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Spherically, plane, or hyperbolically symmetric spacetimes with an additional hypersurface orthogonal
Killing vector are often called “static” spacetimes even if they contain regions where the Killing vector is
nontimelike. It seems to be widely believed that an energy-momentum tenor for a matter field compatible
with these spacetimes in general relativity is of the Hawking-Ellis type I everywhere. We show in arbitrary
nð≥ 3Þ dimensions that, contrary to popular belief, a matter field on a Killing horizon is not necessarily of
type I but can be of type II. Such a type-II matter field on a Killing horizon is realized in the Gibbons-
Maeda-Garfinkle-Horowitz-Strominger black hole in the Einstein-Maxwell-dilaton system and may be
interpreted as a mixture of a particular anisotropic fluid and a null dust fluid.
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I. INTRODUCTION

Spherically symmetric spacetime has been one of the
most important classes in the research of general relativity
because it is simple enough but shows us a variety of
nontrivial properties of spacetime. (See textbooks [1,2] for
example.) In fact, the Schwarzschild vacuum spacetime is
the simplest model of an asymptotically flat black hole and
its maximal extension exposed the nature of the event
horizon and the central singularity. In addition, its charged
version, the Reissner-Nordström spacetime, exposed the
existence of a naked singularity surrounded by an addi-
tional inner horizon [2]. The generalized Schwarzschild
spacetime with planar or hyperbolic symmetry instead of
spherical symmetry does not describe a black hole but a
naked singularity. However, in the presence of a negative
cosmological constant, the spacetime can represent an
asymptotically anti–de Sitter black hole [3–5]. Such black
holes with nonspherical symmetry are called topological
black holes.
All these spacetimes admit a hypersurface orthogonal

Killing vector ξμ in addition to a set of Killing vectors
which generates a maximal spatial symmetry. The event
horizon of a black hole in these spacetimes is a Killing
horizon where ξμ becomes null. If the Killing horizon is
nondegenerate, the spacetime contains a dynamical region
where ξμ becomes spacelike. Even in such cases, these
spacetimes are often called “static” spacetimes.
This class of nð≥ 3Þ-dimensional “static” spacetimes

can be represented generally in the following Buchdahl
coordinates:

ds2 ¼ −HðxÞdt2 þ dx2

HðxÞ þ rðxÞ2γijðzÞdzidzj; ð1:1Þ

where γijðzÞ (i; j ¼ 2; 3;…; n − 1) is the metric on a
(n − 2)-dimensional maximally symmetric space Kn−2.
Throughout this paper, we assume r ≥ 0 without loss of
generality. The Riemann tensor of Kn−2 is given by

ðn−2ÞRij
kl ¼ kðδikδjl − δilδ

j
kÞ; ð1:2Þ

where k takes 1, 0, and −1 corresponding to spherical,
planar, and hyperbolic symmetry, respectively. The space-
time (1.1) admits a hypersurface orthogonal Killing vector
ξμð∂=∂xμÞ ¼ ∂=∂t, of which squared norm is given by
ξμξ

μ ¼ −HðxÞ. Hence, ξμ is timelike (spacelike) in an
untrapped (trapped) region defined by HðxÞ > ð<Þ0. A
Killing horizon associated with ξμ is a regular null
hypersurface x ¼ xh satisfying HðxhÞ ¼ 0.
Now let us consider an energy-momentum tenor Tμν of a

matter field compatible with the spacetime (1.1) in general
relativity. This is equivalent to consider an effective energy-
momentum tensor defined by Tμν ≔ Gμν (with units such
that c ¼ 8πG ¼ 1) in generalized theories of gravity. In
general, an energy-momentum tensor Tμν can be classified
into four types depending on the properties of its eigen-
vectors in arbitrary nð≥ 3Þ dimensions [6–8]. All the four
types of Tμν in this Hawking-Ellis classification are
summarized in Table I.
Among these four types, orthonormal components

TðaÞðbÞ ¼ TμνEðaÞ
μ EðbÞ

ν of the Hawking-Ellis type-I energy-
momentum tensor in the local Lorentz frame can be written
in the following canonical form [6,9]:*h-maeda@hgu.jp
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TðaÞðbÞ ¼ diagðρ; p1; p2;…; pn−1Þ: ð1:3Þ

Here EðaÞ
μ ða ¼ 0; 1;…; n − 1Þ are orthonormal basis one-

forms satisfying Eμ
ðaÞEðbÞμ ¼ ηðaÞðbÞ, where ηðaÞðbÞ is the

Minkowski metric in the local Lorentz frame and the

spacetime metric gμν is given by gμν ¼ ηðaÞðbÞE
ðaÞ
μ EðbÞ

ν .
On the other hand, the canonical form of orthonormal
components of the type II energy-momentum tensor is

TðaÞðbÞ ¼

0
BBBBBBBBBB@

ρþ ν ν 0 0 � � � 0

ν −ρþ ν 0 0 � � � 0

0 0 p2 0 � � � 0

0 0 0 . .
. ..

