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5Institut de Mathématiques de Bourgogne (IMB), UMR 5584, CNRS,
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Black hole spectroscopy is a powerful tool to probe the Kerr nature of astrophysical compact objects and
their environment. The observation of multiple ringdown modes in gravitational waveforms could soon
lead to high-precision gravitational spectroscopy, so it is critical to understand if the quasinormal mode
spectrum is stable against perturbations. It was recently shown that the pseudospectrum can shed light on
the spectral stability of black hole quasinormal modes. We study the pseudospectrum of Reissner-
Nordström spacetimes and we find a spectral instability of scalar and gravitoelectric quasinormal modes in
subextremal and extremal black holes, extending similar findings for the Schwarzschild spacetime. The
asymptotic structure of pseudospectral contour levels is the same for scalar and gravitoelectric
perturbations. By making different gauge choices in the hyperboloidal slicing of the spacetime, we find
that the broad features of the pseudospectra are remarkably gauge independent. The gravitational-led and
electromagnetic-led quasinormal modes of extremal Reissner-Nordström black holes exhibit “strong”
isospectrality: not only their spectrum coincides, but the whole pseudospectrum is the same for both classes
of perturbations. We observe that a conformal duality between the extremal horizon and spacetime
boundaries at infinity is responsible for such strong isospectrality property.
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I. INTRODUCTION

The observation of gravitational waves (GWs) from
compact binaries has become a primary avenue of scientific
exploration. A plethora of events have flooded ground-
based detectors, leading to the emergence of a novel era
of GW astronomy and black hole (BH) spectroscopy.
Systematic GW observations from LIGO and Virgo
[1,2], as well as future ground- and space-based interfer-
ometers [3–5], will improve our understanding of gravity in
the strong-field regime [6–8].
GWs carry pristine information on strong-field gravity

and in particular on compact objects and their environment.
According to uniqueness theorems in general relativity, the
merger of two isolated BHs eventually leads to a stationary
BH described by at most three parameters: mass, charge
(which is astrophysically expected to be negligible), and
angular momentum [9–12]. This state is approached via a
characteristic relaxation stage (the “ringdown”) of the final
distorted BH: the GW signal after coalescence is well
described by a superposition of exponentially damped

sinusoids. The oscillation frequencies and decay timescales
form a discrete set of complex numbers, the so-called
quasinormal mode (QNM) frequencies, which contain
specific information on the underlying geometry [13–15].
The relaxation (a consequence of the dissipative nature of
GWs) implies, mathematically, that QNMs are (generi-
cally) not a complete set. The timescales involved are
similar to the energy levels of atoms and molecules, and
they can reveal the structure of the compact object
producing the radiation [16–18].
The QNM spectrum of BHs in general relativity is well

understood [13–15,19], while the QNM content of the
signal generated by the coalescence of compact objects
(i.e., the relative amplitudes and phases of the modes) is
less understood, but there are good indications that several
modes—including higher overtones and different multipo-
lar components—are important to fully understand the
signal [17,19–21]. The analysis of recent GWevents shows
evidence for more than one mode, even at relatively low
signal-to-noise ratios [22,23]. Upgrades to the existing GW
facilities should lead to routine detections of BH ringdown
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signals with higher signal-to-noise ratios, heralding the new
field of BH spectroscopy [19,24–28].

A. Black hole quasinormal mode instability

To fully exploit the potential of BH spectroscopy we
must better understand the relative excitation of each QNM
[29], the sensitivity of the BH response to fluctuations close
to these resonances, and the possible instability of the
spectrum itself under small perturbations of the scattering
potentials. Because astrophysical BHs are not isolated, this
last question is of paramount importance. Early investiga-
tions found that BH QNMs are exponentially sensitive to
small perturbations, either due to (faraway or nearby)
matter [29–33] or due to variations in the boundary
conditions [28,34,35]. The pioneering work by Nollert
and Price [29,30] has been recently extended to more
general types of “ultraviolet” (small-scale) perturbations
[36–40]. Spectral instabilities are common to other dis-
sipative systems. A spectral analysis may be insufficient to
understand the response of systems affected by such
instabilities, requiring the development of alternative tools
[41,42].
Spectral instabilities can have important implications for

physical systems. This is well illustrated by the case of
hydrodynamics, where theoretical predictions of the onset
of turbulent flow based on eigenvalue analyses agree poorly
with experiments [43]. Similarly, the introduction of non-
Hermitian (non-self-adjoint) operators in PT-symmetric
quantum mechanics entails that the associated spectra
contain insufficient information to draw full, quantum-
mechanically relevant conclusions [44]. Most importantly,
one-dimensional wave equations with dissipative boundary
conditions—analogous to those that apply to perturbed
BHs in spherical symmetry—suffer from similar limita-
tions in their spectral predictions [45]. The common feature
among these different physical problems is their formu-
lation in terms of non-self-adjoint operators.
For self-adjoint operators, the spectral theorem underlies

the notion of normal modes (which provide an orthonormal
basis) and guarantees the stability of the eigenvalues under
perturbations. In other words, a small-scale perturbation to
the operator leads to spectral values migrating in the
complex plane within a region of size comparable to the
scale of the perturbation. In stark contrast, the lack of such a
theorem in the non-self-adjoint case entails, in general, the
loss of completeness in the set of eigenfunctions as well as
their orthogonality, possibly leading to spectral instabil-
ities. Thus, the eigenvalues may show a strong sensitivity to
small-scale perturbations. In these cases, the spectral points
migrate to an extent that is orders of magnitude larger than
the perturbation scale. This feature of non-self-adjoint
operators (more generally, non-normal operators) is called
spectral instability, and it is related to the loss of collinearity
of “left” (bra) and “right” (ket) eigenvectors corresponding
to a given eigenvalue.

B. Pseudospectrum and universality of
quasinormal modes

The pseudospectrum is the formal mathematical
concept capturing the extent to which systems controlled
by non-self-adjoint operators exhibit spectral instabilities.
Pseudospectral contour levels portray a “topographical
map” of spectral migration, identifying the region in the
complex plane where QNMs can migrate. Of particular
importance is the behavior of pseudospectral contour levels
at large real values of the QNM frequency: these are
intimately related with the notion of QNM-free regions,
namely the regions in the complex plane to where QNMs
cannot migrate. QNM-free regions of general scatterers
are known to belong to “universal” classes [46], whose
parameters are controlled by the qualitative properties of
the underlying system.
In the context of BH perturbation theory, Ref. [37]

presented a systematic framework to address BH QNM
instability based on the notion of pseudospectrum,
performing a comprehensive study of the Schwarzschild
case. These results indicate a direct connection between
the pseudospectral contour lines of the unperturbed
Schwarzschild potential and the open branches (called
“Nollert-Price” QNM branches in Ref. [37]) formed by
migrating perturbed QNM overtones, which resemble the
w-mode spectra of neutron stars [47,48]. Although QNMs
are in principle “free” to move above the QNM-free regions
bounded by the pseudospectral lines, the results in
Refs. [37,40] show that QNM frequencies typically
approach pseudospectral contours for perturbations of
sufficiently large wave number (i.e., probing small scales)
in patterns that seem independent of the detailed nature of
such ultraviolet perturbations. Besides being useful to
assess the spectral instability of BH QNMs, the universal
asymptotics of pseudospectral contour lines are then good
indicators of perturbed QNM branches, and therefore they
hint at a possible universality in the asymptotics of QNM
spectra of generic compact objects [37].
Another important property of BH QNM spectra is

isospectrality. This property is a delicate feature of specific
BH spacetimes [49–52] and it is absent, for example, in
compact stars. A better understanding of isospectrality
breaking can offer hints of possible universal features in
the QNM spectra of compact astrophysical objects. For
Schwarzschild BHs, Ref. [40] shows the existence of
different regimes of isospectrality loss in different types
of perturbed QNM branches. A systematic interpolation
between BHs and compact stars—in particular in terms of
inner boundary conditions: see e.g., the work of Ref. [53],
based on the membrane paradigm—can be used to improve
our understanding of QNM isospectrality.

