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In this second part of a two-part paper, we discuss numerical simulations of a head-on merger of two
nonspinning black holes. We resolve the fate of the original two apparent horizons by showing that after
intersecting, their world tubes “turn around” and continue backwards in time. Using the method presented
in the first paper [Phys. Rev. D 084083 (2021)] to locate these surfaces, we resolve several such world tubes
evolving and connecting through various bifurcations and annihilations. This also draws a consistent
picture of the full merger in terms of apparent horizons, or more generally, marginally outer trapped
surfaces (MOTSs). The MOTS stability operator provides a natural mechanism to identify MOTSs which
should be thought of as black hole boundaries. These are the two initial ones and the final remnant.
All other MOTSs lie in the interior and are neither stable nor inner trapped.
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I. INTRODUCTION

The now numerous detections of gravitational wave
events leave little doubt that black hole coalescences are a
regularly occurring phenomenon in our universe [1–7]. With
the help of numerical relativity simulations, the produced
gravitational waves traveling to distant observers are ana-
lysed and modeled with steadily increasing efficiency and
accuracy [8,9]. However, the details of the merger of the
black holes themselves are less well understood. This is
partly for conceptual and partly for numerical reasons.
On the conceptual side, one needs to answer the question

of how to describe black holes in highly dynamical
situations. When a black hole is at rest or only slightly
perturbed, the event horizon is a suitable description [10].
In nonperturbative cases, however, its teleological nature
makes it unsuitable for gaining an understanding of the
dynamics [11–14]. A much better alternative is provided by
the quasilocal horizon framework [11,15,16]. The central
concept in this framework, the dynamical horizon, presents
a notion of black holes that is valid and satisfies physical
laws even in the highly nonlinear phases of the merger.
Dynamical horizons are based on the numerically acces-
sible marginally outer trapped surfaces (MOTSs), i.e.,
surfaces S defined as having vanishing outward expansion.
Following such a MOTS through the time evolution of a
spacetime generates a world tube, called a marginally

outer trapped tube (MOTT). In their original definition
[11,15,16], dynamical horizons are a certain subset of
MOTTs. In the present work, MOTS stability [17,18] will
play a central role and we shall refer to a stable MOTS
as apparent horizon1 (AH) and to a (section of a) MOTT
foliated by apparent horizons as dynamical apparent
horizon (DAH).
Whether we consider dynamical horizons or MOTTs

in general, one seemingly basic question remained open:
What happens to the horizons of two black holes when they
merge? It is well known that a common apparent horizon
forms around the two individual ones when they are
sufficiently close to each other. This common horizon
immediately splits into a stable outer and an unstable inner
branch, Souter and Sinner, respectively. This fact together
with the observation that MOTTs may in principle weave
back and forth in time (see, e.g., [14,19]) sparked spec-
ulations that all the horizons in a binary merger might, in
fact, be parts of a single world tube [20–22].
Prior to recent advances in methods for locating MOTSs

numerically [23], it was not possible to further investigate
these ideas. The world tubes that had to be tracked

1The compatibility with the traditional terminology of apparent
horizons as boundaries of trapped regions will be discussed
below.

PHYSICAL REVIEW D 104, 084084 (2021)

2470-0010=2021=104(8)=084084(23) 084084-1 © 2021 American Physical Society

https://orcid.org/0000-0001-7317-1087
https://orcid.org/0000-0003-1791-352X
https://orcid.org/0000-0002-9531-6440
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.084084&domain=pdf&date_stamp=2021-10-25
https://doi.org/10.1103/PhysRevD.104.084083
https://doi.org/10.1103/PhysRevD.104.084084
https://doi.org/10.1103/PhysRevD.104.084084
https://doi.org/10.1103/PhysRevD.104.084084
https://doi.org/10.1103/PhysRevD.104.084084


developed extremely distorted shapes, which the typically
used algorithms failed to resolve. The fundamental
assumption often employed to simplify the numerical
task is that the surface we wish to locate is star shaped,
i.e., it can be represented using an angle-dependent
(coordinate) distance function from some reference point.
See Ref. [24] for a review.
By removing this limitation, it was shown recently in

Refs. [25–28] that the individual apparent horizons S1

and S2 connect indirectly to the outer common apparent
horizon Souter in the following way. S1;2 approach each
other, touch at one point at a time ttouch and then start to
intersect. At ttouch, the union S1 ∪ S2 coincides with the
inner common MOTS Sinner, which formed together with
Souter, and which now has a cusp at the common point of
S1;2. Such a non-smooth “merger” of MOTSs, or “cross-
ing” of MOTTs, shall henceforth be referred to as
coincidence of one MOTS with the union of two others.
Immediately after the coincidence of Sinner with S1;2,
Sinner develops a self-intersection. However, the later fate
of the individual apparent horizons (and that of Sinner)
was not fully resolved in these studies. One reason for this
is that in the utilized methods, one still had to anticipate
the possible shapes with appropriate initial guesses. As
we shall see, resolving their full fate requires even more
exotic guesses, and for this a new method was needed.
We have developed and presented such a method in the
first paper of this two-part series, henceforth denoted as
paper I [29]. As we shall see in the remainder of this
second paper, having such a method is the key to
resolving this question.
One might argue that in classical general relativity,

whatever happens in the interior of the event horizon
remains—by definition—causally disconnected from far
away observers. MOTTs are always located in this interior
region and, after the outer common apparent horizon has
formed, the individual apparent horizons are even further
away from it. Nevertheless, the question of their fate seems
highly relevant if one aims at using MOTTs to understand
the merger. To allow for a physically meaningful inter-
pretation, these should be well-behaved objects in the
first place. But how is this compatible with the results of
paper I? There, we have shown that a two-black-hole
configuration may contain a large number of MOTSs
not previously known. Are these merely artifacts of an
“unphysical” configuration? Since they were found in time-
symmetric initial data with a common AH already present,
neither the past nor the future of this configuration contains
two separate black holes. In the present paper, we therefore
look at the merger of initially separate black holes and aim
to answer two questions: (i) Do such additional MOTSs
also form dynamically in a merger of initially separate
black holes? (ii) What physical significance do they have
and how can we differentiate them from the intuitively
more relevant apparent horizons we associate with the

individual black holes (S1;2) and the final common
one (Souter)?
To answer these questions, we perform numerical

simulations of the head-on collision of two nonspinning
black holes with no initial momentum. In particular, we
show explicitly that (i) such additional MOTSs do form
dynamically and (ii) the new MOTTs we track do, in fact,
bifurcate and annihilate with the other MOTTs. This means
that they are indeed weaving back and forth in time, but as
we will see later, they do not connect to form just one single
smooth surface. A remarkable result is a surprisingly clear
and predictable behavior in terms of the stability of these
MOTTs: Whenever a MOTT switches direction in time, it
gains an additional negative eigenvalue of the stability
operator, i.e., it effectively becomes “more unstable.”
Furthermore, only three MOTTs are stable (and hence
DAHs) in the sense of [17,18] and are thus distinguished
from all other MOTTs we find. These are the two DAHs
traced out by S1 and S2 associated with the individual black
holes and the one final common DAH traced out by Souter.
The rest of this paper is organized as follows. We start by

fixing the notation and introducing the required mathemati-
cal concepts in Sec. II. Section III gives the numerical
details of our setup, the simulations and the method to
locate and track the marginal surfaces. The new MOTSs
and the world tubes they trace out are introduced in Sec. IV.
Here, we also describe a mechanism occurring multiple
times along otherwise smoothly evolving MOTTs where
a cusp forms followed by a new self-intersection.
Additionally, we present MOTSs of toroidal topology that
exist inside the individual MOTSs S1 and S2. Section V
connects the various observations made in the previous
sections with the MOTS stability properties. The signature
and the expansion of the ingoing null rays, together
important for understanding the behavior of the area, are
presented in Sec. VI. Finally, Sec. VII will conclude with a
discussion of the main results. This manuscript builds from
the results in [29], and a summary of the main results from
both papers can be found in [30].