. ..
.

..

. ..
. ..

. � � � . .
.

0

0 0 0 � � � 0 pn−1

1
CCCCCCCCCCA
: ð1:4Þ

Note that a type II energy-momentum tensor reduces to
type I (1.3) with p1 ¼ −ρ if ν ¼ 0.
In this context, it seems to be widely believed that

Tμνð≕GμνÞ in the spacetime (1.1) is of the Hawking-Ellis
type I everywhere. For example, this claim has been made
in [10] for n ¼ 4 with k ¼ 1. It is certainly true in a region
with HðxÞ ≠ 0. However, as shown in the present paper, it
is not the case on a Killing horizon x ¼ xh. The incorrect
conclusion in [10] stems from the analysis based on a
singular coordinate system at x ¼ xh like the coordinates
(1.1). In fact, taking a limit x → xh in such a singular
coordinate system does not always lead to a correct result
at x ¼ xh.
This situation is similar to the computation to derive the

surface gravity κ on a Killing horizon, defined by
ξν∇νξ

μjx¼xh ¼ κξμjx¼xh . In the coordinate system (1.1)
with ξμð∂=∂xμÞ ¼ ∂=∂t, we obtain ξν∇νξ

t ¼ 0 ¼ ξν∇νξ
i

and ξν∇νξ
x ¼ HH0=2, where a prime denotes differentia-

tion with respect to x. Hence, the singular coordinate
system (1.1) leads to a wrong conclusion κ ¼ 0. Of course,
adopting a regular coordinate system at x ¼ xh with
advanced time v or retarded time u, we obtain the correct
result κ ¼ H0ðxhÞ=2 with ξμð∂=∂xμÞ ¼ ∂=∂v or κ ¼
−H0ðxhÞ=2 with ξμð∂=∂xμÞ ¼ ∂=∂u. Advantages of the

Buchdahl coordinates (1.1) as the “quasiglobal” coordi-
nates have been emphasized in [11–14].
In the present paper, we will prove some of generic

properties of a matter field in the spacetime (1.1) on and off
a Killing horizon. In Sec. II A, we will derive a necessary
and sufficient condition for that Tμν is of the Hawking-Ellis
type II on a Killing horizon. In Sec. II B, we will discuss the
standard energy conditions on and off a Killing horizon. A
result in Sec. II A will be applied to “static” perfect-fluid
solutions in Sec. II C. We will summarize our results in the
final section. Our conventions for curvature tensors are
½∇ρ;∇σ�Vμ ¼ Rμ

νρσVν and Rμν ¼ Rρ
μρν. The signature of

the Minkowski spacetime is ð−;þ; � � � ;þÞ, and Greek
indices run over all spacetime indices.
We note that all the following results remain valid even if

the base manifoldKn−2 in the spacetime (1.1) is replaced by
an arbitrary Einstein space, of which Ricci tensor satisfies
ðn−2ÞRij ¼ kðn − 3Þγij, due to the fact that the Riemann
tensor Rμ

νρσ does not appear explicitly in the definition of
the Einstein tensor Gμν.

II. MAIN RESULTS

A. Hawking-Ellis types of matter

First we prove that the matter field is of type I in a region
with HðxÞ ≠ 0 in the spacetime (1.1).
Proposition 1 In a region with HðxÞ ≠ 0 in the space-

time (1.1), the energy-momentum tensor Tμνð≔ GμνÞ is of
the Hawking-Ellis type I (1.3) with p2 ¼ p3 ¼ � � � ¼ pn−1.
Proof: In a region with HðxÞ ≠ 0, we introduce the

following orthonormal basis one-forms in the local Lorentz

frame satisfying EðaÞ
μ EðbÞμ ¼ diagð−1; 1;…; 1Þ:

