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In classical numerical relativity, marginally outer trapped surfaces (MOTSs) are the main tool to locate
and characterize black holes. For five decades it has been known that during a binary merger, a new outer
horizon forms around the initial apparent horizons of the individual holes once they are sufficiently close
together. However the ultimate fate of those initial horizons has remained a subject of speculation. Recent
axisymmetric studies have shed new light on this process and this pair of papers essentially completes that
line of research: we resolve the key features of the post-swallowing axisymmetric evolution of the initial
horizons. This first paper introduces a new shooting-method for finding axisymmetric MOTSs along with a
reinterpretation of the stability operator as the analogue of the Jacobi equation for families of MOTSs.
Here, these tools are used to study exact solutions and initial data. In the sequel paper [Phys. Rev. D 104,
084084 (2021)] they are applied to black hole mergers.
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I. INTRODUCTION

Since the early 1970s it has been known that during a
binary black hole collision the event horizons of the
original black holes merge via the “pair of pants” diagram
[1,2]. As the evolution progresses, the initially distinct
event horizons approach and then touch at a caustic point.
Subsequently, that point opens up and a new, merged, event
horizon remains.
The picture for apparent horizons is more complicated,

though the initial stages of this evolution have also been
understood for many decades [1]. When the black holes
become sufficiently close, a new apparent horizon instanta-
neously forms around and outside of the original pair (this
is often referred to as an apparent horizon jump). This
immediately splits into an outer apparent horizon and an
inner horizon-like structure which respectively move out-
wards and inwards. The original horizons remain inside.
The outer apparent horizon and event horizon asymptote
toward each other but the ultimate fate of the original
apparent horizons and inner horizonlike structure has
remained unresolved.
Before continuing, note that the term “apparent horizon”

has accreted several distinct, though closely related, usages

over the last five decades. It is sometimes used as a
synonym for marginally outer trapped surface (MOTS):
a closed surface of vanishing outward null expansion.1

However we will reserve it for MOTSs that can reasonably
be thought of as black hole boundaries: stable MOTSs in
the sense of [3,4] (discussed in more detail in Sec. II B
of this paper) which intuitively can be thought of as MOTSs
that are (or were at some point in the past) outermost in the
foliation in which we are working. Hence in the case of a
binary merger we would continue to refer to both of the
original MOTSs as well as the final, outermost, MOTS as
apparent horizons but the inner horizon-like structure will
now just be a MOTS.
Any three-surface foliated by MOTSs will be referred

to as a marginally outer trapped tube (MOTT) but if,
over some region, those MOTSs are apparent horizons
we will refer to that section as a dynamical apparent

1The original definition of an apparent horizon (see, for
example, [1]) was as the boundary of the trapped region in a
time slice Σt. Then it was proved that such a boundary is
necessarily a MOTS. However it is certainly not true that every
MOTSs is the boundary of some trapped region.
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horizon (DAH).2 The philosophy behind this naming is to

reserve the term “horizon” for objects that can reasonably
be thought of as black hole boundaries. The reason for this
restriction will soon become clear: for every spacetime that
we have studied we have found large numbers of previously
unknownMOTSs /MOTTs.3 As we shall see, while they are
crucial for understanding black hole mergers, these exotic
MOTSs are not in any sense black hole boundaries.
We return to mergers. Following the appearance of the

inner and outer MOTSs, it is now understood that the
apparent horizons of the original black holes interpenetrate
[8–10]. It has also been believed for many years (at least
since [11] though we are confident that the idea goes back
further) that apparent horizon jumps result from the
intersection of the spacetime foliation Σt with a continuous
MOTT that may weave backwards and forwards through
Σt. Exact spherically symmetric examples of this behavior
have been known for many years [12,13] and there have
also been numerical observations in both binary merger
[14] and strong gravitational wave [15] spacetimes. Very
recently it was shown that during an axisymmetric merger,
such a structure does indeed connect the two initially
separate apparent horizons to the final remnant [6,7,16,17].
The reason that the complicated self-intersecting MOTSs

that make up this MOTT were not seen in earlier studies
is that standard apparent horizon finders [18] were not
capable of finding such structures: those finders assumed
that all MOTSs are star shaped with respect to the origin
of the employed coordinate system. However it is now
understood that self-intersecting MOTSs are quite generic
and not only restricted to dynamic spacetimes. In fact, even
in a single fixed Cauchy slice of the Schwarzschild
spacetime, it is now known that there can exist MOTSs
with an arbitrary number of self-intersections [19].
With this explosion in the number and variety of known

examples, it has come to be understood that the possible
properties of MOTSs are much more varied than was
assumed in many early studies which focused on the
expected properties of black hole boundaries. In particular
a horizon is usually assumed to divide a spacetime into
regions containing outer trapped versus untrapped surfaces:
mathematically this translates into an assumption that such
a MOTS is stable.
During a merger, all studies so far have shown that the

outer and original apparent horizons remain stable (though

the outer horizon does have a brief period with positive
inward expansion [6]). Further, the dynamical apparent
horizons that they generate are spacelike and increasing in
area when dynamic (or null with constant area in equil-
brium). These are the expected properties.
However the inner MOTS that splits from the outer

apparent horizon is generically unstable and the associated
MOTT includes timelike, spacelike and null sections. This
signature can even vary over an individual MOTS as can the
sign of the inward null expansion. Similarly the MOTTs
generated by the exotic new Schwarzschild MOTSs are
unstable and also have varying signatures. Further in both
axisymmetric merger and pure Schwarzschild spacetimes
there are now known to be self-intersecting MOTSs.
All of this suggests that if we wish to understand the

internal dynamics of a black hole merger and discover the
ultimate fate of the original apparent horizons, then we
must approach the study without preconceived ideas of how
it should happen. We need tools that can identify, evolve
and characterize unexpected MOTSs. This paper introduces
such tools and in the sequel [20] we apply them to help
resolve the full evolution of the apparent horizons and
associated MOTTs during an axisymmetric merger.
This paper is organized in the following way. In Sec. II

we fix notation and recall the necessary mathematics
that describes MOTSs, including the stability operator.
Section III then introduces a new method for finding
axisymmetric MOTSs. This is a shooting method that
generates curves that can be rotated either into a full
MOTS or MOTOS (marginally outer trapped open surface).
We dub these curves MOTSodesics and demonstrate the
finder by identifying many previously unknown MOTSs in
Brill-Lindquist binary black hole initial data. Inspired by
those examples, Sec. IV examines the behavior of nearby
MOTSodesics by deriving the equations of MOTSodesic
deviation in analogy with the better known geodesics and
geodesic deviation. For these curves the MOTS-stability
operator replaces the geodesic Jacobi operator. We show
that the stability characterization of a MOTS provides
us with information about the behavior of nearby
MOTSodesics. Section V summarizes the work and looks
forward to [20]. For a summary of the key results of this
paper and [20], see [21].

II. BASIC NOTIONS

In this section we review the basic geometric tools
used to characterize and study apparent horizons and other
MOTS.

A. Marginally outer trapped surfaces

Let ðM; gαβ;∇αÞ be a smooth four-dimensional space-
time with signature ð−þþþÞ and ðS; qAB;DAÞ be a
smooth two-dimensional spacelike surface in that space-
time, where the Greek versus capital Latin indices are used

2This name is inspired by, though distinct from, the dynamical
horizons of [5] which were spacelike MOTTs with strictly
negative inward null expansions. More recently dynamical
horizon has also been used as a synonym for MOTTs [6,7].
These definitions do not refer to a spacetime foliation. By contrast
our DAHs explicitly reference the foliation through the definition
of stability. However our definition has been adapted to match the
much wider range of MOTSs now known to exist.

3Though, of course, these will not be present in every possible
slicing of the spacetime.
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to indicate in which manifold a quantity lives. The metric
on S is the pullback of the full four-metric

qAB ¼ eαAe
β
Bgαβ; ð1Þ

where eαA is the pull-back operator from M to S. In
coordinates, if fxαg are coordinates on M and S is
parameterized as xα ¼ xαðyAÞ, then eαA ¼ ∂xα

∂yA.
Let l� be two linearly independent future pointing

null normals to S that are cross-normalized so that
lþ · l− ¼ −1. The extrinsic curvatures associated with
these normals can be broken up into trace and trace-free
components as the expansion Θ� and shear σ�AB by

k�AB ≔ eαAe
β
B∇αl�

β ¼ 1

2
Θ�qAB þ σ�AB: ð2Þ

Directly Θ� ¼ qαβ∇αl�
β where

qαβ ¼ eαAe
β
Bq

AB ¼ gαβ þ lαþlβ
− þ lα

−l
β
þ: ð3Þ

Within these restrictions, there is still the freedom to
rescale l� by a positive function f > 0 via

lþ → l̃þ ¼ flþ and l− → l̃− ¼ 1

f
l−: ð4Þ

Such a scaling leaves the signs of the expansions, and in
particular the conditions Θ� ¼ 0, invariant. If S is closed
and orientable, we shall call lþ the outgoing and l− the
ingoing null normal and Θþ=− the outgoing/ingoing
expansions.4

A trapped surface is a closed surface S with strictly
negative outgoing and ingoing expansion, Θ� < 0. If
Θþ ¼ 0 with no restriction on Θ−, then S is called a
marginally outer trapped surface (MOTS). If Θ− ¼ 0 with
no restriction on Θþ, then S is called a marginally inner
trapped surface (MITS). In this work we will be primarily
interested in MOTS, however for completeness and appli-
cation in future works we also set up the formalism
for MITS.
As in [19], we shall call an open surface S with one of

the expansions vanishing a marginally outer trapped open
surface (MOTOS) and, by convention (since an open
surface does not really have either an inside or an outside),
call the vanishing expansion Θþ.

A three-surface foliated by MOTSs is a marginally outer
trapped tube (MOTT) [5,22]. The analogous marginally
inner trapped tube (MITT) is similarly defined for MITSs.
Other references have referred to MOTTs (or very similar)
structures as trapping horizons [23], future holographic
screens [24] or as a generalized dynamical horizon [6,7].

