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Hawking-Ellis type of matter on Killing horizons in symmetric spacetimes

Hideki Maeda®"

Department of Electronics and Information Engineering, Hokkai-Gakuen University,
Sapporo 062-8605, Japan

®  (Received 12 July 2021; accepted 3 October 2021; published 26 October 2021)

Spherically, plane, or hyperbolically symmetric spacetimes with an additional hypersurface orthogonal
Killing vector are often called “static” spacetimes even if they contain regions where the Killing vector is
nontimelike. It seems to be widely believed that an energy-momentum tenor for a matter field compatible
with these spacetimes in general relativity is of the Hawking-Ellis type I everywhere. We show in arbitrary
n(> 3) dimensions that, contrary to popular belief, a matter field on a Killing horizon is not necessarily of
type I but can be of type II. Such a type-II matter field on a Killing horizon is realized in the Gibbons-
Maeda-Garfinkle-Horowitz-Strominger black hole in the Einstein-Maxwell-dilaton system and may be

interpreted as a mixture of a particular anisotropic fluid and a null dust fluid.
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I. INTRODUCTION

Spherically symmetric spacetime has been one of the
most important classes in the research of general relativity
because it is simple enough but shows us a variety of
nontrivial properties of spacetime. (See textbooks [1,2] for
example.) In fact, the Schwarzschild vacuum spacetime is
the simplest model of an asymptotically flat black hole and
its maximal extension exposed the nature of the event
horizon and the central singularity. In addition, its charged
version, the Reissner-Nordstrom spacetime, exposed the
existence of a naked singularity surrounded by an addi-
tional inner horizon [2]. The generalized Schwarzschild
spacetime with planar or hyperbolic symmetry instead of
spherical symmetry does not describe a black hole but a
naked singularity. However, in the presence of a negative
cosmological constant, the spacetime can represent an
asymptotically anti—de Sitter black hole [3-5]. Such black
holes with nonspherical symmetry are called topological
black holes.

All these spacetimes admit a hypersurface orthogonal
Killing vector & in addition to a set of Killing vectors
which generates a maximal spatial symmetry. The event
horizon of a black hole in these spacetimes is a Killing
horizon where & becomes null. If the Killing horizon is
nondegenerate, the spacetime contains a dynamical region
where & becomes spacelike. Even in such cases, these
spacetimes are often called “static” spacetimes.

This class of n(> 3)-dimensional “static” spacetimes
can be represented generally in the following Buchdahl
coordinates:

“h-maeda@hgu.jp

2470-0010/2021/104(8)/084088(8)

084088-1

dx? .
ds? = —H(x)d¢> + a0 + r(x)?y;(z)dz'dz/,  (1.1)
where y;;(z) (i.j=2,3,...,n—1) is the metric on a

(n — 2)-dimensional maximally symmetric space K"~2.
Throughout this paper, we assume r > 0 without loss of
generality. The Riemann tensor of K"~2 is given by

IRy = k(56 — 6167)), (1.2)
where k takes 1, 0, and —1 corresponding to spherical,
planar, and hyperbolic symmetry, respectively. The space-
time (1.1) admits a hypersurface orthogonal Killing vector
&(0/0x*) = 0/0t, of which squared norm is given by
£,8" = —H(x). Hence, & is timelike (spacelike) in an
untrapped (trapped) region defined by H(x) > (<)0. A
Killing horizon associated with & is a regular null
hypersurface x = x;, satisfying H(x,) = 0.

Now let us consider an energy-momentum tenor 7', of a
matter field compatible with the spacetime (1.1) in general
relativity. This is equivalent to consider an effective energy-
momentum tensor defined by 7, := G,, (with units such
that ¢ = 8#G = 1) in generalized theories of gravity. In
general, an energy-momentum tensor 7, can be classified
into four types depending on the properties of its eigen-
vectors in arbitrary n(> 3) dimensions [6-8]. All the four
types of T, in this Hawking-Ellis classification are
summarized in Table 1.

Among these four types, orthonormal components
T@®) = 7wEWEP) of the Hawking-Ellis type-I energy-
momentum tensor in the local Lorentz frame can be written
in the following canonical form [6,9]:
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TABLE 1. Eigenvectors of type-I-IV energy-momentum ten-
sors and their expressions in the Segre notation. (See Appendix in
[9] for details.).

