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The thermodynamics of “horizon brightened acceleration radiation” (HBAR), due to a random atomic
cloud freely falling into a black hole in a Boulware-like vacuum, is shown to mimic the thermodynamics of
the black hole itself. The thermodynamic framework is developed in its most general form via a quantum-
optics master equation, including rotating (Kerr) black holes and for any set of initial conditions of the
atomic cloud. The HBAR field exhibits thermal behavior at the Hawking temperature and an area-entropy-
flux relation that resembles the Bekenstein-Hawking entropy. In addition, this general approach reveals:
(i) the existence of an HBAR-black-hole thermodynamic correspondence that explains the HBAR area-
entropy-flux relation; (ii) the origin of the field entropy from the near-horizon behavior, via conformal
quantum mechanics (CQM).
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I. INTRODUCTION

Two of the central pillars of black hole thermodynamics
[1,2] are the Bekenstein-Hawking entropy SBH [3–5] and
the Hawking radiation effect [6,7], along with the Hawking
temperature TH. These results appear to be universal
properties of any theory combining quantum physics with
gravitation. While their physical origin has been partially
captured by several formulations within the framework of
quantum field theory in curved spacetime, additional
progress has been made with string theory [8] and loop
quantum gravity [9]. Moreover, all approaches suggest that
the origin of the thermodynamics is related to the event
horizon [2], possibly in the form of a conformal field theory
[10–13]. Furthermore, due to the equivalence principle,
related results have been identified in accelerated systems
in the form of the Fulling-Davies-Unruh effect and the
associated Unruh temperature [14–16]. Additional insights
into these profound concepts are of great interest; thus, in
this paper, we probe deeper into some nontrivial connec-
tions between the thermodynamics of black holes and
acceleration radiation.
We use the foundational results of the first article

in this series [17] to fully develop the thermodynamics
of “horizon brightened acceleration radiation” (HBAR)
generated by a an atomic cloud in free fall into a black

hole in a Boulware-like vacuum, with random injection
times. These results generalize to rotating black holes the
quantum optics approach of Ref. [18]. Most importantly, as
in the preceding article [17], conformal quantummechanics
(CQM) is shown to fully drive the thermodynamic behavior
[19–23]. Such a symmetry-based approach is appealing
as it supports the notion that conformal invariance may
play a crucial role in a deeper understanding of black hole
thermodynamics [10–13]. In essence, the ensuing thermo-
dynamic framework relies on the primary thermal proper-
ties that consist of the Hawking temperature and thermality
via a detailed-balance Boltzmann factor—these are
common to both HBAR and black hole thermodynamics.
With these tools, this paper establishes the existence of
formally identical thermodynamic functional relationships,
which we describe as the HBAR-black-hole thermody-
namic correspondence and include the HBAR area-
entropy-flux relation. In particular, the HBAR entropy flux
is proportional to the rate of change in horizon surface area
due to the photon emission, with the critical proportionality
factor that is exactly 1=4.
The organization of this article is as follows. It involves

two intertwining tracks, properly addressed in the different
sections: the physics of the background gravitational field
and the statistical quantum-optics approach leading to the
thermodynamics through the master equation for the
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reduced field density matrix. The logical progression of
concepts and their interrelationship are outlined in Fig. 1,
with the details on the master equation briefly summarized
from the extensive treatment of Ref. [17]. In Sec. II, the
basic concepts for both tracks are introduced: the geom-
etry, the interactions, and a review of the master equation
from Ref. [17]. In Sec. III, we show that the physics of the
scalar field in the gravitational background near the event
horizon is governed by CQM; both the near-horizon field
equations and geodesics are derived. In Sec. IV, we
examine the implications of the governing physics of
CQM, both in terms of the gravitational background and
the master equation; in particular, this includes a deriva-
tion of the Planck form of the atom’s probability of
emission of photons, the existence of detailed balance
Boltzmann factor associated with the Hawking temper-
ature, and a characterization of the thermal nature of the
field state via the master equation. These buildup of
concepts culminates in Sec. V, with a thorough analysis
of the HBAR thermodynamics leading to the HBAR-
black-hole thermodynamic correspondence, and including
the HBAR entropy flux formula of Ref. [18], with a
general proof of its conformal nature. Concluding remarks

are given in Sec. VI, and followed by the Appendixes,
which include a summary of the Kerr geodesics (A) and
the technicalities of Kerr-geometry modes and vacuum
states (B).

II. BASIC CONCEPTS: KERR GEOMETRY,
ATOM-FIELD-GRAVITY INTERACTIONS,

AND FIELD MASTER EQUATION

A. Kerr geometry

The spacetime geometry provides the gravitational
background where the atom-field interactions take place.
In this paper, we will focus on the geometry due to
nonextremal Kerr black holes, as these are of current
interest and broad generality. as representatives of the
rotating class of black holes in 4D. Specifically, the Kerr
metric describes the spacetime geometry that is the exact
vacuum solution of the Einstein general relativistic field
equations in 4D in the presence of a black hole of mass M
and angular momentum J. In Boyer-Lindquist coordinates
ðt; r; θ;ϕÞ, the metric admits several equivalent expres-
sions; in its most basic form, in geometrized units
c ¼ G ¼ 1, it is given by

FIG. 1. Logical flow of basic concepts in this article. On the right hand side we have the elements of quantum optics that leads to a
thermal steady state. The black-hole (BH) geometry on the left side assigns the temperature of the thermal steady state to be Hawking
temperature via near-horizon CQM. This assignment of temperature connects the BH aspects of the problem with the quantum optics
methodology. What remains to be explored is exactly how this relates to the BH entropy on a deeper level.
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ds2 ¼ −
ðΔ − a2sin2θÞ

ρ2
dt2 −

4Mr
ρ2

asin2θdtdϕ

þ ρ2

Δ
dr2 þ ρ2dθ2 þ Σ2

ρ2
sin2θdϕ2 ð1Þ

where the Kerr parameter a ¼ J=M, is the angular
momentum per unit mass, and the symbols Δ, ρ, and Σ
are defined as

Δ¼ r2−2Mrþa2; ρ2 ¼ r2þa2cos2θ;

Σ2 ¼ðr2þa2Þρ2þ2Mra2sin2θ¼ðr2þa2Þ2−Δa2sin2θ:

ð2Þ

The analysis of this paper is similarly valid for the Kerr-
Newman geometry, which has the same structural form
with an additional black hole electric charge Q, which
shows up as a modification Δ ¼ r2 − 2Mrþ a2 þQ2,
leading to a replacement a2 → a2 þQ2 in Eq. (5) and
ensuing equations.
An alternative form of the Kerr metric,

ds2¼−
Δρ2

Σ2
dt2þρ2

Δ
dr2þρ2dθ2þΣ2

ρ2
sin2θðdϕ−ϖdtÞ2;

ð3Þ

can be derived by absorbing the off-diagonal term gtϕ in a
shift of the angular coordinate ϕ, such that

ϖ ¼ −
gtϕ
gϕϕ

ð4Þ

is interpreted as a position-dependent angular velocity [24].
Equation (4) is particularly useful to understand the physics
as the event horizon is approached, as we will further
analyze in Sec. III.
The roots of the equation grr ¼ 0, which amounts to

Δ ¼ 0, give the locations of the outer and inner event
horizon,

r� ¼ M � ðM2 − a2Þ1=2: ð5Þ

In addition, the ergosphere is the region between the outer
event horizon and the outer static limit, which is defined by
the largest root of gtt ¼ 0. The nonextremal geometry that
we study in this paper corresponds to the physical condition
M > a, which amounts to Δ0þ ≡ Δ0ðrþÞ ¼ rþ − r− ≠ 0,
and where the prime stands for the radial derivative.
The symmetries of the metric (1) lead to the Killing

vectors

ξðtÞ ¼ ∂t; ξðϕÞ ¼ ∂ϕ ð6Þ

associated with the stationary and axisymmetric nature
of the metric (independence with respect to t and ϕ

respectively). In addition, the particular combination ξ ¼
ξðtÞ þ ΩHξðϕÞ defines a Killing vector with respect to which
the horizon H is a null hypersurface; see the interpretation
in Sec. III, in and around Eq. (19). Three most relevant
geometrical and physical properties of the black hole are
the horizon area A, the surface gravity κ, and the angular
velocity ΩH. The horizon area is

A ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

gθθgϕϕ
p

dθdϕ ¼ 4πðr2þ þ a2Þ: ð7Þ

The surface gravity, geometrically defined from the Killing
vector ξ by the horizon value of κ ¼ −ð∇μξνÞð∇μξνÞ=2 at
rþ, takes the form

κ ¼ Δ0þ
2ðr2þ þ a2Þ : ð8Þ

The angular velocity of frame dragging defines the angular
velocity of the black hole as the limit

ΩH ¼ lim
r→rþ

ϖ ¼ a
r2þ þ a2

¼ a
2Mrþ

: ð9Þ

B. Atom-field-gravity interactions

In addition to the gravitational background of the Kerr
geometry, our model involves the two interacting systems:
the atomic cloud and the quantum field, as discussed in
Refs. [17,18,22,23]. The basic interaction leading to
acceleration radiation is modeled by means of a dipole
coupling of a scalar field Φ with a freely falling atom.
The atoms are randomly injected and are freely falling
into the Kerr black hole through a Boulware-like vacuum.
For the Kerr metric, the definition of a Boulware-like
vacuum is technically challenging because of the super-
radiant modes [25,26]; this is discussed briefly in Ref. [23]
and in Appendix B in greater detail. One simple approach
to overcome this difficulty is the introduction of a boundary
to exclude the regions of asymptotic infinity, as discussed
in Sec. IV; the alternatives including the asymptotic regions
are considered in Appendix B. Any such states qualify as
Boulware-like and permit the generation of the HBAR
radiation considered in this paper.
The quantization of the scalar field is expressed as

Φðr; tÞ ¼
X
s

½asϕsðr; tÞ þ H:c:�; ð10Þ

where H.c. stands for the Hermitian conjugate; and r ¼
ðr; θ;ϕÞ denotes the spatial Boyer-Lindquist coordinates
for the metric (1). The lowering operator as annihilates the
Boulware-type vacuum, with corresponding field modes
ϕs. The labeling of the field modes with the symbol s refers
to the complete set of “quantum numbers” (including the
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mode frequency ω); for the Kerr geometry in 3 spatial
dimensions, this is s ¼ fω; l; mg, where fl; mg are the
spheroidal number and the “magnetic” quantum number
associated with angular momentum.
The interaction of the field Φ of Eq. (10) with a given

two-level atom can be modeled as a weak-dipole coupling
of strength g,

VIðτÞ ¼ gΦðrðτÞ; tðτÞÞσ; ð11Þ

in which σ ¼ σ−e−iντ þ σþeiντ is the operator that causes
atomic state transitions, with σ− being the corresponding
atomic lowering operator. Given at atom in its ground
state jbi, the coupling (11) allows for the emission of a
scalar photon with the simultaneous transition of the
atom to its excited state jai; this process has a first-
order perturbation probability amplitude −igIe;s, where
Ie;s ¼

R
dτh1s; ajVIðτÞj0; bi, and the field ground state

j0i and the state j1si with one photon in mode s are
involved. Similarly, the absorption probability amplitude is
−igIa;s, where Ia;s ¼

R
dτh0; ajVIðτÞj1s; bi. Thus, the

emission and absorption probabilities are given by

�
Pe;s

Pa;s

�
¼ g2

����
Z

dτϕð�Þ;sðrðτÞ; tðτÞÞeiντ
����
2

ð12Þ

where ϕðϵÞ;s, with ϵ ¼ �, are functions selected from ϕs and
ϕ�
s according to the convention ϕð�Þ;s ¼ ϕ�

s ;ϕs (in
that order).

C. Field density matrix and master equation

Our goal is to study the thermal properties of the HBAR
radiation field. In order to find the field configuration that
is generated by the falling atomic cloud in the Kerr
geometry, an additional ingredient is useful beyond the
geometry details and interactions discussed above: the
density matrix. This is needed to fully characterize
the nature of the emerging field state and to compute
the thermodynamic properties. The details are fully
worked in the first article of this series [17], generalizing
Refs. [27,28]; a brief summary follows next. The key
step consists in evaluating the rate of change of the
reduced density matrix (ρP) of the field, due to the
random injection of atoms. The reduced field density
matrix is obtained via partial tracing (over the atomic
degrees of freedom) from the density matrix of the
composite system: ρP ¼ TrAðρPAÞ. At the same time,
this requires enforcing an averaging procedure with
respect to the atomic cloud (distribution of injection
times) in going from the density matrix of one atom to
that of the whole cloud. The resulting coarse-grained
field density matrix satisfies the multimode master
equation [17]

_ρdiagðfngÞ
¼−

X
j

fRe;j½ðnjþ1ÞρdiagðfngÞ−njρdiagðfngnj−1Þ�

þRa;j½njρdiagðfngÞ− ðnjþ1Þρdiagðfngnjþ1Þ�g; ð13Þ

which is valid under the assumption that only the diagonal
elements are relevant; this is the case for random injection
times. In Eq. (13), the emission and absorption rate
coefficients are Re;j ¼ rPe;j and Ra;j ¼ rRa;j, with r being
the atom injection rate; and the index j is shorthand for a
given mode sj, with the single-mode quantum numbers s
chosen in an ordered sequence. In addition, the diagonal
elements of the density matrix are denoted by
ρdiagðfngÞ≡ ρn1;n2;…;n1;n2;…, where the notation fng≡
fn1; n2;…; nj;…g is used for the occupation number
representation, along with fngnjþq≡fn1;n2;…;njþq;…g
(with q an integer-number shift). In Sec. IV, we will use
Eq. (13) to establish the thermal nature of the HBAR
radiation field.

III. NEAR-HORIZON PHYSICS AND CONFORMAL
QUANTUM MECHANICS IN KERR GEOMETRY:

FIELD EQUATIONS AND GEODESICS

Two direct consequences of the gravitational field are
needed for the calculations of the HBAR radiation field:
the equations satisfied by the scalar field modes and the
geodesic equations.
A scalar field with mass μΦ in a generic metric gμν

satisfies the Klein-Gordon equation

ð□ − μ2ΦÞΦ≡ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ − μ2ΦΦ ¼ 0: ð14Þ

The general form of the metric leads to a differential
equation for the mode functions that is a particular case of
the Teukolsky equation [26]. Instead of tackling its general
form, we will mainly consider its particular near-horizon
behavior, which leads to a simplified governing equation
of motion for the field that highlights the physical role
played by conformal symmetry. In this section, following
Ref. [23], we briefly discuss the near-horizon form of the
field modes.
The field modes can be found by the following pro-

cedure. The Kerr metric (1) has the symmetries of inde-
pendence with respect to t and ϕ (stationary and
axisymmetric); this implies the existence of the Killing
vectors ∂t and ∂ϕ of Eq. (6). As a result, it can be analyzed
with the separation of variables

ϕsðr;Ω; tÞ ¼ RsðrÞSsðθÞeimϕe−iωt; ð15Þ

Replacing Eq. (15) in Eq. (14) for the metric (1), the polar-
coordinate angular equation is satisfied by spheroidal wave
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functions [26,29]. We will use the regular solutions, the
oblate spheroidal wave functions of the first kind SsðθÞ
[29], with eigenvalues given by the separation costant Λs;
the normalized combination ZsðΩÞ ¼ ð2πÞ−1=2SsðθÞeimϕ is
a spheroidal harmonic. Then, the radial function RðrÞ
becomes

d
dr

�
Δ
dR
dr

�
þ
�ðr2 þ a2Þ2ω2 − 4Mramωþ a2m2

Δ

− Λs − a2ω2 − μ2Φr
2

	
R ¼ 0: ð16Þ

In addition, we introduce a new set of coordinates

t̃ ¼ t; ϕ̃ ¼ ϕ −ΩHt; ð17Þ
which define a corotating frame with the black hole’s
angular velocity ΩH. At the same time, we perform a
concomitant separation of variables