II. BASIC NOTIONS

A. Marginal surfaces and their world tubes

We consider four-dimensional spacetime ðM; gαβ;∇αÞ
with Lorentzian four-metric gαβ of signature ð−þþþÞ.
For a smooth spacelike two-surface ðS; qAB;DAÞ, let l� be
two linearly independent future pointing null normals
scaled such that lþ · l− ¼ −1. In the present paper we
will only consider closed surfaces S and we assume it is
possible to assign an outward direction on S. Then, lþ is
taken to be pointing outward and l− inward. The expan-
sions Θ� of a congruence of null rays traveling in the l�
directions are then given by

Θ� ¼ qαβ∇αl�
β ; ð1Þ
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where qαβ ¼ eαAe
β
Bq

AB with eαA being the pull-back fromM
to S. The expansions can be seen as the trace of the
extrinsic curvatures

k�AB ¼ ∇Al�
B ¼ eαAe

β
B∇αl�

β ð2Þ

of S associated with l�. Note that since l� are orthogonal
to a surface, the antisymmetric part (the twist) of k�AB
vanishes. The symmetric trace-free part of k�AB is given by
the shear

σ�AB ¼ k�AB −
1

2
Θ�qAB; ð3Þ

where we omitted the, in this case, unnecessary symmet-
rization. We will call Θþ the outgoing and Θ− the ingoing
expansion.
The signs of Θ� allow us to classify S. In particular, if

Θ� < 0 then S is called a trapped surface. The existence of
such a surface has been proven to imply that spacetime is
causally geodesically incomplete and thus singular [31].
S is called a marginally trapped surface if Θ− < 0 and
Θþ ¼ 0 and a marginally outer trapped surface (MOTS) if
Θþ ¼ 0 with no restriction on Θ−. We mention here that
Andersson et al. show in [32] that existence of a strictly
stable MOTS (introduced in Sec. II B) is sufficient for the
singularity theorem mentioned above to hold. Note that
we can still scale the null normals by arbitrary positive
functions f > 0 via

lþ → flþ and l− →
1

f
l−: ð4Þ

Fortunately, the signs of the expansions Θ� and conse-
quently the above characterization of S is invariant under
these transformations.
Let the spacetime M be foliated by spatial slices

ðΣt; hij; Di; KijÞ with Riemannian three-metric hij and
extrinsic curvature Kij. Following a MOTS S through
slices of the foliation provides the notion of a MOTT. More
precisely, a smooth three-manifoldH is called a marginally
outer trapped tube (MOTT) if it admits a foliation of
MOTSs. The definition of a MOTT makes no use of the
foliation of spacetime by the Σt. We will, however, only
consider MOTTsHwith a foliation of MOTSs contained in
the slices Σt. For a spacelike future (Θ− < 0) MOTTH, the
foliation can be shown to be unique [33]. Note that this
implies that different foliations of spacetime will in general
result in finding different MOTTs. See also [15] for a
discussion of this nonuniqueness.
The above objects are closely related to various terms

involving the word “horizon”. For instance, a spacelike
future MOTT is defined as a dynamical horizon in [16,34]
while in [27,28], the definition of a dynamical horizon
has been generalized to refer to any MOTT. Additional

qualifiers (e.g., future, spacelike) were used to then
specialize where needed. One of the reasons for this
generalization is that MOTSs and MOTTs were found to
appear in a much wider variety than expected and the
original dynamical horizon did not cover all the interesting
cases. However, the examples in [27,28] were just the
start and [35] showed that even in a single slice of the
Schwarzschild spacetime there can be an infinite number of
MOTSs. This together with the results shown in the first
and this second paper clearly suggest that not all of these
objects should be thought of as black hole boundaries. As
mentioned in the introduction, the notion of MOTS stability
turns out to reliably select those MOTSs which possess
reasonable physical properties and can thus be called
horizons. We will therefore introduce the MOTS stability
operator in the following section.

B. MOTS stability

The concept of MOTS stability in the sense of
Refs. [17,18] is helpful to get a deeper insight into the
evolution properties of a MOTS. In particular, it will be
useful in assessing at which time t a MOTT H becomes
tangent to a spatial slice Σt and thus generically “turns
around” in time. These instances correspond to a MOTT
appearing and bifurcating into two branches, as well as
when two MOTTs merge and annihilate. Furthermore, we
expect the physically relevant horizons to be boundaries for
trapped and untrapped surfaces, at least in a neighborhood.
This property also turns out to be closely related to the
notion of MOTS stability.
Before delving into the fully generic case, it will be

helpful to first consider a very simple situation in which
the stability operator appears almost naturally. Spherically
symmetric spacetimes provide such an example and so here
we restrict our attention to spherically symmetric MOTSs.

1. MOTTs in spherical symmetry

We will start by establishing some basic properties of
MOTTs in spherical symmetry. In this setting, each point in
the two-dimensional ðt; rÞ space represents a sphere and we
can calculate its expansion Θþ. A point ðt; rÞ can then be
labeled as outer trapped, outer untrapped or marginally
outer trapped as shown in Fig. 1. A MOTTH traces a curve
through the ðt; rÞ space and it can weave its way back and
forth through the foliation of spacetime.
Tangents to this curve can be written in the form

Vα ¼ N ðuα þ wnαÞ; ð5Þ

where uα and nα are respectively the unit vectors in the t
and r directions. N can be any function of ðt; rÞ, though a
convenient choice is the lapse. w is the speed of H relative
to the foliation. H is spacelike if jwj > 1, timelike if
jwj < 1 and null if jwj ¼ 1. If H becomes tangent to the
foliation (as at B or C) then at that point jwj → ∞.
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The speed w may also be calculated from the fact that
Θþ ¼ 0 onH. Then writing the derivative in the V direction
as δV (the notation is chosen to be compatible with the next
section), δVΘþ ¼ 0. It follows that

w ¼ −
δuΘþ
δnΘþ

¼ 1 − 2
δlþΘþ
δnΘþ

; ð6Þ

where we made a particular choice for the null vectors2

relative to u and n:

lþ ¼ 1

2
ðuþ nÞ and l− ¼ u − n: ð7Þ

Then we can again see that if δnΘþ → 0, jwj → ∞ (as long
as δlþΘþ ≠ 0).
Next, applying the spherically symmetric null

Raychaudhuri equation we find

w ¼ 1þ 2
Gþþ
δnΘþ

: ð8Þ

By the null energy condition, Gþþ ¼ Gαβlαþl
β
þ ≥ 0. If it

vanishes, then w ¼ 1 and soH is outward null and isolated
at that point. If matter falls through H (Gαβlαþl

β
þ > 0) and

the region outside ofH is outer untrapped (from A to C and
then B onwards in Fig. 1) then δnΘþ > 0 ⇒ w > 1 and H
is spacelike outward at that point. However if the region
outside of H is outer trapped (from C to B) then δnΘþ < 0
and so H could be either spacelike, timelike or (inward)
null. At C it transitions from w ¼ ∞ to −∞ and at B
from −∞ to ∞.
These quantities also determine the behavior of the area

of H. From (5) and (8)

ΘV ¼ N ðΘu þ wΘnÞ ¼ −
�
Gþþ
δnΘþ

�
Θ−; ð9Þ

where ΘV ¼ qαβ∇αVβ and Θu, Θn analogously. Thus if
Gþþ ¼ 0, then ΘV ¼ 0 and H does not change in area.
However if Gþþ ≠ 0 and Θ− < 0 (that is, the ðt; rÞ spheres
get smaller moving inward from the MOTT), then the area
of H is increasing if the region just outside is outer
untrapped (from A to C and then B onwards) and
decreasing if the region outside of H is outer trapped
(from C to B). Together these results mean that if we
considerH as a continuous curve running in the direction A
to B then it is always increasing in area as one would expect
for a black hole horizon.
Note that the exact location of the transition points is at

least partly a function of the foliation. For example, if we
chose a foliation rotated relative to our original Σt in Fig. 1,
then the points of tangency between H and the foliation
would be different. Their number could even increase.
However the possible timelike signature of H means that
this wending through time cannot (always) be understood
as simply a by-product of the choice of spacetime foliation.
Timelike sections necessarily intersect with many slices of
any foliation.
Finally note that a simulation that only tracked outermost

MOTSs would see an apparent horizon jump from A to B
at Σ2. However a more careful tracker would identify B
as a MOTS pair creation event with one surface sub-
sequently moving inwards while the other travels outwards.
Ultimately that inward moving MOTS would annihilate
with the original apparent horizon at C. Both pair creation
and annihilation events happen at points where δnΘþ → 0.

2. The MOTS stability operator

Away from spherical symmetry everything is more
complicated, though many of the themes (and conclusions)
that we have just examined remain. In particular δnΘþ
continues to play a key role though it is now generalized to
become the MOTS stability operator [17,18].
Leaving rigid spherical symmetry behind, there is no

longer just one way to deform a surface outwards (or
inwards). Since deformations tangent to a MOTS S leave
Θþ invariant, we will only consider deformations along
some direction Vα normal to S. In principle, this normal
need not be limited to a particular slice Σt containing S and
hence Vα may have a component pointing away from Σt.
We will later restrict Vα to be proportional to the normal nα

of S within the slice Σt. Now, for a deformation of S along
Vα, consider a family Sv of similar surfaces such that
S0 ¼ S. Points p ∈ S then trace out curves γpðvÞ and
we take the family Sv such that the tangents ∂

∂v to these
curves satisfy

∂
∂v ¼ ΨV ð10Þ

for a function Ψ. Note that for a fixed normal Vα the local
deformation of S is fully determined by Ψ as a function on

FIG. 1. Spherically symmetric evolution of a MOTT H (thin
solid line). It is perfectly possible for H to weave back and forth
through the time foliation. See, for example, [19,20] for exact
solutions exhibiting this behavior.