Type Segre notation

I 1 timelike, n — 1 spacelike [1,11...1]
I 1 null (doubly degenerated), n — 2 spacelike  [211...1]
II 1 null (triply degenerated), n — 3 spacelike  [311...1]
v 2 complex, n — 2 spacelike [ZZ1---1]

Eigenvectors

T(a)(b) :diag(Papl’sz--an—l)- (13)

Here Ef,a)(a =0,1,...,n—1) are orthonormal basis one-
forms satisfying E’(‘a)E(b)ﬂ = (a)(p)» Where () is the
Minkowski metric in the local Lorentz frame and the
spacetime metric g,, is given by g, :;1<a>(b)Ef,“>E£b>.
On the other hand, the canonical form of orthonormal
components of the type Il energy-momentum tensor is

ptv v o o0 -~ 0
v —p+v 0 0 -+ 0
0 0 p, 0 -+ 0
T(@)(b) — (1.4)
0 0 0
: : : 0
0 0 0 0 pu

Note that a type II energy-momentum tensor reduces to
type I (1.3) with p; = —p if v = 0.

In this context, it seems to be widely believed that
T,,(=:G,,) in the spacetime (1.1) is of the Hawking-Ellis
type I everywhere. For example, this claim has been made
in [10] for n = 4 with k = 1. It is certainly true in a region
with H(x) # 0. However, as shown in the present paper, it
is not the case on a Killing horizon x = x;,. The incorrect
conclusion in [10] stems from the analysis based on a
singular coordinate system at x = x;, like the coordinates
(1.1). In fact, taking a limit x — x;, in such a singular
coordinate system does not always lead to a correct result
at x = xy,.

This situation is similar to the computation to derive the
surface gravity x on a Killing horizon, defined by
&V, 8y, = K& —y,- In the coordinate system (1.1)
with &(9/0x*) = 0/0t, we obtain &'V & =0 = &V, &
and &'V, & = HH' /2, where a prime denotes differentia-
tion with respect to x. Hence, the singular coordinate
system (1.1) leads to a wrong conclusion x = 0. Of course,
adopting a regular coordinate system at x = x;, with
advanced time v or retarded time u, we obtain the correct
result k= H'(xy,)/2 with &(9/0x*) = 0/0v or k=
—H'(x,)/2 with &(9/0x*) = 9/0u. Advantages of the

Buchdahl coordinates (1.1) as the “quasiglobal” coordi-
nates have been emphasized in [11-14].

In the present paper, we will prove some of generic
properties of a matter field in the spacetime (1.1) on and off
a Killing horizon. In Sec. II A, we will derive a necessary
and sufficient condition for that 7', is of the Hawking-Ellis
type Il on a Killing horizon. In Sec. II B, we will discuss the
standard energy conditions on and off a Killing horizon. A
result in Sec. II A will be applied to “static” perfect-fluid
solutions in Sec. II C. We will summarize our results in the
final section. Our conventions for curvature tensors are
v,V V¥ =Rt V¥ and R,, = R’ ,,,. The signature of
the Minkowski spacetime is (—,+,---,+), and Greek
indices run over all spacetime indices.

We note that all the following results remain valid even if
the base manifold K”~2 in the spacetime (1.1) is replaced by
an arbitrary Einstein space, of which Ricci tensor satisfies
("‘Z)Rij = k(n—=3)y;;, due to the fact that the Riemann
tensor R*,,, does not appear explicitly in the definition of
the Einstein tensor G,.

II. MAIN RESULTS
A. Hawking-Ellis types of matter

First we prove that the matter field is of type I in a region
with H(x) # 0 in the spacetime (1.1).

Proposition 1 In a region with H(x) # 0 in the space-
time (1.1), the energy-momentum tensor T, (:= G, ) is of
the Hawking-Ellis type I (1.3) with p, = p3 =--- = p,_1.