C. The Reissner-Nordström spacetime

In this paper we study the pseudospectrum of Reissner-
Nordström (RN) BHs with mass M and charge Q. As the
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closest nontrivial extension of Schwarzschild, the RN
spacetime provides a well-controlled model to systemati-
cally extend the exploration of universality properties of
BH pseudospectra initiated in Refs. [37,40], as well as
inquiring into the proposed possible connection with the
QNMs of generic compact objects. Indeed, the possibility
of varying a parameter in a whole family of potentials
permits one to test the universality hypotheses in a well-
defined setting: if BH QNM universality, controlled by
asymptotically similar pseudospectra, is violated in this
simple case, this probably rules out universality in realistic
settings where matter plays a role.
From a technical perspective, the RN solution allows us

to test a geometrical aspect of universality, namely its
“spacetime slicing” independence. In our approach, the
calculation of BH pseudospectra relies on the so-called
hyperboloidal framework [37,54–59], where the dissipative
boundary conditions at the BH horizon and in the wave
zone are geometrically incorporated into the problem via a
choice of constant-time slices intersecting future null
infinity Iþ and the BH horizon Hþ. The hyperboloidal
framework can be implemented using different slices,
raising the question of the possible (gauge) dependence
of the pseudospectrum on the adopted coordinates.
The explicit construction of two independent coordinate
systems for the RN spacetime [57], reviewed in
Sec. II B, shows that different gauges yield consistent
results, giving strong support to the geometrical nature
of the pseudospectrum.
Finally, RN has features that are absent in the

Schwarzschild case, such as the appearance of a family
of near-extremal, long-lived modes in the extremal limit
Q → M [60–63]. These zero-quality factor modes can
dominate the BH response to perturbations. Extremal
RN geometries are marginally stable under neutral massless
scalar perturbations [64,65] and they can develop local
horizon hair [66]. Moreover, gravitational-led QNMs with
angular index l coincide with electromagnetic-led QNMs
with angular index l − 1 in the extremal limit [67–70],
providing an intriguing testing ground for pseudospectral
calculations that probe the near-resonance region. We will
show that this symmetry is not broken away from the
resonances.

II. REISSNER-NORDSTRÖM PERTURBATIONS IN
THE HYPERBOLOIDAL FRAMEWORK

We are interested in static, spherically symmetric space-
times described by the line element

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð1Þ

where t ¼ const slices correspond to Cauchy surfaces
which intersect the horizon bifurcation sphere and spatial
infinity i0. For charged BH spacetimes, described by the
RN geometry, the (square of the) lapse function fðrÞ is

fðrÞ ¼ 1 −
2M
r

þQ2

r2
¼

�
1 −

rþ
r

��
1 −

r−
r

�
; ð2Þ

where M and Q are the BH mass and electric charge,
respectively, while r ¼ r− and r ¼ rþ are the Cauchy and
event horizon radii, respectively, such that fðr�Þ ¼ 0. The
horizons of RN geometries are explicitly given by

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð3Þ

It is convenient to introduce a tortoise coordinate such that
r� ∈� −∞;þ∞½ and dr�=dr ¼ 1=fðrÞ. Explicitly, the tor-
toise coordinate reads

r�
rþ

¼ r
rþ

þ 1

1 − κ2

�
ln

�
r
rþ

− 1

�
− κ4 ln

�
r
rþ

− κ2
��

; ð4Þ

where1 κ ≡Q=rþ ∈ ½−1; 1�. In particular, the asymptotic
regions in the BH exterior correspond to r ¼ rþ
(r� → −∞) and r → þ∞ (r� → þ∞).
From Eq. (3) we have Q2 ¼ rþr−, 2M ¼ rþ þ r−, and

therefore

κ2 ¼ r−
rþ

;
M
rþ

¼ 1þ κ2

2
: ð5Þ

We can express κ in terms of the more common dimension-
less charge parameter Q=M as

κ ¼ Q=M

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðQ=MÞ2

p : ð6Þ

A. Perturbations of charged black holes

The dynamics of scalar, electromagnetic and gravita-
tional fields in the RN background is described by a
second-order partial differential (wave) equation of the
form

� ∂2

∂t2 −
∂2

∂r2� þ V

�
ϕ ¼ 0: ð7Þ

Here, ϕ is a master wave function, which is a combination
of the fundamental perturbed quantities. The effective
potential V depends on the nature of the field. We focus
here on scalar fields and on (polar) gravitoelectric fluctua-
tions. The effective potential for such perturbations can be
written in the compact form [14,49,57,71–73]

1Note that Ref. [57] used a different definition for κ. One must
replace κ → κ2 when comparing expressions from Ref. [57] with
the ones presented here.
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V ¼ fðrÞ
r2

�
lðlþ 1Þ þ rþ

r

�
μ − κ2ν

rþ
r

��
; ð8Þ

with

ν ¼ 3np − 1; μ ¼ npð1þ κ2Þ − ð1 − npÞm�;

m� ¼ 1þ κ2

4

�
1� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4κ2A

ð1þ κ2Þ2

s �
;

A ¼ 4

9
ðlþ 2Þðl − 1Þ; ð9Þ

where l is the angular index of the perturbation. In the
above parametrization, scalar perturbations are recovered
for np ¼ 1, whereas electromagnetic-led ðm−Þ and gravi-
tational-led ðmþÞ perturbations (which reduce to electro-
magnetic and gravitational perturbations of Schwarzschild
BHs in the uncharged limit) are recovered for np ¼ −1.

B. The hyperboloidal framework

To study BH resonances and pseudospectra, we adopt an
approach in which the relevant wavelike operators are
considered on a compact spatial domain. The hyperboloidal
approach provides a geometric framework to compactify
the wave equation along spatial directions and, in particu-
lar, study QNMs. The advantage of this scheme lies in the
fact that the outgoing boundary conditions at the event
horizon and infinity, which are fundamental for dissipative
systems like BHs, are geometrically imposed by shifting
the Cauchy slice Σt appropriately so that it intersects future
null infinity Iþ and the BH event horizon Hþ. In what
follows, we summarize the basic ingredients of this
framework (see also Refs. [37,54–59] and references
therein; in particular, Ref. [57] gives more details on the
hyperboloidal framework in the RN spacetime employed in
this work).
A practical way to introduce the hyperboloidal approach

follows from the coordinate transformation

t
λ
¼ τ − hðσÞ; r�

λ
¼ gðσÞ; ð10Þ

with λ an appropriate length scale. The so-called height
function [54,55] hðσÞ “bends” the original Cauchy slice Σt
so that τ ¼ const corresponds to hypersurfaces Στ which
penetrate the BH horizon and intersect null infinity. The
function gðσÞ introduces a spatial compactification from
r� ∈ � −∞;∞½ to a bounded interval σ ∈ ½0; 1�. The wave
zone is now explicitly included in the domain, with σ ¼ 0
and σ ¼ 1 representing future null infinity and the BH
horizon, respectively.
Upon the hyperboloidal coordinate transformation (10),

a conformal rescaling of the line element (1) can be
performed via ds̃2 ¼ Ω2ds2, with the conformal factor
being directly associated to the radial coordinate σ via

Ω ¼ σ=λ. Future null infinity is then characterized by
ΩjIþ ¼ 0, whereas the conformal metric ds̃2 is regular
in the entire domain σ ∈ ½0; 1�. Reference [57] provides
explicit expressions for the conformal RN metric in the so-
called minimal gauge. We will review this gauge in the next
sections with focus, however, on the wave equation
dictating the dynamics of scalar and gravitoelectric fluc-
tuations propagating on this spacetime.