2A specialization to these same normals is made in Eq. (5) of
paper I [29] and overbars are included to indicate that a specific
scaling has been chosen. However in this paper we work only
with this specific choice and so for notational simplicity we omit
the overbars on l� and dependent quantities.
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just S. For the spherical deformations of the last section, Ψ
would be a constant and Vα would be the normal ni in a
t ¼ const slice.
Next, to each of the Sv we can construct a (nonunique)

pair of null normals l�
v and calculate the expansions Θv

�.
They are chosen so that l�

0 ¼ l� (the original null normals
on S). The MOTS stability operator LV with respect to the
normal Vα, scaled3 such that Vαlþ

α ¼ 1, is then defined as
the derivative of Θvþ with respect to v:

LVΨ ≔ δΨVΘþ ≔
∂
∂v

����
v¼0

Θvþ: ð11Þ

It is shown in [18] that LV does not depend on the choice of
l�
v away from S. On the other hand, the definition of LV is

not invariant under the rescalings (4) of the null normals
l�. However, since we will be interested only in its
eigenvalues, we can use the fact that LV is isospectral
under (4) as shown in [36] and we shall work with the
particular choice (7).
Just as in the spherical case of the previous section, we

will discuss the evolution properties of a MOTT H in the
context of some fixed foliation Σt and use this foliation to
talk about bifurcations and annihilations. We will then
need to choose the vector Vα as the normal of S which lies
in Σt, i.e., we choose

4 Vα ¼ 2nα. The stability operator with
respect to the slice Σt is then defined as LΣΨ ≔ L2nαΨ and
it takes the form (e.g., [17,18,37]):

LΣΨ¼−△Ψþ
�
1

2
R−2jσþj2−2Gþþ−Gþ−

�
Ψ; ð12Þ

where factors of 2 differing from [17,18] result from our
different cross normalization lþ · l− ¼ −1 and where

△Ψ ¼ ðDA − ωAÞðDA − ωAÞΨ ð13Þ

with ωA ¼ −eαAl−
β∇αl

β
þ the connection on the normal

bundle of S, R its Ricci scalar, Gþ− ¼ Gαβlαþlβ
−, Gþþ ¼

Gαβlαþl
β
þ and jσþj2 ¼ σþABσ

ABþ . This is a second order,
linear, elliptic operator with discrete spectrum and for a
nonvanishing connection ωA it is not self-adjoint. However,
its principal eigenvalue λ0, i.e., the eigenvalue with the
smallest real part, is always real. A MOTS S with λ0 ≥ 0,
λ0 > 0, λ0 < 0 is called stable, strictly stable, or unstable,
respectively. The meaning of this terminology will soon
become clear.

Note that for the spherical cases that we considered in
the last section, ωA ¼ 0 and σþAB ¼ 0 and we were only
considering constant Ψ. With those restrictions

LΣΨ ¼ 2δΨnΘþ ¼
�
1

R2
− 2Gþþ −Gþ−

�
Ψ; ð14Þ

where R is the areal radius of the MOTS. Then the term in
parentheses is the principal5 eigenvalue of LΣ. Hence in
spherical symmetry we can only have an “ingoing”Hwhen
the sum of the matter terms is comparable in size to 1=R2. If
it is not then, as we saw earlier, H is necessarily spacelike
and (if Θ− < 0) growing in area. However if it is equal so
that δΨnΘþ ¼ 0, then we can have horizon pair formation
(annihilation) as at B (C) in Fig. 1. Physically this can be
thought of as a case where the matter outside is dense
enough to cause the formation of a new horizon outside the
old one [20].
Returning to the general stability operator (12),

Andersson et al. proved in [17,18] that λ0 > 0 implies
existence of a smooth MOTT H containing S. That is,
S evolves smoothly to the future and to the past for at least a
short time interval. This can be understood intuitively in the
following way. Consider a three-dimensional MOTT H in
spacetime, illustrated in Fig. 2. Again, let Vα be the tangent
to H orthogonal to the MOTSs S and scaled such that
LVt ¼ 1, where LV is the Lie-derivative along Vα. For a
fixed foliation Σt, we can split Vα into the components
orthogonal and tangent to Σt,

Vα ¼ N uα þ Ψnα; ð15Þ

where the foliation fully determines the lapse N and so
N uα is fixed. Clearly, the variation of the expansion along
the MOTT H vanishes,

FIG. 2. Definition of the evolution vector V along a MOTT H.
V can be split into a component Ψn orthogonal to S ¼ H ∩ Σt1
within Σt1 and one orthogonal to Σt1 , i.e., N u, which is also
orthogonal to S.

3In particular, V cannot be parallel to lþ.
4The factor 2 results from our different convention (7) for the

scaling of lþ as compared to [17]. However, this does not change
the spectrum of LV .

5Allowing nonconstant Ψ would add a term −ΔSΨ, where ΔS
is the Laplacian on S. The spectrum would then be that of the
Laplacian on a round sphere (with lowest eigenvalue being zero)
shifted by the constant term in parenthesis in Eq. (14).
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δVΘþ ¼ 0; ð16Þ

which means that finding the tangent vector Vα amounts to
solving the inhomogeneous partial differential equation

LΣΨ ¼ −2δN uΘþ ð17Þ

for Ψ. The inhomogeneity on the right-hand side of this is
fixed by the foliation.
Note that if LΣ is invertible, then there exists a solution

for (17) for any lapseN . This is guaranteed if, e.g., λ0 > 0.
However, if λ0 ≤ 0, then invertibility can fail, as eigenval-
ues may vanish. Equivalently, in that case there are
homogeneous solutions to the evolution equation (17):
that is we can choose a Vα that is tangent to Σt and still
satisfies (16). The pair creation event B in Fig. 1 is such an
event. This association of vanishing eigenvalues with pair
creation/annihilation has also been observed away from
spherical symmetry [23]. In the present paper, we shall see
multiple instances of MOTTs appearing and vanishing
precisely as one of the eigenvalues—not necessarily λ0—
becomes zero. If it is λ0 that vanishes, then Proposition 5.1
of [32] shows that generically H is tangent to Σt and, for
fixed slicing, unique at least in a neighborhood.
Note too that λ0 > 0 implies that δΨnΘþ > 0 and again,

just as we saw in the spherically symmetric case, this is
sufficient to imply that the evolving H is spacelike at that
point [17,18] and so, if Θ− < 0, increasing in area (see also
[34,38]). This area increase theorem has been generalized
to include timelike “backwards in time” segments [39].
However this is not the end of the story: certain assump-
tions made in that generalized proof have now been shown
to not always hold during black hole mergers [27,28]. We
will see further examples of this in Sec. VI.
Stability is not only useful for understanding the evolution

of H, it also tells us something about local properties of S
within the slice Σt. In paper I, it is shown that the stability
operator for MOTSs can be understood as the analogue of
the Jacobi operator for geodesics [29]. Thus if one considers
an axisymmetric MOTS to be one of a congruence of
marginally outer trapped (possibly open) surfaces, then the
number of negative eigenvalues of the stability operator
corresponds to the number of intersections with other nearby
members of the congruence. Hence a stable MOTS with
λ0 > 0 does not intersect its neighbors while an unstable one
certainly does have such intersections.
More generally, it is shown in [17,18] that a strictly

stable MOTS S (λ0 > 0) has the barrier property. In
essence, this means that given a close-by surface S0 then
if S0 has expansion Θ0þ ≤ 0, it cannot extend into the
exterior of S. Similarly if Θ0þ ≥ 0, it cannot enter the
interior. On the other hand if S has the barrier property, it is
at least stable.
Following from these results, we adopt the following

convention in the present work. A stable MOTS S shall be

called an apparent horizon (AH). Note that an apparent
horizon is usually defined as the outer boundary of the
trapped region in a given slice Σt. Due to Theorem 2.1 in
[32], this boundary is a stable MOTS, so our definition
includes the previous one and extends it to include surfaces
that can still reasonably be associated with black hole
boundaries. Examples are the previously outermost MOTSs
S1 and S2, as we shall see below.
Similarly, a section of a MOTT H will be called a

dynamical apparent horizon (DAH) if it allows a foliation
by apparent horizons. As we saw in the preceding dis-
cussion, it is common for MOTTs identified during
evolutions to include both stable (DAH) and unstable
regions.

3. Simplification for vacuum, axial symmetry,
and no spin

As shown in the first paper, for nonspinning axisym-
metric MOTSs S in vacuum, we can simplify LΣ to

LΣΨ ¼ −ΔSΨþ
�
1

2
R − 2jσþj2

�
Ψ; ð18Þ

where ΔS ¼ DADA is the Laplacian on S. In this case LΣ is
self-adjoint with purely real spectrum. Another simplifica-
tion can be made if we introduce coordinates ðθ;ϕÞ on S.
Let ϕ be the coordinate along orbits of the axial Killing
field φA preserving the two-metric qAB and vanishing at
exactly two points, the poles of S. We take ϕ to be in the
range ½0; 2πÞ. Let further θ be any coordinate orthogonal
to ϕ, e.g., cos θ ¼ ζ, with ζ constructed as in Ref. [40].
Then we can write any eigenfunction Ψ of LΣ as

Ψðθ;ϕÞ ¼
X∞

m¼−∞
ΨmðθÞeimϕ: ð19Þ

For each m ∈ Z, the eigenvalue problem LΣΨ ¼ λΨ then
reduces to a one-dimensional problem

Lm
ΣΨm ≔ ðLΣ þm2qϕϕÞΨm ¼ λΨm: ð20Þ

The eigenvalues of Eq. (20) are labeled as λl;m, where l is
chosen to run from l ¼ jmj over the eigenvalues in
ascending order. This guarantees that for a round sphere,
for which the spectrum reduces to that of the Laplacian
on a sphere of radius R0 and shifted by 1

2
R ¼ 1=R2

0,
the eigenvalues are labeled in the conventional way as
λl;m ¼ ð1þ lðlþ 1ÞÞ=R2

0. For brevity, we will sometimes
write λl ≔ λl;0.

III. NUMERICAL SETUP AND MOTS FINDING

We use Brill-Lindquist initial data [41] for our
simulations. These describe a Cauchy slice Σ which is
time symmetric, i.e., with vanishing extrinsic curvature.
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The topology of Σ is R3nfx1; x2g, where x1;2 are the
coordinates of two punctures. The Riemannian three-metric
is conformally flat, hij ¼ ψ4δij, where δij is the flat metric.
The conformal factor is given by