ϕω̃lmðr; tÞ¼RðrÞSðθÞeimϕ̃e−iω̃ t̃; ω̃¼ω−mΩH; ð18Þ

which is viewed by a locally corotating observer as a
frequency shift. Equation (18) highlights the shifted fre-
quency ω̃ to be used for the remainder of this paper; its
relevance is due to its association with the Killing vector

ξ≡ ξðt̃Þ ¼ ξðtÞ þ ΩHξðϕÞ; ð19Þ

which is timelike near the event horizon and null on the
event horizon. Instead, the original Killing vector ∂t is
spacelike near the horizon and throughout the interior
of a region known as the ergosphere, whose external
boundary—the outer static limit—is defined as the locus
where ∂t or gtt is null. The timelike behavior of ξðt̃Þ allows
us to define positive frequency modes near the horizon with
respect to this Killing vector, from the condition
ξðt̃Þϕs ¼ −iω̃ϕs.
The near-horizon expansion, denoted by ∼ðHÞ

, involves the
use of the hierarchy x≡ r − rþ ≪ rþ. This can be enforced
with the substitutions

ΔðrÞ ∼ðHÞΔ0þx½1þOðxÞ�; Δ0ðrÞ ∼ðHÞΔ0þ½1þOðxÞ�;
Δ00ðrÞ ¼ Δ0þ ¼ 2: ð20Þ

In particular, we will apply this procedure to both the field
equations and the geodesics.
For the Klein-Gordon equation (14), with the expression

for the Kerr metric given by Eq. (3), in the near-horizon
region, one can directly write
�
−

Σ2

ρ2Δ
∂
∂ t̃2þ

ρ2

Σ2sin2θ
∂

∂ϕ̃2
þ 1

ρ2
∂
∂r

�
Δ

∂
∂r

�
þ 1

ρ2
∂
∂θ2

	
Φ

ð21Þ

∼ðHÞ
�
−
ðr2 þ a2Þ2

ρ2Δ
∂
∂ t̃2 þ

1

ρ2
∂
∂r

�
Δ

∂
∂r

�	
Φ ∼ðHÞ

0; ð22Þ

this is governed by the leading behavior ΔðrÞ ∼ðHÞΔ0þx,
which extracts the radial-time sector of the metric.
Equation (22) yields

�
1

x
d
dx

�
x
d
dx

�
þ
�
ω̃

2κ

�
2 1

x2

	
RðxÞ ∼ðHÞ

0: ð23Þ

It is easy to verify that this near-horizon equation can also
be derived from Eq. (16) with additional algebra.
Equation (23) is conformally invariant and can be

reduced to the standard form of CQM with the Liouville
transformation RðxÞ ∝ x−1=2uðxÞ; thus, the near-horizon
reduced radial function uðxÞ satisfies the differential
equation

d2uðxÞ
dx2

þ λ

x2
½1þOðxÞ�uðxÞ ¼ 0; ð24Þ

where

λ ¼ 1

4
þ Θ2; Θ ¼ ω̃

2κ
: ð25Þ

As in Ref. [17], the Hamiltonian H ¼ p2
x=2þ VeffðxÞ,

where VeffðxÞ ¼ −λ=x2 is classically scale invariant and
defines conformal quantum mechanics (CQM) with an
enlarged SO(2,1) symmetry group that includes H , the
dilation operator D and the special conformal operator K.
Equation (24) leads to a basic set of solutions given by

uðxÞ ¼ x1=2�iΘ. These are outgoing/ingoing wave func-
tions that possess a logarithmic-phase singular behavior
associated with scale invariance. When their time depend-
ence is restored, these solutions give the outgoing and
ingoing CQM modes,

ϕsðr;Ω; tÞ ∼ðHÞΦ�ðCQMÞ
s ∝ x�iΘSsðθÞeimϕ̃e−iω̃t; ð26Þ

where ϕ̃ is the redefined corotating azimuthal coordinate
for spinning black holes. We will use these CQM modes in
Sec. IV to find the emission and absorption rates of the free-
falling atoms.
We now turn to a brief summary of relevant results of the

near-horizon geodesics in the Kerr geometry. These are the
spacetime trajectories of the atoms in free fall—they are in
locally inertial systems in the black-hole background,
according to general relativity. The trajectories are required
for the evaluation of the photon emission and absorption
probabilities in Eq. (12), which we will consider in the
near-horizon approximation. The geodesic equations are
derived and analyzed in Appendix A. Inspection of Eq. (12)
shows that the functional dependences xμðτÞ are needed.
Basically, the relationship between r and τ can be easily
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determined in the near-horizon limit, leading to explicit
expressions of the other coordinates in terms of x ¼ r − rþ.
In short, the leading near-horizon relationship τ ¼ τðxÞ is

τ ∼ðHÞ − kxþOðx2Þ þ const; ; ð27Þ

where k ¼ ρ̂2þ=c0; and the relationships t ¼ tðxÞ and ϕ ¼
ϕðxÞ take the forms

t ∼ðHÞ −
1

2κ
ln x − CxþOðx2Þ; ð28Þ

ϕ̃ ∼ðHÞ
αxþOðx2Þ; ð29Þ

where the constants C and α are given in Appendix A. The
derivation of the emission and absorption probabilities in
the next section shows that neither these constants nor k are
explicitly needed for the final radiation results.

IV. HBAR IN KERR GEOMETRY: CONFORMAL
NATURE AND THERMAL CHARACTERIZATION

A. Emission and absorption probabilities:
Conformal nature

Emission and absorption rates of scalar photons by
freely falling atoms in the Kerr geometry can be derived
from the basic Eq. (12) with the outgoing CQM modes
from Eq. (26), with the assignments ϕðþÞ;s ∼ ½ΦþðCQMÞ��
and ϕð−Þ;s ∼ΦþðCQMÞ; then,

�
Pe;s

Pa;s

�
∼ðHÞ

g2k2
����
Z

xf

0

dxx∓iΘe∓imϕ̃ðxÞe�iω̃tðxÞeiντðxÞ
����
2

ð30Þ

where k ¼ ρ̂2þ=c0 and we have kept the ϕ̃ dependence for
consistency of near-horizon calculations in the presence of
frame dragging. In Eq. (30), the near-horizon region is
bounded, in principle, by an approximate upper limit xf. In
particular, when τ, t, and ϕ̃ are replaced in the integrand of
Eq. (30) with Eqs. (27), (28), and (29), the emission rate
takes the form

Re;s ¼ rg2k2
����
Z

xf

0

dxx−iω̃=κe−iqx
����
2

; ð31Þ

where q ¼ Cω̃þ kνþ αm, with C and α given by
Eqs. (A18) and (A19), respectively.
The emission rate of Eq. (31) displays an integral that has

been analyzed in Refs. [17,22,23] The conclusions of that
analysis are as follows. First, the behavior of the integral is
controlled by the competition of the two oscillatory factors
x−iω̃=κ and e−iqx, Second, the factor x−iω̃=κ, which arises
from the properties of CQM, oscillates wildly with a
logarithmic phase as the horizon is approached, with scale
invariance governed by ω̃=κ ¼ 2Θ, and is thus responsible

for the leading value of the integral. Third, the upper limit
xf can be effectively replaced by infinity as the oscillations
of e−iqx average out to essentially zero. Consequently, the
final expression for the emission rate becomes

Re;s ¼ rg2k2
����
Z

∞

0

dxx−iω̃=κe−iqx
����
2

¼ 2πrg2ω̃
κν2

1

e2πω̃=κ − 1
;

ð32Þ

in which the approximation ν ≫ ω̃ is applied. The
functional dependence of the emission rate in Eq. (32)
corresponds to a Planck distribution; in particular, it is
insensitive to the initial conditions of the atoms in the cloud
because it does not depend on the constants k, C, and α.
Moreover, while the outgoing CQM waves in Eq. (26),

