (4.10a) and (4.10b), the expansion θ are
negative for cosmic time T > 0.
With the solutions (4.9) and (4.10) in hand, we have four

remarks in order.

First, as we mentioned before, the extrinsic curvature on
the constant − T hypersurface is equal to Bμν, i.e.,

Kνμ ¼ Bμν: ð4:11Þ

And the expansion of the timelike geodesic congruence is
equal to the trace of the extrinsic curvature on the
constant − T hypersurface, i.e.,

KðTÞ≡ Kμνhμν ¼ θðTÞ: ð4:12Þ

Second, for the FLRWK universe (b ≠ 0), the expansion
and the extrinsic curvature on constant − T hypersurface
are both discontinuous at T ¼ 0. The discontinuities are a
direct manifestation of the spacetime defect.
Third, the expansion of the congruence for the standard

FLRW universe is given by (4.10) with b ¼ 0. Then, we
have θ → −∞ when T → 0þ. The singularity in the
expansion θ, which represents a singularity in the con-
gruence, plays an important role in the proofs of the
singularity theorems (see, e.g., Sec. IV of Ref. [15]).
Fourth, for the FLRWK universe (b ≠ 0), θðTÞ from

(4.10) is always finite. A finite θ is key for circumventing
singularity theorems. More discussion on the singularity
theorems will be given in Sec. IV C.
So far, we have studied the geodesic congruence of the

comoving observers in the FLRWK universe. Actually, the
conclusion, that the expansion θ has a finite discontinuity at
T ¼ 0, can still hold for more general timelike and null
geodesic congruences in the FLRWK universe.

2. Timelike geodesic congruences: Case two

Now, we consider a timelike geodesic congruence that
each geodesic in the congruence has c1 > 0 and
c2 ¼ c3 ¼ 0. In addition, all geodesics in the congruence
have the same value of c1.
The vector field ξμ tangent to the congruence is

ξ0ðTÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

T2

c21 þ a2

a2

s
; ð4:13aÞ

ξ1ðTÞ ¼ −
c1
a2

; ð4:13bÞ

ξ2 ¼ ξ3 ¼ 0: ð4:13cÞ

The nonvanishing components of Bμν are now given as
follows:

B00ðTÞ ¼ c21
_a
a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

T2 þ b2
a2

a2 þ c21

s
; ð4:14aÞ

B01ðTÞ ¼ B10ðTÞ ¼ c1
_a
a
; ð4:14bÞ
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BijðTÞ ¼ BjiðTÞ ¼ −δija _a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

T2

c21 þ a2

a2

s
: ð4:14cÞ

Then, we can get the expansion of the congruence

θðTÞ¼−
_a
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þT2

T2

r  
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21þa2

a2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

c21þa2

s !
; ð4:15Þ

which reduces to (4.8a) if c1 ¼ 0. Remark that, θðTÞwill be
the same for T-odd and T-even solutions of aðTÞ.
The positive c1 can be absorbed in the cosmic scale

factor by replacing aðTÞ=c1 by aðTÞ. Then (4.15) can be
written as

θðTÞ ¼ −
_a
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

T2

r  
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

a2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1þ a2

s !
; ð4:16Þ

For a radiation-dominated universe and a matter-
dominated universe, we have

θðTÞjðcase2;w¼1=3Þ
FLRWK ¼−

1

2

T=jTjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þT2

p
 
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þa2

a2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
a2

1þa2

s !
;

ð4:17aÞ

θðTÞjðcase2;w¼0Þ
FLRWK ¼−

2

3

T=jTjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þT2

p
 
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þa2

a2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
a2

1þa2

s !
;

ð4:17bÞ

where aðTÞ is given by (2.5a) and (2.5b), respectively. For
nonsingular bouncing cosmology, the factor

T=jTjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p ð4:18Þ

allows for the expansion θ with a finite discontinuity
at T ¼ 0.

B. Null geodesic congruences

Having discussed timelike geodesic congruence, we now
turn to null geodesic congruences.
For null geodesic congruences, we can still define Bμν as

Bμν ¼ ∇νkμ; ð4:19Þ

where kμ is the tangent null vector field. However, hμν is not
unique for a given null geodesic congruence. (For a
timelike geodesic congruence, hμν is unique once the
tangent vector is determined.) See Chapter 2.4 of [16]
for more discussion on null geodesic congruence.