ψ ¼ 1þ m1

2r1
þ m2

2r2
; ð21Þ

where m1;2 are the bare masses of the black holes and r1;2
are the (coordinate) distances to the respective puncture.
We shall here focus primarily on one particular configu-
ration with total ADMmassM ¼ m1 þm2 ¼ 1 and a mass
ratio of q ¼ m2=m1 ¼ 2 (i.e., m1 ¼ 1=3, m2 ¼ 2=3). We
choose a distance parameter of d ≔ jjx2 − x1jj2 ¼ 0.9
resulting in two black holes which are initially separate
with no common apparent horizon present.
We track the various MOTSs in the simulations using the

method described in [23,26] and available from [42], which
in turn uses software libraries described in [43–50]. The
first step in tracking a MOTS with this method is to provide
an initial guess surface in order to find the MOTS in one
time slice. From that point, the MOTS can be tracked
backwards and forwards through the foliation. Of course,
the initial guess surface can itself be a MOTS, and we use
two approaches to locate the new MOTSs for this purpose.
One is the shooting method described in paper I [29],
which can, in principle, locate all axisymmetric MOTSs of
spherical topology by choosing suitable starting points on
the z-axis. This method has been implemented in [42] and
can be applied to both analytically known initial data as
well as to slices obtained, e.g., from numerical simulations.
The other method is motivated by the assumption that
MOTSs may vanish and appear only in pairs of two. Based
on this idea, we try to track each MOTS to the future and to
the past. Whenever a MOTS cannot be tracked further in
either direction, we look for a “close by” one with which it
might merge. Such a merger will be an annihilation if it
happens to the future and a bifurcation if it happens in the
past direction. Appendix A details the method we use to
locate such a corresponding MOTT using families of
surfaces of constant expansion Θþ.
The simulations themselves are carried out using the

Einstein Toolkit [51,52]. The Brill-Lindquist initial data are
generated by TwoPunctures [53], while we use an axisym-
metric version of McLachlan [54] for evolving these data in
the BSSN formulation of the Einstein equations. This uses
Kranc [55,56] to generate efficient C++ code. We always
work with the 1þ log slicing and a Γ-driver shift condition
[57,58]. An important feature of these gauge conditions
is that they are “singularity avoiding,” which results in
simulation time effectively slowing down close to the
punctures. It was seen in [59] that the individual
MOTTs S1;2 essentially stop evolving due to this effect,
with the precise behavior being highly dependent on the
choice of initial data: A smaller initial distance allows the

S1;2 to evolve further during the simulation. We repeat our
simulations at different resolutions to ensure convergence
of our results. Most of these results are obtained using a
spatial grid resolution of 1=Δx ¼ 720, with additional
simulations carried out with 1=Δx ¼ 240, 360, and 480.
Shorter simulations to verify certain features were per-
formed at 1=Δx ¼ 960 and 1920. We do not use
mesh refinement and choose our domain large enough
to ensure that any boundary effects do not reach the
MOTSs for as long as we track them. Additional details
and convergence properties of our simulations are
described in Ref. [26].

IV. OVERVIEW OF THE VARIOUS MOTTS

The general picture one expects to find in head-on
mergers of two black holes has previously been analyzed
in great detail [25–28,60–62]: Initially, only two indi-
vidual apparent horizons are present, S1 and S2, belong-
ing to the two separate black holes. At a time touterbifurcate,
common MOTSs Souter and Sinner form as one surface and
bifurcate into two branches. While Souter settles to the
final Schwarzschild horizon, Sinner travels inwards
and becomes increasingly distorted. At the precise time
when S1;2 touch, denoted as ttouch, Sinner forms a cusp and
coincides with S1 ∪ S2. Immediately afterwards, S1;2

intersect each other while Sinner forms self-intersections.
However, the final fate of S1, S2 and Sinner had not been
resolved in those studies. We shall attempt to resolve that
fate here.
In the following, we will encounter several new MOTSs

S and we will, as before, differentiate between them
using different sub- and superscripts. It is understood that
replacing “S” with “H” indicates that we refer to the
MOTT traced out by S.

A. Area evolution

The main results are most easily visualized in terms of
the area of the various MOTSs. Figure 3 shows that we
indeed find multiple new MOTSs previously not known,
each forming in a bifurcation as a pair with an outer and an
inner branch. Furthermore, we find MOTSs which merge
and annihilate in pairs of two. Each bifurcation and
annihilation connects two MOTTs in a locally smooth
world tube. Upon formation, the area of the outer branch
increases while it decreases for the inner branch. However,
with the exception of Souter, even the areas of the outer
branches soon start to decrease. This nonmonotonic behav-
ior of the area along a smooth portion of a MOTT has been
previously discussed for Sinner in [25,27] and has been
attributed to properties of the expansion Θ− of the ingoing
null rays l− and to the signature of the world tube. We shall
here extend the discussion of these properties to the new
world tubes in Sec. VI. One characteristic that all MOTSs S
along such a MOTT have in common is which punctures
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they enclose, i.e., no MOTS crosses a puncture in its
evolution. Further, all additional bifurcations happen after
(with respect to simulation time) the formation of the
outermost common MOTS Souter at touterbifurcate and the new
MOTSs are solely contained within Souter.
We note here that we lose track of some of the MOTSs,

such as S��
2 , during the simulation without having an

indication of an annihilation. The reason we cannot track
these MOTSs further is a purely numerical one. The shapes
move very close to one of the punctures in our numerical
coordinates (the proper distance to the puncture is, of
course, always infinite). This close proximity results in loss
of numerical accuracy since a large spatial region is covered
by a decreasing number of numerical grid points as the
puncture is approached, i.e., this region is numerically
underresolved. Fortunately, the analysis of the MOTS
stability spectrum enables us to clearly differentiate
between a MOTS vanishing due to annihilation and one
vanishing due to loss of accuracy.

B. The world tubes

In this subsection, we will give an overall description of
the individual connected world tubes.

1. The world tube of Souter

The most complicated of the four world tubes is the one
that asymptotes to the final Schwarzschild horizon. Starting
with Souter, this MOTT is composed of the sequence
Souter → Sinner → S�

inner → S��
inner. All MOTSs along this

MOTT enclose both punctures. Figure 4 shows several
examples of these MOTSs as we follow this world tube,
starting with Souter (top left panel) and moving backwards.
We find the well-known bifurcation of ðSouter;SinnerÞ at
touterbifurcate ≈ 0.702M (top center panel). Going now forward
in time along the inner common MOTTHinner, we find that
Sinner coincides momentarily with S1 ∪ S2 at ttouch ≈
3.86M (middle left panel) and afterwards develops self-
intersections. It merges and annihilates smoothly with
S�
inner, which retains the self-intersection, and travels from

the annihilation backwards in time until shortly after
touterbifurcate (bottom left panel). At this point, it smoothly
connects to S��

inner in a bifurcation. S��
inner, initially fully

outside and enclosing S2, subsequently becomes increas-
ingly distorted. Just like Sinner, it forms a cusp at the time
tinner

��
cusp when the lower part of it passes from the outside to
the inside of S2, after which it has a second self-intersection
(bottom right panel of Fig. 4, see also Fig. 10).
The two instances where a cusp is formed along this

MOTT are very similar in nature. An important ingredient
for understanding these is the maximum principle for
MOTSs (c.f. Sec. 3.2 in [21]). This implies that two smooth
MOTSs S and S0, one enclosing the other, must be identical
if they have a common point with normals pointing in the
same direction. This is precisely the situation of Sinner as it
approaches ttouch and that of S��

inner as t → tinner
��

cusp . As the
common MOTS (Sinner or S��

inner, respectively) passes from
the outside to the inside of one of the enclosed MOTSs,
there is inevitably a coincidence of points, e.g., on the
z-axis with normals pointing in the same direction. Then by
the maximum principle the common MOTS must agree
with the enclosed one.
To now understand the cusp formation, consider first

the case of Sinner passing through S1. The common MOTS
Sinner encloses both S1 and S2. Since S1 and S2 are not
contained within each other, Sinner cannot coincide with
just S1 if it has a continuous evolution. For if that were the
case, it would have to first pass through (and hence
coincide with) S2 in order to be close to S1 everywhere.
What happens instead is that Sinner momentarily becomes
nonsmooth and coincides with S1 ∪ S2 at the precise time
when they touch and have one common point. This allows
for a continuous evolution of Sinner. The numerical evi-
dence for this scenario has been presented previously in
Refs. [25,26].

FIG. 3. Evolution of the area of the various MOTSs. Lines of
the same color and different line styles smoothly connect and
correspond to a single world tube continuing back and forth
in time (except for the pair ðS1;S�

1Þ, which is discussed in
Sec. IV B 3). The sum of the areas of S1;2 is shown as the thin
dashed line. This agrees with the area of Sinner at ttouch marking
the coincidence of Sinner with S1 ∪ S2. Note that despite some
MOTSs having larger area than Souter, they are, in fact, all
contained within Souter for t ≥ touterbifurcate. For all curves that end
without smoothly connecting to another curve, we lost track of
the corresponding MOTS for numerical reasons (see the end of
Sec. IVA for details).
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Similarly, S��
inner momentarily coincides with S2 and at

that moment has a cusp. The other MOTS it coincides with
is S1c, which is discussed in Sec. IV C. Below, we will see
further examples of such coincidences of one MOTS with
the union of two others.