ΦþðCQMÞ
s ∝ xiΘSsðθÞeimϕ̃e−iω̃t, give the Planck-distribution

form of Eq. (32), the ingoing waves ΦþðCQMÞ
s do not

contribute due to the cancellation of the logarithmic phases.
An important consequence of this property is that accel-
eration radiation with a Planckian distribution from a freely
falling atom will exist for any generic Boulware-like state
jBi, as a result of the nonzero conformal integral in
Eq. (32). In effect, all that is needed is the extraction of
the outgoing part of any definition of the field modes. For
the implementation of this procedure, one simple choice of
boundary conditions and vacuum is to analyze the accel-
eration radiation and its associated HBAR entropy consists
in enclosing the system with a boundary or mirror inside
the speed-of-light surface (which is within the ergosphere)
[30], thus removing the problematic superradiant
modes [26] and defining a unique state jBMi, as considered
in the references under [31]. Alternatively, as analyzed in
Appendix B, the conventional bases that define the past and
future Boulware states jB∓i [32,33] require the selection of
purely outgoing components—these are ϕup

ωlm for jB−i and
ϕout
ωlm for jBþi. The precise definitions and characterizations

of these states are reviewed in Appendix B. For the states
jB∓i, the superradiant modes [25] (for −mΩH < ω̃ < 0)
need to be handled separately. But, most importantly, the
outgoing components can be identified as in Eq. (B15) for
jB�i. In short, all of the possible definitions of a Boulware-
like state—including in particular jBMi and jB�i—directly
yield the Planck-distribution form of Eq. (32) through the
extraction of the outgoing components, with any remaining
ingoing components not contributing to the radiation.
Finally, the absorption rate Ra;s can be computed in a

manner similar to the derivation leading to the emission rate
Re;s of Eq. (32). As it turns out, Ra;s is more directly derived
from Re;s via the replacements ω̃ → −ω̃, andm → −m; this
is, from first principles, due to the functional forms of the
rates in Eq. (30). Thus,

Ra;s ¼
2πrg2ω̃
κν2

1

1 − e−2πω̃=κ
¼ e2πω̃=κRe;s; ð33Þ
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which has remarkable consequences for the question of
possible thermal behavior, as will be shown next.

B. Thermal behavior

We will now analyze in detail the properties of the
HBAR radiation field and its possible thermal nature. This
involves two levels. First, we will reexamine the emission
and absorption rates to evaluate a candidate Boltzmann
factor and its relationship to the Hawking temperature.
Second, we will conduct a more thorough analysis through
the reduced field density matrix.
The Planck distribution displayed by the emission rate in

Eq. (32) suggests thermal behavior—or at least, it has a
universal form compatible with thermality for all modes of
the radiation field. This property can be further tested with
the ratio emission over absorption, which, from Eq. (33), is
equal to

Re;s

Ra;s
¼ e−2πω̃=κ: ð34Þ

This ratio has the form of a thermal state with detailed-
balance Boltzmann factor

Re;s

Ra;s
¼ e−βω̃ ð35Þ

(in natural units where the Boltzmann constant is kB ¼ 1),
with temperature

T ¼ β−1 ¼ κ

2π
≡ β−1H ¼ TH: ð36Þ

The value of the effective temperature defined by this
procedure in Eq. (36) is the same as the Hawking temper-
ature of the black hole—and it agrees with the form of the
Planck distribution of Eq. (32).
It should be noted that the “temperature” in the primary

thermal properties of Eqs. (35) and (36) does not appear to
be merely an effective phenomenological parameter, but it
is a good candidate for a thermodynamic temperature in
detailed-balance relations. This is due to the fact that it is a
universal temperature defined for all modes in Eq. (35),
which is identical to the thermodynamic temperature of the
black hole. In addition, the condition displayed in Eq. (35)
is a direct consequence of the equations of near-horizon
CQM, and can be traced to the same logarithmic form of
the phase in all of its modes.
The thermal nature of the state of the HBAR radiation

field, under the conditions defined via CQM in Eqs. (35)
and (36), can be fully characterized using the master
equation for the field density matrix. For a cloud of freely
falling atoms, with random injection times, the density
matrix has a diagonal form and satisfies the master
equation (13). This is the procedure fully worked out in
Ref. [17], and which we now summarize and generalize for

the Kerr geometry. In fact, the general properties of the
density matrix in this approach are essentially geometry-
independent and apply equally well to the generalized
Schwarzschild and Kerr geometries.
In Eq. (13), the vanishing of the time derivative defines

the steady-state density matrix ρðSSÞdiag ðfngÞ. Finding the
steady-state solution involves an effective procedure that
consists of the following steps. First, one starts by finding
the single-mode steady state, which satisfies

ρðSSÞn;n jsingle−mode ¼
�
1 −

�
Re;s

Ra;s

�	
ðRe;s=Ra;sÞn ¼

1

Zj
e−njβω̃j ;

ð37Þ
with Zj ¼ ½1 − e−βω̃j �−1. Second, the factorization

ρðSSÞdiag ðfngÞ ¼
Y
j

ρðSSÞnj;nj ð38Þ

can be proposed because the multimode density matrix is
expected to be composed of independent single-mode
pieces under the given injection-averaging condition.
Third, the fact that this is the correct state can be verified
by direct substitution in Eq. (13). Fourth, the effective
temperature T ¼ β−1 can be enforced from the Boltzmann
factor. As a result,

ρðSSÞdiag ðfngÞ ¼ N
Y
j

�
Re;j

Ra;j

�
nj ¼ 1

Z

Y
j

e−njβω̃j ; ð39Þ

where Z ¼ N−1 ¼ Q
j Zj ¼

Q
j ½1 − e−βω̃j �−1 is the parti-

tion function. This is indeed a thermal distribution at the
Hawking temperature, according to Eqs. (35) and (36); in
particular, it yields the steady-state average occupation
numbers hnjiðSSÞ ¼ ðeβω̃j − 1Þ−1.
Two critical points should be highlighted: (i) the appear-

ance of the shifted frequency ω̃ in all ensuing expressions
describing the thermal behavior; (ii) the fact that the result is
critically dependent on the primary thermal properties of
Eqs. (35) and (36): the Boltzmann factor and the Hawking
temperature, where both emerge from near-horizon CQM for
all field modes. The thermal state of Eq. (39) confirms and
extends the validity of the steady-state analysis and HBAR
properties, including the entropy flux calculations, of
Refs. [17,18] for Kerr black holes. Such surprising results
show close parallels with the thermodynamics of the black
hole itself [18]. We now turn to an analysis of this all-
important problem, with a thorough treatment of HBAR
thermodynamics.

V. HBAR THERMODYNAMICS: ENTROPY AND
HBAR-BLACK-HOLE CORRESPONDENCE

A. From von Neumann to the thermodynamic entropy

In Sec. IV, we have derived the thermal steady-state
density matrix directly from near-horizon CQM, and
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generalized it to rotating black holes with arbitrary initial
conditions for the freely falling atoms. With these robust
results, we can now proceed to find the entropy rate of
change or flux _SP due to the generation of acceleration
radiation or field quanta (“photons”). This is the horizon
brightened acceleration radiation (HBAR) entropy pro-
posed in Ref. [18], whose insightful procedure we will
follow and generalize in this section.
In general, for any quantum system, starting from the

von Neumann entropy, S ¼ −Tr½ρ ln ρ�, its rate of change is
simply given by _S ¼ −Tr½_ρ ln ρ�. For the radiation field, the
corresponding trace can be evaluated as

_SP ¼ −
X
fng

_ρdiagðfngÞ ln ½ρdiagðfngÞ�

¼ −
X

n1;n2;…

_ρn1;n2;…;n1;n2;… ln ρn1;n2;…;n1;n2;…; ð40Þ

in which we are considering the diagonal sum over all the
states fng associated with all the field modes, as in Sec. IV.
Near the steady-state configuration, the density matrix in
the logarithm of Eq. (40) can be approximated to leading

order with ρðSSÞdiag from Eq. (39). Thus, the entropy flux of
Eq. (40) becomes

_SP ≈ −
X
fng

_ρdiagðfngÞ ln ½ρðSSÞdiag ðfngÞ�

¼ −
X
j

X
fng

_ρdiagðfngÞ ln ρðSSÞnj;nj ; ð41Þ

as follows from the factorization (38) and by reversing the
order of the sums. As a reminder, the resulting summation
with respect to j is a shorthand for the sum over all the
field-mode numbers s ¼ fω̃; l; mg, i.e., the field frequen-
cies ω̃ in addition to the angular quantum numbers. It
should be noted that it is essential to account for all the
available frequencies in appropriate sums that define the
full-fledged thermodynamic behavior. The replacement of
the thermal steady-state density matrix, e.g., Eq. (37), in
Eq. (41) implies that