B. The MOTS stability operator

We now consider howMOTSs may be deformed within a
Cauchy slice Σ. In such a case it is natural to write the null
normals in terms of the unit timelike normal ua to Σ plus the
spacelike unit normal na to S in Σ. From these we can
define gauge-fixed null normals

l̄þ ¼ 1

2
ðuþ nÞ and l̄− ¼ u − n: ð5Þ

Now for a given initial MOTS S, consider a smooth
deformation Sv such that S0 ¼ S. Then the unit normal
vector na to S naturally extends to a field na over the region
covered by Sv and we can write the tangent vector to the
curves that generate this family of deformations as

∂
∂v ¼ Ψn ð6Þ

for some function Ψ (a deformation “lapse” function). In
fact the deformation for v ¼ 0 is entirely determined by
specifying Ψ over S.
Extending the gauge-fixing (5) to S, the MOTS stability

operator on S with respect to the slice Σt is defined (up to a
factor of two) as the derivative of the gauge-fixed null
expansion Θ̄þ with respect to v:

L̄ΣΨ ≔ 2δΨnΘ̄þ ≔ 2
∂
∂v

����
v¼0

Θ̄þ: ð7Þ

Continuing to use bars to indicate quantities evaluated
with the gauge-fixed null normals (5), this can be shown to
take the form(e.g., [3,4,25])5:

L̄ΣΨ ¼ −△̄Ψþ
�
1

2
R − 2jσ̄þj2 − 2Ḡþþ − Ḡþ−

�
Ψ: ð8Þ

with

△̄Ψ ¼ ðDA − ω̄AÞðDA − ω̄AÞΨ ð9Þ

and

ω̄A ≔ eaAKabRb ¼ −eαAl̄−
β∇αl̄

β
þ ð10Þ

4For simple MOTSs, like r ¼ 2m in Schwarzschild, the
meaning of “outgoing” and “ingoing” is clear. However for
the much more complicated twisting and often self-intersecting
surfaces that we shall consider in this paper, these notions are not
always so obvious. For surfaces that intersect the z-axis, “out-
going” and “ingoing” will be used to refer to the normal
directions that are respectively outgoing or ingoing along that
axis and then consistently propagated everywhere else along the
surface.

5Note that here some numerical factors of 2 are different from
the original derivations due to different scalings of the null
normals. This is irrelevant to our conclusions.
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is the connection on its normal bundle, with Kab the
extrinsic curvature of Σ in M. The other quantities are
R the Ricci scalar on S, jσþj2 ¼ σ̄þABσ̄

ABþ the square of the
shear, and Gþþ ¼ Gαβl̄αþl̄

β
þ and Gþ− ¼ Gαβl̄αþl̄β

− deter-
mined by the null normals and Einstein tensor.
LΣ is a second order, linear elliptic operator with a

discrete spectrum of eigenvalues, which is self-adjoint if
ω̄A ¼ 0. However even if ω̄A ≠ 0, its principal eigenvalue
λo (the eigenvalue with the smallest real part) is always real.
Following [3], a MOTS S is said to be strictly stable if
λo > 0, stable if λo ≥ 0 and unstable if λo < 0.
As noted in the introduction we use apparent horizon as

a synonym for a stable MOTS. This makes our definition
foliation dependent: n is the normal to S in Σ. However this
is a feature of the definition rather than a bug. A strictly
stable MOTS is one for which

δΨnΘ̄þ > 0 ð11Þ

for all Ψ > 0. Hence, in the slice all possible deformations
outwards result in outer untrapped surfaces while all
possible inward deformation result in outer trapped surfa-
ces. Hence a strictly stable MOTS is a boundary between
trapped and untrapped regions in Σt.
Unstable MOTSs are not boundaries of this type: the

existence of both positive and negative eigenvalues means
that the various possible deformations can result in different
types of surfaces. Stable but not strictly stable MOTSs
(λo ¼ 0) are a transition between these cases. This inter-
pretation of the deformation operator as indicating whether
or not there are fully trapped surfaces nearby, precedes the
work on the stability operator [23,25].6

If LΣ has no vanishing eigenvalues then it is invertible.
Then it was shown in [3,4] that such a MOTS may be
locally evolved into a MOTT. In particular this is true for a
strictly stable MOTS. This time evolution is important in
the sequel paper and we will return to it there. However for
now we are mainly interested in what LΣ can tell us about
the near-S geometry of Σ.
To that end we consider the general eigenvalue problem

L̄ΣΨ ¼ λΨ: ð12Þ

As we shall see, important geometric information is
conveyed by the number of negative eigenvalues as well
as the number and location of the zeros of the eigenfunc-
tions. Hence one might be concerned about effects of our
gauge-fixing. Happily, it has been shown[27] that under the
rescaling (4)

L̄ΣΨ ¼ λΨ ⇒ LΣðfΨÞ ¼ λðfΨÞ ð13Þ

thanks to the connection terms in (9). That is, the
eigenvalue spectrum is invariant under rescalings of the
null normals. Further if Ψ is an eigenfunction of L̄Σ then
fΨ is an eigenfunction of the rescaled LΣ and hence, with
f ≠ 0, it will have the same zeros. These are the properties
in which we are interested and so it is sufficient to work in
the convenient gauge defined by (5).

C. LΣ for vacuum, non-spinning, axisymmetry

The connection ωA is closely related to the angular
momentum associated with a black hole (e.g., [22,23,28])
and if it vanishes there can be no angular momentum. We
will call such a case non-spinning and here we are mainly
interested in non-spinning, axisymmetric MOTS in vacuum
spacetimes. Then

LΣΨ ¼
�
−ΔS þ 1

2
R − 2jσþj2

�
Ψ: ð14Þ

where we have dropped the overbars since we have seen
that the properties in which we are interested are gauge
invariant. In the absence of the first order derivatives
coming from a non-zero ωA, this is a self-adjoint operator
and so the eigenvalue spectra that we encounter in this work
will always be purely real.
An additional simplification is possible in manifest

axisymmetry. Consider coordinates ðθ;ϕÞ on S, where ϕ
is the coordinate along the orbits of the Killing field φa

which preserves the induced 2-metric qab on S and which
vanishes precisely at the two poles. We can choose φA such
that ϕ ∈ ½0; 2πÞ. For the following construction, θ can be
any coordinate on S orthogonal to ϕ. For definiteness,
consider here cos θ ¼ ζ, where the invariant angle ζ is
constructed as in [29]. To simplify the eigenvalue problem
LΣΨ ¼ λΨ, we make the ansatz

Ψðθ;ϕÞ ¼
X∞

m¼−∞
ΨmðθÞeimϕ: ð15Þ

For any fixed value of m ∈ Z, we can then solve the
remaining one-dimensional problem

Lm
ΣΨm ≔ ðLΣ þm2qϕϕÞΨm ¼ λΨm ð16Þ

and label the resulting eigenvalues with λl;m (c.f. [30]). The
index l is assigned in ascending order to the eigenvalues of
Eq. (16), starting, by convention, with l ¼ jmj. Henceforth,
the principal eigenvalue is denoted λ0;0 and we shall
write λl ≔ λl;0.

III. MOTSODESICS

As was demonstrated in [6,7,16,17], during black hole
mergers there are exotic MOTSs that cannot be found with
traditional apparent horizon finders. However the new

6There is work to define stability in a foliation-invariant way
(e.g., [5,23,26]) however that comes with its own complications.
Here we will be content with foliation dependence.
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methods introduced in those papers are still somewhat
restricted as one needs an idea of the kind of geometries
that might be possible before being able to find such
MOTSs. Subsequently, unexpected and even more exotic
MOTS geometries were found in pure Schwarzschild [19].
Here we introduce a general shooting method that can be
used to identify axisymmetric MOTSs with arbitrarily
complicated geometries in arbitrary axisymmetric space-
times (both exact and numerical).
This method is related to but better in every way than that

used in [19]: it is faster, more intuitive and much easier to
use. In that paper the MOTSs were parameterized in terms
of θ or r and, for each, a single second order ODE was used
to solve for the surfaces. However it was necessary to
switch back and forth between the equations as a surface
became tangent to one or the other of these coordinates. For
complicated geometries that could mean having to piece
together tens of integrations. The new method instead uses
an arclength parameterization (along the curve that rotates
to become the full MOTS) and rewrites the equations as a
pair of coupled second order ODEs. Then only a single
coordinate parameter is needed to cover any of the studied
geometries. Further one can leverage physical intuition
about particles moving in potentials to understand the
resulting curves.
In fact, this method is nearly the same as some of

the original procedures used to find apparent horizons
[31,32]. The main difference is that our method is
generalized to find MOTSs in any axisymmetric space-
times (including dynamic numerical solutions), applies
an arc-length parameterization and is implemented on a
modern computer with modern software! This last point
in particular makes it much easier to explore the param-
eter space of MOTSs. What was difficult in the 1970s is
now nearly trivial. For exact solutions, the equations are
easily solvable with standard mathematical packages
while for general numerical data the algorithm has been
implemented in [33].
The basic idea of the method is to rewrite the Θþ ¼ 0

condition for an axisymmetric surface in three-dimensional
space into a pair of coupled ODEs for the generating curve.
For reasons that will become obvious we will refer to such a
curve as a MOTSodesic. We begin by considering how a
half-plane rotates into three-dimensions.

A. Rotating the half-plane

Consider the spacelike half-plane fΣ̄; h̄ab; D̄ag with
lower-case Latin indices running over the coordinates
ðρ; zÞ which in turn satisfy fρ > 0;−∞ < z < ∞g. We
rotate Σ̄ into an axisymmetric three-surface fΣ; hij; Dig so
that each point becomes a circle. To do this we specify the
circumferential radius Rðρ; zÞ of each point: ðρ; zÞ maps
into a circle with circumference 2πRðρ; zÞ. For the analysis
of this section, it will be helpful to keep in mind the details
shown in Fig. 1.