Eð0Þ
μ dxμ ¼

�−
ffiffiffiffi
H

p
dt ðif HðxÞ > 0Þ

−
ffiffiffiffiffiffiffiffiffiffiffiffi
−H−1

p
dx ðif HðxÞ < 0Þ

; ð2:1Þ

Eð1Þ
μ dxμ ¼

�
−

ffiffiffiffiffiffiffiffiffi
H−1

p
dx ðif HðxÞ > 0Þ

−
ffiffiffiffiffiffiffiffi
−H

p
dt ðif HðxÞ < 0Þ

; ð2:2Þ

EðkÞ
μ dxμ ¼ reðkÞi dzi; ð2:3Þ

where eðkÞi (k ¼ 2; 3;…; n − 1) are basis one-forms on
Kn−2 satisfying

γij ¼ δðkÞðlÞe
ðkÞ
i eðlÞj ↔ γijeðkÞi eðlÞj ¼ δðkÞðlÞ: ð2:4Þ

Nonzero components of the Einstein tensor of the space-
time (1.1) are given by

Gt
t ¼

n − 2

2r2

h
rr0H0 þ 2rr00H þ ðn − 3ÞðHr02 − kÞ

i
; ð2:5Þ

TABLE I. Eigenvectors of type-I–IV energy-momentum ten-
sors and their expressions in the Segre notation. (See Appendix in
[9] for details.).

Type Eigenvectors Segre notation

I 1 timelike, n − 1 spacelike ½1; 11…1�
II 1 null (doubly degenerated), n − 2 spacelike ½211…1�
III 1 null (triply degenerated), n − 3 spacelike ½311…1�
IV 2 complex, n − 2 spacelike ½ZZ̄1 � � � 1�
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Gx
x ¼

n − 2

2r2
½rr0H0 þ ðn − 3ÞðHr02 − kÞ�; ð2:6Þ

Gi
j ¼ δijptðxÞ; ð2:7Þ

where ptðxÞ is defined by

ptðxÞ ≔
1

2
r−2

h
r2H00 þ 2ðn − 3Þrr0H0 þ 2ðn − 3Þrr00H

þ ðn − 3Þðn − 4ÞðHr02 − kÞ
i
: ð2:8Þ

Then, TðaÞðbÞð¼ GμνEðaÞ
μ EðbÞ

ν Þ is given in the type-I form
(1.3) with

ρ ¼ −
n − 2

2r2

h
rr0H0 þ ðH þ jHjÞrr00

þ ðn − 3ÞðHr02 − kÞ
i
≕ ηðxÞ; ð2:9Þ

p1 ¼
n − 2

2r2

h
rr0H0 þ ðH − jHjÞrr00

þ ðn − 3ÞðHr02 − kÞ
i
≕prðxÞ; ð2:10Þ

p2 ¼ p3 ¼ � � � ¼ pn−1 ¼ ptðxÞ: ð2:11Þ

▪
Such a type-I matter field in Proposition 1 can be

interpreted as an anisotropic fluid, of which energy-
momentum tensor is given by

Tμν ¼ ðρþ p2Þuμuν þ ðp1 − p2Þsμsν þ p2gμν; ð2:12Þ

where uμuμ ¼ −1, sμsμ ¼ 1, and uμsμ ¼ 0. Adopting

orthonormal basis one-forms Eð0Þ
μ and Eð1Þ

μ such that

uμ ¼ Eð0Þ
μ ; sμ ¼ Eð1Þ

μ ; ð2:13Þ

we obtain TðaÞðbÞ ¼ TμνEðaÞ
μ EðbÞ

ν in the type-I form (1.3)
with p2 ¼ p3 ¼ � � � ¼ pn−1.
It should be emphasized that Proposition 1 cannot be

directly applied to a Killing horizon defined by HðxhÞ ¼ 0.
This is because x ¼ xh is a coordinate singularity in the
coordinate system (1.1). Indeed, Eqs. (2.1) and (2.2) show

that either of Eð0Þ
μ or Eð1Þ

μ diverges there.
Regular coordinate systems covering a Killing horizon

are obtained by introducing advanced time v or retarded
time u defined by

v ≔ tþ
Z

HðxÞ−1dx; ð2:14Þ

u ≔ t −
Z

HðxÞ−1dx: ð2:15Þ

Then, the spacetime (1.1) is written as

ds2 ¼ −HðxÞdv2 þ 2dvdxþ rðxÞ2γijðzÞdzidzj; ð2:16Þ

ds2 ¼ −HðxÞdu2 − 2dudxþ rðxÞ2γijðzÞdzidzj; ð2:17Þ

in which the metric and its inverse are both finite at x ¼ xh.
Now we prove that the matter field on a Killing horizon can
be of type II as well.
Proposition 2 On a Killing horizon defined by