Proof: In a region with H(x) # 0, we introduce the
following orthonormal basis one-forms in the local Lorentz

frame satisfying E/(,“)E(W = diag(-1,1,...,1):

©) —VHdt (if H(x) > 0)
E;t dxt = s (21)
—V—-H"'dx (if H(x) < 0)
—VH'd if H(x) >0
El v = { * (THE)>0) )y
—V/—=Hdt (if H(x) <0)

E,(,k)dx" = rel(»k)dzi, (2.3)
where el(.k) (k=2,3,...,n—1) are basis one-forms on
K"~ satisfying

Vi = 5<k)(,>e,(»k) eﬁ»l) DI yijegk) eﬁl) =500 (2.4)

Nonzero components of the Einstein tensor of the space-
time (1.1) are given by

n—2

' = 272

[rr’H’ +2r"H + (n—3)(Hr? - k)} , (2.5)
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n —
G = 272

[rH' + (n=3)(Hr* = k)], (2.6)

Gij = 5ijpt(x)’ (2.7)

where p(x) is defined by

1
p(x) = 3 2 [rZH” +2(n=3)rH +2(n-3)r'"H

+(n=3)(n—4)(Hr" - k)} . (2.8)

Then, T@®) (= GES E)) is given in the type-I form
(1.3) with

p= _n2:22 [rr’H’ + (H + |H|)r"
+ (n=3)(Hr? = )| =n(x), (2.9)

P = 2;2 [rr’H’ + (H — |H|)r"
+(n—3)(HF - k)} —p.(x),  (2.10)
P2=P3="""= Pn :Pt(x)- (2-11)

Such a type-I matter field in Proposition 1 can be
interpreted as an anisotropic fluid, of which energy-
momentum tensor is given by

T;w = (P + pZ)uﬂuu + (pl - p2)sﬂsv + p2g/4w (212)

where u,ut = -1, s,s# =1, and u,s* =0. Adopting

7
orthonormal basis one-forms E,(,()) and E,(,1> such that

w,=E",  s,=E", (2.13)
we obtain 7@® = 7wEWEP in the type-I form (1.3)
with py = p3 =--- = p,_.

It should be emphasized that Proposition 1 cannot be
directly applied to a Killing horizon defined by H(x,) = 0.
This is because x = x;, is a coordinate singularity in the
coordinate system (1.1). Indeed, Eqs. (2.1) and (2.2) show

that either of E,(,O) or E,(,l) diverges there.

Regular coordinate systems covering a Killing horizon
are obtained by introducing advanced time » or retarded
time u defined by

vi=1t+ /H(x)_ldx, (2.14)

U= t—/H(x)_ldx. (2.15)

Then, the spacetime (1.1) is written as

ds? = —H(x)dv? + 2dvdx + r(x)%y;;(z)dz'dz/, (2.16)

ds? = —H(x)du? — 2dudx + r(x)%y;;(z)dz'dz/, (2.17)
in which the metric and its inverse are both finite at x = x;,.
Now we prove that the matter field on a Killing horizon can
be of type II as well.

Proposition 2 On a Killing horizon defined by
H(x,) = 0 in the spacetime (1.1), the energy-momentum
tensor 7,,(:= G,,) is of the Hawking-Ellis type I (1.3)
with p; = —p and p, = p3 =--- = p,_ if r"(x,) =0
holds. If r"(x,) #0 holds, it is of type II (1.4)
with p, = p3 =---=p,;.

Proof: We introduce the following orthonormal basis
one-forms in the local Lorentz frame satisfying E\" E? =
diag(—1,1,..., 1) in the coordinate system (2.16):

o 1 H 1
E//dx* =—— (14— |dv+—=dx, (2.18
e = J5 (143 Jors Jgon e

0 1 H 1
E,)/d¥* = ——|1——=)dv——=dx, 2.19
Yae = J (1-5)ar-Jgen @19

EPdv = reMdz, (2.20)
where basis one-forms el(-k) (k=2,3,....n—1) on K"?
satisfy Eq. (2.4). Nonzero components of the Einstein
tensor of the spacetime (2.16) are given by

G = —(n— 2, (1)
) n—2 /7! /2

G = G = 7 [I”I" H + (n - 3)(H7” - k)], (222)

r

—-2)H

G = 7(71 5 2) [rPH' + (n = 3)(Hr'? - k)], (2.23)

r
Gl = ylir2p,(x). (2.24)

where p(x) is defined by Eq. (2.8). Then, nonzero
components of T@W® (= GEWEY) are computed to

give
-2
TO0) — _7"8 —{4r’H' + rr'(H + 2)?
r

+4(n—3)(Hr'* —k)}, (2.25)