Cylindrical-type coordinates: In cylindrical-type coor-
dinates ðρ; z;ϕÞ the three-metric on Σ is then

hðρ;ϕ;zÞij ¼

2
664
h̄ρρ 0 h̄ρz

0 R2 0

h̄ρz 0 h̄zz

3
775 ð17Þ

with rotational Killing vector field φ ¼ ∂
∂ϕ and

lim
ρ→0

Rðρ; zÞ ¼ 0: ð18Þ

As h̄ab ¼ hab we now drop the bars when referring to
components of the metrics.
We assume that the surfaces of constant z have been

constructed to be conical singularity-free and perpendicular
to the z-axis. That is:

lim
ρ→0

RR ρ
0

ffiffiffiffiffiffiffi
hρρ

p
dρ

¼ 1 ⇒ lim
ρ→0

R;ρ ¼ lim
ρ→0

ffiffiffiffiffiffiffi
hρρ

q
ð19Þ

and

lim
ρ→0

� ∂
∂ρ ·

∂
∂z

�
¼ 0 ⇒ lim

ρ→0
hρzðρ; zÞ ¼ 0: ð20Þ

If we consider Σ to be embedded in a similarly
symmetric full spacetime fM; gαβ;∇αg and that it be
non-spinning (ωA ¼ 0), the extrinsic curvature of Σ in M
takes the form

FIG. 1. A curve γ that rotates into a surface S. In the text we see
how Θ� ¼ 0 ⇔ kN � ku ¼ 0 gives rise to second order equations
of motion for γ in the ðρ; zÞ plane. The two-dimensional tangent
vector TA and normal vector NA to γ push-forward to become
three-dimensional vectors Ti and Ni.
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Kðρ;ϕ;zÞ
ij ¼

2
664
Kρρ 0 Kρz

0 R2kϕϕ 0

Kρz 0 Kzz

3
775: ð21Þ

The R2 dependence of the Kϕϕ term is implied by the
requirement that Ki

i not diverge. The vanishing ðρ;ϕÞ and
ðz;ϕÞ terms enforce the non-spinning condition.
Cartesian-type coordinates: Alternatively in Cartesian-

type coordinates x ¼ ρ cosϕ, y ¼ ρ sinϕ and z ¼ z, the
three-metric takes the form

hðx;y;zÞij ¼

2
6664

x2ρ2hρρþy2R2

ρ4
xyðρ2hρρ−R2Þ

ρ4
x
ρ hρz

xyðρ2hρρ−R2Þ
ρ4

y2ρ2hρρþx2R2

ρ4
y
ρ hρz

x
ρ hρz

y
ρ hρz hzz

3
7775 ð22Þ

where ρ2 ¼ x2 þ y2. In this case Σ̄ is the half-plane
y ¼ 0 and ρ > 0 and the rotational Killing vector field
∂
∂ϕ ¼ −y ∂

∂x þ x ∂
∂y.

In these coordinates the extrinsic curvature (21) becomes

Kðx;y;zÞ
ij ¼

2
6664

x2ρ2Kρρþy2R2kϕϕ
ρ4

xyðρ2Kρρ−R2kϕϕÞ
ρ4

x
ρKρz

xyðρ2Kρρ−R2kϕϕÞ
ρ4

y2ρ2Kρρþx2R2kϕϕ
ρ4

y
ρKρz

x
ρKρz

y
ρKρz Kzz

3
7775: ð23Þ

B. Curve to two-surface

Now consider a curve

γ∶ðρ; zÞ ¼ ðPðsÞ; ZðsÞÞ ð24Þ

in Σ̄ parameterized by an arclength parameter s. Then
denoting derivatives with respect to s by dots, this has unit-
length tangent vector

T ¼ _P
∂
∂ρþ _Z

∂
∂z ; ð25Þ

so that

habTaTb ¼ 1: ð26Þ

In the two-surface Σ̄, the normal to γ has two possible
orientations: to the left or right of T. We define N to be the
left-hand normal so that

Ñ¼
ffiffiffī
h

p
ð− _Zdρþ _PdzÞ⇔

N⃗¼ 1ffiffiffī
h

p
�
−ðhρz _Pþhzz _ZÞ

∂
∂ρþðhρρ _Pþhρz _ZÞ

∂
∂z

�
ð27Þ

where h̄ ¼ detðh̄abÞ and the acceleration of the curve is
given by

TaD̄aTb ¼ κNb; ð28Þ

for the signed curvature

κ ¼ NbTaD̄aTb: ð29Þ

Next under the rotation that turns Σ̄ into Σ, γ becomes a
two-surface fS; qAB;DAg with the indices running over
coordinates ðs;ϕÞ. With s as arclength, the induced metric
on S is

qAB ¼
�
1 0

0 R2

�
: ð30Þ

In Σ we can write the push-forward of the inverse two-
metric q̃AB as

qij ¼ TiTj þ ϕ̂iϕ̂j ð31Þ

where

ϕ̂i ¼ 1

R
∂
∂ϕ : ð32Þ

As in Section II B the normal to S is n and so the extrinsic
curvature of S in Σ is

kn ¼ qijDinj: ð33Þ

However with hρϕ ¼ hzϕ ¼ 0, ni ¼ Ni ¼ eiaNa and so we
can write7

kn ¼ kN ¼ ðTiTj þ ϕ̂iϕ̂jÞDiNj

¼ −NbðTaD̄aTbÞ þ ϕ̂iϕ̂jDiNj: ð34Þ

Equivalently, using the metric (17) to calculate the
second term

kN ¼ −κ þ NaD̄aðlnRÞ: ð35Þ

Meanwhile from (21) the extrinsic curvature of Σ can be
expanded as

Kij ¼ kuij þ KNNNiNj ð36Þ

where kuij ¼ qki q
l
jKkl and KNN ¼ KijNiNj and so the trace

can be expanded as

7In an upcoming paper we will address the more complicated
case of MOTSodesics for rotating black holes where these
conditions don’t hold and so ni ≠ Ni.
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K ¼ hijKij ¼ ku þ KNN ð37Þ

for ku ¼ qijkuij.
The null normals l� have expansions

2Θþ ¼ ku þ ð−NbðTaD̄aTbÞ þ NaD̄aðlnRÞÞ
Θ− ¼ ku − ð−NbðTaD̄aTbÞ þ NaD̄aðlnRÞÞ: ð38Þ

Hence γ will rotate to a surface of vanishing outgoing or
ingoing null expansion if respectively

κ ¼ κþ ¼ NaD̄aðlnRÞ þ ku ðoutgoing;Θþ ¼ 0Þ or
ð39Þ

κ ¼ κ− ¼ NaD̄aðlnRÞ − ku ðingoing;Θ− ¼ 0Þ; ð40Þ

where outward and inward are defined following the
conventions of footnote 4. Comparing with our labelling
forN, lþ=− respectively have left/right handed orientations.
For either of these possibilities we have a single differ-

ential equation that is second order in PðsÞ and ZðsÞ.
Pairing the arc-length constraint (26) with either (39)
or (40) we obtain a pair of coupled differential equations
that in principle can be solved for PðsÞ and ZðsÞ.
It is much easier to solve these equations if we rewrite

them as a pair of second order equations: most importantly
this will avoid awkward sign-changing square root terms
that led to errors in [34] and the complicated (though
correct) repeated equation switching of [19]. This rewriting
can be done directly by using the derivative of (26) to
alternately remove Z̈ and then P̈ terms from κ ¼ κþ (or
κ ¼ κ−). However it is easier to get the equations by
substituting κ ¼ κþ (or κ ¼ κ−) into (28) to get a pair of
second order equations for γ in Σ̄

TaD̄aTb ¼ κ�Nb: ð41Þ

Henceforth we refer to either of these pairs as the
MOTSodesic equations. On expanding out the covariant
derivatives, they become

�
P̈

Z̈

�a
¼ _Ta ¼ −Γ̄a

bcT
bTc þ κ�Na; ð42Þ

where Γ̄a
bc are the Christoffel symbols in Σ̄ (or equivalently

the ðρ; zÞ Christoffel symbols in Σ) and the dot indicates a
regular derivative with respect to s. The equations will be
fairly complicated for an arbitrary metric and extrinsic
curvature but they may still be solved with standard
numerical solvers to produce a MOTOS given initial
conditions PðsoÞ; ZðsoÞ; _PðsoÞ and _ZðsoÞ for some so
(typically 0).
An important special case of these equations is time-

symmetric data: Kij ¼ 0. Then ku ¼ 0 ⇒ 2Θþ ¼ −Θ−

and so they both vanish simultaneously if and only if
kN ¼ 0. That is, S is a minimal surface in Σ and is both
marginally outer and marginally inner trapped.

C. Departing from the z-axis

There is, however, a complication. We mainly use (42) to
find axisymmetric MOTSs. Most (though not all: see the
toroidal example in [20]) closed axisymmetric surfaces
intersect the z-axis. Unfortunately this is also where the
coordinate system fails and R → 0. This complicates the
calculation of the first term in κ� from (39) and (40).
We can sidestep this problem by solving (42) in a series

expansion near the z-axis and then using this to start
evolutions a short distance from the axis. That is we assume

P ¼ P1sþ
1

2!
P2s2 þ… ð43Þ

Z ¼ Z0 þ Z1sþ
1

2!
Z2s2 þ… ð44Þ

where the requirement that we start from the z-axis at s ¼ 0
means that the P0 term vanishes.
Z0 is chosen as initial data. Next, demanding smoothness

of S (i.e., no conical singularities) at the z-axis requires

lim
s→0

_R ¼ 1 ⇒ lim
s→0

R;ρ
_Pþ R;z

_Z ¼ 1: ð45Þ

Since R;z ¼ 0 along the z-axis (where R ¼ 0) we find

P1 ¼ lim
s→0

1

R;ρ
¼z 1ffiffiffiffiffiffiffi

hρρ
p

where the overset z indicates that what follows is evaluated
for ρ ¼ 0 on the z-axis, and the last equality follows
from (19). Then from the normalization condition (26) we
also have that

Z1 ¼ 0: ð46Þ

That is, MOTSodesics can only intersect the z-axis at a
right angle.
For many cases this first order expansion will be

sufficient, since if we start at small so we would then
expect the error to be of Oðs2oÞ. However for those cases
which require a more accurate expansion we also present
the second order term of the expansion (and so have an
error of order Oðs3oÞ). These follow directly from (42). The
ρ term is straightforward:

P2¼z −
Γ̄ρ
ρρ

hρρ
: ð47Þ

The z-term is more complicated thanks to the expansion of
κ� for which the first term is of the form 0

0
in the limit as

s → 0. This limit is found in Appendix from which
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κ�o ¼ lim
s→0

κ�¼z 1
2

�
RTN

RT
�
�
Kρρ

hρρ
þ kϕϕ

��
ð48Þ

where RT ¼ TaD̄aR and RTN ¼ TaNbD̄aD̄bR. Then

Z2¼z −
Γ̄z
ρρ

hρρ
þ κ�offiffiffiffiffiffi

hzz
p : ð49Þ

For the cases that we have studied, the second order terms
were sufficient to obtain the necessary accuracy.