HðxhÞ ¼ 0 in the spacetime (1.1), the energy-momentum
tensor Tμνð≔ GμνÞ is of the Hawking-Ellis type I (1.3)
with p1 ¼ −ρ and p2 ¼ p3 ¼ � � � ¼ pn−1 if r00ðxhÞ ¼ 0
holds. If r00ðxhÞ ≠ 0 holds, it is of type II (1.4)
with p2 ¼ p3 ¼ � � � ¼ pn−1.
Proof: We introduce the following orthonormal basis

one-forms in the local Lorentz frame satisfying EðaÞ
μ EðbÞμ ¼

diagð−1; 1;…; 1Þ in the coordinate system (2.16):

Eð0Þ
μ dxμ ¼ −

1ffiffiffi
2

p
�
1þH

2

�
dvþ 1ffiffiffi

2
p dx; ð2:18Þ

Eð1Þ
μ dxμ ¼ −

1ffiffiffi
2

p
�
1 −

H
2

�
dv −

1ffiffiffi
2

p dx; ð2:19Þ

EðkÞ
μ dxμ ¼ reðkÞi dzi; ð2:20Þ

where basis one-forms eðkÞi (k ¼ 2; 3;…; n − 1) on Kn−2

satisfy Eq. (2.4). Nonzero components of the Einstein
tensor of the spacetime (2.16) are given by

Gvv ¼ −ðn − 2Þr−1r00; ð2:21Þ

Gvx ¼ Gxv ¼ n − 2

2r2
½rr0H0 þ ðn − 3ÞðHr02 − kÞ�; ð2:22Þ

Gxx ¼ ðn − 2ÞH
2r2

½rr0H0 þ ðn − 3ÞðHr02 − kÞ�; ð2:23Þ

Gij ¼ γijr−2ptðxÞ; ð2:24Þ

where ptðxÞ is defined by Eq. (2.8). Then, nonzero

components of TðaÞðbÞð¼ GμνEðaÞ
μ EðbÞ

ν Þ are computed to
give

Tð0Þð0Þ ¼ −
n − 2

8r2
f4rr0H0 þ rr00ðH þ 2Þ2

þ 4ðn − 3ÞðHr02 − kÞg; ð2:25Þ

Tð0Þð1Þ ¼ Tð1Þð0Þ ¼ n − 2

8r
r00ðH2 − 4Þ; ð2:26Þ
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Tð1Þð1Þ ¼ n − 2

8r2
f4rr0H0 − rr00ðH − 2Þ2

þ 4ðn − 3ÞðHr02 − kÞg; ð2:27Þ

TðiÞðjÞ ¼ δðiÞðjÞptðxÞ: ð2:28Þ

Equations (2.25)–(2.28) show that TðaÞðbÞ is in the type-II
form (1.4) on a Killing horizon HðxhÞ ¼ 0 with

ρ ¼ ηðxhÞð¼ −prðxhÞÞ; ð2:29Þ

ν ¼ −
n − 2

2
r−1r00jx¼xh ; ð2:30Þ

p2 ¼ p3 ¼ � � � ¼ pn−1 ¼ ptðxhÞ: ð2:31Þ

where ηðxÞ and prðxÞ are defined by Eqs. (2.9) and (2.10),
respectively. Therefore, Tμν is of type I if r00ðxhÞ ¼ 0 and of
type II otherwise. The same result is obtained in the
coordinate system (2.17) by a coordinate transformation
v ¼ −u. ▪
Such a type-II matter field on a Killing horizon in

Proposition 2 can be interpreted as a mixture of an
anisotropic fluid (2.12) with p1 ¼ −ρ and a null dust fluid,
of which energy-momentum tensor is given by

Tμνjx¼xh ¼ ðρþ p2Þðuμuν − sμsνÞ þ p2gμν

þ μkμkν; ð2:32Þ

where kμkμ ¼ 0. The last term in Eq. (2.32) is the energy-
momentum tensor of a null dust fluid with its energy

density μ. In terms of orthonormal basis one-forms Eð0Þ
μ and

Eð1Þ
μ satisfying Eq. (2.13), we represent kμ as

kμ ¼
1ffiffiffi
2

p ðEð0Þ
μ − Eð1Þ

μ Þ: ð2:33Þ

Then orthonormal components TðaÞðbÞjx¼xh are obtained in
the form of Eq. (1.4) with ν ¼ μ=2 and p2 ¼ p3 ¼
� � � ¼ pn−1. Using the basis one-forms (2.18)–(2.20) at
x ¼ xh in the spacetime (2.16), we obtain

kμdxμ ¼ dx; kμ
∂
∂xμ ¼

∂
∂v ; ð2:34Þ

so that a null dust fluid is confined on a Killing horizon. ρ and
p2 in Eq. (2.32) are given by Eqs. (2.29) and (2.31),
respectively, while Eq. (2.30) gives μ as