_SP ≈
X
j

X
fng

_ρdiagðfngÞ½njβω̃j − lnð1 − e−βω̃jÞ�: ð42Þ

Moreover, Eq. (42) can be interpreted by enforcing two
conditions: the trace normalization Tr½ρ� ¼ 1 and the
dynamic generalization of the occupation-number averages

hnji≡
X
fng

njρdiagðfngÞ; ð43Þ

where these quantities hnji≡ hnsi are defined for each set
of field-mode numbers s ¼ fω̃; l; mg. It should be further
stressed that Eq. (43) is a generalization of the steady-state

average occupation numbers hnjiðSSÞ ¼ ðeβω̃j − 1Þ−1; as
such, it is no longer given exactly by the Planck distribu-
tion, in such a way that it can generate a nonzero flux
through _hnsi ≠ 0. Moreover, the second-term in Eq. (42)
vanishes, to the same order of approximation, due to the
constancy of trace normalization; and the first term yields
the entropy flux

_SP ≈ βH
X

s¼fω̃;l;mg
_hnsi ω̃ ¼ 2π

κ

X
s¼fω̃;l;mg

_hnsi ω̃ : ð44Þ

where the unique Hawking temperature, Eq. (36), is
explicitly used as a last step.
In Eq. (44), the product _hnsi ω̃ is the portion of the

energy flux carried away by the photons of the acceleration
radiation, at a given frequency, and measured in the
corotating frame. For a single photon, the corotating energy
ω̃ ¼ ω −ΩHm involves the energy ω (measured by an
asymptotic observer) and the axial component m of the
angular momentum (along the black hole’s rotational axis).
Then, the total corotating energy flux is

_̃EP ¼
X

s¼fω̃;l;mg
_hnsi ω̃ ¼

X
s¼fω̃;l;mg

_hnsiðω −ΩHmÞ

¼ _EP −ΩH
_JP;z; ð45Þ

which involves a combination of the change in the total
energy EP and axial angular momentum JP;z of the
photons. Therefore, the HBAR von Neumann entropy flux
becomes

_SP ¼ βHð _EP − ΩH
_JP;zÞ; ð46Þ

or _SP ¼ βH
_̃EP, which can be restated in the form of

thermodynamic changes

δSP ¼ βHðδEP −ΩHδJP;zÞ≡ δSðthÞP ; ð47Þ

where SðthÞP is the thermodynamic entropy. In other words,
under near-equilibrium conditions, where the steady state is
a good first-order approximation, the changes in the
HBAR von Neumann and thermodynamic entropies
of the radiation field coincide, with the functional
changes of Eq. (47). More generally, going back to the
von Neumann entropy, S ¼ −Tr½ρ ln ρ�, we can repeat the
steps above to calculate SP and directly verify this result. In
effect, replacing _ρdiagðfngÞ by ρdiagðfngÞ in Eqs. (40)–(42),
these steps lead to the modified analogue of Eq. (44), which
is SP ¼ βðEP − FPÞ; here, FP is the Helmholtz free
energy, such that βFP ¼ − lnZ ¼ P

j ln ð1 − e−βω̃jÞ, with
a partition function Z defined in Eq. (39). The agreement
with Eq. (44) is due to the fact that the changes of this
thermodynamic entropy with fixed temperature reduce to
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Eq. (47): the black hole acts as a temperature reservoir
where the Hawking temperature is fixed by its character-
istic parameters.

B. HBAR-black-hole thermodynamic correspondence

The entropy flux (46) reinforces the existence of uni-
versal thermodynamic relations that are intrinsic to the
black hole but have other manifestations through relevant
probes. In other words, there are other aspects of black hole
thermodynamics that extend the standard results and can be
revealed by accessing the near-horizon physics. In particu-
lar, the vacuum states are probes that can generate different
forms of radiation. By selecting a Boulware-like state, the
existence of HBAR radiation and its associated entropy are
revealed. Moreover, the thermodynamic changes of the
Bekenstein-Hawking black hole entropy,

δSBH ¼ βHðδM − ΩHδJÞ; ð48Þ
in terms of the mass M and angular momentum J of the
black hole, display a striking formal similarity with the
HBAR entropy flux of Eqs. (46) and (47): they are analog
relations with corresponding entropy, energy, and angular
momentum variables; and they are subject to the Hawking
temperature TH ¼ β−1H of Eq. (36). Thus, there exists a
thermodynamic correspondence

ðSP; EP ; JP;zÞ ⟷
β¼βH ðSBH;M; JÞ: ð49Þ

In addition, these analog relations can be further extended
to charged black holes (Kerr-Newman geometry), with an
additional charge variable. Incidentally, as in Eq. (47), the
quantity δM̃ ¼ δM −ΩHδJ is the black hole energy in the
corotating frame. The correspondence (49) is not coinci-
dental because of two key properties: (i) both systems are
described by the first law of thermodynamics in terms of
just energy (mass), angular momentum, and any other
relevant degrees of freedom consistent with no-hair theo-
rems [26]; (ii) they share the same unique Hawking
temperature. In essence, in thermal equilibrium, the quan-
tum field macroscopically mimics the black hole degrees of
freedom; and the black hole generates a near-horizon
background governed by CQM and encoding this charac-
teristic temperature [cf. arguments leading to Eq. (36)].
Therefore, both the HBAR and the black hole entropies
have a common origin via near-horizon conformal sym-
metry; and the field satisfies thermodynamic relations
formally identical to black hole thermodynamics. We will
refer to this set of properties as the HBAR-black-hole
thermodynamic correspondence.

C. Area-entropy-flux relation and radiation
correspondence

There is an additional intriguing consequence of the
thermodynamic correspondence. As it was found by

Hawking [6,7], the assignment TH ¼ β−1H ¼ κ=2π of
Eq. (36) fixes the values of the relationship of the entropy
to other thermodynamic variables in Eq. (48), thus deter-
mining the correct proportionality constant in the
Bekenstein-Hawking entropy SBH ¼ A=4, so that

δSBH ¼ 1

4
δA: ð50Þ

This can be verified directly for a Kerr black hole, with area
A¼ 4πðr2þþa2Þ, which implies the change δA ¼ 8πδM̃=κ,
where κ ¼ Δ0þ=2ðr2þ þ a2Þ; from the Hawking temperature
(36), its change δA is [26]

δA ¼ 4βHðδM − ΩHδJÞ: ð51Þ

In other words, once the temperature is fixed, there is a
unique entropy-area relation. Then, the HBAR-black-hole
thermodynamic correspondence and the Bekenstein-
Hawking entropy-area relation of Eq. (50) suggest the
existence of an analog entropy-area relation for the HBAR
entropy,

_SP ¼ 1

4
j _APj; ð52Þ

where j _AP j is the magnitude of the change in the area of the
event horizon due to the emission of acceleration radiation.
Further justification of the HBAR area-entropy-flux rela-
tion (52) can be outlined as follows. From Eq. (51), the

magnitude of the black hole area change is j _Aj ¼ 4βHj _̃Mj,
where δM̃ ¼ δM −ΩHδJ. If this change j _̃Mj is due to

photon emission in the amount j _̃Mj ¼ _̃EP , then the black
hole area changes by the following specific amount due to
acceleration radiation, and according to Eq. (47),

j _APj ¼ 4βH
_̃EP ¼ 4_SP ⇒ _SP ¼ 1

4
j _AP j; ð53Þ

which is the anticipated result. The area-entropy-flux
relation (52) is a surprising and convenient rule of thumb,
with a geometric interpretation that restates the central
result of this paper: the thermodynamic HBAR entropy
property of Eq. (47), which is mandated by the von
Neumann entropy of the radiation field and implies an
HBAR-black-hole thermodynamic correspondence. Most
importantly, we have established the robust form of these
results under fairly general conditions (black hole geometry
and initial conditions of the falling atomic cloud). However,
some aspects of the area-entropy-flux relation (52) need to
be qualified, as discussed below.
First, the HBAR radiation does not involve the photons

and black hole alone, but it is mediated by the interaction of
the field with the atoms. When the atoms are accounted for
in the relevant equations of the radiation generation
process, the energy and angular momentum of the black
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hole are transferred to the radiation field, but subject to the
following conservation laws,