TOX) — 70 — ”8‘ 2 J1(H? — 4),
;

(2.26)
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-2
TOO) = ”8 Z{4rPH — P (H = 2)?
r

+4(n=3)(Hr'* - k)},

(2.27)
TOW = 500 p,(x). (2.28)

Equations (2.25)—(2.28) show that 7(@®) is in the type-II
form (1.4) on a Killing horizon H(x;,) = 0 with

p = n(x) (= —p:(xn)), (2.29)
P n—2 r_lr//|x:x}‘, (230)
P2 =Dp3 == Py = p(xn). (2.31)

where 7(x) and p,(x) are defined by Egs. (2.9) and (2.10),
respectively. Therefore, T, is of type Lif 7(x,) = 0 and of
type II otherwise. The same result is obtained in the
coordinate system (2.17) by a coordinate transformation
v=—u. n

Such a type-Il matter field on a Killing horizon in
Proposition 2 can be interpreted as a mixture of an
anisotropic fluid (2.12) with p; = —p and a null dust fluid,
of which energy-momentum tensor is given by

T/w|x:xh = (/) + p2)<uuuv - S/lsll> + P29

+ pk,k,, (2.32)

where k,k* = 0. The last term in Eq. (2.32) is the energy-
momentum tensor of a null dust fluid with its energy
density u. In terms of orthonormal basis one-forms E,(,O) and

Efll) satisfying Eq. (2.13), we represent k,, as
0 1
by = (B~ B,

V2
Then orthonormal components T(")<l’>|X:xh are obtained in
the form of Eq. (1.4) with v=pu/2 and p, = p; =
-++=p,_1. Using the basis one-forms (2.18)—(2.20) at

X = xy, in the spacetime (2.16), we obtain

(2.33)

w0

k,dx* = dx, 9.
# oxt  Ov

(2.34)
so that a null dust fluid is confined on a Killing horizon. p and
p> in Eq. (2.32) are given by Egs. (2.29) and (2.31),
respectively, while Eq. (2.30) gives u as
p=2w=—(n=2)r"r",_,. (2.35)
Of course, the spacetime (1.1) with a Killing horizon

can be a solution with a different matter field. It is well
known that the Reissner-Nordstrom black hole in the

Einstein-Maxwell system and its higher-dimensional and
topological generalization are described by the metric
(1.1) with r(x) = x. By Proposition 2, the Maxwell field is
of type I on a Killing horizon in those spacetimes. This is
also the case with the charged BTZ black hole in three
dimensions (n = 3) [15,16].

In contrast, the matter field is of type II on a Killing
horizon of the Gibbons-Maeda-Garfinkle-Horowitz-
Strominger (GM-GHS) dilatonic black hole [17,18] in
the following four-dimensional (rn =4) Einstein-
Maxwell-dilaton system;

S = / d*x\/=g[R —2(V¢)? — e™29F ,F*], (2.36)

where o« is the dilaton coupling constant and
F,, =0,A,—0,A, The GM-GHS solution is given by

B
ds? = _gdﬂ + ?dxz + Bx?dQ?, (2.37)
2my B~(1+a%)/2
A = 1=+ x @ 23%)
2
___« X 2m
b= 1+a21n(1+1_)(2 x>, (2.39)

where dQ? := d6” + sin® @dgp?, m and y are constants, and
the metric functions f(x) and B(x) are given by

fx)=1- 27’" (2.40)
2 2/(1+a?%)
- x_2m
B(x) = <1 T x) . (241)

Equations (2.37)—(2.41) solve the following field equa-
tions in the system (2.36);
G

=T

e vu(e_zm/)Fﬂy) =0,

(2.42)

uv

a
B+ 3 e 2F , Fr° = (2.43)

with the energy-momentum tensor 7, given by

T;w = 2vu¢vu¢ - gﬂv(v¢)2

1
+ 27204 <FW,F,/’ - 4gﬂpraFf’”> - (244)

We note that, by a coordinate transformation x = 2m/
(1 — e*™), the untrapped region (f > 0) of the GM-GHS
solution (2.37)—(2.41) is transformed into a subclass (with
k > 0) of the solution obtained by Bronnikov and Shikin in
1977 [19]. (See [20] for a translated version in English.)
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Thus, the GM-GHS solution is an analytic extension of the
Bronnikov-Shikin solution with x > 0 into the trapped
region (f < 0).