2. The world tube of S2

This MOTT consists of the sequence S2 → S�
2 → S��

2 ,
with MOTSs shown in Fig. 5. Starting with S2 at t ¼ 0
(top left panel), we find the annihilation of S2 with S�

2

at t ≈ 5.352M (top center panel). S�
2 is then followed

FIG. 4. Several shapes of the MOTSs along the connected MOTT following the sequence Souter → Sinner → S�
inner → S��

inner. The
panels are to be read row by row from left to right. The respective inset in the bottom-left indicates the location of the shown MOTS on
the connected area curve with a red dot (see Fig. 3 for the precise axes and labels). For reference, the shapes of S1 and S2 are drawn as
light gray solid lines (except for the top-left and the center panel, where S2 does not exist). We start in the top-left panel with Souter at
t ¼ 6M and then repeatedly go backwards and forwards, following the MOTT until we reach S��

inner at the final time t ≈ 4.967M at which
it could be located (bottom-right panel). The inset in the bottom-right of this last panel shows the newly formed second self-intersection
of S��

inner.
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backwards until the point where it bifurcates with S��
2 at

t ≈ 0.811M (bottom center panel). All MOTSs along this
MOTT enclose only the puncture in the interior of S2, i.e.,
that of the larger of the two original black holes. The
bottom right panel of Fig. 5 shows the last time we were
able to reliably locate S��

2 . Shortly after this time, it gets too
close (in coordinates) to the puncture inside S1, resulting
in loss of numerical accuracy. However, just as for Sinner
and S��

inner, S
��
2 approaches S2 from the outside. We suspect

that S��
2 will subsequently move to the inside of S2

by forming a cusp at the time of transition. At this time,
it must momentarily coincide with S2 in its lower portion
and another MOTS (S1a, shown in Sec. IV C) in its upper
portion. If true, this scenario would lead to a self-
intersection forming in this world tube.
The annihilation of S2 with S�

2 resolves the previously
unknown fate of this individual apparent horizon, although
the fate of the full world tube (including S�

2 and S��
2 ) is not

numerically resolved. We shall defer further discussion of
possible scenarios to Sec. VII.

3. The world tube(s) of S1 and S�
1

At t
S�
1

bifurcate ≈ 0.756M we find the formation of the pair
ðS�

1;S
��
1 Þ. These enclose the puncture inside S1 but do not

contain the puncture of S2. Fig. 6 shows this pair along
with S1 at a time t ¼ 2.5M.
A merger and annihilation of S1 with S�

1 analogous
to that of S2 with S�

2 could not be seen in this simulation.

FIG. 5. Same as Fig. 4 but showing MOTSs along the connected MOTT consisting of S2 → S�
2 → S��

2 .

FIG. 6. Examples of the MOTSs S1, S�
1, and S��

1 at simulation
time t ¼ 2.5M. The light gray curve shows S2 for reference.
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It is unclear if this lack of an annihilation is (a) purely due
to the smaller S1 being closer in coordinates to one of the
punctures, which increases the effect of the slow-down
discussed above and in [59], or if (b) S1 has a qualitatively
different behavior than S2 and possibly does not annihilate
at all. One option to pursue the first possibility is to choose
initial data for a simulation which reduces the aforemen-
tioned slow-down effects. Appendix B shows results
for such a simulation, which suggests that the lack of
annihilation could indeed be due to case (a) even in the
present simulation.
Lastly, we would like to point out that, in a very similar

way to S��
2 , we find the inner branch S��

1 approaching one
of the individual apparent horizons, this time S1, from the
outside. In this case, however, we were able to resolve the
formation of a cusp as S��

1 coincides with S1 ∪ S2a (S2a is
discussed in Sec. IV C). As expected, S��

1 subsequently
self-intersects. This supports again the above expectation
that this also happens for S��

2 .

4. The world tube of S�
0

The last world tube is traced out by the pair ðS�
0;S

��
0 Þ,

which bifurcates at t
S�
0

bifurcate ≈ 0.888M. These do not con-
nect smoothly to any of the above MOTSs. Figure 7 shows
the MOTSs at a time t ¼ 2.5M. None of the MOTSs along
this world tube contain any puncture in their interior.
Based on the cases of cusp formation and self-

intersections mentioned above, we speculate here on the
future of S��

0 beyond the point where we are able to locate it
reliably: We already mentioned the cusp formations of S��

1

and S��
2 in the previous two subsections. In these two cases,

either S1 or S2 coincides with S��
1 or S��

2 on one of their
portions, respectively. We also noted that in both cases the

two remainders, S2a and S1a, respectively, are themselves
MOTSs discussed in Sec. IV C. These latter two MOTSs
do not contain any puncture. They may, however, at some
point touch and start to intersect, just like S1 and S2 do at
ttouch. At the time when they touch, we propose that S��

0

coincides with their union, has a cusp at this time, and
forms a self-intersection immediately afterwards. We are
unfortunately not able to resolve this idea at this point since
we lose numerical accuracy near the punctures before this
can be observed.

5. Comparison with the extreme mass ratio
merger case

It is illuminating to compare these sequences of MOTSs
to Fig. 16 in [35]. That paper studied marginally outer
trapped open surfaces (MOTOSs) in Schwarzschild space-
times with the argument that they could be used to model
dynamical apparent horizon and other MOTT evolutions
during an extreme mass ratio merger.
That paper did not include true dynamics, but it was

argued that it should be possible to assemble the various
MOTOSs found in Schwarzschild into a sequence describ-
ing the full dynamics of the merger. The authors proposed
one such evolution, but what they did not consider6 is that
many of the steps could be happening simultaneously.
Instead of creations and annihilations, they expected a
single continuous sequence of MOTOSs evolving in time.
If one reinterprets the sequence in their Fig. 16 as a
marginally outer trapped open tube weaving backwards
and forwards in time, then the proposed picture becomes
much closer to that of Fig. 4 in the current paper, though
still with some mistakes.
It is intriguing that simple model of an extreme mass

ratio merger can reproduce cusp formation which sub-
sequently evolves into self-intersections. However since
[35] works with an exact solution, we can push further and
see that this process may repeat indefinitely with surfaces
involving more and more self-intersections. This then is
extra evidence that the double self-intersection of Fig. 4
at t ≈ 4.967M is likely just the beginning of a sequence
that may continue indefinitely with each n-times self-
intersecting MOTOS ultimately being annihilating with
an (nþ 1)-times self-intersecting MOTS which in turn
was pair-created with a (soon-to-be) (nþ 2)-times self-
intersecting MOTOS.

C. MOTSs inside S1 and S2

None of the MOTSs described thus far are located fully
in the interior of either S1 or S2. As discussed in the first
paper, we were in fact not able to locate such an interior
MOTS in the Brill-Lindquist initial data. From the

FIG. 7. Examples of the MOTSs S�
0 and S��

0 at simulation time
t ¼ 2.5M. The light gray curves show S1 and S2 for reference.

6We are confident about this as two of them are also authors on
the current paper!
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discussion in the previous Sec. IV B, however, one would
expect that at any point where a cusp forms in a MOTS,
that MOTS coincides with the union of two other MOTSs
as in the case of Sinner and S1 ∪ S2 at ttouch. This holds
for example for S��

inner at the time it forms a cusp shortly
before the last panel of Fig. 4. At that time, its lower
portion coincides with S2 and the upper portion is fully
contained inside S1. That is, at some point a MOTS
must have formed inside S1 evolving into this self-
intersecting shape. A similar argument holds for the lower
portion of S��

1 .
A search for MOTSs in the interior regions of S1 and S2

at a time t > 0 has indeed been successful. Figure 8 shows
the four MOTSs we could locate inside S1 at a simulation

time t ¼ 1.5M. From Fig. 9 it can be seen that these
MOTSs get closer (in coordinates) to S1 as t → 0. The
same qualitative behavior is found inside S2 and we will
return to this point in Sec. IV D where we also discuss Si

1

and Si
2. Note that the self-intersecting MOTS S1c later

coincides with the upper portion of S��
inner at the time the

latter forms the cusp at t ≈ 4.32M. Figure 10 shows this
formation of a cusp and subsequent self-intersection.
Similarly, S2a coincides with the lower portion of S��

1 as
it forms its cusp at about t ≈ 4.9M. Another observation is
that these interior MOTSs cannot “escape” their enclosing
S1 or S2, respectively, while the latter exist. This is again
easily explained by the maximum principle for MOTSs
given in Section 3.2 of Ref. [21], since any common point

FIG. 8. The MOTSs S1a;b;c;d in the interior of S1 at a simulation time t ¼ 1.5M. S1a (first panel) and S1b (second panel) do not enclose
the puncture inside S1, while S1c (third panel) is self-intersecting and does enclose this puncture. The last panel shows a MOTS S1d of
toroidal topology. We also show a marginally inner trapped surface Si

1 as thin solid line, which is discussed in Sec. IV D.