μ ¼ 2ν ¼ −ðn − 2Þr−1r00jx¼xh : ð2:35Þ

Of course, the spacetime (1.1) with a Killing horizon
can be a solution with a different matter field. It is well
known that the Reissner-Nordström black hole in the

Einstein-Maxwell system and its higher-dimensional and
topological generalization are described by the metric
(1.1) with rðxÞ ¼ x. By Proposition 2, the Maxwell field is
of type I on a Killing horizon in those spacetimes. This is
also the case with the charged BTZ black hole in three
dimensions (n ¼ 3) [15,16].
In contrast, the matter field is of type II on a Killing

horizon of the Gibbons-Maeda-Garfinkle-Horowitz-
Strominger (GM-GHS) dilatonic black hole [17,18] in
the following four-dimensional (n ¼ 4) Einstein-
Maxwell-dilaton system;

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½R − 2ð∇ϕÞ2 − e−2αϕFμνFμν�; ð2:36Þ

where α is the dilaton coupling constant and
Fμν ¼ ∂μAν − ∂νAμ. The GM-GHS solution is given by

ds2 ¼ −
f
B
dt2 þ B

f
dx2 þ Bx2dΩ2; ð2:37Þ

Aμdxμ ¼
2mχ

ð1 − χ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p B−ð1þα2Þ=2

x
dt; ð2:38Þ

ϕ ¼ −
α

1þ α2
ln

�
1þ χ2

1 − χ2
2m
x

�
; ð2:39Þ

where dΩ2 ≔ dθ2 þ sin2 θdφ2, m and χ are constants, and
the metric functions fðxÞ and BðxÞ are given by

fðxÞ ≔ 1 −
2m
x

; ð2:40Þ

BðxÞ ≔
�
1þ χ2

1 − χ2
2m
x

�
2=ð1þα2Þ

: ð2:41Þ

Equations (2.37)–(2.41) solve the following field equa-
tions in the system (2.36);

Gμν ¼ Tμν; ∇νðe−2αϕFμνÞ ¼ 0; ð2:42Þ

□ϕþ α

2
e−2αϕFρσFρσ ¼ 0 ð2:43Þ

with the energy-momentum tensor Tμν given by

Tμν ¼ 2∇μϕ∇νϕ − gμνð∇ϕÞ2

þ 2e−2αϕ
�
FμρFν

ρ −
1

4
gμνFρσFρσ

�
: ð2:44Þ

We note that, by a coordinate transformation x ¼ 2m=
ð1 − e2myÞ, the untrapped region (f > 0) of the GM-GHS
solution (2.37)–(2.41) is transformed into a subclass (with
κ > 0) of the solution obtained by Bronnikov and Shikin in
1977 [19]. (See [20] for a translated version in English.)
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Thus, the GM-GHS solution is an analytic extension of the
Bronnikov-Shikin solution with κ > 0 into the trapped
region (f < 0).
For m > 0 and 0 < χ2 < 1, the GM-GHS spacetime

(2.37) represents an asymptotically flat black hole with a
single Killing horizon at x ¼ 2mð> 0Þ. Since the areal
radius rðxÞ ¼ xBðxÞ1=2 gives

r00ð2mÞ ¼ −
χ4α2

2mð1þ α2Þ2
�

1

1 − χ2

�
1=ð1þα2Þ

; ð2:45Þ

the energy-momentum tensor (2.44) on the Killing horizon is
of type II for α ≠ 0 by Proposition 2. For α ¼ 0, the GM-
GHS solution becomes the Reissner-Nordström solution
with a trivial dilaton field ϕ≡ 0 and then the energy-
momentum tensor (2.44) is of type I on a Killing horizon.
In the GM-GHS solution, ∇μϕ becomes null at the

Killing horizon x ¼ 2m and Gvv ¼ Tvv with Eq. (2.21)
shows −r−1r00 ¼ ϕ02. Then, it is confirmed by Eq. (2.30)
that a nontrivial dilaton field ϕ makes Tμν type II on the
Killing horizon.