D. New MOTSs in Brill-Lindquist initial data

We now apply this technique to find new MOTSs in
Brill-Lindquist initial black hole data [35]. This is defined
by a conformally flat metric

hijdxidxj ¼ ψðρ; zÞ4ðdρ2 þ dz2 þ ρ2dϕ2Þ ð50Þ

on Σ for which the extrinsic curvature Kij ¼ 0 vanishes.
Then the diffeomorphism constraint is trivial and the
Hamiltonian constraint reduces to the Euclidean axisym-
metric Laplace equation:

ψ ;ρρ þ ψ ;zz þ
ψ ;ρ

ρ
¼ 0: ð51Þ

As this is time-symmetric data, the MOTSs will be minimal
surfaces of (50) with Θþ ¼ Θ− ¼ 0.

1. MOTSodesic equations

The arclength parametrization condition for this metric
can be written as

ð _P2 þ _Z2Þ − 1

ψ4
¼ 0; ð52Þ

which for intuitive purposes can be usefully interpreted
as kinetic energyþ potential energy ¼ 0.
To derive the full equations of motion we note that for

this initial data R ¼ ψ2ρ and

N ¼ − _Z
∂
∂ρþ _P

∂
∂z : ð53Þ

Then with ku ¼ 0, it is a straightforward calculation to
obtain:

κ� ¼ D̄N lnðRÞ ¼ 2D̄NðlnψÞ −
_Z
P
: ð54Þ

For this time symmetric data κþ ¼ κ− (which also follows
from 2Θþ ¼ −Θ−). Next

−Γ̄a
bcT

bTc ¼ −2D̄TðlnψÞTa þ 2D̄NðlnψÞNa

¼
�
−2 _PD̄TðlnψÞ − 2 _ZD̄NðlnψÞ
−2 _ZD̄TðlnψÞ þ 2 _PD̄NðlnψÞ

�a
ð55Þ

where we have abbreviated TaD̄a ¼ D̄T and NaD̄a ¼ D̄N .
Then from (42) and a little bit of algebra, the final equations
of motion for γ are:

�
P̈

Z̈

�a
¼ 4D̄aðlnψÞ −

�
_Z
P

�
Na − ð6D̄TðlnψÞÞTa: ð56Þ

Note that the first term on the left-hand side is a potential
term similar to those found in Newtonian gravity: it
generates a coordinate acceleration “up” the potential.
Keeping in mind that N is to the left-hand of T, the second
term generates a repulsion from the z-axis. As P → 0 this
goes to infinity (unless _Z ¼ 0). The third term causes the
curve to “slow down” as it moves up the potential or “speed
up” as it goes down.
Explicitly these take the form

P̈ ¼
_Z2

P
þ 4ψ ;ρ

ψ5
−
6 _Pð _Pψ ;ρ þ _Zψ ;zÞ

ψ
ð57Þ

Z̈ ¼ −
_Z _P
P

þ 4ψ ;z

ψ5
−
6 _Zð _Pψ ;ρ þ _Zψ ;zÞ

ψ
: ð58Þ

This is the form that we use when numerically integrating
MOTOSs. As a consistency check notice that these can
be combined to find P̈ _PþZ̈ _Z ¼ −2 _ψ=ψ5 as would be
expected from the arc length parameterization condition.

2. Classes of new marginal surfaces

We now consider the numerical solution to these
equations. Our procedure is as follows. We consider
surfaces that smoothly intersect the z-axis. To ensure this,
we use the results of III C (or alternatively perform a direct
series expansion of (57) near the axis), including terms up
to second-order and use this series expansion as initial
conditions, evaluating this series a distance of 10−4

away from the axis. The integration was performed in
Mathematica utilizing the default method available in
NDSolve with a working precision of 25.
Due to the axis-repulsion term in (56) which diverges for

_Z ≠ 0, the specification of any particular MOTS requires
infinite precision in the initial conditions. As shown in
Fig. 2, any deviation from the precise value leads to a strong
repulsion from both the z-axis and the MOTS that does
reach that axis. We use the shooting method, adjusting the
initial conditions and narrowing the range in which we
know the true MOTS must exist, until the surface can be
considered to approximately close. We consider that to be
an approach to the axis to within a distance of about 10−6 or
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better. These surfaces are then confirmed to be MOTS
using the methods of [33]. Hence they have been identified
by two completely independent methods.
The binary black hole Brill-Lindquist potential is

ψ ¼ 1þ m1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p þ m2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − dÞ2

p : ð59Þ

This corresponds to a pair of instantaneously stationary
black holes “centered” at (0,0) and ð0; dÞ. Quotation marks
are employed as those points actually correspond to
asymptotic infinities on the other side of Einstein-Rosen
bridges from the usual ρ2 þ z2 → ∞ region. Relative to
those other infinities the black holes can be measured to
have ADM masses8 Mi

ADM ¼ mi þm1m2=2d.
For the purposes of illustration, we take m1 ¼ 0.2,

m2 ¼ 0.8 and d ¼ 0.65. With these values, we can readily
reproduce the well-known structure of horizons in this
geometry, as shown in Fig. 3. In the usual way the outer and
individual MOTS are strictly stable in the sense of II B and
so we call them apparent horizons. However the inner
(green) MOTS is unstable with one negative eigenvalue
[37] and so we do not think of it as a horizon.
It is natural to wonder whether additional axisymmetric

MOTSs exist, and a careful search reveals many such
surfaces, several of which are shown in Fig. 4. The additional

MOTSs appear to defeat any simple attempt to classify
them, but general features are illuminating. New MOTSs
can be found between the outer apparent horizon and the
apparent horizons associated with the two punctures. No
MOTS that we have located extends outside the outer
apparent horizon or inside the two inner apparent hori-
zons. The new MOTSs can enclose either, both, or neither
of the two punctures.
We find that these surfaces tend to “hug” closely the

common apparent horizon, and/or the individual MOTSs.
It appears that MOTSs exist that wrap these surfaces an
arbitrary number of times (we have generated examples
involving up to ten folds). An equivalent behavior was seen
around r ¼ 2m for pure Schwarzschild in regular time-
symmetric Schwarzschild coordinates in [19] (Sec. VI B).
We will return to this behavior in Sec. IVG and here just
note that it is related to the time-symmetry of these slices.
The MOTSs are minimal surfaces which do not have a
distinguished direction of vanishing null normal expansion.
That is Θþ ¼ Θ− ¼ 0. Hence a MOTS that is close to one
of the horizons can turn around at the z-axis, still be close,
and continue to hug. Thus if it starts sufficiently close it will
gradually work its way outwards with an extra kick each
time it approaches the z-axis.
Intuitively MOTSs can “orbit” (though gradually recede

from) the stable MOTSs. However it is also possible to
jump between orbits. Then the unstable inner MOTS from
Fig. 3 can be thought of as the first of these joint orbits.
Clearly many of these MOTSs have multiple segments

that are nearly “parallel”. Hence in the next section
we study the relative evolution of nearby MOTSodesics.

FIG. 2. The process of using the shooting method to find the
inner horizon from Fig. 3. The MOTSodesics are initially parallel
when launched perpendicularly from the positive z-axis. From
blue to red the initial conditions were zo ¼ 0.7297755,
0.7299755, 0.7301755, 0.7303755, 0.7304755 (central green),
0.7305755, 0.7307755, 0.7309755.

FIG. 3. Standard MOTS in the BL initial data: the three
apparent horizons (the two original plus the common) as well
as the unstable inner MOTS (green).

8In the ρ2 þ z2 → ∞ region, the ADM mass is MADM ¼
m1 þm2, i.e., it is NOT the sum of the two puncture ADM
masses. For a nice discussion of the full geometry of this initial
data see, for example, [35,36].
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Once we have developed those methods we will return to
these examples.

IV. MOTSODESIC DEVIATION

To better understand some of these behaviors let us
consider the evolution of MOTSodesics around a central
one. This is the analogue of calculating the geodesic
deviation equation and as for that case can be thought of
as a linearization of the MOTSodesic equations around a

central curve γo. Our main result is to demonstrate that this
relative evolution is governed by the stability operator.

A. Via quantities defined in Σ̄
Consider a congruence of curves γχðλÞwhere χ labels the

curves and λ parametrizes them. These live in the half-plane
fΣ̄; h̄ab; D̄ag, as shown in Fig. 5. We assume that each
rotates into a MOT(O)S: that is, each curve satisfies (28) for
unit tangent vector T.