FIG. 9. MOTSs in the interior of the individual MOTSs S1 and S2 at the two different times t ¼ 0.2M (left panel) and t ¼ 1M (right
panel). Any MOTS outside or partially outside the individual ones is not shown here. The MOTSs S1a;b;c;d are shown individually in
Fig. 8. We furthermore show the MITSs Si

1, S
i
2, which are discussed in Sec. IV D.
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with a common normal direction would imply the MOTSs
necessarily coincide.
Interestingly, S1d and S2d are MOTSs with toroidal

topology, i.e., their Euler characteristic is χ ¼ 0 in contrast
to all other MOTSs which have χ ¼ 2. We numerically
verified that their shear σþAB does not vanish, which
immediately implies that any first order spacelike outward
deformation does not lead to an untrapped surface (see the
remark at the end of Sec. III A of Ref. [16]). This is
compatible with a negative principal eigenvalue of the
stability operator, which we find as well. S1d is shown in
the last panel of Fig. 8 and closely follows the loop of the
self-intersecting S1c.
All these interior MOTSs get very close in coordinates to

one of the punctures and we hence lose most of them due to
numerical problems before the end of our simulation. This
happens earlier for S1a;b;c;d than for S2a;b;c;d as the former
are smaller in coordinates than the latter.

D. MOTSs seen from the other asymptotic ends

Figures 8 and 9 show curves Si
1 and S

i
2 which we did not

yet comment on. These curves belong to marginally inner
trapped surfaces (MITSs), where Θ− ¼ 0with no condition
on Θþ. Equivalently, these surfaces are MOTSs with the
notion of inward and outward reversed. These MITSs are
interesting for several reasons.
First, the MITSs provide a means for generalizing a

feature visible in the time-symmetric case (see paper I),
where the MOTSs with sharp turns seem to transition
between portions staying close to one of the other MOTSs
with fewer or no turns. However, at these turns the notion of

inside and outside may switch. This is irrelevant in time-
symmetry as in that case Θþ ¼ 0 ⇔ Θ− ¼ 0, but it
becomes important during the simulation where time-
symmetry is lost. As can be seen in Fig. 8, the MOTSs
S1a;b;c;d run close to Si

1 on an extended portion, consistent
with the notions of inside and outside there. Figure 11
visualizes this idea by showing the spatial part of the
respective null normals with vanishing expansion, i.e., of
lþ for the MOTSs and l− for the MITS. We find that all

FIG. 10. Cusp formation with subsequent self-intersection in the evolution of S��
inner. The left panel shows a time before cusp formation

and the right panel a time after. Note that the cusp forms at the time when S1c and S2 touch. At that time, S��
inner coincides with the union

S1c ∪ S2. The interior self-intersecting MOTSs are very similar to those seen in pure Schwarzschild in [35].

FIG. 11. Spatial outward normal directions on S1 and one of the
interior MOTSs S1a as well as the inward normal direction on the
MITS Si

1.
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MOTSs in the interior of S1 fully lie in the annular region
between S1 and the MITS Si

1. The MOTSs in the interior of
S2 behave analogously.
This also allows us to explain the behavior of the interior

MOTSs S1a;b;c;d and S2a;b;c;d for t → 0. In this limit, Si
1;2

coincide with S1;2, respectively, and so, being confined
between these, the interior MOTSs do as well. From this
behavior and the number of turns in their shapes, one may
expect that for t → 0 the area of S1a;b and S1d becomes
twice the area of S1 while S1c should have three times this
area. Analogous arguments hold for S2a;b;c;d. Figure 12
confirms this expectation and shows the evolution of the
various areas as a function of time.
Another reason to consider MITSs is that the two

punctures in the Brill-Lindquist initial data belong to
two different asymptotically flat ends of the slice Σ. In
fact, these data contain three ends with x → ∞ representing
the end we commonly choose to be in the “outward”
direction. The ends x → x1 and x → x2, where x1;2 are the
coordinates of the two punctures, contain equally valid
observers far away from any black hole. An observer near
x1 or x2 will see a quite different picture of what “we” (i.e.,
observers for whom x → ∞ is considered outside) see as a
binary black hole merger. In particular, at t ¼ 0 where S1;2

are not only MOTSs but also MITSs, an observer near, say,
x1 interprets S1 ¼ Si

1 as common apparent horizon enclos-
ing both punctures. Figure 13 shows that the area of these
MITSs is monotonically increasing. Furthermore, consid-
ered as MOTSs seen from the respective asymptotic region,
Si
1 and Si

2 are strictly stable and, in fact, the outermost
common MOTSs representing a perturbed Schwarzschild
black hole.
It is therefore clear why we cannot find any of the interior

MOTSs inside S1;2 in the time-symmetric initial slice. That
slice continues from the respective MOTSs S1;2 directly to
the “outside” of the apparent horizons Si

1;2 seen from the
other asymptotic regions. At later times, however, the slice

does contain a nonvanishing volume between Si
1;2 and S1;2,

respectively, where the additional MOTSs are located. It is
noteworthy that an analogous region of the Schwarzschild
spacetime is contained in a slice in Painlevé-Gullstrand
coordinates, where self-intersecting MOTSs were found
in Ref. [35].
While many more MITSs are likely present in our

simulations, we shall leave a more exhaustive study of
these surfaces for future work.

E. Remarks on initial distance and mass ratio

Most of the discussed numerical results are obtained
from simulations starting with a single physical configu-
ration, namely Brill-Lindquist initial data consisting of a
conformally flat three-metric with conformal factor (21)
where the bare masses arem1 ¼ 1=3 andm2 ¼ 2=3 and the
distance parameter is chosen as d ¼ 0.9. This choice
balances several effects resulting from the interplay of
the employed slicing and the numerical setup: A larger
value for d makes the individual apparent horizons S1;2

FIG. 12. Evolution of the area of the MOTSs S1a;b;c inside S1 (left panel) and of S2a;b;c inside S2 (right panel). The areas of S1 and
S2 are shown for reference. Note that the smooth annihilation of S2 is not visible since we do not include the area of the connecting
MOTS S�

2.

FIG. 13. Evolution of the area of the MITSs Si
1 and S

i
2. We plot

the difference A − A0 on a logarithmic scale to emphasize the area
change. Here A0 is the area of the MITS at t ¼ 0 where it
coincides with the area of S1 and S2, respectively.
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slow down in evolution before they start to intersect [59]
and thus prevents us from observing the annihilations of
ðS2;S�

2Þ and ðSinner;S�
innerÞ. A smaller value leads to

common MOTSs Souter and Sinner already being present
in the initial data. As shown in paper I, many more common
MOTSs exist in these kinds of setups and hence at least
some of the various bifurcations do not exist in the
simulation.
Similar considerations led to the chosen mass ratio of

q ¼ 2. In particular, it is true that more unequal masses
keep the larger MOTS S2 further away (in coordinates)
from the puncture in its interior. As a consequence, it
suffers less from the slow-down described in [59] and we
can observe that it annihilates with S�

2 “earlier”with respect
to simulation time. However, this comes at the cost of S�

2

now getting too close (again, in coordinates) to the puncture
inside the smaller MOTS S1 and thus we were not able to
resolve the full world tube of S�

2 and show that it turns
around in time at both of its ends. This also means that the
prospect of resolving the fate of S1 crucially depends on
keeping it as far away from its puncture as possible.
Without modifying the used gauge conditions, which we
do not try to do in the present work, this can only be
achieved with more equal masses. Our attempts to do so are
summarized in Appendix B. However, we find that this
requires a very small initial distance d.
Thus, while we are indeed able to resolve some of the

previously presented features for many choices of initial
data, the particular choice we made combines most of these
in one simulation. Furthermore, the reasons we cannot
resolve the full set of these features for other mass ratios or
initial distances are well understood and due to numerical
issues. We therefore have no clear indication that the
observed behavior should indeed be specific to our choice
of these parameters. The exception is a possible qualitative
change in case of a large mass ratio. For large q, we find
that the time tS2

annihilate where S2 annihilates with S�
2 occurs

earlier and much closer to the time ttouch when S1 and S2

start to intersect. Recall that ttouch is precisely the time when
the union S1 ∪ S2 coincides with Sinner and that this
provides the connection between S1;2 and Souter [25,26].

We have verified for d ¼ 0.9 that ttouch < tS2

annihilate up to
q ¼ 14. However, if one finds for even larger q that S2

annihilates with S�
2 before it intersects with S1, one may

still be able to find a sequence of MOTSs connecting S1;2

with Souter. In this case, the connection may occur after S2

has turned around in time, i.e., one may see a coincidence
of S1 ∪ S�

2 with S�
inner.