B. Energy conditions

Propositions 1 and 2 assert that, as realized in the GM-
GHS black hole (2.37), a matter field on a Killing horizon
in the spacetime (1.1) can be of the Hawking-Ellis type II,
while a matter off the horizon is always of type I. Such
black holes may be realized also in generalized theories of
gravity. In such a case, one can define an effective energy-
momentum tensor by Tμν ≔ Gμν and check the standard
energy conditions for Tμν as a measure of deviation from
general relativity. In this section, we discuss the energy
conditions for Tμνð≔ GμνÞ in the spacetime (1.1).
The standard energy conditions consist of the null energy

condition (NEC), weak energy condition (WEC), dominant
energy condition (DEC), and strong energy condition
(SEC). Equivalent expressions of these conditions for the
type-I energy-momentum tensor (1.3) are given by

NEC∶ ρþ pi ≥ 0; ð2:46Þ

WEC∶ ρ ≥ 0 in addition to NEC; ð2:47Þ

DEC∶ ρ − pi ≥ 0 in addition to WEC; ð2:48Þ

SEC∶ ðn − 3Þρþ
Xn−1
j¼1

pj ≥ 0

in addition to NEC ð2:49Þ

for all i ¼ 1; 2;…; n − 1 [9]. Those for the type-II energy-
momentum tensor (1.4) are

NEC∶ ν ≥ 0 and ρþ pi ≥ 0; ð2:50Þ

WEC∶ρ ≥ 0 in addition to NEC; ð2:51Þ

DEC∶ρ − pi ≥ 0 in addition to WEC; ð2:52Þ

SEC∶ ðn − 4Þρþ
Xn−1
j¼2

pj ≥ 0

in addition to NEC ð2:53Þ

for all i ¼ 2; 3;…; n − 1 [9].
The following proposition shows that inequalities

derived from Eqs. (2.46)–(2.49) for the spacetime (1.1)
in the region with HðxÞ ≠ 0 can be conveniently used just
by taking the limit x → xh to check the energy conditions
on a Killing horizon HðxhÞ ¼ 0.
Proposition 3 In the spacetime (1.1), the energy con-

ditions (2.50)–(2.53) on a Killing horizon HðxhÞ ¼ 0 can
be obtained in the limit of x → xh from the energy
conditions (2.46)–(2.49) off the Killing horizon.
Proof: Equations (2.9) and (2.10) give

ρþ p1 ¼ −ðn − 2Þr−1r00jHj: ð2:54Þ

By Eqs. (2.54) and (2.30), the condition ρþ p1 ≥ 0 in the
region with H ≠ 0 and the condition ν ≥ 0 on a Killing
horizon HðxhÞ ¼ 0 give the same inequality r00 ≤ 0. (Note
that we have assumed r ≥ 0 without loss of generality.)
By Eqs. (2.9)–(2.11) and (2.54), the energy conditions

(2.46)–(2.49) in the region with H ≠ 0 are equivalent to

NEC∶ r00ðxÞ ≤ 0 and ηðxÞ þ ptðxÞ ≥ 0; ð2:55Þ

WEC∶ ηðxÞ ≥ 0 in addition to NEC; ð2:56Þ

DEC∶ ηðxÞ − ptðxÞ ≥ 0 in addition to WEC; ð2:57Þ

SEC∶ðn−4ÞηðxÞþðn−2ÞðptðxÞ−r−1r00jHjÞ≥0

inadditiontoNEC: ð2:58Þ

By Eqs. (2.29)–(2.31), the energy conditions (2.50)–(2.53)
on a Killing horizon HðxhÞ ¼ 0 are equivalent to

NEC∶ r00ðxhÞ ≤ 0 and ηðxhÞ þ ptðxhÞ ≥ 0; ð2:59Þ

WEC∶ ηðxhÞ ≥ 0 in addition to NEC; ð2:60Þ

DEC∶ ηðxhÞ−ptðxhÞ≥0 in addition toWEC; ð2:61Þ

SEC∶ ðn − 4ÞηðxhÞ þ ðn − 2ÞptðxhÞ ≥ 0

in addition to NEC: ð2:62Þ

Inequalities (2.55)–(2.58) reduce to Eqs. (2.59)–(2.62) in
the limit to a Killing horizon x → xh. ▪
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As observed in Eqs. (2.46)–(2.53), violation of the NEC
means violation of all the standard energy conditions since
NEC is the weakest one among them [6,9]. In the spacetime
(1.1), the following simple sufficient condition for the NEC
violation is available, which is a generalization of the
theorem in [21] for the spacetime (1.1) with n ¼ 4 and
k ¼ 1 under an assumption HðxÞ ≠ 0.
Proposition 4 In the spacetime (1.1) including Killing

horizonsHðxhÞ ¼ 0, all the stanadard energy conditions are
violated in a region where r00 > 0 holds. ▪
Proof: By Eqs. (2.55) and (2.59). ▪
By Proposition 4, r00 ≤ 0 holds in a region of spacetime