δM þ δEP þ δEA ¼ 0; ð54aÞ

δJ þ δJP;z þ δJA;z ¼ 0; ð54bÞ

where EA and JA;z are the energy and angular momentum
of the atom, respectively. Equations (54a) and (54b) can be
combined into an energy conservation statement in the
corotating frame,

ðδM −ΩHδJÞ þ δẼP þ δẼA ¼ 0; ð55Þ

where δẼP and δẼA are the field and atom corotating
energy changes, respectively. Then, going back to Eq. (51),

the black hole area change is _A ¼ 4βH
_̃M, and Eq. (55)

leads to _A ¼ −4βHð _̃EP þ _̃EAÞ, which can be interpreted as
giving two distinct contributions to the black hole area
changes

_A ¼ _AP þ _AA; ð56Þ

with one area change associated with the radiation field as
in Eq. (52), i.e.,

_AP ¼ −4βH _̃EP ¼ −4SP ; ð57Þ

but also with an extra contribution associated with the
atoms,

_AA ¼ −4βH _̃EA; ð58Þ

Therefore, when stating the HBAR area-entropy-flux
relation (52), the area change _AP under consideration is
only a fraction of the total change in the black hole area.
Second, in Eqs. (56)–(58), one should be careful with the

signs—this is the reason that we need to use an absolute
value in Eq. (52). In particular, there is indeed a sign
reversal for the radiation field: as it carries away positive
corotating energy, this corresponds to a decrease in the area
of the black hole (and increase in the HBAR entropy),
according to Eq. (57). This paradoxical situation is similar
to the well-known corresponding statement for Hawking
radiation. However, such statements do not contradict the
generalized second law of thermodynamics (GSL), which
refers to the sum of the entropies and not to the entropy of
the black hole or of the radiation field alone; thus, δAP ∝
−SP < 0 is allowed. It should be noted, however, that the
atoms carry corotating energy and fall into the black hole
with δẼA < 0, thus yielding an area increase δAA > 0,
according to Eq. (58). Typical nonrelativistic atoms con-
tribute, in magnitude, significantly more than the radiation,
so that the overall area of the black hole does increase—this

net result is different from the corresponding case for
Hawking radiation.
Incidentally, if the atoms are injected sufficiently close to

the event horizon, one could consider an effective descrip-
tion in which they are merely mediators for the radiation
process, in such a way that, if they could be counted as part
of the black hole for bookkeeping purposes. This is
consistent with the dominant role played by near-horizon
CQM and the fact that the horizon can be regarded as a
thick membrane or stretched horizon [34,35], and as seen
from the outside, the atoms appear to accumulate therein. In
a very real sense, the black hole is their inevitable destiny.
Then, one could interpret that there is a decrease in the
black-hole area from the radiation emission alone.
Third, in Eq. (55), the black hole and radiation corotating

energies can be directly related to the corresponding
entropies via Eqs. (47) and (48). As a result, the generalized
second law of thermodynamics, δStotal¼δSBHþδSAþδSP≥
0, implies the inequality δSA ≥ βHðδEA −ΩHδJA;zÞ, but no
further predictions are possible without accounting for
additional information about the atoms.
In short, our detailed analysis of the HBAR entropy

highlights the thermodynamic entropy property of Eq. (47),
which similarly states the equivalence of the von Neumann
and thermodynamic entropies of the acceleration radiation.
In addition, the entropy of the radiated photon field can be
written in terms of the change in the area of the event
horizon via the HBAR area-entropy-flux relation (52) as
part of a larger set of relations within an HBAR-black-hole
thermodynamic correspondence. In particular, the area-
entropy-flux formula (52) is structurally identical to the
Bekenstein-Hawking (BH) entropy, with the correct pre-
factor 1=4. However, this entropy of the radiation field is
due to the photon generation by the freely falling atoms—
as such, it is apparently different from the intrinsic BH
entropy, which is solely due to the existence of an event
horizon as part of the geometry of a black hole.
Similarly, the HBAR field is not the same as Hawking

radiation, even though they share many formally identical
qualities. The former requires the presence of an atomic
cloud as a mediator for the radiation process, while
the latter is intrinsic to the black hole. As a result of the
mediation process and the conservation laws (54)–(55), the
HBAR radiation field is maintained only inasmuch as
atoms are falling into the black hole, and is limited by
the size of the cloud—but, of course, one can imagine a
steady-state random injection that keeps the process going
on indefinitely. As time goes by, for the HBAR process, the
black hole mass increases due to the dominant contribution
of the falling atoms, while for the Hawking effect, the
black hole mass decreases in the well-known evaporation
scenario. Despite these differences associated with the
concomitant HBAR mediation by the atoms, for the
random-injection conditions considered in this paper, both
forms of radiation, as seen far from the black hole, have
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identical properties. Specifically, they are both thermal and
characterized by the same (Hawking) thermodynamic
temperature TH ¼ κ=2π. Therefore, just as for the other
thermodynamic attributes, there is an HBAR-black-hole
correspondence that extends beyond Eq. (49) to also
include the mapping

ðHBAR fieldÞ ⟷β¼βH ðHawking radiationÞ: ð59Þ

The area law (52) and the correspondence defined by
Eqs. (49) and (59) are suggestive of even deeper con-
nections between the HBAR entropy and radiation field on
the one hand, and the BH entropy and Hawking radiation
on the other hand. This is an intriguing prospect that will be
explored elsewhere.

VI. CONCLUSIONS

In this article, we have shown that the von Neumann
HBAR entropy flux (time rate of change of the entropy) due
to the acceleration radiation of a cloud of randomly injected
atoms falling into a black hole, in a Boulware-like vacuum,
takes a functional form that is in agreement with a specific
form of thermodynamic entropy. This peculiar HBAR
entropy is defined with degrees of freedom mimicking
those of the black hole itself, and with a temperature equal
to the Hawking temperature. As a consequence, it generates
a powerful HBAR-black-hole thermodynamic correspon-
dence, which also includes the suggestive area-entropy-flux
relation _SP ∝ j _AP j. This intriguing result has a striking
formal similarity with the intrinsic Bekenstein-Hawking
entropy of the black hole, including the proportionality
constant 1=4. The origin of the HBAR entropy has been
elucidated with the thermal steady-state field density matrix
of the acceleration radiation by the randomly injected
atoms into the Boulware-like vacuum state. Moreover,
the thermal property of the field density matrix is com-
pletely governed by the conformal near-horizon physics of
the black hole. This is due to the fact that the field modes
near the horizon are described by the CQM Hamiltonian;
the scale symmetry of these modes is responsible for the
thermality of the HBAR field, which involves both the
Hawking temperature and the HBAR-black-hole thermo-
dynamic correspondence, including the correct prefactor in
the entropy formula.
The near-horizon treatment is also useful as a practical

analytical tool since it provides an asymptotically exact
approximation (in the usual asymptotic WKB sense), which
yields a closed-form solution for the emission and absorption
probabilities that define the effective temperature. While we
have illustrated its use for the specifics of acceleration
radiation and HBAR entropy, its scope and computational
effectiveness are not limited to these applications.
In conclusion, this paper establishes both the nature of

the acceleration radiation and the HBAR-black-hole

thermodynamic correspondence for a fairly large class of
black hole solutions and arbitrary initial conditions of the
atomic cloud. Furthermore, in this work, we have eluci-
dated the connection between the near-horizon CQM
modes and the conventional Boulware modes for both
the generalized Schwarzschild and Kerr geometries. These
generalizations cover all black solutions in 4D and a variety
of solutions in higher dimensionalities, thus displaying the
robustness of the framework. Possible future extensions of
this work include understanding the connection of the
HBAR entropy with the BH entropy and exploring the
group-theoretical aspects of this problem.