V. STABILITY

The various bifurcations and annihilations described thus
far can also be understood with the help of the MOTS
stability operator. As we shall see, this not only gives strong
numerical support for our claims of smooth bifurcations

and annihilations, it also provides a useful characterization
of the respective two branches in terms of the eigenvalues
of this operator.
Let LΣ be the stability operator (12). As shown in

Proposition 5.1 of [32], the vanishing of the principal
eigenvalue of LΣ is closely related to bifurcations and
annihilations of a MOTS. The intuitive picture is that of a
MOTTHwhich is tangent to one of the slices Σt� , where t�
is the time of bifurcation or annihilation. At this time, the
cross section St� of H is a MOTS with vanishing principal
eigenvalue λ0 ¼ 0. Essentially, the proposition proves,
under suitable genericity conditions satisfied in all our
cases, that the existence of such a MOTS St� with λ0 ¼ 0
implies for a given foliation of spacetime the existence of a
unique MOTT H compatible with that foliation and
containing St� . That MOTT is necessarily tangent to Σt� .
Hence, if we do find twoMOTTs connecting smoothly at t�
with λ0 → 0 as t → t�, then we have a clear numerical
indication for such a bifurcation or annihilation. This is
precisely the case for the bifurcation of the pair
ðSouter;SinnerÞ and the annihilation of the pair ðS2;S�

2Þ
shown in Figs. 14 and 15. However, for the other pairs of
MOTSs, we in fact find that instead of the principal
eigenvalue, it is one of the higher eigenvalues which tends
to zero at bifurcation or annihilation time.
An interesting observation we can make here is that

the number of negative eigenvalues necessarily changes as
we follow a smooth MOTT across such a bifurcation or
annihilation. Three of the MOTSs, namely Souter, S1, and
S2, possess a positive principle eigenvalue, i.e., they are
strictly stable and thus act as barrier for trapped and
untrapped surfaces in a neighborhood. By our terminology,
they are apparent horizons and the world tubes they
trace out are dynamical apparent horizons. The above

FIG. 14. Eigenvalues of LΣ for the ten MOTSs participating in
the five bifurcations. For each MOTS, we show the respective
eigenvalue which tends to zero as t → tbifurcate.
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properties are what one would usually expect from horizons
associated with black holes. All other MOTSs we found
possess one or more negative eigenvalues. At any given
time, all MOTSs with a negative eigenvalue are contained
in the interior of one of the strictly stable ones, i.e., S1, S2,
or Souter. To present our results more systematically, let N−
be the number of eigenvalues λl;m < 0 and N0

− the number
of eigenvalues λl;m¼0 < 0. Table I lists the various values of
N− and N0

− we find for the MOTSs along each MOTT
during the evolution and Fig. 16 shows all MOTSs at two
different times with N0

− indicated by line thickness and
color. In each instance where a MOTS transitions through a
bifurcation or annihilation along the indicated sequences of
MOTTs, one additional negative eigenvalue of the m ¼ 0
mode appears.
Another observation is related to the instances where

two MOTSs touch at one point and coincide at this time
with a MOTS having a cusp. We were able to explicitly
resolve three of these coincidences numerically, namely
S1 ∪ S2 ¼ Sinner, S1c ∪ S2 ¼ S��

inner and S1 ∪ S2a ¼ S��
1 .

Based on our results, we expect at least two more such
coincidences, which we could not resolve for numerical
reasons. These are S1a ∪ S2 ¼ S��

2 and S1a ∪ S2a ¼ S��
0 .

For all these cases where S ∪ S0 ¼ S00, we find, with
obvious notation, that

N0
− þ N0

−
0 þ 1 ¼ N0

−
00: ð22Þ

Note that N0
− is constant along each individual MOTT,

even when cusps and self-intersections form, as they do for
Sinner, S��

inner and S
��
1 . However, in several instances, we find

that eigenvalues of the higher angular modes (m ≠ 0) do
cross zero on perfectly smooth portions of the MOTT. Due
to the axisymmetry and absence of spin in our simulation,
we have a�m degeneracy in the spectrum, whence all zero
crossings of eigenvalues λl;m≠0 happen in multiples of 2.
Two examples of such cases are depicted in Fig. 17, which

shows that the two degenerate eigenvalues λ1;�1 of S��
2 and

S��
1 do cross zero during their evolution. This crossing

happens twice for the latter case. Taking invertibility of LΣ
as indicator for the existence of a smooth evolution of a
MOTS S, we here have explicit counterexamples showing
that the converse of this statement is not true. In other
words, invertibility of LΣ is only a sufficient but not a
necessary condition for a smooth evolution.

VI. SIGNATURE AND INGOING EXPANSION

As discussed in Sec. II B 2, a strictly stable MOTS,
λ0 > 0, belongs to a dynamical apparent horizon that has
spacelike signature at that point (cf. [17,18]). Together with
Θ− ≤ 0, the area will be nondecreasing. Since we see in
Fig. 3 that many of the MOTSs have a decreasing or
nonmonotonic area evolution, we expect that those with
λ0 < 0 cannot have both nonpositive ingoing expansion
Θ− ≤ 0 and evolve along a spacelike MOTT. Examples are
shown in Figs. 18 and 19 where we see complicated
signature changes and indefiniteness of the sign of Θ−
along the world tubes Hinner and H�

inner. In these figures,
time increases upwards and the signature or sign of Θ− is
shown as color on the world tubes. Figure 20 shows a close-
up of the sign of Θ− at the top end where Sinner and S�

inner

FIG. 15. Eigenvalues of LΣ for the two pairs of MOTSs
ðS2;S�

2Þ and ðSinner;S�
innerÞ close to the time when they

annihilate.

TABLE I. Number of negative eigenvalues of LΣ for the
MOTSs along the different MOTTs. The arrows indicate when
we have found a smooth connection between the respective world
tubes, while the arrow in parentheses indicates a suspected
smooth transition which we could not resolve numerically.
Shown is N0

−, i.e., the number of eigenvalues λl;m¼0 < 0 as well
as N− for the number of all negative eigenvalues. This latter value
changes for some of the MOTTs, in which case we list all the
occurring cases (not in order of appearance).

MOTT H1 ð→Þ H�
1 → H��

1

N0
− 0 1 2

N− 0 1 2, 4

MOTT H2 → H�
2 → H��

2

N0
− 0 1 2

N− 0 1 2, 4

MOTT Houter → Hinner → H�
inner → H��

inner
N0

− 0 1 2 3
N− 0 1, 3 2, 4 3, 5, 7, 9

MOTT H�
0 H��

0

N0
− 2 3

N− 2 3, 5, 7

MOTT H1a H1b H1c H1d

N0
− 1 1 2 2

N− 3 1, 3 4, 6 4, 6

MOTT H2a H2b H2c H2d

N0
− 1 1 2 2

N− 1, 3 1 4 4
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annihilate (or equivalently where Hinner and H�
inner connect

smoothly). A qualitatively very similar behavior of these
quantities is found for all MOTTs except Houter, H1

and H2. These are purely spacelike and have Θ− ≤ 0 at
most times.7

A result of Bousso and Engelhardt [39,63] shows that
even when H changes direction in time and has nonspace-
like segments, it will have a monotonic area evolution
provided several conditions hold onH. One of these is that
Θ− ≤ 0, which we have already seen to not be satisfied for
most MOTTs we found in this simulation. At this point, one
could immediately conclude that this result is not appli-
cable to most of our cases and hence finding nonmonotonic
area evolutions is not in tension with any theoretical
expectation. While certainly true, we still think it is
worthwhile to show which of the other assumptions made
in the proof are violated, not least because they were
believed to be unrestrictive.
To state the relevant ones here, we go back to the

evolution vector Vα defined as tangent toH and orthogonal
to each MOTS S foliating H. As before, we fix its scaling

by requiring LVt ¼ 1. Since the null normals l� span the
two-dimensional space of normals to S, we can write

Vα ¼ blαþ þ clα
−: ð23Þ

As V · V ¼ −2bc, the coefficients b and c are related to the
signature of H, i.e., H is spacelike, timelike, or null when
bc < 0, bc > 0, or bc ¼ 0, respectively. The proof in [63]

FIG. 17. Examples of eigenvalues with m ≠ 0 crossing zero on
the smoothly evolving portions of S��

2 (thick dotted line) and S��
1

(thin dotted line). The smoothly connecting respective curves for
S�
2 and S�

1 are added here for reference. Note that both S��
2 and

S��
1 have a principal eigenvalue λ0 < 0 and λ1;0 < 0, which are

not shown.

FIG. 16. MOTSs at two different times of the simulation. The line thickness and color reflects N0
−, i.e., the number of negative stability

eigenvalues of them ¼ 0mode. The three dark lines in both panels are Souter (common), S1 (upper) and S2 (lower). Lighter colors show
MOTSs with larger N0

−. Note that none of the MOTSs extends beyond Souter.

7We do find a very short duration of Δt ≈ 0.04M after touterbifurcate
where Souter has a small portion with Θ− > 0 close to its equator.
This was also found in [28]. A similar portion with Θ− > 0 is
found on S2 shortly (Δt ≈ 0.02M) before it annihilates with S�

2.
Both of these portions smoothly connect with corresponding
portions on the MOTSs they connect to (Sinner for Souter and S�

2
for S2).
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now requires in addition to genericity assumptions satisfied
in all our cases, the following:

(i) Every inextendible portion of definite sign of c is
entirely timelike or contains at least one full MOTS.

(ii) Every MOTS in H splits a Cauchy slice Σ that it is
contained in into two disjoint portions.

Then, without restrictions on Θ−, it is proven that c cannot
change sign on H. On all but the three strictly stable
MOTTs, however, we find that at least one of the above

conditions is violated and that, in fact, both b and c do
change sign.
In cases of self-intersections, it is clearly condition

(ii) that does not hold. But even for MOTSs that do not
self-intersect (or on portions of their world tubes on which
they do not self-intersect), we find that condition (i) is
violated. For the case of Sinner, this was discussed in great
detail in [27]. With the annihilation of Sinner with S�

inner,
we are now able to extend these results to later times.

FIG. 18. Signature ofHinner (left panel) andH�
inner (right panel). In these tube plots, time goes upwards and z-values increase to the left.

These two MOTTs smoothly connect at their top ends but not at the bottom as they connect with different world tubes there. The bottom
end of the right panel corresponds to the bottom-left panel of Fig. 4.