1. Wave equation

Under the coordinate change (10), the wave equation (7)
acquires the form

−ϕ̈þ L1ϕþ L2
_ϕ ¼ 0; ð11Þ

with · ¼ ∂τ, and the differential operators given by
Ref. [37]

L1 ¼
1

wðσÞ ½∂σðpðσÞ∂σÞ − qlðσÞ�; ð12Þ

L2 ¼
1

wðσÞ ½2γðσÞ∂σ þ ∂σγðσÞ�: ð13Þ

The height and compactification functions hðσÞ and gðσÞ
enter the above expression via

wðσÞ ¼ g02 − h02

jg0j ; pðσÞ ¼ jg0j−1;

γðσÞ ¼ h0

jg0j ; qðσÞ ¼ λ2jg0jV: ð14Þ

Fundamental for the hyperboloidal approach is the fact that
pðσÞ vanishes at the domain boundaries σ ¼ 0 and σ ¼ 1.
This property implies that the (Sturm-Liouville) operator
L1 is singular. Thus, the physically relevant solutions
(describing ingoing waves at the horizon and outgoing
waves at future null infinity) are those satisfying the
equation’s underlying regularity conditions.
The advantageous structure of Eq. (11) becomes obvious

when one performs a first-order reduction in time, to
rewrite it as a matrix evolution problem. By introducing
ψ ¼ _ϕ, Eq. (11) reads

_u ¼ iLu; L ¼ 1

i

�
0 1

L1 L2

�
; u ¼

�
ϕ

ψ

�
; ð15Þ

which has the formal solution

uðτ; σÞ ¼ eiLτuð0; σÞ ð16Þ

in terms of the (nonunitary: see Sec. III A below) evolution
operator eiLτ. By further performing a harmonic decom-
position uðτ; σÞ ∼ uðσÞeiωτ in Eq. (15) we arrive at the
eigenvalue equation
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Lun ¼ ωnun; ð17Þ

where ωn is an infinite set of eigenvalues of the operator L,
with n ≥ 0 the mode number. Thus, the calculation of
QNMs through the hyperboloidal framework ultimately
translates to the eigenvalue problem of the operator L,
which, in turn, contains information concerning the boun-
dary conditions and the spacetime metric. Finally, since
∂t ¼ ð1=λÞ∂τ, t and λτ “tick” at the same rate. Therefore,
the QNMs ωn conjugate to the two distinct temporal
coordinates coincide up to a scaling constant 1=λ, and
the change in the time coordinate does not affect the QNM
frequencies [37].

2. Hyperboloidal framework in the
Reissner-Nordström spacetime

In what follows, we choose the BH horizon as the
characteristic length scale,2 so that λ ¼ rþ. Reference [57]
introduces the so-called minimal gauge, in which a com-
pactification in the radial coordinate follows from

r ¼ rþ
ρðσÞ
σ

; ρðσÞ ¼ 1 − ρ1ð1 − σÞ; ð18Þ

where ρ1 is a parameter yet to be fixed. With this choice, the
horizon rþ is fixed at σ ¼ 1 regardless of ρ1. As expected,
r → ∞ is mapped to σ ¼ 0. Substituting Eq. (18) into the
tortoise coordinate (4) leads to

r�
rþ

¼ ρ1 þ
lnð1 − ρ1Þ
1 − κ2

þ 1 − ρ1
σ

− ð1þ κ2Þ ln σ

þ lnð1 − σÞ − κ4 ln ½1 − ρ1 − σðκ2 − ρ1Þ�
1 − κ2

: ð19Þ

The right-hand side of Eq. (19) provides the overall
structure for the function gðσÞ. In particular, one can ignore
any term not depending on σ when defining gðσÞ, because
only g0ðσÞ contributes to the expressions in Eq. (14).
Finally, the height function in the minimal gauge reads

hðσÞ ¼ gðσÞ þ h0ðσÞ;

h0ðσÞ ¼ 2

�
ð1þ κ2Þ ln σ −

1 − ρ1
σ

�
: ð20Þ

There is still a remaining degree of freedom within the
minimal gauge, that is, the choice of the parameter ρ1.
Below, we will describe the two available options providing
us with different limits to extremality [57]: the usual
extremal RN spacetime and the near-horizon geometry
given by the Robinson-Bertotti solution [74,75].

Areal radius fixing gauge.—The simplest choice is to set
ρ1 ¼ 0, so that r ¼ rþ=σ. We refer to this case as the areal
radius fixing gauge, since it implies ρðσÞ ¼ 1 in the above
expressions. It then follows that the Cauchy horizon r− is
located at σ− ¼ κ−2; i.e., its location in the new compact
coordinate σ changes with the charge parameter κ. In
particular, the Schwarzschild limit κ ¼ 0 yields the BH
singularity σ− → ∞ (r− ¼ 0), whereas the event and
Cauchy horizons coincide at σþ ¼ σ− ¼ 1 in the extremal
limit jκj ¼ 1.
By fixing ρ1 ¼ 0, Eqs. (19) and (20) lead to

gðσÞ¼ 1

σ
− ð1þ κ2Þ lnσþ lnð1−σÞ− κ4 lnð1− κ2σÞ

1− κ2
; ð21Þ

hðσÞ¼−
1

σ
þð1þκ2Þlnσþ lnð1−σÞ−κ4 lnð1−κ2σÞ

1−κ2
: ð22Þ

Inserting Eqs. (21) and (22) into Eq. (14) yields

pðσÞ ¼ σ2ð1 − σÞð1 − κ2σÞ; ð23Þ

wðσÞ ¼ 4½1þ κ2ð1þ κ2Þð1 − σÞ�½1þ σð1þ κ2Þ�; ð24Þ

γðσÞ ¼ 1 − 2½1þ κ2ð1þ κ2Þ�σ2 þ 2κ2ð1þ κ2Þσ3; ð25Þ

qðσÞ ¼ lðlþ 1Þ þ σðμ − κ2νσÞ; ð26Þ

which completely characterize the operator L and the
spectral problem of scalar and gravitoelectric perturbations
in the RN spacetime. Here, the singular character of the
operator L becomes more evident, since pðσÞ clearly
vanishes at σ ¼ 0 (Iþ) and σ ¼ 1 (Hþ), as well as at
the Cauchy horizon σ ¼ κ−2.
From the differential equation perspective, it is important

to note the different singular character of future null infinity
and that of the event and Cauchy horizons. More specifi-
cally, pðσÞ behaves as σ2 when σ → 0, though it vanishes
linearly as σ → 1 or σ → κ−2, as long as jκj ≠ 1. In other
words, in the subextremal case the operator L possesses an
essential singularity (irregular singular point) at future null
infinity (σ ¼ 0), whereas it has a removable singularity
(regular singular point) at the horizons.
In the extremal case jκj ¼ 1, however, both horizons

coincide. As a consequence, pðσÞ also possesses an
essential singularity at σ ¼ 1; i.e., it vanishes as ð1−σÞ2.
This property is a direct manifestation of the so-called
discrete conformal isometry between the extremal horizon
and spacetime boundaries at infinity [76], namely the
duality between spatial infinity i0 and the horizon bifurca-
tion sphere, on the one hand, and between null infinity and
the regular part of the horizon, on the other hand. Such a
symmetry explains, for instance, the Aretakis instability of
a massless scalar field at the extremal RN horizon [64,65]

2Note that λ ¼ 2rþ in Ref. [57]. This implies that the quantities
ρðσÞ and hðσÞ differ from those in Ref. [57] by a factor of 2.
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in terms of well-known results for the field’s decay at
future null infinity [77].
To better identify this symmetry in the extremal limit

jκj ¼ 1, it is convenient to map the radial coordinate
σ ∈ ½0; 1� into x ∈ ½−1; 1� via the transformation

x ¼ 2σ − 1; σ ¼ 1þ x
2

: ð27Þ

Hence, the conformal isometry between the extremal
horizon and spacetime boundaries at infinity is assessed
via the mapping x → −x. In the limit jκj → 1, the height
and compactification functions in Eqs. (21) and (22) read,
in terms of the coordinate x,

gðxÞ ¼ 2

1þ x
−
1þ x
1 − x

− 2 lnð1þ xÞ þ 2 lnð1 − xÞ; ð28Þ

hðxÞ¼−
2

1þx
þ1þx
1−x

−2 lnð1þxÞþ2 lnð1−xÞ; ð29Þ

which in turn leads to the following form for the functions
entering the operator L [cf. Eq. (14)]:

pðxÞ ¼ ð1 − x2Þ2
8

; wðxÞ ¼ 2ð4 − x2Þ;