Despite the nonuniqueness of hμν, it can be proved that
the expansion is still unique and given by [16]:

θðTÞ ¼ ∇μkμ: ð4:20Þ

Similar to the second case of timelike geodesic con-
gruence, we consider a null geodesic congruence that each
geodesic in the congruence has c1 > 0 and c2 ¼ c3 ¼ 0. In
addition, all geodesics in the congruence have the same
value of c1.
Then, we have

k0ðTÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

T2

c21
a2

s
; ð4:21aÞ

k1ðTÞ ¼ −
c1
a2

; ð4:21bÞ

k2 ¼ k3 ¼ 0: ð4:21cÞ

Remark that, for null geodesic, c1 cannot be 0.
For this null geodesic congruence, the expansion is

θðTÞ ¼ −2
_a
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

T2

c21
a2

s
; ð4:22Þ

which can be written as

θðTÞ ¼ −2
_a
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

T2

1

a2

s
ð4:23Þ

by rescaling the cosmic scale factor. Again, θðTÞ is
identical for T-odd and T-even solutions of the cosmic
scale factor.
For a radiation-dominated universe and a matter-

dominated universe, we have

θðTÞjðnull;w¼1=3Þ
FLRWK ¼ −

T=jTjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

0

b2 þ T2

4

s
; ð4:24aÞ

θðTÞjðnull;w¼0Þ
FLRWK ¼ −

4

3

T=jTjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

0

b2 þ T2

3

s
: ð4:24bÞ

The factor (4.18) appears again and the expansion θ for the
null geodesic congruence also has a finite discontinuity
at T ¼ 0.

C. Singularity theorems

According to the calculation on geodesic congruences in
Sec. IVA and IV B, there are now two scenarios:
(1) In the standard FLRW universe, the expansion θ are

singular at T ¼ 0. More precisely, θ → −∞ when
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T → 0þ. For the explicit expressions of θ, see (4.10),
(4.17) and (4.24) with b ¼ 0.

(2) In the FLRWK universe, the expansion θ are finite
but discontinuous at T ¼ 0 (See (4.10), (4.17) and
(4.24) with b ≠ 0.)

These two scenarios lead to different results with regard
to singularity theorems [3–5]. In order to make a concrete
comparison, we focus on the geodesic congruence of the
comoving observers in different scenarios.
Consider a given constant T ¼ T1 > 0 hypersurface. For

the first scenario, the “point T ¼ 0þ is conjugate to that
hypersurface (For a spacelike hypersurface Σ and a timelike
geodesic congruence orthogonal to Σ, the sufficient and
necessary condition for a point p to be conjugate to Σ is that
the expansion of the congruence must go to −∞ at point p.
See Chapter 9.3 of [15] for the proof of this statement.) In
general, the existence of conjugate points reveals the
existence of extreme length curves. In our case, the length
of the past-directed comoving observer’s curve from Σ
has an upper bound. For radiation-dominated universe, the
upper bound is −3=½2θðT1Þ� and for matter-dominated
universe, the upper bound is −2=θðT1Þ. So, we have
incomplete timelike geodesics, and the singularity theo-
rems cannot be avoided.
For the second scenario, the point conjugate to the

constant T1 hypersurface does not exist since the expansion
of the congruence is always finite. The length of the
past-directed comoving observer’s curve has no upper
bound. In this sense, the singularity theorem would be
circumvented.
It is well known that the Raychaudhuri equation is of

vital importance to singularity theorems. So let us now
discuss the Raychaudhuri equation in the background of
RWK metric. Considering the past-directed geodesic con-
gruence of the comoving observers, the Raychaudhuri
equation is given by [15]1

ξμ∇μθ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ b2

T2

r
dθ
dT

¼ −
1

3
θ2 − Rμνξ

μξν; ð4:25Þ

where Rμν is the Ricci tensor. For a perfect fluid, we have

Rμνξ
μξν ¼ 4πGNðρþ 3PÞ: ð4:26Þ

For the matter content which satisfies the strong energy
condition, Rμνξ

μξν is nonnegative. Moreover, for radiation-
dominated and matter-dominated universe, Rμνξ