FIG. 4. Several examples of new MOTSs in Brill-Lindquist initial data. In order of left-to-right top-to-bottom, the curves can be
reproduced using the method described in the text starting from initial conditions: z0 ¼ :775299193, z0 ¼ −:416830101,
z0 ¼ :31478148, z0 ¼ :7756759, z0 ¼ :7756696814, and z0 ¼ :730402549931. As infinite precision is required to exactly specify
the initial condition for a MOTS, it should be understood here that there is an uncertainty of �1 in the last digit of the initial conditions
presented. Furthermore, in each case we have presented initial conditions to the minimum precision that is needed to declare the curves
to close.
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As long as the curves don’t intersect, the ðλ; χÞ are a good
coordinate system in a neighborhood of γ ¼ γ0ðλÞ. The
coordinate tangent vectors are

Λ ¼ ∂
∂λ and X ¼ ∂

∂χ : ð60Þ

In the standard calculation for geodesic deviation (e.g.,
[38]), X can be understood as a deviation vector which
points to nearby geodesics. The rest of this section can be
understood as a modified version of that calculation.
For some functions μðλ; χÞ, αðλ; χÞ and βðλ; χÞ we can

decompose these coordinate vectors as

Λ ¼ μT and X ¼ αT þ βN; ð61Þ

where, as usual, N is the (left-hand) unit normal to the γχ . It
is always possible to adjust the λ between the curves,
(λ; χÞ → ðλ̃ðχ; λÞ; χÞ, so that: 1) λ ¼ s on γ: that is μðλ; 0Þ ¼
1 and 2) X⊥T on γ: that is αðλ; 0Þ ¼ 0. However for χ ≠ 0,
λ will generally be a nonaffine parameter and α ≠ 0.
By (41) and the fact that T and N are orthonormal

we have

TaD̄aTb ¼ κNb and TaD̄aNb ¼ −κTb ð62Þ

while for some function νðλ; χÞ we similarly have

NaD̄aTb ¼ −νNb and NaD̄aNb ¼ νTb: ð63Þ

Geometrically κ and ν define the connection for the ðT;NÞ
dyad. For notational conciseness we have dropped the

� superscript from the κ� and continue to do this for the
rest of the section.
Since Λ and X are coordinate vector fields we have

XaD̄aΛb ¼ ΛaD̄aXb; ð64Þ

and so on expanding we find

μ0 ¼ _α − κμβ ð65Þ

_β ¼ −νμβ; ð66Þ

where the dot generalizes here to indicate a partial
derivative with respect to λ and the prime is a partial
derivative with respect to χ.
Next, still following the example of the geodesic

deviation calculation, we use these results to find equations
of motion for the deviation vector X along γ:

Aa ≡ ΛaD̄aðΛbD̄bXcÞ
¼ ð∂λ½ _α − κμβ� − κμ½ _β þ κμα�ÞTa

þ ð∂λ½ _β þ κμα� þ κμ½ _α − κμβ�ÞNa: ð67Þ

Alternatively we can apply (64) to write

Ac ¼ ΛaD̄aðXbD̄bΛcÞ; ð68Þ

which can be expanded and manipulated to find

Aa ¼ ð _μ0 − μ2κðακ − βνÞÞTa ð69Þ

þ ððμ2κÞ0 þ _μðακ − βνÞ − μ2βKÞNa; ð70Þ

where K ¼ 1
2
h̄ach̄bdR̄abcd is the Gauss curvature of Σ̄.

Applying (65) and (66) it is straightforward to see that
the T-terms are the same. However on matching the
N-terms we obtain a differential equation for β:

β̈ þ ðKμ2 − κ2μÞβ ¼ μ2κ0 þ _κμα − ν _μβ: ð71Þ

Restricting to γ where μ ¼ 1 and α ¼ 0 this takes the form

β̈ þ ðKþ κ2 − NaD̄aκÞβγ¼0: ð72Þ

From (61), β should be understood (in the linear regime)
as the perpendicular distance from γ0 to the nearby
χ-geodesic.
This is a general expression that would hold for any

specification of κ. However we have expressions (39) and
(40) for it in terms of R and ku. In terms of quantities
defined on Σ̄ this can be written as:

κ ¼ NaD̄aðlnRÞ � ðK − KNNÞ: ð73Þ

FIG. 5. A congruence of MOTSodesics γχðλÞ in Σ̄. χ labels
the curves and λ is a parameter along the curves. The
corresponding coordinate vector fields are X ¼ ∂

∂χ and

Λ ¼ ∂
∂λ. The parameters are chosen so that along γ0ðλÞ, λ is

the arclength parameter s (so Λ ¼ T) and X⊥T. However
when χ ≠ 0 these will not usually hold.
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B. Via quantities defined in S

While these expressions may be useful when studying
particular MOTSodesics, to study their general properties it
is more useful to rewrite the β-term of (72) in terms of
quantities defined on S. To do this we make use of the
Einstein constraint equations:

RΣ þ KijKij − K2 ¼ 0 ð74Þ

DjK
j
i −DiK ¼ 0: ð75Þ

First we decompose RΣ, the Ricci scalar on Σ, into
quantities defined on Σ̄ plus the unit normal ϕ̂a. Using the
Gauss-Codazzi equations along with the definition of the
Riemann tensor in terms of commuting derivatives, one
can show (this is a standard expression for hypersurfaces
derived, for example, as Eq. (3.43) in [39]):

RΣ ¼ 2Kþ ðk2
ϕ̂
− kab

ϕ̂
kϕ̂abÞ þ 2Diðϕ̂jDjϕ̂

i − ϕ̂iDjϕ̂
jÞ

ð76Þ

where kϕ̂ab ¼ eiae
j
bDiϕ̂j. But

∂
∂ϕ is a Killing vector field, so

kϕ̂ab ¼ 0. Next, using (32) one can show that

ϕ̂jDjϕ̂i ¼ −h̄jiDjðlnRÞ; ð77Þ

where h̄ ¼ hij − ϕ̂iϕ̂j ¼ eiae
j
bh̄

ab and so

RΣ ¼ 2K −
2

R
ðRTT þ RNNÞ ð78Þ

with RNN ¼ NaNbD̄aD̄bR and RTT ¼ TaTbD̄aD̄bR fol-
lowing the notation of early sections. Applying (74) this
can be rewritten as

K ¼ −
1

2
Rþ RNN

R
þ 1

2
ðk2u − kabu kuabÞ þ kukNN; ð79Þ

where by direct calculation from (30), the Ricci scalar
on S is

R ¼ −
2RTT

R
: ð80Þ

This curvature is calculated for the (previously defined)
covariant derivative DA compatible with the two-
dimensional metric qAB. Hence TADATB ¼ 0 and so
R̈ ¼ TADAðTBDBRÞ ¼ RTT .
Next, expanding κ using (73) the two pieces of NaD̄aκ

are

NaDa

�
RN

R

�
¼γ −

�
_β

β

�
_R
R
þ RNN

R
−
R2
N

R2
ð81Þ

and

NaD̄aðK − KNNÞ¼γ − kuabk
ab
N þ kNKNN;

where we have applied the diffeomorphism constraint (75).
Finally, substituting all of this into (72) we obtain

0¼γ β̈þ
�
_R
R

�
_β −

�
1

2
R − 2jσþj2

�
β: ð82Þ

But in axisymmetry

△Sβ ¼ ðTATB þ ϕ̂Aϕ̂BÞDADBβ ¼ β̈ þ
�
_R
R

�
_β ð83Þ

and so the common solutions of (72) and (82) are exactly
eigenvalue-zero eigenfunctions of the stability operator (14).
Note: It is also possible (and quicker) to derive (82)

directly from the constraint equations without going
through (72) along the way. However the method that
we present above demonstrates the close relation to the
deviation equations in a clearer way.

C. Deviation equation as Sturm-Liouville problem

We are primarily interested in MOTSs as opposed to
MOTOS and so in closed MOTSodesics. Considering only
spherical topology, this means that they will intersect the
z-axis twice.9 As we have seen, they must do this at a
right-angle. Then given a MOTSodesic γo which intersects
the z-axis at s ¼ 0 and s ¼ L we are interested in solutions
to (82) on the interval ½0; L� with

_βð0Þ ¼ _βðLÞ ¼ 0: ð84Þ

Note that we have switched our curve parameter to s since
we are now focused on the central curve and also wish to
avoid any confusion with the eigenvalues λ.
To better understand these “nearby” MOTSs, rewrite the

stability problem in Sturm-Liouville form:

d
ds

�
R
dβ
ds

�
− R

�
1

2
R − 2jσþj2

�
β ¼ −λβ: ð85Þ

Since Rð0Þ ¼ RðLÞ ¼ 0, this is a singular Sturm-Liouville
problem. However we expect that its eigenfunctions βn

9As noted earlier, these are not the only closed MOTSs. In [20]
we also identify toroidal MOTSs and those were identified using
our shooting method. However such MOTSs are not seen in the
example spacetimes that we consider here. We defer their
discussion to [20] and future papers.
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satisfy the standard properties for eigenfunctions of regular
Sturm Liouville operators.10 That is:

(i) Their eigenvalues λn are all real and nondegenerate.
(ii) There is a smallest eigenvalue λ0 but no largest one.
(iii) The βn form an orthogonal basis on L2ð0; LÞ.
(iv) Ordering the βn by the value of their eigenvalues

(and starting the labeling at n ¼ 0), βn has exactly n
zeros in ð0; LÞ.

The eigenvalues here are those of (85) rather than the full
stability operator. Relative to the full operator λn ¼ λn;0.
Then given a MOTS, the stability characterization

determines the properties of solutions to the deviation
equation that satisfy (84). If a MOTS So is
(a) strictly stable (λ0 > 0): there is no such βðsÞ.
(b) stable but not strictly stable (λ0 ¼ 0): there is a single

βðsÞ. It has no zeros on ð0; LÞ.
(c) unstable with vanishing eigenvalue (λn ¼ 0 for some

n ≠ 0): there is a single βðsÞ. It has n zeros on ð0; LÞ.
(d) unstable, no vanishing eigenvalue (λn ≠ 0 for any n):

there is no such βðsÞ.
Intuitively we then have the following picture (in

axisymmetry). MOT(O)S close to a stable MOTS cannot
intersect it. However if it is unstable we expect the nearby
MOT(O)S to intersect it a number of times equal to the
number of negative eigenvalues of the (85). This assigns a
direct geometrical meaning to the number of negative
eigenvalues of the stability operator. Keep in mind however
that these conclusions are all in the linearized regime of
the deviation equation. For “full” MOTSodesics we will
expect some modifications to these behaviors. In particular
we probably don’t expect continuous families of closed
MOTSodesics, even for those curves with vanishing
eigenvalues.
In retrospect the identification of zero-eigenvalue eigen-

functions of the stability operator with solutions to the
MOTSodesic equation should not have been surprising. For
geodesics, zero-eigenvalue eigenfunctions of the Jacobi
operator are solutions to the geodesic deviation equation
and the number of conjugate points along the geodesic
depends on the number of negative eigenvalues according
to the Morse Index Theorem [40]. Strictly stable MOTSs
are the analogue of geodesics in a negatively curved
(hyperbolic) background, stable MOTSs are the analogue
of geodesics in a vanishing curvature (flat) background and
unstable ones are the analogue of geodesics in a positively
curved background. We will return to this in more detail in
a future work but for now consider examples.