γðxÞ ¼ −
xð3 − x2Þ

2
: ð30Þ

The symmetry of p and w as x → −x is evident.3 The odd
symmetry of γ → −γ is in accordance with its definition in
terms of the operator L2. Indeed, L2 remains invariant since
∂x → −∂x. Clearly, the symmetry of the operator L1

ultimately depends on the behavior of the potential qðxÞ.
We will study this feature in Sec. IV C 2.
Cauchy horizon fixing gauge.—A second option allows

us to fix the Cauchy horizon σ− at a coordinate location that
does not depend on the parameter κ. In particular, the
choice ρ1 ¼ κ2 fixes the Cauchy horizon at σ− → ∞ [57].
We call this the Cauchy horizon fixing gauge. In the
extremal limit jκj → 1, this gauge shows a discontinuous
transition in the near-horizon geometry [57].
With the choice ρ1 ¼ κ2, and ignoring terms not depend-

ing on σ, one reads from Eqs. (19) and (20)

gðσÞ ¼ 1 − κ2

σ
− ð1þ κ2Þ ln σ þ lnð1 − σÞ

1 − κ2
; ð31Þ

hðσÞ ¼ −
1 − κ2

σ
þ ð1þ κ2Þ ln σ þ lnð1 − σÞ

1 − κ2
: ð32Þ

From these expressions, Eqs. (14) yield

pðσÞ ¼ ð1 − κ2Þ σ
2ð1 − σÞ
ρðσÞ2 ;

qðσÞ ¼ 1 − κ2

ρðσÞ2
�
lðlþ 1Þ þ σ

ρðσÞ
�
μ − κ2ν

σ

ρðσÞ
��

;

wðσÞ ¼ 4
σ þ ρðσÞ
ρðσÞ2 ; γðσÞ ¼ 1 − 2σ2

ρðσÞ2 : ð33Þ

The singular behavior at the extremal limit jκj ¼ 1 is
evident in the functions pðσÞ and qðσÞ, since L1 vanishes
altogether. A regularization can however be implemented
by rescaling τ with a ð1 − κ2Þ factor: this is relevant in the
Robinson-Bertotti solution limit (cf. [57]).

III. PSEUDOSPECTRUM

Following Ref. [37], we start by discussing the intuitive
notion of spectral stability, in which a perturbation of order
ϵ to the underlying operator leads to perturbed QNMs
migrating up to a distance of the same order ϵ. This result is
formally proven in the context of self-adjoint operators.
More specifically, if one considers a linear operator L on a
Hilbert spaceHwith a scalar product h·; ·i, then the adjoint
L† is the linear operator fulfilling hL†u; vi ¼ hu; Lvi, for
all u, v in H. The operator L is normal if and only if
½L;L†� ¼ 0. Clearly, self-adjoint operators L ¼ L† are
normal. In this context, the spectral theorem for normal
operators ensures that eigenfunctions form an orthonormal
basis and that the eigenvalues are stable under perturbations
of L.
On the contrary, non-normal operators lack a spectral

theorem and lead to a weak control of eigenfunction
completeness and eigenvalue stability. Thus, the analysis
based solely on the spectrum may be misleading if the
system is beset with spectral instability, where the
perturbed eigenvalues may extend into far regions in
the complex plane, despite a rather small change in the
operator. Indeed, strong non-normality, occurring in
quite generic settings, leads to a severely uncontrolled
spectrum under perturbations of the governing
operator [37,41–43,45,78,79].
The notion of pseudospectrum formally captures the

sensitivity of the spectrum to perturbations [41,42,79]. To
introduce this concept, we first recall the definition of an
eigenvalue as the values ω for which ωI − L is singular. To
intuitively enlarge this notion, one may inquire: what is the
region in the complex plane in which jjωI − Ljj is small or,
equivalently, in which jjωI − Ljj−1 is large?
Addressing this question naturally leads to the definition

of the pseudospectrum [41,42,79], which states that the ϵ
pseudospectrum σϵðLÞ with ϵ > 0 is the set of ω ∈ C for
which jjðωI − LÞ−1jj > ϵ−1. The operator ðωI − LÞ−1 is
called the resolvent of L at ω. In turn, jjðωI − LÞ−1jj
diverges for ω ∈ σðLÞ, where σðLÞ is the spectrum of L, so
that (from the very definition of the pseudospectrum) the

3Note that p is actually associated with a second-order
operator ∼∂2

x, which is also symmetric under x → −x.
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spectrum—a discrete set of numbers in the complex
plane—is contained in the ϵ pseudospectrum for every ϵ.
In other words, the ϵ pseudospectra σϵðLÞ are nested sets
around the spectrum. Specifically, the norm of the resolvent
maps values ω in the complex plane into real positive
numbers, in such a way that the boundaries of σϵðLÞ are
contour levels of the function defined by the norm of the
resolvent. Such boundaries are then nested contour lines
around the spectral points. As ϵ → 0, σϵðLÞ → σðLÞ. The
structure of the resolvent encodes fundamental information
concerning nontrivial structures in the complex plane that
cannot be revealed by the spectrum alone. For instance,
normal operators exhibit trivial resolvent structures that
extend circularly up to order ∼ϵ around the spectrum (e.g.,
Fig. 4 in Ref. [37]). Non-normal operators may possess
resolvent structures that extend far from the spectrum,
which is an imprint of poor analytic behavior of the
resolvent as a function of ω.
The connection between the low regularity or

analyticity of the resolvent and the underlying spectral
instabilities follows from considering a perturbed operator
Lþ δL, with perturbation norm jjδLjj < ϵ. If the spectrum
of the perturbed operator stays bounded in a vicinity of
order ∼ϵ around σðLÞ, then the operator displays spectral
stability. On the other hand, if it migrates in the complex
plane far from σðLÞ at distances that are orders of
magnitude larger than ϵ, then L is spectrally unstable.
This distinction can be made directly through the pseudo-
spectrum, at the level of the nonperturbed operator L,
without the need of systematically introducing perturba-
tions to the operator.
We emphasize that the definition of the pseudospectrum,

and therefore any statement on spectral instability, depends
on the choice of the underlying scalar product h·; ·i. The
scalar product fixes the norm that quantifies the notion of
“big” or “small” perturbations jjδLjj. On physical grounds,
and following [37,45], we argue in favor of the system’s
energy as the most adequate norm to control the pseudo-
spectra and assess spectral instability, because it conven-
iently encodes the size of the physical perturbation with
respect to the nature of the problem (see Ref. [80] for a
systematic discussion of this point). On the computational
side, calculating the pseudospectrum requires the numerical
evaluation of the norm of the resolvent, according to the
previous definition. The numerical scheme must consis-
tently incorporate the particular choice for the norm. The
next section summarizes the core concepts needed in
this work.

A. The energy norm

A physically motivated choice is the so-called energy
norm [37,45], a natural way of framing the problem in
terms of the physical energy contained in the field ϕ with
dynamics dictated by the wave equation (7). Within the
hyperboloidal formulation of the wave equation given by

Eq. (15), the energy norm for a (l-mode) vector u reads
[37] (see Ref. [80] for a full account of its relation with the
total energy of the field on a spacetime slice)

kujj2E¼
����
�
ϕ

ψ

�����2
E
≡Eðϕ;ψÞ

¼1

2

Z
1

0

ðwðσÞjψ j2þpðσÞj∂σϕj2þqðσÞjϕj2Þdσ; ð34Þ

where the subscript E denotes the energy norm and the
integration limits correspond to the [0, 1] compact spatial
interval in our hyperboloidal scheme. In turn, the energy
scalar product that defines the norm reads

hu1; u2iE ¼
��

ϕ1

ψ1

�
;

�
ϕ2

ψ2

�	
E

¼ 1

2

Z
1

0

ðwðσÞψ̄1ψ2 þ pðσÞ∂σϕ̄1∂σϕ2

þ qðσÞϕ̄1ϕ2Þdσ; ð35Þ

from which kuk2E ¼ hu; uiE trivially holds. Due to the
dissipative nature of the block operator L2—see Eqs. (13)
and (15)—which encodes the boundary conditions at null
infinity and at the event horizon, the operator L is not self-
adjoint with respect to the scalar product (36) [37]: this
justifies the nonunitary character of the evolution operator
in Eq. (16). We use Chebyshev spectral methods to
numerically implement Eq. (36) in the calculation of the
pseudospectrum.