μξν is pos-
itive and we could obtain from (4.25) that

dθ
dT

≥ 0; ð4:27Þ

for past-directed geodesic congruence. The analysis on
the Raychaudhuri equation agrees with our results in
Sec. IVA 1 (It can be checked that our solutions for θ,
i.e., (4.10), satisfy the Raychaudhuri equation.) Remark
that the expansion θ has continuous first-order derivative
at T ¼ 0 even though it is discontinuous at T ¼ 0.
The regularized-big-bang model we studied in this paper

obeys the standard Einstein equation but has a vanishing
determinant over the spacetime defect (mathematically, this
defect is a three-dimensional submanifold of the spacetime
manifold.) The existence of the spacetime defect with
degenerate metrics is the key assumption for the model
we studied in this paper. This assumption, of course, was
not included in the proving of the Hawking-Penrose
singularity theorems (Remind that the Hawking-Penrose
singularity theorems is based on Einstein’s general rela-
tivity, which assumes at the beginning that the determinant
of the metric vanishes nowhere. For a historical discussion
of standard general relativity, see Ref. [6].)
As the last part of this subsection, we would like to

compare the nonsingular bouncing cosmology (T-even
solution for the cosmic scale factor) discussed in this paper
with other bouncing cosmologies.
In the context of the standard general relativity, most

bouncing cosmologies [17] in the literature require a
violation of the strong energy condition. The violation
of the strong energy condition2 can also lead to a finite
expansion at the cosmic bounce and singularity theorems
are avoided.

V. CONCLUSIONS AND DISCUSSION

In the present paper, we have studied the geodesics and
geodesic congruences in a modified FLRW universe,
namely the FLRWK universe [6,7]. We showed that all
geodesics are straight lines in the RWKmetric, just as in the
standard RW metric. With this observation, we obtained
the solution for geodesics in the FLRWK universe. The
geodesic solution (Fig. 1) indicates that particles can travel
across the spacetime defect in the FLRWK universe
(Another example of particles crossing a spacetime defect
was studied in Ref. [19]. The Skyrmion spacetime defect
in that reference could bring about a new type of gravi-
tational lensing.)
The expansion of geodesic congruence can remain finite

at T ¼ 0 for the FLRWK universe, while it is divergent at
the big bang singularity for standard FLRW universe. For a
geodesic congruence which starts at postbounce phase and
goes back to the prebounce phase, a finite expansion along
geodesics indicates the nonexistence of conjugate points,
hence the length of the past-directed geodesic has no upper
bound. In this sense, geodesics are extensible in the past

1We thank the referee for emphasizing the Raychaudhuri
equation.

2The violation of strong energy condition may lead to
instabilities and problems, as regards microcausality [17,18].
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direction for the FLRWK universe and the big bang
singularity is regularized.
Along with this regularization of big bang singularity,

there is (finite) discontinuity at T ¼ 0 in the expansion of
geodesic congruence. Taking the geodesic congruence of
the comoving observers as an example, the changes in the
expansion at T ¼ 0 is given by 3=b for radiation-dominated
universe. This discontinuity is a key manifestation of the
three-dimensional spacetime defect with topology R3

(More observables that could reveal the presence of this
spacetime defect were discussed in Refs. [7,10].)
Based on the calculations in Sec. IV, a finite expansion

along the geodesics in the FLRWK universe may implies
the circumvention of Hawking and Hawking-Penrose
cosmological singularity theorems [3–5]. However, due
to the discontinuity in the expansion of geodesic congru-
ence at the spacetime defect, it would be more appropriate
to have the following interpretation: the singularity theo-
rems are still valid in the FLRWK universe but the
“singularity” of these theorems corresponds to a spacetime
defect with a local degenerate metric [20]. This interpre-
tation actually brings us to Hawking’s question on the
nature of the singularity [20]. We refer to the last paragraph
in Sec. 3.3 of Ref. [20] (and references therein) for a related
discussion on the nature of the singularity.

The main intriguing task for the particular regularization
of big bang singularity is to find the physical origin of the
spacetime defect, which is also a crucial step to understand
the nontrivial evolution of the geodesic congruences dis-
cussed in this paper. The spacetime defect with a degenerate
metric may trace back to the underlying (unknown) theory
of quantum spacetime. In loop quantum gravity [21,22],
there does exist something like a quantum of cosmic
time (cosmological evolution is discrete, see Sec. 8.1 of
Ref. [21]), but the validity of the theory has not yet been
established. It may very well be that the spacetime defect has
its origin in string theory. By comparing with string
cosmology, it was found in Ref. [12] that the length scale
of the spacetime defect could be related to the inverse of the
string tension and may have the order of the Planck length.
Moreover, recent research [23,24] on the large-N master
field of the IIB matrix model [25,26] (a model which has
been suggested as a formulation of nonperturbative type-IIB
superstring theory) has shown the possibility to have a
degenerate metric relevant to the regularized big bang.
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