D. Example: Flat spacetime

The simplest example to consider is a t ¼ constant
surface in Minkowski spacetime. Then

hijdxidxj ¼ dρ2 þ dz2 þ ρ2dϕ2 ð86Þ

and the extrinsic curvature Kij ¼ 0. Then there is no
distinction between outward and inward oriented MOTSs
and, in fact, they are axisymmetric minimal surfaces in
Euclidean R3: that is catenoids and z ¼ constant planes.
We first confirm that these are solutions of the MOTSodesic
equations.

1. MOTSodesics

For these surfaces R ¼ ρ and the metric in Σ̄ is

h̄abdxadxb ¼ dρ2 þ dz2: ð87Þ

Hence the Christoffel symbols vanish. Further

N ¼ − _Z
d
dρ

þ _P
d
dz

: ð88Þ

Then the MOTSodesic equations (42) become

P̈ ¼
_Z2

P

Z̈ ¼ −
_P _Z
P

; ð89Þ

since ku ¼ 0 and so κ ¼ RN ¼ − _Z
P. This κ works as a

repulsion term that tries to divert these curves from hitting
the z-axis. If _Z ≠ 0 during the approach then κ → ∞
as ρ → 0.
These equations have a trivial solution:

Pplane ¼ ρo − s

Zplane ¼ zo; ð90Þ

where ρo ¼ Pð0Þ and we have chosen to orient s so that
positive moves toward the axis (reaching it at s ¼ ρo).
These are the planes of constant z.
The catenoid solutions are not so obvious. With respect

to arclength a catenoid may be parameterized as

Pcat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2o þ ðs − soÞ2

q

Zcat ¼ zo þ ρoarcsinh

�
s − so
ρo

�
ð91Þ

where ðρo; zoÞ is the closest approach to the z-axis, which
happens at s ¼ so. It is straightforward to confirm that these
are indeed solutions to (89).

10Despite some searching and consultations we have not been
able to identify a published theorem that guarantees this.
However (85) has a similar form to many of the singular problems
of mathematical physics that do have these properties. As in those
problems, the singularity results from the polar-type coordinates.
Further we observe evidence of all of these properties in the
upcoming sections. Hence for now we assume that they are true.
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A family of MOTSodesics is shown in Fig. 6 with planes
above z ¼ 1 and catenoids below. Within the range of the
figure, the only catenoid that can be seen to have fully
turned around is the dark red one that started closest
to z ¼ 1.

2. MOTSodesic deviation

Next consider the MOTSodesic deviation equation,
though here of course we are considering MOTOSs rather
than MOTSs since none of these surfaces close. For these
noncompact cases many of the Sturm-Liouville conclu-
sions will not apply but this case can still demonstrate some
properties of the equation. In particular we can use it to
better understand the repulsion from the z-axis.
From (80) and (89) the deviation equation (82) becomes

β̈ þ
�
_P
P

�
_β − 2

�
_Z
P

�2

β ¼ 0: ð92Þ

This has exact solutions for both planes and catenoids but
for purposes of this example, it will be sufficient to consider
the solution for planes. Then _Z ¼ 0 and so β ¼ βo is an
eigenvalue-zero eigenfunction. Hence it is stable but not
strictly stable.
More generally,

βplane ¼ βo − _βoρo ln

�
1 −

s
ρo

�
ð93Þ

where βo ¼ βð0Þ and _βo ¼ _βð0Þ. In this case (and only this
case) we have chosen s ¼ 0 to be a point not on the z-axis
as we want to use this as a model to demonstrate how
curves diverge during that approach.
If _βo ¼ 0 then the curves remain parallel. These are in

the parallel line above z ¼ 1 in Fig. 6. These rotate into the

planes in Σ and are the only curves that never intersect
z ¼ 1 (as one would expect from Euclidean geometry!).
If _β ≠ 0 then β monotonically increases in the approach

to z ¼ 0 until it diverges as s → ρo. This effect can be
seen for the z < 1 catenoids. Meanwhile as s → −∞β
monotonically decreases and all of these curves ultimately
cross z ¼ 1.
These exact solution behaviors are consistent with the

expected properties of solutions of (82). In particular,
this simplest example demonstrates how only finely tuned
congruences of MOTSodesics can intersect the z-axis.
Generic curves turn back and in particular, even if one
element reaches the axis, its neighbors will usually dra-
matically diverge from it.

E. Example: Schwarzschild-Painlevé Gullstrand

The plane z ¼ 1 considered in the last section was stable
(λ0 ¼ 0) but not strictly stable. Further it was a MOTOS
rather than MOTS. We now consider a strictly stable
MOTS: the Schwarzschild horizon.
We work in Painlevé-Gullstrand coordinates, the case for

which the MOTSs were studied in detail in [19]. Then the
induced metric is still flat

hijdxidxj ¼ dρ2 þ dz2 þ ρ2dϕ2 ð94Þ

while the extrinsic curvature is

Kijdxidxj ¼
ffiffiffiffiffi
M
2

r �
ρ2 − 2z2

r7=2
dρ2 þ 6ρz

r7=2
dρdz

þ z2 − 2ρ2

r7=2
dz2 −

2ρ2

r3=2
dϕ2

�
ð95Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
is the regular radial spherical

coordinate.

1. MOTSodesics

For these surfaces we still have R ¼ ρ, a flat metric (87)
on Σ̄ and normal vector (88). However

ku ¼ −
ffiffiffiffiffi
M
2

r �
3ðZ _P − P _ZÞ2

r7=2
þ 1

r3=2

�
ð96Þ

does not vanish.
We again have RN ¼ − _Z

P. However

κ ¼ −
_Z
P
� ku ð97Þ

and so differs for a left versus right-oriented MOT(O)S.
Nevertheless the MOTSodesic equations still take a rela-
tively simple form:

FIG. 6. A family of MOTSodesics in flat space. For z ≥ 1 they
rotate into planes while below that line they rotate into catenoids.
Note that in the bottom left-hand corner MOTSodesics intersect
and so the congruence-associated coordinate system fails. For
small β, its value is approximately the distance measured from
z ¼ 1 to the nearby curves along the dashed lines of constant s.
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P̈ ¼
_Z2

P
� ku _Z

Z̈ ¼ −
_P _Z
P

∓ ku _P: ð98Þ

The MOTS at r ¼ 2M is parametrized as

P ¼ 2M sin

�
λ

2M

�

Z ¼ 2M cos

�
λ

2M

�
ð99Þ

and can easily be checked to be a solution, but in general
these equations cannot be solved exactly. However they are
very easily solved numerically using standard ODE solvers
and some consistently oriented near horizon MOTSodesics
are shown in Fig. 7. More exotic ones are shown in Fig. 8.

2. MOTSodesic deviation

The deviation equation becomes

0¼γ β̈þ
�
_P
P

�
_β þ

�
P̈
P
þ 2jσþj2

�
β: ð100Þ

In general this does not have an exact solution but there
is an exception for the deviation of MOTSodesics from
r ¼ 2M. Then the deviation equation becomes:

β̈ þ cot

�
λ

2M

�
_β

2M
−

β

4M2
¼ 0 ð101Þ

which has general solution

β ¼ AP−1þi
ffiffi
3

p
2

�
cos

�
λ

2M

��
þ BP−1þi

ffiffi
3

p
2

�
cos

�
π −

λ

2M

��

ð102Þ

where P−1þi
ffiffi
3

p
2

is a Legendre function and A and B are

arbitrary constants. We are interested in these solutions in
the range 0 ≤ λ ≤ 2Mπ. The term first is finite and has
derivative 0 at λ ¼ 0 but diverges at λ ¼ 2Mπ. The second
term has the opposite behavior. For the case shown in
Fig. 7, A ¼ βo and B ¼ 0 while these would be reversed
for the equivalent set of MOTSodesics launched from the
south pole. For cases where the MOTSodesics are instead
parallel at the equator (or any other non-polar point),
β diverges at both ends.
Note that while these are solutions of (101) they are not

solutions of the full Sturm-Liouville problem: they always
diverge at either one or both ends. However this is not a
surprise: r ¼ 2M is a strictly stable MOTS and so one does
not expect the full problem to have any solutions. Instead, the
separation between initially parallel MOTSodesics monoton-
ically increases just as initially parallel geodesics diverge in a
hyperbolic background. The rate of growth for that separation
quantitatively matches that of (102) with A ¼ 2M andB ¼ 0
(until the final stages of the divergence).
In contrast to this strictly stable MOTS, the self-

intersecting MOTSs from [19] are unstable and from
numerical experiments we find that the stability operator
has two negative eigenvalues per loop of the MOTSodesic.
This behavior is show in Fig. 8. Note that initially parallel

FIG. 7. MOTSodesics near the Schwarzschild apparent horizon in a slice of constant Painelevé Gullstrand time. Note the relatively
slow divergence until the curves approach the z-axis. The axes have units of mass M.
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MOTSodesics oscillate around the central curve before
ultimately diverging in the approach to the z-axis (where
they leave the linear regime and so the deviation equation
no longer applies).