B. Chebyshev’s spectral method

There are various methods to compute BH QNMs
[14,15,81,82]. The differential operator (17) can be dis-
cretized and turned into a matrix problem using
Chebyshev’s spectral method [41,83].
The compactified domain of the operator L, σ ∈ ½0; 1�, is

discretized with N þ 1 Chebyshev-Lobatto interpolation
grid points, while for the discretization of the differential
operators we utilize Chebyshev differentiation matrices
[83]. Overall, the resulting matrix L has dimensions
N ×N , with N ¼ 2ðN þ 1Þ, where the factor of 2 comes
from the first-order reduction in time, so (N þ 1) values are
used for each ϕ and ψ . Once L is discretized, the BH
QNMs follow straightforwardly from the eigenvalues of the
matrix.
To calculate matrix norms and pseudospectra, one must

also implement the Chebyshev-discretized version of the
energy scalar product norm (36) via

hu; viE ¼ ðu�ÞiGE
ijv

j ¼ u� · GE · v; u; v ∈ CN ; ð36Þ

with u� the conjugate transpose of u. The construction
of the Gram matrix GE

ij corresponding to Eq. (36) is
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detailed in Appendix A of Ref. [37], and the adjoint
operator L† reads

L† ¼ ðGEÞ−1 · L� ·GE: ð37Þ

Finally, the ϵ pseudospectrum σϵEðLÞ in the energy norm is
given by Ref. [37]

σϵEðLÞ ¼ fω ∈ C∶smin
E ðωI − LÞ < ϵg; ð38Þ

where smin
E is the minimum of the generalized singular

value decomposition, which incorporates the adjoint in the
energy scalar product

smin
E ðMÞ¼minf ffiffiffiffi

ω
p

∶ω∈ σðM†MÞg; M¼ωI−L: ð39Þ

C. QNM-free regions: Logarithmic boundaries and
pseudospectra

We conclude our general discussion of the pseudospec-
trum with a short summary of “universality classes”
[42,46,84]. As discussed in Sec. III, the ϵ pseudospectrum
σϵðLÞ determines the maximal region in the complex plane
that QNMs can reach under perturbations of norm ϵ on the
operator L. Equivalently, the regions beyond a given
ϵ-pseudospectrum boundary are called QNM-free (or
resonance-free) regions.
The study of the asymptotics of QNM-free regions is

crucial to assess the existence of QNM-free strips around
the real axis, so that the notion of fundamental (or principal)
resonance, understood as the closest to the real axis, makes
sense. This is fundamentally related to the study of the
decay of waves scattered by a resonator (in our case, the
BH) and therefore is key in the context of GW ringdown.
The QNM-free regions fall into different “universality

classes” according to their asymptotic behavior for large
real parts of the frequencies:

ImðωÞ < FðReðωÞÞ; ReðωÞ ≫ 1; ð40Þ

where FðxÞ is a real function controlling the asymptotics.
The mathematical literature (cf. e.g., [46,85]) identifies
several possibilities, such as

FðxÞ ¼

8>>>>><
>>>>>:

ðiÞ eαx; α > 0;

ðiiÞ C̃;

ðiiiÞ C lnðxÞ;
ðivÞ γxβ; β ∈ R; γ > 0

ð41Þ

where C, C̃, α, β, and γ are constants. The specific form of
F and the constants in Eqs. (41) depend on qualitative
features of the underlying effective potential V and on the
boundary conditions of the problem. Typical behaviors in

our setting belong to cases (iii) or (iv) (see Ref. [46]). In
particular, logarithmic resonant-free regions of class
(iii) appear in the setting of generic scattering by impen-
etrable obstacles or by potentials (either of compact support
or extending to infinity) when we allow for low regularity
[46,85–92]. In the case of potentials and/or boundary
conditions with enhanced regularity, the more stringent
power law (iv) controls the QNM-free regions.
For the Schwarzschild potential, numerical investiga-

tions [40] have shown that the QNM-free regions are
asymptotically bounded from below by logarithmic curves
of the form

ImðωÞ ∼ C1 þ C2 ln½ReðωÞ þ C3�: ð42Þ

In the asymptotic regime ReðωÞ ≫ 1 the constants C1 and
C3 can be neglected, leading to case (iii) in Eq. (41).
Nevertheless, it is remarkable that by adding nonzero
constants C1 and C3 the logarithmic behavior holds also
at intermediate values of ReðωÞ and even close to the actual
QNM spectrum (in a region one can hardly consider as
asymptotic). These features will be investigated in detail
below, confirming the preliminary results in Ref. [40] and,
more importantly, providing a systematic extension and
refinement that is crucial for the assessment of asymptotic
universality.

IV. THE PSEUDOSPECTRUM OF
REISSNER-NORDSTRÖM BLACK HOLES

In what follows we discuss the pseudospectrum of
subextremal and extremal RN BHs, calculated (unless
specified otherwise) within the areal radius fixing gauge.
To ensure agreement with the known values of the QNM
frequencies [49,62,93,94] we typically use N ¼ 200 grid
points and set the internal precision in all calculations to
20 × machine precision ∼ 300 digits. We scanned the part
of the complex plane shown in our plots with resolution
∼250 × 150, corresponding to ∼3.8 × 104 points.
In the asymptotically flat setting of RN spacetime and

due to the inclusion of (nonregular) null infinity in the grid
of the compactified hyperboloidal formulation, the counter-
part of the power-law decay of asymptotically flat effective
potentials—which is responsible for the branch cut in the
Green’s function of Eq. (7) [17] and for the polynomial
late-time tails [95–97]—is seeded into the operator L. This
means that the operator L contains both the discrete set of
QNMs (the “point spectrum”) and a continuous spectrum.
With the discretized approximate operator L, the con-

tinuous spectrum turns into a discrete set of points along the
positive imaginary axis. In contrast to QNMs, which
converge to known values [49,62,93,94], these additional
“discrete” eigenvalues of the approximate operator L do
not converge as N → ∞. On the contrary, they accumulate
on the positive imaginary axis along the expected branch
cut. We will refer to these points as “branch-cut” modes.
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We must take these points into account when calculating
pseudospectra, since they are fundamentally entangled with
the discretized formulation of the spectral problem. For
clarity we visualize them as blue points in the figures that
follow (in contrast to converging QNMs, shown as red
points).

A. Spectral instability: The pseudospectra

In this section we discuss, for illustration, the pseudo-
spectrum of BHs with charge Q=M ¼ 0.5. Our results for
scalar l ¼ 0, electromagnetic-led l ¼ 1 and gravitational-
led l ¼ 2 perturbations are shown in Fig. 1 (note the
different units for the frequency, as compared with the
Schwarzschild case in Ref. [37], where a normalization
4Mω is used). More specifically, Fig. 1 displays both the
spectra (red dots) and the underlying pseudospectra of
the respective operators. As expected, the QNMs appear
on the upper half of the complex plane, reflecting modal
stability, and they concentrate in the vicinity of the
imaginary axis. The pseudospectral contour lines, shown
in white, correspond to different values of ϵ, as shown in the
log-scale color bar.
Although the pseudospectra of non-normal operators,

such as that shown in Fig. 1, still form circular sets if we
zoom arbitrarily close to the spectrum, their large-scale
global structure presents open sets. These extend into large
regions of the complex plane even for small ϵ, indicating
spectral instability. This property implies that small-scale
perturbations kδLkE < ϵ can lead to perturbed spectra
which migrate into regions that are much further away
than ϵ. Such picture is in sharp contrast with Fig. 10 of the
Appendix (see also Fig. 4 in Ref. [37] and the discussion in
Ref. [80]), where nested circular sets of radius ∼ϵ form
around nonperturbed QNMs. In that sense, we can differ-
entiate between spectral stability and instability according
to the topographic structure of pseudospectra.
For the particular case of subextremal RN BHs, the

structure of pseudospectra close to the imaginary axis
depends on l. Higher angular indices move QNMs further
away from the imaginary axis (higher real parts), as
expected from the correspondence between QNMs and
photon orbits [18,98], and change the structure of the
pseudospectra in a similar way. Asymptotically (beyond the
region of nonperturbed QNMs), the pseudospectral boun-
daries have a logarithmic dependence, similar to that found
in the Schwarzschild spacetime [40]. We will return to this
point in Sec. IV D below.
We observe a close similarity between the l ¼ 2

gravitational-led QNMs and pseudospectra in the bottom
panel of Fig. 1 and the l ¼ 2 gravitational QNMs and
pseudospectra of the Schwarzschild spacetime (see Fig. 11
in Ref. [37], whereQ=M ¼ 0). In Fig. 2 we present a direct
comparison of pseudospectral levels for selected values
of Q=M. The pseudospectral contours for different BH
charges are remarkably similar, consistently with the

asymptotic universality discussed above, with a charge-
dependent offset which increases as Q=M → 1 and
as log10ðϵÞ → −∞.