(1.1) with a physically reasonable matter field in general
relativity. This is achieved everywhere in the case of
rðxÞ ¼ x. This inequality also holds everywhere in the
GM-GHS solution. The metric (2.37) gives

r00ðxÞ ¼ −
4m2χ4α2

ð1þ α2Þ2ð1 − χ2Þ2x3 BðxÞ
−ð1þ2α2Þ=2; ð2:63Þ

which satisfies r00 ≤ 0with equality holding for α ¼ 0. This
is consistent with the fact that the energy-momentum tensor
(2.44) in the Einstein-Maxwell-dilaton system (2.36) sat-
isfies all the standard energy conditions in the most general
setting [9].
In contrast, by Proposition 4, all the standard energy

conditions are violated everywhere in the case of rðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ l2

p
with a nonzero constant l, which gives

r00ðxÞ ¼ l2=ðr2 þ l2Þ3=2ð> 0Þ. This is the case of the
simplest Ellis-Bronnikov wormhole solution with a min-
imally coupled massless ghost scalar field, of which metric
is given by Eq. (1.1) with HðxÞ ¼ 1 and rðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ l2

p
for n ¼ 4 and k ¼ 1 [22,23]. Indeed, such a ghost scalar
field violates all the standard energy conditions in the most
general setting [9].
The metric ansatz (1.1) with rðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ l2

p
has also

been adopted to construct a nonsingular black hole of the
black-bounce type [21,24,25]. Proposition 4 shows that the
effective energy-momentum tensor T̄μν ≔ Gμν in such a
spacetime violates all the standard energy conditions, as
clearly stated in [21] for the spacetime (1.1) with n ¼ 4 and
k ¼ 1 except on Killing horizons.

C. Application to perfect-fluid solutions

Proposition 2 claims that a matter field on a Killing
horizon can be interpreted as a mixture of a particular
anisotropic fluid and a null dust fluid, of which energy-
momentum tensor is given by Eq. (2.32), where ρ, p2, and ν
are given by Eqs. (2.29), (2.31), and (2.35), respectively.
The following corollary of Proposition 2 exposes a generic
property of “static” perfect-fluid solutions that admit a
Killing horizon.
Corollary 1 Let a spacetime (1.1) be a solution with a

perfect fluid obeying a barotropic equation of state p ¼ pðρÞ

and suppose that it admits a Killing horizon HðxhÞ ¼ 0.
Then, p ¼ ρ ¼ 0 holds at x ¼ xh unless p ¼ −ρ ≠ 0 is
satisfied there.
Proof: The energy-momentum tensor of a perfect fluid

is given by Eq. (2.12) with p1 ¼ p2 ≕p, namely

Tμν ¼ ðρþ pÞuμuν þ pgμν: ð2:64Þ

By Proposition 2, an energy-momentum tensor at x ¼ xh
can be written as Eq. (2.32), which is a mixture of a
particular anisotropic fluid and a null dust fluid. A perfect
fluid (2.64) is compatible with an anisotropic fluid in
Eq. (2.32) only if p ¼ −ρ ¼ p2. Therefore, if a perfect
fluid obeying a barotropic equation of state p ¼ pðρÞ, p ¼
−ρ ≠ 0 or p ¼ ρ ¼ 0 holds at x ¼ xh. ▪
By Corollary 1, if a perfect fluid obeys a linear equation

of state p ¼ ðγ − 1Þρwith γ ≠ 0, p ¼ ρ ¼ 0must hold on a
Killing horizon. Let us see two such examples of perfect-
fluid solutions in four dimensions given as

ds2 ¼ −HðxÞdt2 þ dx2

HðxÞ þ rðxÞ2dΩ2; ð2:65Þ

uμ ¼ ðHðxÞ−1=2; 0; 0; 0Þ; ð2:66Þ

where dΩ2 ≔ dθ2 þ sin2 θdφ2. It should be emphasized
that the above solution in the comoving coordinates (2.66)
is valid only in the region with HðxÞ > 0. If the spacetime
(2.65) admits a regular Killing horizon, the spacetime can
be extended beyond there. In a trapped region defined by
HðxÞ < 0, the corresponding matter field is no more a
perfect fluid but an anisotropic fluid. By Proposition 2 and
Corollary 1, the matter field on a Killing horizon is a null
dust fluid if r00ðxhÞ ≠ 0. If r00ðxhÞ ¼ 0 holds, there is no
matter field on a Killing horizon.
The first example is a special class of the Whittaker

solution [26] obeying p ¼ −ρ=3. This solution is given by
Eqs. (2.65) and (2.66) with