For m >0 and 0 < y*> < 1, the GM-GHS spacetime
(2.37) represents an asymptotically flat black hole with a
single Killing horizon at x = 2m(> 0). Since the areal
radius r(x) = xB(x)'/? gives

1/(14a?)
P(2m) = — > . (245)

the energy-momentum tensor (2.44) on the Killing horizon is
of type II for a # 0 by Proposition 2. For a = 0, the GM-
GHS solution becomes the Reissner-Nordstrom solution
with a trivial dilaton field ¢y =0 and then the energy-
momentum tensor (2.44) is of type I on a Killing horizon.

In the GM-GHS solution, V,¢ becomes null at the
Killing horizon x =2m and G"” = T"" with Eq. (2.21)
shows —r~!7" = 2. Then, it is confirmed by Eq. (2.30)
that a nontrivial dilaton field ¢ makes 7, type II on the
Killing horizon.

rta? 1
2m(1 +a?)? \1 = »?

B. Energy conditions

Propositions 1 and 2 assert that, as realized in the GM-
GHS black hole (2.37), a matter field on a Killing horizon
in the spacetime (1.1) can be of the Hawking-Ellis type II,
while a matter off the horizon is always of type I. Such
black holes may be realized also in generalized theories of
gravity. In such a case, one can define an effective energy-
momentum tensor by 7, = G, and check the standard
energy conditions for 7, as a measure of deviation from
general relativity. In this section, we discuss the energy
conditions for T,,(:= G,,) in the spacetime (1.1).

The standard energy conditions consist of the null energy
condition (NEC), weak energy condition (WEC), dominant
energy condition (DEC), and strong energy condition
(SEC). Equivalent expressions of these conditions for the
type-I energy-momentum tensor (1.3) are given by

NEC: p+ p; >0, (2.46)
WEC: p > 0 in addition to NEC, (2.47)
DEC: p — p; > 0 in addition to WEC,  (2.48)

n-1
SEC: (n=3)p+ Y p; 20
=1
in addition to NEC (2.49)

forall i =1,2,...,n—1 [9]. Those for the type-1I energy-
momentum tensor (1.4) are

NEC: v>0 and p-+p; >0, (2.50)

WEC:p > 0 in addition to NEC, (2.51)
DEC:p — p; > 0 in addition to WEC,  (2.52)
n—1
SEC: (n=4)p+Y p; >0
=2
in addition to NEC (2.53)

forall i =2,3,....,n—1[9].

The following proposition shows that inequalities
derived from Egs. (2.46)—(2.49) for the spacetime (1.1)
in the region with H(x) # 0 can be conveniently used just
by taking the limit x — x;, to check the energy conditions
on a Killing horizon H(x,) = 0.

Proposition 3 In the spacetime (1.1), the energy con-
ditions (2.50)—(2.53) on a Killing horizon H(x;,) = 0 can
be obtained in the limit of x — x; from the energy
conditions (2.46)—(2.49) off the Killing horizon.

Proof: Equations (2.9) and (2.10) give

p+p=—-(n=-2)r""YH|. (2.54)
By Egs. (2.54) and (2.30), the condition p + p; > 0 in the
region with H # 0 and the condition v > 0 on a Killing
horizon H(x;,) = 0 give the same inequality r” < 0. (Note
that we have assumed r > 0 without loss of generality.)

By Egs. (2.9)-(2.11) and (2.54), the energy conditions
(2.46)—(2.49) in the region with H # 0 are equivalent to

NEC: r(x) <0 and 75(x)+ p(x) >0, (2.55)
WEC: 5(x) > 0 in addition to NEC, (2.56)
DEC: 5(x) — p(x) > 0 in addition to WEC,  (2.57)
SEC: (n—4)n(x)+(n=2)(p(x)—r='7"|H|) >0

inadditiontoNEC. (2.58)

By Egs. (2.29)—(2.31), the energy conditions (2.50)—(2.53)
on a Killing horizon H(x,) = 0 are equivalent to