F. Example: Reissner-Nordström in PG coordinates

A simpler example of unstable MOTSodesics appeared
in [34]. Consider the inner horizons of Reissner-Nordström

spacetimes. In Painlevé-Gullstrand coordinates for these
solutions, the induced metric on Σ remains flat (94) while
the extrinsic curvature becomes

Kijdxidxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
2
−
Q2

4r

r �
ρ2 − 2z2

r7=2
dρ2 þ 6ρz

r7=2
dρdz

þ z2 − 2ρ2

r7=2
dz2 −

2ρ2

r3=2
dϕ2

�
: ð103Þ

These coordinates cover both the outer and inner horizons

though they fail for r < q2

2m (which is always inside the inner
horizon).
The MOTSodesic equation for these solutions is

unchanged from (98) modulo the extrinsic curvature term
which becomes

ku ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
2
−
Q2

4r

r �
3ðZ _P − P _ZÞ2

r7=2
þ 1

r3=2

�
: ð104Þ

Again the general solution cannot be written down
in closed form, however one can check that the outer

horizon rout ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
and inner horizon rin ¼

M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
are solutions.

These solutions are nonvacuum and so the stability
operator includes matter terms. From [34] on either the
outer or inner horizon it takes the form:

LΣΨ ¼ −△S2Ψþ ðrF0ÞΨ; ð105Þ

where △S2 is the Laplacian on the unit sphere and

F ¼ 1 − 2M
r þ Q2

r2 . The eigenfunctions are the spherical
harmonics Ylmðθ;ϕÞ and so for the inner horizon, LΣ
has (degenerate) eigenvalues

λl;m ¼ lðlþ 1Þ − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p ; ð106Þ

for l ∈ Zþ. The principal eigenvalue is then

λ0;0 ¼ −
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p : ð107Þ

This vanishes for an extremal horizon M ¼ Q (for which
rin ¼ rout) but is otherwise negative. Hence for Q < M the
inner horizon is unstable.
Any of the other eigenvalues may also be made to vanish

by a careful choice of the physical parameters. Specifically
for a non-negative integer lo, if we choose

Q ¼ � 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2o þ lo þ 1

p
l2o þ lo þ 2

ð108Þ

FIG. 8. The first three self-intersecting Schwarzschild MOTSo-
desics. They are unstable with the number of negative eigenvalues
equal to twice the number of loops. Conjugate points are marked
with þ-signs.
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we have

rin ¼
2M

l2o þ lo þ 2
ð109Þ

and the eigenvalues λlo;m ¼ 0.
We directly derived the deviation operator only in

vacuum, however it is straightforward to show that the
stability operator/MOTSodesic deviation correspondence
continues to hold in the presence of matter. We can then use
this example to check some of the predictions of Sec. IV C.
First, for a continuous non-negative real parameter l

define

q ¼ Q
M

¼ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ lþ 1

p

l2 þ lþ 2
: ð110Þ

Then Fig. 9 plots the inner RN horizon along with nearby
MOTSodesics for Q ¼ qM. For integer values of l, λl;m
vanishes and so the Ylm are solutions of the deviation
equation. In these cases we expect l conjugate points for
nearby MOTSodesics as well as those curves to approach
the negative z-axis at close to a right angle. These features
can all be observed in the right-hand column of the figure.
If l is not an integer then solutions to the deviation

equations are not eigenfunctions of the stability operator,
however we still expect them to have ⌈l⌉ (that is the smallest
integer larger than or equal to l) conjugate points and again
this is observed in the figure. However, even infinitesimally,
these solutions fail to satisfy the negative z-axis boundary
conditions and instead diverge in the approach to the axis.
Again this can be seen in the figure: for non-integer values of
l the nearby MOTSodesics are seen to diverge earlier from
the z-axis than for integer values.
There is a deviation from these predictions following

from the fact that the above predictions are strictly true
only for infinitesimal deformations. For an unstable
MOTSodesic, we expect that sufficiently nearby, initially
parallel MOTSodesics will oscillate around it. However this
linearized behavior is overcome by the intense repulsion
from the z-axis when the congruence approaches the south
pole. Hence, in the figure, the “inside” curves end up with
an extra intersection that happens after the repulsion (and so
is outside the linearized regime of the deviation equation).

G. Example: Brill-Lindquist initial data

Finally we return to the Brill-Lindquist initial data. Here
neither the MOTSodesic nor the deviation equation can
be solved exactly and so we consider numerical solutions.
In particular the eigenvalue spectrum and so the number
of negative eigenvalues is calculated using the methods
of [6,7].
Nevertheless as shown in Fig. 10 the results observed for

exact solutions continue to hold. The number of negative
eigenvalues of the stability operator corresponds to the

FIG. 9. Inner spherically symmetric MOTS from the Reissner-
Nordström spacetime. For a given l ∈ Rþ, Q ¼ qM for q
defined by (110). Thus them ¼ 0 version of the stability operator
has zero negative eigenvalues in the first row, one in the second,
two in the third and three in the fourth. The correspondence
between the stability operator and deviation equation can then be
clearly seen in the number of intersections (again marked with
þs) between the nearby MOTSodesics and the inner horizon. The
gray circle indicates the region not covered by the Painlevé-
Gullstrand coordinates. Note that some MOTSodesics are lost
into that region.
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number of intersections between initially parallel curves (in
the regime while the linear approximation can be assumed
to hold).
From these examples we can also understand the

geometric meaning of these negative eigenvalues. A turn
from the z-axis generates a negative eigenvalue. This can
be understood as resulting from the fact that, to leading
order, the shape of the turn of nearby MOTSodesics from
the z-axis is necessarily the same. Then at each such
turn the inside and outside MOTSodesics will necessarily
switch places. This effect can be seen in all three
subfigures.
A negative eigenvalue also appears to arise when a

MOTSodesic switches from “orbiting” around one stable
MOTS to another. Hence the green inner MOTS in Fig. 3
picks up one negative eigenvalue as does the middle
subfigure of Fig. 10.
These two counting rules appear to be sufficient to

account for all negative eigenvalues seen in Brill-Lindquist
initial data MOTS and also appear to hold for the more
general MOTS in the sequel [20]. However at this time we
do not have a rigorous demonstration of this.

V. CONCLUSIONS

In the present paper we have developed a new gener-
alized shooting method for finding marginally outer
trapped (open) surfaces in axisymmetric and non-spinning
but otherwise arbitrary initial data. This has led to the
discovery of a large number of previously unknown
MOTSs in even the simplest spacetimes. Given this
explosion of examples we have chosen to restrict the term
“horizon” to stable MOTSs. Unstable MOTSs (and their

associated MOTTs) should not be interpreted as black
hole boundaries.
While exotic MOTS were previously observed in the

Schwarzschild spacetime [19], in this paper we found an
even richer set of MOTSs in Brill-Lindquist data. It is
certainly reasonable to wonder whether these new types of
MOTSs continue to exist during a dynamical evolution
of initial data or whether they are only features of exact
solutions and (time-symmetric) initial data. The second
paper in this series [20] unequivocally demonstrates that
not only do similar MOTSs exist during mergers but also
they play a key role in understanding the final fate of the
initial apparent horizons. MOTSs dynamically form and
annihilate in pairs and ultimately the initial apparent
horizons are annihilated by more exotic MOTSs.
Faced with this plethora of MOTSs we developed the

MOTSodesic deviation equation to better understand how
they relate to each other. That investigation revealed the
retrospectively obvious result that the stability operator for
MOTSs is the analogue of the stability operator for geo-
desics. This has then provided a new insight into stable and
unstable MOTSs and the geometric implications of neg-
ative eigenvalues of the stability operator. We expect that
these results can all be rigorously proved using methods
very similar to those used for the analogous proofs for
geodesics and the Jacobi operator. However that is beyond
the scope of the current paper.
It will be fascinating to see if and how these observations

extend beyond axisymmetry. In that general case, eigen-
values of the stability operator (beyond the principal
eigenvalue) are generally complex and one cannot expect
to simply count negative eigenvalues. Further zeros of the
eigenfunctions would be expected to occur along curves

FIG. 10. Nearby MOTSodesics for three of the newMOTSs presented in Fig. 4. In each case, the gray curve corresponds to the MOTS,
while the red curve originates slightly inside the MOTS and the blue curve slightly outside. For the MOTS shown here, we have
determined that the stability operator has 1, 2 and 2 negative eigenvalues, respectively. We can see that this corresponds also to the
number of intersections of nearby MOTSodesics. The insets show a zoomed-in view near the intersections.
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rather than at points and so we expect any analogous results
would need to be phrased in terms of nodal domains.
However even for minimal surfaces such results are much
less straightforward than for geodesics and so we do not
expect the general case to be resolved quickly! That said, as
in this series of papers, one may hope that a combined
theoretical and numerical investigation may obtain unex-
pected results and insights.
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APPENDIX: κ ON THE z-AXIS

Here we calculate the curvature κ and along a curve that
intersects the z-axis. This is a tool in finding the series
expansion of these curves. To save space and make
equations more readable we use the following notation:
RT ¼ TaD̄aR, RN ¼ NaD̄aR, RTN ¼ TaNbD̄aD̄bR.
The key equations used in these derivations are

TbD̄bTa ¼ κNa

TbD̄bNa ¼ −κTa: ðA1Þ

So, with overdots denoting derivatives with respect to s,

_RT ¼ κRN þ RTT ðA2Þ

_RN ¼ −κRT þ RTN: ðA3Þ

Then if s ¼ 0 along the z-axis (ρ ¼ 0) we are interested
in the limit:

κ�o ≡ lim
s→0

�
RN

R
� ku

�
ðA4Þ

with the first term being of the form 0
0
as s → 0. We can

apply l’Hôpital’s rule:

κ�o ¼ lim
s→0

�
RN

R
� ku

�

¼ lim
s→0

�
_RN

_R
� ku

�

¼ lim
s→0

�
−κ�RT þ RTN

RT
� ku

�
ðA5Þ

and so rearranging and solving for κ�o we find

κ�o¼z
1

2

�
RTN

RT
� ku

�
ðA6Þ

where as in the main text, the overset z indicates that the
righthand side should be evaluated on the z-axis.

[1] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space-Time, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
1973).

[2] R. A. Matzner, H. E. Seidel, S. L. Shapiro, L. Smarr, W.M.
Suen, S. A. Teukolsky, and J. Winicour, Geometry of a black
hole collision, Science 270, 941 (1995).