ACKNOWLEDGMENTS

M.O. S. and A. A. acknowledge support by the National
Science Foundation (Grant No. PHY-2013771), the Air
Force Office of Scientific Research (Grant No. FA9550-
20-1-0366 DEF), the Office of Naval Research (Grant
No. N00014-20-1-2184), the Robert A. Welch Foundation
(Grant No.A-1261) and theKingAbdulaziz City for Science
and Technology (KACST). H. E. C. acknowledges support
by the University of San Francisco Faculty Development
Fund. This material is based upon work supported by the Air
ForceOffice of ScientificResearchunderGrantNo. FA9550-
21-1-0017 (C. R. O. and A. C.).

APPENDIX A: KERR GEODESICS

The geodesic equations can be reduced to their first-
order form, written in terms of the conserved quantities: the
energy E ¼ −pt ¼ −ξðtÞ · p, the angular momentum along
z-direction Lz ¼ pϕ ¼ ξðϕÞ · p (as follows from the 4-
momentum p and the Killing vectors), the invariant mass
μ, and the Carter constant Q. The geodesic equations are
then given by

ρ2
dr
dτ

¼ −
ffiffiffiffiffiffiffiffiffiffi
RðrÞ

p
ðA1Þ

ρ2
dθ
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
ðA2Þ

ρ2
dϕ
dτ

¼ −
�
ae −

l
sin2θ

�
þ a
Δ
PðrÞ ðA3Þ

ρ2
dt
dτ

¼ −aðaesin2θ − lÞ þ r2 þ a2

Δ
PðrÞ; ðA4Þ

with the auxiliary functions PðrÞ;RðrÞ, and ΘðθÞ defined
by

PðrÞ ¼ eðr2 þ a2Þ − al ðA5Þ
RðrÞ ¼ ½PðrÞ�2 − Δ½r2 þ ðl − aeÞ2 þ q� ðA6Þ

ΘðθÞ ¼ q − cos2θ

�
a2ð1 − e2Þ þ l2

sin2θ

	
: ðA7Þ
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Here, we have used specific (per unit mass) conserved
quantities e ¼ E=μ, l ¼ Lz=μ, and q ¼ Q=μ ¼ ðpθ=μÞ2 þ
cos2 θ½a2ð1 − e2Þ þ ðl= sin θÞ2�.
In our approach, we only need the near-horizon behavior

of the trajectories, which we extract with the hierarchical
near-horizon expansion. In terms of the near-horizon
variable x ¼ r − rþ. Using Taylor expansion around the
horizon in terms of the variable x, the radial geodesic
equation (A1) becomes

ρ2þ
dx
dτ

∼ðHÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − c1xþOðx2Þ

q
; ðA8Þ

where ρ2þ ≡ ρ2þðθÞ ¼ r2þ þ a2 cos2 θ. The constants in
Eq. (A8) are functions of the conserved quantities of the
motion and black hole parameters, and are given by

c0 ¼ PðrþÞ ¼ ðr2þ þ a2Þðe −ΩHlÞ ¼ ðr2þ þ a2Þẽ ðA9Þ
c1 ¼ −4erþc0 þ Δ0þ½r2þ þ ðl − aeÞ2 þ q�; ðA10Þ

where

ẽ ¼ −ξðt̃Þ · p ¼ e −ΩHl > 0 ðA11Þ
is the energy in a frame rotating with the black hole’s
angular velocity ΩH.
However, we cannot yet integrate Eq. (A8) to get the

proper time in terms of x due to its θ dependence through
ρ2þ, where θ evolves with the proper time following
Eq. (A2). This issue can be resolved if there is a functional
relationship between θ and x, independently of the other
variables; this is indeed the case, as combining Eqs. (A1)
and (A2) yields the separable differential equation

drffiffiffiffiffiffiffiffiffiffi
RðrÞp ¼∓ dθffiffiffiffiffiffiffiffiffiffi

ΘðθÞp : ðA12Þ

Moreover, the near-horizon expansion and a change of
variables y≡ cos θ reduce this equation to the form

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 − c1x

p ∼ðHÞ ∓ dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΘðyÞð1 − y2Þ

p ðA13Þ

[where, by abuse of notation, we have used ΘðθÞ≡ ΘðyÞ].
Equation (A13) provides a solution yðxÞ that can be written
using elliptic integrals of the first kind; more general results
can be found in Ref. [36]. However, we can avoid using the
full-fledged solution by extracting the leading-order near-
horizon term, which gives

y ∼ðHÞ
constþOðxÞ: ðA14Þ

Reverting to the θ coordinate, we get cos θ ∼ðHÞ
cos θþþ

OðxÞ. Here θþ is a constant value of the polar coordinate,
which can be interpreted as the value of θ at which the atom

approaches the event horizon. This subsequently
leads to the replacement of ρ2þ → ρ̂2þ ≡ r2þ þ a2 cos2 θþ.
Any OðxÞ terms have been ignored because, after integra-
tion, they will yield additional contributions of orderOðx2Þ.
Therefore, after making the replacement ρ2þ → ρ̂2þ,
Eq. (A8) can be integrated to give the proper-time func-
tional relationship τ ¼ τðxÞ to leading order,

τ ∼ðHÞ − kxþOðx2Þ þ const; ðA15Þ

in which k ¼ ρ̂2þ=c0. Furthermore, the factors ρ2 (which are
θ-dependent) in Eqs. (A3) and (A4) can be removed
through division by Eq. (A1); this gives the functional
relationships t ¼ tðxÞ and ϕ ¼ ϕðxÞ by integration in the
near-horizon limit,

t ∼ðHÞ −
1

2κ
ln x − CxþOðx2Þ; ðA16Þ

ϕ̃ ∼ðHÞ
αxþOðx2Þ: ðA17Þ

Instead of finding ϕ, we have calculated ϕ̃ ¼ ϕ −ΩHt
(which can be obtained by combining solutions for ϕ and
t), because the CQM modes in Eq. (26) explicitly depend
on this corotating azimuthal variable. Most importantly,
even though both ϕ and t have logarithmic terms propor-
tional to ln x, these cancel out when combined into the
locally well-defined coordinate ϕ̃. Finally, the constants C
and α can be computed by collecting all the OðxÞ terms
arising from the functions on the right-hand side of
Eqs. (A1)–(A4); a straightforward calculation gives

C¼ 1

2κ

�
1

2

c1
c20

þ2rþ
R2þ

ðẽþΩHlÞ
ẽ

−
1

2κR2þ
−
ΩH

ẽ
ðaes2þ−lÞ

	

ðA18Þ

and

α ¼ ΩH
rþ
κR2þ

−
ðaes2þ − lÞðΩHa − 1=s2þÞ

R2þẽ
; ðA19Þ

where R2þ ¼ r2þ þ a2 and sþ ¼ sin θþ. The constants C, α,
and k, as shown in Sec. IV, do not play a direct role in the
radiation formulas.