NEC: r'(x,) <0 and #5(xy) + p(xy) 20,  (2.59)
WEC: 7(x;) > 0 in addition to NEC, (2.60)
DEC: n(x,) — pi(x) = 0inadditionto WEC,  (2.61)

SEC: (n—4)n(xy) + (n=2)p(xy) 20
in addition to NEC. (2.62)

Inequalities (2.55)—(2.58) reduce to Egs. (2.59)—(2.62) in
the limit to a Killing horizon x — Xx;,. [
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As observed in Egs. (2.46)—(2.53), violation of the NEC
means violation of all the standard energy conditions since
NEC is the weakest one among them [6,9]. In the spacetime
(1.1), the following simple sufficient condition for the NEC
violation is available, which is a generalization of the
theorem in [21] for the spacetime (1.1) with n =4 and
k = 1 under an assumption H(x) # 0.

Proposition 4 In the spacetime (1.1) including Killing
horizons H(x;) = 0, all the stanadard energy conditions are
violated in a region where '/ > 0 holds. ]

Proof: By Egs. (2.55) and (2.59). ]

By Proposition 4, ¥/ < 0 holds in a region of spacetime
(1.1) with a physically reasonable matter field in general
relativity. This is achieved everywhere in the case of
r(x) = x. This inequality also holds everywhere in the
GM-GHS solution. The metric (2.37) gives
AmPpt

—(14+2a2)/2
T+ a1 =P P

r(x)=—

(2.63)

which satisfies 7/ < 0 with equality holding for @ = 0. This
is consistent with the fact that the energy-momentum tensor
(2.44) in the Einstein-Maxwell-dilaton system (2.36) sat-
isfies all the standard energy conditions in the most general
setting [9].

In contrast, by Proposition 4, all the standard energy
conditions are violated everywhere in the case of r(x) =
Vx> + 1> with a nonzero constant [, which gives
7'(x) = 2/(r* + ?)3?(> 0). This is the case of the
simplest Ellis-Bronnikov wormhole solution with a min-
imally coupled massless ghost scalar field, of which metric
is given by Eq. (1.1) with H(x) = 1 and r(x) = Vx> + I?
for n =4 and k =1 [22,23]. Indeed, such a ghost scalar
field violates all the standard energy conditions in the most
general setting [9].

The metric ansatz (1.1) with 7(x) = Vx> + I* has also
been adopted to construct a nonsingular black hole of the
black-bounce type [21,24,25]. Proposition 4 shows that the
effective energy-momentum tensor T,w =G, in such a
spacetime violates all the standard energy conditions, as
clearly stated in [21] for the spacetime (1.1) with n = 4 and
k =1 except on Killing horizons.

C. Application to perfect-fluid solutions

Proposition 2 claims that a matter field on a Killing
horizon can be interpreted as a mixture of a particular
anisotropic fluid and a null dust fluid, of which energy-
momentum tensor is given by Eq. (2.32), where p, p,, and v
are given by Egs. (2.29), (2.31), and (2.35), respectively.
The following corollary of Proposition 2 exposes a generic
property of “static” perfect-fluid solutions that admit a
Killing horizon.

Corollary 1 Let a spacetime (1.1) be a solution with a
perfect fluid obeying a barotropic equation of state p = p(p)

and suppose that it admits a Killing horizon H(x;) = 0.
Then, p =p =0 holds at x = x;, unless p = —p #0 is
satisfied there.
Proof: The energy-momentum tensor of a perfect fluid
is given by Eq. (2.12) with p; = p, =: p, namely
Ty = (p+ p)uty + PG (2.64)
By Proposition 2, an energy-momentum tensor at x = x,
can be written as Eq. (2.32), which is a mixture of a
particular anisotropic fluid and a null dust fluid. A perfect
fluid (2.64) is compatible with an anisotropic fluid in
Eq. (2.32) only if p = —p = p,. Therefore, if a perfect
fluid obeying a barotropic equation of state p = p(p), p =
—p#0or p=p=0holds at x = x,. [
By Corollary 1, if a perfect fluid obeys a linear equation
of state p = (y — 1)pwithy # 0, p = p = Omust hold on a
Killing horizon. Let us see two such examples of perfect-
fluid solutions in four dimensions given as