B. The areal radius and Cauchy fixing gauges

Before discussing extremal geometries, it is important to
address possible technical issues arising when taking the
extremal limit. As discussed in Sec. II B 2, the hyper-
boloidal areal radius fixing gauge and the Cauchy horizon
fixing gauge have different limits to extremality, and the

FIG. 1. Pseudospectra of a BH with charge Q=M ¼ 0.5. Top:
l ¼ 0 scalar QNMs (red dots) and ϵ-pseudospectra boundaries
(white lines). Middle: l ¼ 1 electromagnetic-led QNMs and
ϵ-pseudospectra boundaries. Bottom: the same for l ¼ 2 gravi-
tational-led QNMs. The contour levels log10ðϵÞ range from −55
(top level) to −5 (bottom level) in steps of 5. The blue dots
designate branch-cut (nonconvergent) modes.
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case Q=M ¼ 1 can only be studied within the areal radius
fixing gauge. If the pseudospectrum has a geometrical
origin, it should depend only mildly on this gauge choice.
We will show below that this is indeed the case by
computing pseudospectra for subextremal BHs in two
different gauges. Note that a similar issue appears when
calculating the QNM spectrum in the extremal limit.
For example, Leaver’s continued fraction algorithm
[99] is suitable for subextremal BHs, but it fails in a
continuous limit to extremality. A modified version of
Leaver’s algorithm is only applicable if the extremal
condition Q=M ¼ 1 is imposed at the onset of the
calculation [62,100].
These algorithms consider the problem in the frequency

domain, and the strategy to incorporate the boundary
conditions and regularize the underlying ordinary differ-
ential equation can be understood from a spacetime
perspective in terms of the hyperboloidal framework
[57]. In particular, Ref. [57] shows that the Cauchy horizon
fixing gauge naturally yields the regularization factor in the
frequency domain employed by Leaver [99]. The technical
failure in the algorithm to reach the extremal limit is then
geometrically understood as a discontinuous transition to
the near-horizon geometry. Similarly, the regularization
factor in the frequency domain employed by Onozawa
[100] follows naturally if the wave equation is initially
written in the areal radius fixing gauge, which has a well-
behaved extremal limit.
Let us return to the issue of the slicing dependence of the

pseudospectrum of subextremal RN BHs. Figure 3 shows
the ϵ pseudospectra of gravitational-led QNMs for the two
available hyperboloidal slices in a RN spacetime with
Q=M ¼ 0.5, using exactly the same ϵ contour levels for
both cases. We omit QNM frequencies from Fig. 3 for

clarity. The pseudospectral contour lines reaching low
overtones (large ϵ) nearly coincide, but they separate as
ϵ decreases. This can be understood in terms of a slight
“renormalization” between the induced matrix norm in the
areal radius and Cauchy fixing gauges, which is a conse-
quence of using different functions in the construction of
the operators L1 and L2. The (set of) pseudospectral
contours are, to a very good approximation, gauge inde-
pendent, especially for small ϵ. They have not only the
same asymptotic logarithmic behavior (42) for both gauge
choices, as expected, but also very similar values for the
constants C1, C2, and C3. This demonstrates that the bulk
properties of the pseudospectral levels do not depend on the
choice of gauge, supporting the notion that the pseudo-
spectrum is a geometrical property of the spacetime.

C. The extremal limit

1. Scalar potential

We first consider scalar fields in the extremal limit. The
pseudospectrum is depicted in Fig. 4, where we extend
similar results presented in Fig. 1. The qualitative features
of the pseudospectrum do not depend on the spin of the
perturbing field. Note that the spectrum of extremal and
near-extremal BHs is markedly different. In particular,
near-extremal RN BHs have a family of slowly damped
modes [60–63]. If we define δ ≪ 1 as

Q ¼ M

�
1 −

δ2

2

�
; ð43Þ

then this family is well described by the purely damped
mode
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FIG. 2. Comparison of pseudospectral levels for gravitational-
led l ¼ 2 QNMs with varying BH charge. Here, Q=M ¼ 0, 0.5
and 1 correspond to red, green and blue contours, respectively.
The red and green contour levels log10ðϵÞ range from −55 (top
level) to −5 (bottom level) in steps of 5, while the blue ones from
−50 (top level) to −5 (bottom level) in steps of 5.
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FIG. 3. Comparison of the l ¼ 2 gravitational-led ϵ pseudo-
spectra for a RN BH with Q=M ¼ 0.5. The pseudospectra in red
were computed in the areal radius fixing gauge, while those in
blue where computed in the Cauchy horizon fixing gauge. In both
cases, the contour levels log10ðϵÞ range from −55 (top level) to
−5 (bottom level) in increments of 5.
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Mω ¼ iδðnþ lþ 1Þ; n ¼ 0; 1; 2…: ð44Þ

Our numerical results agree with these predictions. For
example, for Q ¼ 0.999M (δ ¼ 0.0447214) we find the

fundamental modes Mω ¼ 0.045125i (l ¼ 0) and Mω ¼
0.0899565i (l ¼ 1).
The pseudospectrum in the extremal case (see Fig. 4),

however, has the same qualitative loglike asymptotic
behavior as in subextremal BHs, despite the existence of
a zero-frequency QNM with Mω ¼ 0, associated to the
Aretakis instability [64–66]. The existence of a modewhich
lies at the origin of the complex plane is of key importance
to transient instabilities that are typically resolved with
pseudospectra: see e.g., the discussion of the transition to
turbulence in hydrodynamics in Ref. [43]. In the right panel
of Fig. 5 we observe that the pseudospectral contour levels
cross to the lower half of the complex plane for
log10ðϵÞ ¼ −4, or ϵ ¼ 10−4, which translates to an unstable
perturbed spectrum. In fact, the transition occurs for similar
levels in Ref. [43]. This could be tantalizing evidence of
analogies between BH spacetime instabilities and hydro-
dynamics. Unfortunately the evidence is inconclusive,
because we observe a similar behavior for subextremal
BHs (left panel of Fig. 5). Contour lines of extremal RN
dive slightly deeper into the unstable QNM region, as
shown in Fig. 6, but we cannot draw definite conclusions
due to the existence of the branch-cut eigenvalues, which
“poison” the spectrum of the discrete operators and
accumulate arbitrarily close to the origin. The present
analysis is—to our knowledge—the first attempt to resolve
transient BH instabilities through pseudospectra, but fur-
ther work is required to draw solid conclusions.

2. Gravitoelectric potential

We now return to gravitoelectric perturbations. We focus
on l − 1 electromagnetic-led and l gravitational-led per-
turbations, which are known to share the same spectra at
extremality [67–70].
The left panel of Fig. 7 shows the QNM spectra and

pseudospectra of l ¼ 2 gravitational-led perturbations,
while in the right panel we overplot the pseudospectral

FIG. 4. Top: l ¼ 0 scalar QNMs (red dots) and ϵ-pseudospec-
tra boundaries (white lines) of a RN BH with Q=M ¼ 1. The
contour levels log10ðϵÞ range from −45 (top level) to −5 (bottom
level) in steps of 5. Bottom: enlarged region around the first few
QNMs of the top panel. The contour levels log10ðϵÞ range from
−23 (top level) to −3 (bottom level) in steps of 2. The blue dots
designate branch-cut (nonconvergent) modes.