APPENDIX B: BOULWARE VACUUM AND
FIELD MODES FOR THE KERR BLACK HOLE

In this Appendix, we address the issue of the nonunique-
ness of a Boulware vacuum for the Kerr metric.
Specifically, for this metric, when the asymptotic-infinity
regions are included in the spacetime manifold, the
presence of superradiant modes precludes the existence
of a unique Boulware vacuum that is empty at both past

A. AZIZI et al. PHYS. REV. D 104, 084085 (2021)

084085-12



(I−) and future (Iþ) null infinity—see the details that
follow in this Appendix. It is noteworthy that, even though
this is a technical issue that needs to be addressed, as shown
below and in Sec. IV, the use of a generic Boulware-like
vacuum in our setup is sufficient—the final results for the
acceleration radiation and the HBAR entropy are insensi-
tive to whatever choice is made within this apparent
ambiguity.
We begin by discussing the conventional past (B−) and a

future (Bþ) Boulware vacuum states defined on the Cauchy
surfaces I− ∪ H− and Iþ ∪ Hþ respectively [26,32,33].
For comparison purposes with the existing literature,
instead of using the near-horizon variables and CQM
modes of our paper, one can describe the relevant physics
with the equivalent tortoise coordinate r�, defined by

dr�
dr

¼ 1

fðrÞ ; where f ≡ Δ
ðr2 þ a2Þ ; ðB1Þ

which implies that r� ¼
R
drr2 þ a2=Δ. This coordinate

choice is made so that the radial-time sector of the metric
appears as near-horizon conformally flat and pushes the
horizon radially to minus infinity. Notice that the scale
factor fðrÞ plays the same role as the homologous factor in
generalized Schwarzschild coordinates. In the corotating
coordinates (18), the radial function RðrÞ satisfies the wave
equation

�
d2

dr2�
þ ω̃2

	
RðrÞ ¼ 0: ðB2Þ

Most importantly, Eq. (B2) with the tortoise coordinate is
equivalent to its counterpart with the regular Boyer-
Lindquist radial variable (24). The ingoing and outgoing
waves fe−iω̃ðt̃þr�Þ; e−iω̃ðt̃−r�Þg in terms of r� correspond to
the conformal ingoing/outgoing modes x∓iΘ of CQM.
More generally (for all regions of spacetime), the coor-
dinate transformation of Eq. (B1) converts the radial
equation into the equivalent form

�
d2

dr2�
− Vðr�Þ

	
RðrÞ ¼ 0; ðB3Þ

with r� ∈ ð−∞;∞Þ, the event horizon being located
at r� ¼ −∞, and the scattering problem taking a conven-
tional form with an asymptotic potential Vðr�Þ≡ Vωlmðr�Þ
given by

Vðr�Þ ∼
�
−ω̃2 r� → −∞ðr → rþÞ
−ω2 r� → ∞ðr → ∞Þ : ðB4Þ

This leads to the following sets of asymptotic solutions

R−
ωlm ∼

�
eiω̃r� þ A−

ωlme
−iω̃r� r� → −∞

B−
ωlme

iωr� r� → ∞
; ðB5Þ

Rþ
ωlm ∼

�
Bþ
ωlme

−iω̃r� r� → −∞
e−iωr� þ Aþ

ωlme
iωr� r� → ∞

: ðB6Þ

For the definition of properly normalized modes, we
are adopting a convention that is standard in the
literature, where, in the separation Eqs. (15) and (18),
and in the radial equation (16), we make the replacement
R → ðr2 þ a2Þ−1=2R; the corresponding normalized
expressions are shown below. The labeling of the modes
follows the notation s ¼ ðω; l; mÞ, of Sec. II. It should be
noted that the modes near the horizon r� → −∞ are
characterized in terms of ω̃, since the positive frequency
is defined with respect to the Killing vector ξðt̃Þ near the
horizon (i.e., of the form ξðt̃Þϕs ¼ −iω̃ϕs); whereas at
asymptotic infinity the relevant Killing vector is ∂t, which
defines the positive frequency modes in terms of ω. The A
and B coefficients can be thought of reflection and trans-
mission amplitudes from the potential barrier Vðr�Þ. One
can show that for ω > 0; ω̃ < 0, both jA−j2 and jAþj2 are
greater than one, which is the phenomenon of super-
radiance. This peculiar behavior only arises for corotating
waves (m > 0), in the frequency range −mΩH < ω̃ < 0.
Using these modes, we define the past Boulware basis,

with Cauchy data on the past surface I− ∪ H−. The in
modes are defined as waves coming from I−, transmitted to
Hþ, and reflected to Iþ, with zero flux coming from H−.
The up modes are defined as waves coming from H−,
transmitted to Iþ, and reflected to Hþ, with zero flux
coming from I−. In other words, these are complementary
modes that have unit flux and zero flux in the correspond-
ing portions of the past surface I− ∪ H−. Specifically,

ϕin
ωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2ωðr2þa2Þ
p e−iωteimϕSωlmðθÞRþ

ωlmðrÞ ω> 0;

ðB7Þ

ϕup
ωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2ω̃ðr2þa2Þ
p e−iω̃teimϕ̃SωlmðθÞR−

ωlmðrÞ ω̃> 0;

ðB8Þ

ϕup
−ωl−m¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2ð−ω̃Þðr2þa2Þ
p eiω̃te−imϕ̃SωlmðθÞR−

−ωl−mðrÞ

−mΩH < ω̃< 0: ðB9Þ

Accordingly, the field can be quantized using these
orthonormal-basis modes,
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Φ ¼
X
l;m

Z
∞

0

dωðainωlmϕin
ωlm þ H:c:Þ

þ
Z

∞

0

dω̃ðaupωlmϕup
ωlm þ H:c:Þ: ðB10Þ

The corresponding past Boulware vacuum is then defined
by aΛs jB−i ¼ 0, where Λ ∈ fin; upg and s ¼ fω; l; mg or
f−ω; l;−mg. The past Boulware vacuum implies that there
are no particles in the past.
Similarly, one can define future Boulware modes by

using Cauchy data in the future surface Iþ ∪ Hþ, with out
and down modes. The out modes are defined as waves that
reach only Iþ from the past, with zero flux going intoHþ;
and the down modes are defined as waves that reach only
Hþ from the past, with zero flux going into Iþ. In other
words, these are complementary modes that have unit flux
and zero flux in the corresponding portions of the future
surface Iþ ∪ Hþ. Thus, the out-down modes are the time-
reversed versions of the in-up modes, and can be obtained
via the complex conjugate of the radial wave functions;
specifically,

ϕout
ωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2ωðr2þa2Þ
p e−iωteimϕSωlmðθÞRþ

ωlmðrÞ ω> 0;

ðB11Þ

ϕdown
ωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2ω̃ðr2þa2Þ
p e−iω̃teimϕ̃SωlmðθÞR−

ωlmðrÞ ω̃> 0;

ðB12Þ

ϕdown
−ωl−m ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8π2ð−ω̃Þðr2 þ a2Þ
p eiω̃te−imϕ̃SωlmðθÞR−

−ωl−mðrÞ

−mΩH < ω̃< 0: ðB13Þ

Similarly to Eq. (B10), these future orthonormal-basis
modes can be used to quantize the scalar field as

Φ ¼
X
l;m

Z
∞

0

dωðaoutωlmϕ
out
ωlm þ H:c:Þ

þ
Z

∞

0

dω̃ðadownωlm udownωlm þ H:c:Þ: ðB14Þ

We can define the corresponding future Boulware vacuum
as aΛs jBþi ¼ 0, where Λ ∈ fout; downg and s ¼ fω; l; mg
or f−ω; l;−mg, which implies that there are no particles in
the future. The main lesson of this construction is that
the past and future vacuum states are not the same due
to the existence of nontrivial Bogoliubov coefficients for
the superradiant modes.
Having discussed the conventional vacuum modes for

the Kerr geometry, we come back to the near-horizon
ingoing and outgoing CQM modes given in Eq. (26). One
can use the near-horizon expansion of the tortoise coor-
dinate of Eq. (B1) to show that the near-horizon CQM
modes [Eq. (26)] have the following correspondence with
the in and out modes

ϕout
ωlm ∝

ðHÞ
ΦþðCQMÞ

s ; ϕin
ωlm ∝

ðHÞ
Φ−ðCQMÞ

s ; ðB15Þ

whereas the up and down modes include contributions from

both Φ�ðCQMÞ
s modes. The correspondence (B15) validates

the use of a generic Boulware-like vacuum. For any such a
vacuum, the ingoing/outgoing CQM waves directly yield a
Planck distribution for the non-superradiant modes, as
shown in Sec. IV. Choosing the future Boulware vacuum
state has an apparent technical advantage in that the Planck
function already includes the superradiant modes, but the
past Boulware vacuum could be used just as well.
Alternatively, it is also possible to define a Boulware

vacuum by isolating the near-horizon behavior responsible
for the dominant conformal physics. This can be achieved
by redefining the vacuum in the presence of an outer mirror
or boundary condition located within the speed-of-light
surface [30], as discussed in Sec. IV.
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