dx?
2 _ _ 2 2402
ds* = —H(x)dr* + o + r(x)2dQ*,  (2.65)
u = (H(x)~1/2,0,0,0), (2.66)

where dQ? := d@? + sin” @dg?. It should be emphasized
that the above solution in the comoving coordinates (2.66)
is valid only in the region with H(x) > 0. If the spacetime
(2.65) admits a regular Killing horizon, the spacetime can
be extended beyond there. In a trapped region defined by
H(x) < 0, the corresponding matter field is no more a
perfect fluid but an anisotropic fluid. By Proposition 2 and
Corollary 1, the matter field on a Killing horizon is a null
dust fluid if #/(x,) # 0. If #’(x,) = 0 holds, there is no
matter field on a Killing horizon.

The first example is a special class of the Whittaker
solution [26] obeying p = —p/3. This solution is given by
Egs. (2.65) and (2.66) with

B 2pm
H(x) =1+ @n ()’ (2.67)
r(x) = |p~ " sin(Bx)|, (2.68)
p=-3p=34H(x), (2.69)

where m and f are constants and the solution reduces to the
Schwarzschild vacuum solution in the limit g — 0. As
Corollary 1 claims, p = p = 0 certainly holds on a Killing
horizon x = —f~! arctan(2m)(=x,). Because of

—1. ./

—r ' = B2 (> 0), (2.70)

there exists a null dust fluid at x = x;, with positive energy
density by Eq. (2.35).
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Another example is the Semiz solution obeying p =
—p/5 [27]. This solution can be described by Egs. (2.65)
and (2.66) with

H(x) = (1 —2;">{1 —23)“2 (1 —2;")3}_1, (2.71)
{502

p=—=5p=>5\H(x)*,

: (2.72)

(2.73)

where A and m are constants and the solution reduces to the
Schwarzschild vacuum solution for 4 = 0. Again, p = p =0
certainly holds on the Killing horizon x = 2m(=xy,). In this
Semiz solution, we obtain ”(x;,) = 0 and therefore a matter
field is absent at x = x;, due to Eq. (2.35).

In the Buchdahl coordinates (2.65), asymptotic behav-
iors of the type-I matter field (2.9)—(2.11) (with n = 4 and
k = 1) toward a Killing horizon x — x;, were investigated
in [14]. Theorem 1 in [14] states that, in the limit x — x,
the type-I matter field obeys (i) p;/p — —1 and p(x) — py,
with a constant py, or (i) p;/p = —1/(1 + 2N) and p(x)
(x —x,)Y with a natural number N. The case (ii) includes
the Whittaker solution (2.67)—(2.69) for N =1 and the
Semiz solution (2.71)—(2.73) for N = 2.

III. SUMMARY

In the present paper, we have shown that, contrary to
popular belief, a matter field on a Killing horizon defined

by H(x,) =0 in a “static” spacetime (1.1) can be of the
Hawking-Ellis type ITif #” # 0 holds there. Even in such a
case, inequalities of the standard energy conditions in the
region with H(x) # 0 can be conveniently used on the
Killing horizon just by taking the limit x — x;,. As a
consequence, r’(x) > 0 is a sufficient condition to violate
all the standard energy conditions in the spacetime (1.1)
including Killing horizons.

We have also exposed a generic property of static
perfect-fluid solutions admitting a Killing horizon, which
is independent from the asymptotic behavior or energy
conditions. If a perfect fluid obeys a barotropic equation
of state p = p(p), p = p = 0 holds on the Killing horizon
x=2x, unless p=—p#0 is satisfied there. Then,
there exists a null dust fluid at x = x;, if and only if
' (x,) # 0 holds.

The present paper has revealed that singular coordinate
systems may lead to incorrect conclusions on the properties
of Killing horizon. In the four-dimensional spherically
symmetric case, the matter field on a Killing horizon has
been erroneously claimed to be of type I in [10] based on a
singular coordinate system. Subsequently, the same claim
has been made in the most general static [28] and stationary
spacetimes [29] based on singular coordinate systems
where the inverse metric diverges on a Killing horizon
and these results have been used in a recent paper [30].
However, as shown in this paper, we definitely need to
adopt regular coordinate systems on a Killing horizon in
order to obtain a correct result in these spacetimes. These
tasks are left for future investigations.
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