[3] L. Andersson, M. Mars, and W. Simon, Local Existence of
Dynamical and Trapping Horizons, Phys. Rev. Lett. 95,
111102 (2005).

[4] L. Andersson, M. Mars, and W. Simon, Stability of margin-
ally outer trapped surfaces and existence of marginally outer
trapped tubes, Adv. Theor. Math. Phys. 12 (2008).

[5] A. Ashtekar and B. Krishnan, Dynamical horizons and their
properties, Phys. Rev. D 68, 104030 (2003).

[6] D. Pook-Kolb, O. Birnholtz, J. Luis Jaramillo, B. Krishnan,
and E. Schnetter, Horizons in a binary black hole merger I:
Geometry and area increase, arXiv:2006.03939.

[7] D. Pook-Kolb, O. Birnholtz, J. Luis Jaramillo, B.
Krishnan, and E. Schnetter, Horizons in a binary black
hole merger II: Fluxes, multipole moments and stability,
arXiv:2006.03940.

[8] B. Szilágyi, D. Pollney, L. Rezzolla, J. Thornburg, and J.
Winicour, An explicit harmonic code for black-hole evolu-
tion using excision, Classical Quantum Gravity 24, S275
(2007).

[9] P. Mösta, L. Andersson, J. Metzger, B. Szilágyi, and J.
Winicour, The merger of small and large black holes,
Classical Quantum Gravity 32, 235003 (2015).

[10] C. Evans, D. Ferguson, B. Khamesra, P. Laguna, and D.
Shoemaker, Inside the final black hole: Puncture and
trapped surface dynamics, Classical Quantum Gravity 37,
15LT02 (2020).

[11] S. A. Hayward, Black holes: New horizons, in Recent
Developments in Theoretical and Experimental General
Relativity, Gravitation and Relativistic Field Theories.

ULTIMATE FATE OF …. I. LOCATING AND … PHYS. REV. D 104, 084083 (2021)

084083-19

https://doi.org/10.1126/science.270.5238.941
https://doi.org/10.1103/PhysRevLett.95.111102
https://doi.org/10.1103/PhysRevLett.95.111102
https://doi.org/10.4310/ATMP.2008.v12.n4.a5
https://doi.org/10.1103/PhysRevD.68.104030
https://arXiv.org/abs/2006.03939
https://arXiv.org/abs/2006.03940
https://doi.org/10.1088/0264-9381/24/12/S18
https://doi.org/10.1088/0264-9381/24/12/S18
https://doi.org/10.1088/0264-9381/32/23/235003
https://doi.org/10.1088/1361-6382/ab9c6b
https://doi.org/10.1088/1361-6382/ab9c6b


Proceedings, 9th Marcel Grossmann Meeting, MG’9,
Rome, Italy, July 2-8, 2000. Pts. A-C (World Scientific
Publishing Co, Singapore, 2000), pp. 568–580.

[12] I. Ben-Dov, The Penrose inequality and apparent horizons,
Phys. Rev. D 70, 124031 (2004).

[13] I. Booth, L. Brits, J. A. Gonzalez, and C. Van Den Broeck,
Marginally trapped tubes and dynamical horizons, Classical
Quantum Gravity 23, 413 (2006).

[14] E. Schnetter, B. Krishnan, and F. Beyer, Introduction to
dynamical horizons in numerical relativity, Phys. Rev. D 74,
024028 (2006).

[15] T. Chu, H. P. Pfeiffer, and M. I. Cohen, Horizon dynamics of
distorted rotating black holes, Phys. Rev. D 83, 104018
(2011).

[16] D. Pook-Kolb, O. Birnholtz, B. Krishnan, and E. Schnetter,
Interior of a Binary Black Hole Merger, Phys. Rev. Lett.
123, 171102 (2019).

[17] D. Pook-Kolb, O. Birnholtz, B. Krishnan, and E. Schnetter,
Self-intersecting marginally outer trapped surfaces, Phys.
Rev. D 100, 084044 (2019).

[18] J. Thornburg, Event and apparent horizon finders for 3þ 1

numerical relativity, Living Rev. Relativity 10, 3 (2007).
[19] I. Booth, R. A. Hennigar, and S. Mondal, Marginally outer

trapped surfaces in the Schwarzschild spacetime: Multiple
self-intersections and extreme mass ratio mergers, Phys.
Rev. D 102, 044031 (2020).

[20] D. Pook-Kolb, I. Booth, and R. A. Hennigar, following
paper, Ultimate fate of apparent horizons during a binary
black hole merger II: The vanishing of apparent horizons,
Phys. Rev. D 104, 084084 (2021).

[21] D. Pook-Kolb, R. A. Hennigar, and I. Booth, companion
Letter, What Happens to Apparent Horizons in a Binary
Black Hole Merger?, Phys. Rev. Lett. 127, 181101 (2021).

[22] A. Ashtekar and B. Krishnan, Dynamical Horizons: Energy,
Angular Momentum, Fluxes and Balance Laws, Phys. Rev.
Lett. 89, 261101 (2002).

[23] S. A. Hayward, General laws of black hole dynamics, Phys.
Rev. D 49, 6467 (1994).

[24] R. Bousso and N. Engelhardt, New Area Law in General
Relativity, Phys. Rev. Lett. 115, 081301 (2015).

[25] R. Newman, Topology and stability of marginal 2-surfaces,
Classical Quantum Gravity 4, 277 (1987).

[26] I. Booth and S. Fairhurst, Isolated, slowly evolving, and
dynamical trapping horizons: Geometry and mechanics
from surface deformations, Phys. Rev. D 75, 084019
(2007).

[27] J. Luis Jaramillo, Black hole horizons and quantum
charged particles, Classical Quantum Gravity 32, 132001
(2015).

[28] J. David Brown and J. W. York, Jr., Quasilocal energy and
conserved charges derived from the gravitational action,
Phys. Rev. D 47, 1407 (1993).

[29] A. Ashtekar, J. Engle, T. Pawłowski, and C. Van Den
Broeck, Multipole moments of isolated horizons, Classical
Quantum Gravity 21, 2549 (2004).

[30] D. Pook-Kolb, Dynamical horizons in binary black hole
mergers, Ph.D. thesis, Institutionelles Repositorium der
Leibniz Universität Hannover, Hannover, 2020.

[31] A. Čadež, Apparent horizons in the two-black-hole problem,
Ann. Phys. (N.Y.) 83, 449 (1974).

[32] K. Eppley, Evolution of time-symmetric gravitational
waves: Initial data and apparent horizons, Phys. Rev. D
16, 1609 (1977).

[33] D. Pook-Kolb, O. Birnholtz, I. Booth, R. A. Hennigar, J.
Luis Jaramillo, B. Krishnan, E. Schnetter, and V. Zhang,
MOTS Finder version 1.5 (2021).

[34] I. Booth, H. K. Kunduri, and A. O’Grady, Unstable margin-
ally outer trapped surfaces in static spherically symmetric
spacetimes, Phys. Rev. D 96, 024059 (2017).

[35] D. R. Brill and R. W. Lindquist, Interaction energy in
geometrostatics, Phys. Rev. 131, 471 (1963).

[36] T. W. Baumgarte and S. L. Shapiro, Numerical Relativity:
Solving Einstein’s Equations on the Computer (Cambridge
University Press, Cambridge, England, 2010).

[37] D. Pook-Kolb, O. Birnholtz, B. Krishnan, and E. Schnetter,
Existence and stability of marginally trapped surfaces in
black-hole spacetimes, Phys. Rev. D 99, 064005 (2019).

[38] R. M. Wald, General Relativity (Chicago University Press,
Chicago, IL, 1984).

[39] E. Poisson, A Relativist’s Toolkit: The Mathematics
of Black-Hole Mechanics (Cambridge University Press,
Cambridge, England, 2004).

[40] M. Spivak, A Comprehensive Introduction to Differential
Geometry, 3rd ed. (Publish or Perish, Inc, Houston, 1999),
Vol. 4.

BOOTH, HENNIGAR, and POOK-KOLB PHYS. REV. D 104, 084083 (2021)

084083-20

https://doi.org/10.1103/PhysRevD.70.124031
https://doi.org/10.1088/0264-9381/23/2/009
https://doi.org/10.1088/0264-9381/23/2/009
https://doi.org/10.1103/PhysRevD.74.024028
https://doi.org/10.1103/PhysRevD.74.024028
https://doi.org/10.1103/PhysRevD.83.104018
https://doi.org/10.1103/PhysRevD.83.104018
https://doi.org/10.1103/PhysRevLett.123.171102
https://doi.org/10.1103/PhysRevLett.123.171102
https://doi.org/10.1103/PhysRevD.100.084044
https://doi.org/10.1103/PhysRevD.100.084044
https://doi.org/10.12942/lrr-2007-3
https://doi.org/10.1103/PhysRevD.102.044031
https://doi.org/10.1103/PhysRevD.102.044031
https://doi.org/10.1103/PhysRevD.104.084084
https://doi.org/10.1103/PhysRevLett.127.181101
https://doi.org/10.1103/PhysRevLett.89.261101
https://doi.org/10.1103/PhysRevLett.89.261101
https://doi.org/10.1103/PhysRevD.49.6467
https://doi.org/10.1103/PhysRevD.49.6467
https://doi.org/10.1103/PhysRevLett.115.081301
https://doi.org/10.1088/0264-9381/4/2/011
https://doi.org/10.1103/PhysRevD.75.084019
https://doi.org/10.1103/PhysRevD.75.084019
https://doi.org/10.1088/0264-9381/32/13/132001
https://doi.org/10.1088/0264-9381/32/13/132001
https://doi.org/10.1103/PhysRevD.47.1407
https://doi.org/10.1088/0264-9381/21/11/003
https://doi.org/10.1088/0264-9381/21/11/003
https://doi.org/10.1016/0003-4916(74)90206-1
https://doi.org/10.1103/PhysRevD.16.1609
https://doi.org/10.1103/PhysRevD.16.1609
https://doi.org/10.1103/PhysRevD.96.024059
https://doi.org/10.1103/PhysRev.131.471
https://doi.org/10.1103/PhysRevD.99.064005