FIG. 5. Left: enlargement of the region around the real axis (shown as a dashed black line) of l ¼ 0 scalar ϵ-pseudospectral boundaries
(white lines) for a RN BH with Q=M ¼ 0.5. Right: the same, but for Q=M ¼ 1. A single zero-frequency QNM (shown as a red dot)
exists in this case. The contour levels log10ðϵÞ range from −6 (top level) to −2 (bottom level) in steps of 1. The blue dots designate
branch-cut (nonconvergent) modes.
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contour levels of l ¼ 1 electromagnetic-led and l ¼ 2
gravitational-led perturbations. It is apparent that the
isospectrality involved in this case is of a stronger nature.
It is not only the spectra that coincide in both cases, but
rather the entire pseudospectrum. This occurs because the
Green’s function as a whole is the same in the two cases.
To understand this claim, recall that the isospectrality

between l − 1 electromagnetic-led and l gravitational-led
fields on an extremal RN geometry is of a different nature
from the axial and polar parity isospectrality in the
Schwarzschild spacetime [49]. Here, the isospectrality
follows from an invariance of the underlying potential
under transformations exchanging the horizon and infinity:
see Eq. (22) in Ref. [67], where r� → −r�.
As discussed in Sec. II B 2, this symmetry is not only

restricted to the gravitoelectric potential, but it is a discrete
isometry underlying the conformal geometry of extremal
BH spacetimes [76]. In our compactified hyperboloidal
coordinates, Eqs. (30) capture the symmetry within the

functions in the operator L. Comparing the functions
present in L, the hyperboloidal gravitoelectric potential
reads

qð�Þ ¼ lðl ∓ xÞ − ð1 − x2Þ ð45Þ

for both the l − 1 electromagnetic-led (−) and the l
gravitational-led (þ) fields.
Thus, the symmetry x → −x which maps the horizon to

infinity at the level of the conformal geometry is also
responsible for mapping electromagnetic-led and gravita-
tional-led potentials. It then follows that the operators for
the gravitational and electromagnetic sectors in the
extremal RN spacetime are dual to each other, i.e.,

LðþÞ
l ðxÞ ¼ Lð−Þ

l−1ð−xÞ: ð46Þ

As a consequence, not only do the eigenvalues ωðþÞ
l and

ωð−Þ
l−1 coincide, but so do the eigenvectors vðþÞ

l ðxÞ ¼
vð−Þl−1ð−xÞ and the entire pseudospectrum.

D. Asymptotic universality of pseudospectra

Figure 8 demonstrates the asymptotic structure of three
different spectral problems, namely the l ¼ 2 scalar,
electromagnetic-led and gravitational-led QNMs of a RN
BH with Q=M ¼ 0.5. The lower pseudospectral levels of
the three potentials coincide already at small frequencies,
and right beyond the respective QNMs, while higher
pseudospectral levels begin to agree with each other only
at larger frequencies. Therefore, besides the local region in
the nonperturbed QNM vicinity, we find support for an
asymptotic universality shared by a whole class of effective
potentials, with similar logarithmic patterns.
An interesting aspect of the asymptotic pseudospectral

contours is evident in the right panel of Fig. 8, where we

Q=0.5M
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FIG. 6. Overplotted contours from Fig. 5, with the same
parameters and contour levels.

FIG. 7. Left: l ¼ 2 gravitational-led QNMs (red dots) and ϵ-pseudospectra boundaries (white lines) of a RN BH with Q=M ¼ 1.
Right: superimposed l ¼ 1 electromagnetic-led (black lines) and l ¼ 2 gravitational-led (green dashed lines) ϵ-pseudospectral contours
of a RN BH withQ=M ¼ 1. In both cases, the contour levels log10ðϵÞ range from −50 (top level) to −5 (bottom level) in steps of 5. The
blue dots designate branch-cut (nonconvergent) modes.
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observe a kink at ReðMωÞ ∼ 6. In the range of our analysis,
the value of ReðMωÞ at which the kink occurs decreases as
log10ðϵÞ decreases, slowly moving closer to the imaginary
axis. We expect that the kink will eventually meet the
imaginary axis for very small log10ðϵÞ.
Our numerical investigation indicates that this kink does

not have a physical origin, but rather is due to the
accumulation of numerical error. The curvature sign of
the contour changes at the kink, so any fitting beyond the
kink itself will not reflect the true logarithmic structure of
the pseudospectra. In Fig. 9 we verify that the kink is
indeed a numerical artifact: as the number of interpolation
grid points N increases, the kink moves further away from
the imaginary axis. This shows that the well-resolved
region in the complex plane grows as we increase the
resolution. A similar phenomenon occurs in the calculation
of operator eigenvalues through matrix approximations: for

a given resolution N only certain eigenvalues can be
trusted, but their number increases as N grows. What we
observe is the counterpart of this phenomenon at the level
of the pseudospectrum, so we expect that the kink should
disappear4 in the limit N → ∞.
Taking into account the above limitations of fitting

pseudospectral contour lines, we can explore if these
branches agree with Eq. (42). All branches we have
checked in the range log10ðϵÞ ∈ ½−3;−35� can indeed be
fitted accurately by a logarithmic function of the form
Eq. (42), in agreement with the Schwarzschild findings in
Ref. [40]. [Note in passing that the asymptotics of pseu-
dospectra for the Pöschl-Teller potential are also described
by the logarithmic expression (42) [37], but the constants
C1, C2 and C3 have very different values, reflecting the
different nature of the Pöschl-Teller potential at null
infinity.] Even though the fits are quite accurate away
from the QNM region, where logarithmic asymptotic
behavior is expected, Eq. (42) is a good approximation
even close to the QNM corresponding to some given ϵ, in
agreement with the discussion in Sec. III C.

V. CONCLUSIONS

In this work we have presented a detailed study of the
pseudospectrum from scalar and gravitoelectric perturba-
tions of the RN spacetime. We observe the same qualitative
behavior as in Ref. [37] for all values of the BH charge
Q=M ∈ ½0; 1� and for all perturbing fields: the pattern of

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

Re(M )

Im
(M

)

3 4 5 6 7 8 9 10
0.0

0.5

1.0

1.5

2.0

Re(M )

Im
(M

)

FIG. 8. Superimposed scalar (red), electromagnetic-led (green), and gravitational-led (blue) pseudospectral levels for a RN BH with
Q=M ¼ 0.5. All perturbations share the same angular index l ¼ 2. The contour levels log10ðϵÞ for the left plot range from −50 (top
level) to −5 (bottom level) in steps of 5; for the right plot, they range from −20 (top level) to −2 (bottom level) in steps of 2.
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FIG. 9. Position on the real axis of the asymptotic kink
ReðMωÞkink for the l ¼ 2 gravitational-led pseudospectral levels
of a RN BH withQ=M ¼ 0.5 with respect to the increment of the
grid interpolation points N (see right panel of Fig. 8).

4Assessing the convergence of the pseudospectra in a quanti-
tative way requires special care, as pointed out in Ref. [37]. The
numerical scheme is sensitive to the underlying regularity class of
the involved functional spaces. In the limit N → ∞ one must take
into account the regularity issues on the QNM spectra eigen-
functions identified in Refs. [56,101–103]. A rigorous math-
ematical and numerical convergence analysis is beyond the scope
of this work.
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pseudospectral levels is typical of spectrally unstable
systems.
Our numerical calculations reveal a logarithmic depend-

ence of the pseudospectral contour lines, in accordance
with theoretical predictions for their asymptotic behavior
(see Refs. [46,85] and references therein). The onset of the
logarithmic asymptotic behavior occurs much earlier, in an
intermediate frequency regime, and it agrees with the
theoretical predictions up to the location of the kink in
the pseudospectral contour lines. Note that the kink is a
mere numerical artifact, as it moves toward larger values of
ReðMωÞ as we increase N (i.e., the numerical resolution).
These observations confirm the findings of Refs. [37,40]:
the logarithmic behavior should extend asymptotically to
the large-frequency regime.
The hyperboloidal approach to BH perturbation theory

plays a crucial role in recasting the underlying wave
equation with dissipative boundary conditions into a form
best suited for studying QNMs as the eigenvalue problem
of a non-self-adjoint operator. The RN spacetime allows us
to examine the effect of different coordinate choices (i.e.,
different spacetime slicings) on the calculation of the
pseudospectra. We have used the so-called areal radius
fixing gauge and Cauchy horizon fixing gauges [57] and
found that the behavior of the pseudospectra in the two
gauges is nearly identical. This provides strong support to
the geometrical nature of BH pseudospectra.
We have paid special attention to the extremal limit