FIG. 19. Sign of the ingoing expansion Θ− of Sinner (left panel) and S�
inner (right panel) plotted on their respective MOTTs Hinner and

H�
inner in the same perspective as in Fig. 18. The portion with Θ− > 0 of Sinner (left panel) smoothly connects to a corresponding portion

on Souter, which quickly vanishes after Δt ≈ 0.04M (not shown here).
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In particular, shortly before Sinner vanishes, its world tube
Hinner becomes purely spacelike with c < 0 on full MOTSs.
At these times, however, Sinner has self-intersections, i.e.,
this presents an explicit example that (i) is not a sufficient
condition.

VII. CONCLUSIONS

In the present second paper of this two-part study, the
new generalized shooting method introduced in the first
paper was used successfully to uncover new MOTSs
forming during the head-on merger of two nonspinning
black holes, including MOTSs of toroidal topology. This
has vastly increased the number and variety of known
MOTSs and also shows that they can have a much richer
range of geometrical properties than had been previously
expected.
However this increase has also highlighted the rarity

and significance of stable MOTSs. Only three out of all
the multitude that we have observed are stable—even
strictly stable except for the points of annihilation or
bifurcation—and trace out spacelike world tubes. These
are exactly the MOTSs that one would naturally associate
with black hole boundaries: the two individual black
holes (S1 and S2) and the final remnant (Souter). These
world tubes H1, H2, and Houter are the dynamical
apparent horizons. One may ask whether additional
strictly stable MOTSs may exist if we do not restrict
ourselves to only axisymmetric surfaces. Fortunately, this
has been ruled out by Theorem 8.1 in Ref. [18]. This
unambiguous natural choice of physically relevant hori-
zons provides an additional numerical indication that
dynamical apparent horizons are well-behaved objects
suitable to describe the highly dynamical and nonpertur-
bative regime during such a merger.

That said, the apparent horizons cannot forever remain
aloof from the common herd. Souter appears out of a
bifurcation with the unstable Sinner while S2 and (likely)
S1 are ultimately annihilated in mergers with other
unstable MOTSs. The additional MOTTs then signifi-
cantly increase our understanding of the interior structure
forming shortly after the common apparent horizon
appears. This structure shares certain features with pre-
vious speculations that the merger might, in fact, be
described by a single smooth MOTT weaving back and
forth in time [14,20–22]. What we find is significantly
more complicated: we find multiple MOTTs weaving in
time, but they do not connect to form a single smooth
world tube. Since we lose the MOTSs only for (well
understood) numerical reasons, it seems plausible that
they continue to weave back and forth, possibly forming
more and more self-intersections. We also find that all
world tubes seem to be connected.8 However, since no
MOTS crosses a puncture, some connections are not
smooth and instead happen via the observed mechanism
where two MOTSs touch and their union coincides with
a third MOTS having a cusp. This third MOTS sub-
sequently develops a new self-intersection.
Together, these observations motivate the following

suggestion. If one assumes that (i) MOTSs cannot cross
punctures, (ii) MOTSs appear and disappear only as pairs,
(iii) all MOTTs connect in some form9, and (iv) the
individual apparent horizons vanish at some point during

FIG. 20. Close-up of the top ends of the MOTTs shown in Fig. 19. The two world tubes smoothly join at this top end and the portions
with Θ− < 0 connect across this annihilation.

8The likely annihilation of S1 with S�
1 is discussed in

Sec. IV B 3. Similarly, based on our results we expect coinci-
dences of S��

2 with S2 ∪ S1a and S��
0 with S1a ∪ S2a to happen

via cusp-formation.
9The connection can either be a bifurcation/annihilation or a

coincidence of two MOTSs and a MOTS with a cusp.
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a merger, then many of the observed behaviors seem to be
inevitable. It seems conceivable that (i) holds and the
results of Andersson et al. [32] point toward (ii). While
our results certainly do not imply (iii) and (iv), they might
still provide an incentive for further investigation in
this direction.
The present results for the axisymmetric head-on colli-

sion of two black holes also have implications for the
generic case where inspiraling black holes coalesce without
any symmetry. We now know which kinds of surfaces a
generalized MOTS finder must be able to resolve and
which surfaces to look for. One might explore whether a
generalization of the shooting method could be used to
approximate near-axisymmetric MOTSs to be used as
initial guesses for such a finder. An important question
will be whether it is still only three MOTTs which are stable
and hence dynamical apparent horizons.
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APPENDIX A: FAMILIES OF SURFACES OF
CONSTANT EXPANSION

A MOTS S is defined as a closed surface with zero
outward expansion, Θþ ¼ 0. However, one may also try to
look for surfaces Sc with Θþ ¼ c, where c ¼ const, in a
neighborhood of any given MOTS. These surfaces can be
used to help locating common MOTSs as early as possible
during the simulation by tracking common surfaces Sc>0,
which are seen to exist prior to the formation of a common
MOTS S ¼ Sc¼0 [64,65]. We will show here another
application of such surfaces, which turned out to be
helpful in resolving the various bifurcations and annihi-
lations. This is related to and motivated by the observation
made in [23] that a family of such surfaces may connect
one MOTS with another. See Fig. 13 in [23] and its
discussion for details.
We start with a MOTS S found in some particular

Cauchy slice Σt at simulation time t ¼ t1. This surface is
then tracked through the simulation forwards and back-
wards in time. If in either direction, the MOTS is lost and
cannot be located anymore, say at t2 > t1, then we choose a
time t≲ t2 and construct a family of surfaces Sc starting

with S0 ¼ S. Note that just as there may be multiple
MOTSs S0 in any given Cauchy slice, the surfaces Sc for
c ≠ 0 will also not be unique in general. However, when
varying c in small steps c → c0 ¼ cþ ε, one can look for
Sc0 in the vicinity of Sc by taking Sc as initial guess. As an
example, Fig. 21 shows such a family in terms of the
expansion and area of the Sc. In this case, we start from S2

at a time t ¼ 2.5M and we are able to reliably locate S�
2 and

S��
2 . Figure 22 shows the shapes of these surfaces of

constant expansion and how they connect S2 with S�
2 (left

panel) and S�
2 with S��

2 (right panel).
A slight complication is encountered whenever Θþ ¼ c

has a local extremum. This happens twice in Fig. 21. In
these cases we cannot vary c but instead we can take a small
step in area by prescribing the area instead of the expansion
for this step (see, e.g., [64]). Alternatively, one can
anticipate the shape change by extrapolating from the
previous steps to construct an initial guess surface which
overcomes the extremum of c.
Once another MOTS is found this way, it can itself be

tracked forwards and backwards in time to resolve the
possible annihilation or bifurcation.

APPENDIX B: ANNIHILATION OF S1 WITH S�
1

The annihilation of the larger individual MOTS S2 with
S�
2 was found with high accuracy and is discussed in the

main text. Here, the goal is to show that it is plausible that
the smaller individual MOTS S1 also annihilates, in this
case with S�

1, and that it does not have a qualitatively
different behavior than S2 in this regard. To this end, we
perform a simulation with different initial conditions than
those in the main text and show that both individual
horizons annihilate. We take this as suggesting that the
lack of annihilation in the main configuration is purely due
to the numerical setup and caused by the MOTS moving

FIG. 21. A family of surfaces of constant expansion shown in
the plane of area and expansion. Each point on the solid line
corresponds to one surface of this family. Whenever the curve
crosses Θþ ¼ 0, the surface is a MOTS. This plot shows a family
constructed from S2 at simulation time t ¼ 2.5M, which connects
S2 with S�

2 and S��
2 .
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too close to the puncture (in the numerical coordinates) as
also analyzed in [59].
By using more equal masses, the shape of the smaller

apparent horizon remains larger in coordinates for a longer
time, and a smaller initial distance parameter reduces the
simulation time when the annihilation takes place. Figure 23
shows the area and principal stability eigenvalue for a
simulation with a mass ratio of q ¼ 1.05 and distance
parameter d ¼ 0.4. We see that both individual apparent
horizons seem to annihilate, first the larger one S2 with S�

2

and shortly after the smaller one S1 with S�
1. Despite the

above choice of parameters for this simulation, the MOTSs
still approach the punctures (in coordinates) before they
vanish. We found the annihilations of both apparent horizons
in simulations with spatial resolutions of 1=Δx ¼ 480, 720,
and 960. However, the precise behavior of these curves in the
final time span after t ∼ 5M varies between the resolutions.
While not as convincing as the remaining results we present,
a merger of S1 and S�

1 seems at least plausible.

FIG. 22. Shapes of the family of constant expansion surfaces of Fig. 21. Shown is the subset of surfaces connecting S2 with S�
2 (left

panel) and the subset connecting S�
2 with S

��
2 (right panel). The color indicates the value of Θþ ¼ cwhile the MOTSs are shown as solid

red lines.

FIG. 23. Evolution of the area (left panel) and principal stability eigenvalue (right panel) for a simulation with initial conditions
q ¼ m2=m1 ¼ 1.05 and d ¼ 0.4. We focus here on the individual apparent horizons of S1;2 and the MOTSs with which they annihilate,
S�
1 and S

�
2, respectively. These plots show a simulation with resolution 1=Δx ¼ 960. Note that the final part for t≳ 5M still suffers from

the MOTSs being too close to the numerically underresolved puncture regions.
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