HðxÞ ¼ 1þ 2βm
tanðβxÞ ; ð2:67Þ

rðxÞ ¼ jβ−1 sinðβxÞj; ð2:68Þ

ρ ¼ −3p ¼ 3β2HðxÞ; ð2:69Þ

wherem and β are constants and the solution reduces to the
Schwarzschild vacuum solution in the limit β → 0. As
Corollary 1 claims, p ¼ ρ ¼ 0 certainly holds on a Killing
horizon x ¼ −β−1 arctanð2βmÞð≡xhÞ. Because of

−r−1r00 ¼ β2ð> 0Þ; ð2:70Þ

there exists a null dust fluid at x ¼ xh with positive energy
density by Eq. (2.35).
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Another example is the Semiz solution obeying p ¼
−ρ=5 [27]. This solution can be described by Eqs. (2.65)
and (2.66) with

HðxÞ ¼
�
1 −

2m
x

��
1 −

λx2

3

�
1 −

2m
x

�
3
�

−1
; ð2:71Þ

rðxÞ ¼
����x
�
1 −

λx2

3

�
1 −

2m
x

�
3
�����; ð2:72Þ

ρ ¼ −5p ¼ 5λHðxÞ2; ð2:73Þ

where λ and m are constants and the solution reduces to the
Schwarzschild vacuum solution for λ ¼ 0. Again, p ¼ ρ ¼ 0
certainly holds on the Killing horizon x ¼ 2mð≡xhÞ. In this
Semiz solution, we obtain r00ðxhÞ ¼ 0 and therefore a matter
field is absent at x ¼ xh due to Eq. (2.35).
In the Buchdahl coordinates (2.65), asymptotic behav-

iors of the type-I matter field (2.9)–(2.11) (with n ¼ 4 and
k ¼ 1) toward a Killing horizon x → xh were investigated
in [14]. Theorem 1 in [14] states that, in the limit x → xh,
the type-I matter field obeys (i) p1=ρ → −1 and ρðxÞ → ρh
with a constant ρh or (ii) p1=ρ → −1=ð1þ 2NÞ and ρðxÞ ∝
ðx − xhÞN with a natural number N. The case (ii) includes
the Whittaker solution (2.67)–(2.69) for N ¼ 1 and the
Semiz solution (2.71)–(2.73) for N ¼ 2.

III. SUMMARY

In the present paper, we have shown that, contrary to
popular belief, a matter field on a Killing horizon defined

by HðxhÞ ¼ 0 in a “static” spacetime (1.1) can be of the
Hawking-Ellis type II if r00 ≠ 0 holds there. Even in such a
case, inequalities of the standard energy conditions in the
region with HðxÞ ≠ 0 can be conveniently used on the
Killing horizon just by taking the limit x → xh. As a
consequence, r00ðxÞ > 0 is a sufficient condition to violate
all the standard energy conditions in the spacetime (1.1)
including Killing horizons.
We have also exposed a generic property of static

perfect-fluid solutions admitting a Killing horizon, which
is independent from the asymptotic behavior or energy
conditions. If a perfect fluid obeys a barotropic equation
of state p ¼ pðρÞ, p ¼ ρ ¼ 0 holds on the Killing horizon
x ¼ xh unless p ¼ −ρ ≠ 0 is satisfied there. Then,
there exists a null dust fluid at x ¼ xh if and only if
r00ðxhÞ ≠ 0 holds.
The present paper has revealed that singular coordinate

systems may lead to incorrect conclusions on the properties
of Killing horizon. In the four-dimensional spherically
symmetric case, the matter field on a Killing horizon has
been erroneously claimed to be of type I in [10] based on a
singular coordinate system. Subsequently, the same claim
has been made in the most general static [28] and stationary
spacetimes [29] based on singular coordinate systems
where the inverse metric diverges on a Killing horizon
and these results have been used in a recent paper [30].
However, as shown in this paper, we definitely need to
adopt regular coordinate systems on a Killing horizon in
order to obtain a correct result in these spacetimes. These
tasks are left for future investigations.
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