Q=M → 1, characterized by a family of slowly damped
modes along the imaginary axis, which approach the value
Mω ¼ 0 as Q=M → 1 [60–63]. If the underlying potential
is slightly modified, a mode arbitrarily close to the real axis
is, in principle, prone to cross into the region ImðMωÞ < 0,
and the field’s dynamic evolution could display exponen-
tially growing modes.
As observed in hydrodynamics [43], this behavior can be

resolved via a pseudospectrum analysis. The pseudospec-
tral contour lines around marginally stable QNMs bound
the region where the QNM can migrate under perturba-
tions. If the ϵ-contour line crosses into the unstable region
ImðMωÞ < 0 for small values of ϵ, the likelihood of having
an exponentially growing dynamical evolution for a
slightly perturbed system is high. We observe such cross-
ings of the pseudospectral contour lines in the lower half of
the complex plane for sufficiently small ϵ ∼ 10−4, which
even agree with the levels considered in the context of
turbulence in Ref. [43]. However we cannot make any
conclusive claims, because we observe a similar behavior
even for subextremal RN BHs, presumably due to the
presence of (nonconvergent) eigenvalues which appear
because of our discretization of the differential operators
and because of the hyperboloidal compactification in
asymptotically flat spacetimes.
Another noteworthy feature of extremal RN BHs is the

isospectrality between the QNM frequencies of l − 1

electromagnetic-led and l gravitational-led perturbations.
We show that the isospectrality is valid not only for the
spectrum, but also for the pseudospectrum. This “strong
isospectrality” is a consequence of a horizon-infinity
symmetry which has already been identified as responsible
for the gravitoelectric QNM isospectrality [67]. Such a
discrete symmetry is also apparent in the conformal
geometry of extremal BH spacetimes [76], and it explains,
for instance, the aforementioned transient extremal horizon
instability under scalar perturbations [64,65] in terms of the
field properties at future null infinity [66,77]. Thus, the
horizon-infinity symmetry for the extremal RN BH leads to
the Green’s functions of electromagnetic-led and gravita-
tional-led perturbations agreeing as a whole, and not just at
the poles.
The plurality of effective potentials describing perturba-

tions of RN BHs allowed us to analyze the asymptotic
behavior of pseudospectral contour lines for different
spectral problems. By fixing the BH charge and an angular
index for scalar, gravitational-led and electromagnetic-led
perturbations, we find that beyond the QNM region, ϵ-level
sets practically coincide, regardless of the perturbation
field. This suggests an “asymptotic universality” of pseu-
dospectra. In fact, numerical results for the contour levels
are always consistent with a logarithmic asymptotic behav-
ior, in agreement with previous findings for Schwarzschild
BHs [40].
The pseudospectral analysis presented here can be

extended in multiple directions (see also Ref. [37] for a
related list of possible perspectives). It would be interesting
to study the superradiant amplification of charged scalar
fields [104,105]. It is also important to generalize our work
to asymptotically de Sitter BHs: the regularity of the
cosmological horizon removes the branch cut, and thus
the problem becomes closer to the Pöschl-Teller case
studied in Ref. [37], which corresponds to the de Sitter
spacetime [106]. By removing the branch cut, the spurious
eigenvalues corresponding to the branch cut will also be
absent. RN–de Sitter (RNdS) BHs have rich QNM spectra
consisting of different mode families [63], and as such they
provide a perfect testing ground for the pseudospectra of
zero modesMω ¼ 0 of neutral scalar fields [63], which are
prone to superradiant instabilities when the field is charged
[107–110]. Accelerating spacetimes share many similar-
ities with RNdS BHs, with the cosmological horizon being
replaced by an acceleration horizon [111]. These space-
times should not be affected by nonconvergent “contam-
inations” due to the absence of a nonregular null infinity in
the grid, since the boundary conditions are imposed at the
acceleration horizon instead [112–114].
Another important extension concerns asymptotically

anti–de Sitter (AdS) spacetimes. Their timelike null infinity
provides a model for a geometrical “box” that suggests
interesting analogies with QNM instability problems in
optical cavities [115]. A study of asymptotically AdS
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spacetimes requires different boundary conditions. One
should similarly introduce different boundary conditions
when studying horizonless compact objects, where the BH
spectra appear as intermediate time excitations, eventually
giving way to “echoes” [26,28,34,35]. The relation
between pseudospectra, ordinary QNMs and echoes
deserves further study.
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APPENDIX: A QUALITATIVE PICTURE OF
SPECTRAL STABILITY

The main goal of our analysis is to compute the
pseudospectra of RN BHs, that provide a qualitative
understanding of spectral (in)stabilities: how far can points
in the spectrum migrate when we perturb the RN operator
(17), and what is the associated topographic structure of the

pseudospectrum contour lines of the nonperturbed
operator?
To gain perspective on these questions, in this appendix

we consider how a reference case (namely a pseudospec-
trum exhibiting spectral stability) looks like. The results are
easily extended to gravitoelectric perturbations and the
qualitative picture remains unchanged.
Let us consider in particular our operator L in Eq. (15),

with L1 and L2 given by expressions (12) and (13),
respectively. Using the scalar product (36), the adjoint
L† is formally written as [37]

L† ¼ Lþ L∂ ; L∂ ¼ 1

i

�
0 0

0 L∂
2

�
; ðA1Þ

where

L∂
2 ¼ 2

γðσÞ
wðσÞ ðδðσÞ − δðσ − 1ÞÞ: ðA2Þ

The difference L∂ ¼ L† − L has a special form, with
support only on the boundaries (null infinity at σ ¼ 0
and the horizon at σ ¼ 1), reflecting the fact that the loss of
self-adjointness is related to the flux of energy through
these boundaries. In fact, as shown in Ref. [80], the flux of
energy at the boundaries depends linearly on the function
γðσÞ at the boundaries.
The previous points suggest the construction of an ad hoc

operator L̃ obtained by setting to zero the value of γðσÞ at
the boundaries while leaving γðσÞ in the bulk unaffected.
The only purpose of such an ad hoc operator is to illustrate
the spectral stability behavior; we emphasize that it does

−4

−3

−2

−1

0

FIG. 10. “Error bounds” EϵðLÞ around the spectrum of l ¼ 1
scalar QNMs of a RN BH with Q=M ¼ 0.5. The red dots
correspond to RN QNMs, while the ϵ-contours illustrate the
proximity (to a distance ϵ) of pseudospectra contours to the actual
QNM spectrum. The contour levels log10ðϵÞ range from −0.04
(outer) to −1.94 (inner) in steps of 0.1. The blue dots designate
branch-cut (nonconvergent) modes. This plot shows the typical
structure of the pseudospectrum of a spectrally stable (normal)
operator.
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not correspond to any actual evolution operator in a
hyperboloidal description of the spacetime. The resulting
adjoint L̃† is formally identical to L̃. Naively one would
expect this to correspond to a self-adjoint operator.
However, the self-adjointness of the differential operator
is spoiled, because it also depends on the domain of
definition of the operator. The resulting operator is still
normal, as we can check by applying Eqs. (38) and (39) to
L̃, with L̃† ¼ L̃, leading to the pseudospectrum in Fig. 10
which portrays a normal operator.
Indeed, Fig. 10 captures the overall structure of the

would-be pseudospectrum if the actual operator L of scalar

perturbations in RN were normal. We observe a clear
structure of nested circles with radius ∼ϵ around the
QNMs, while far away from QNMs the contour lines
“flatten out.” This picture is qualitatively identical to a
typical normal operator (see Fig. 4 in Refs. [37] and [80]).
The nonperturbed eigenvalues of L̃ are the same as the
original eigenvalues of L, because of the very particular
form of the adjoint of L. As a consequence, the pseudo-
spectral boundaries of L̃ provide the distances from points
in the complex plane to the actual spectrum of L, making
contact with the ϵ-contour lines EϵðLÞ of the error bound
function introduced in Ref. [116].
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