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We show that gravitational theories with a nonminimal coupling (NMC) to the matter fields lead to a
violation of Etherington’s distance-duality relation, which relates the luminosity and angular-diameter
distances. We derive constraints on power-law and exponential NMC models using existing measurements
of type Ia supernovae and baryon acoustic oscillations throughout the redshift range 0 < z < 1.5. These
complement previous constraints derived from cosmic-microwave background radiation and big bang
nucleosynthesis data.
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I. INTRODUCTION

General relativity (GR) remains the most successful
theory of gravitation, passing many experimental hurdles,
but it nevertheless requires the addition of dark energy and
dark matter to explain the accelerated expansion of the
Universe and the nontrivial dynamics of cosmological
structures such as galaxies and clusters thereof [1,2].
However, the existence of these dark components is
merely inferred, as direct observation has not yet been
possible. Thus, alternatives have been proposed to explain
the observed dynamics without the need for dark
energy and/or dark matter. These include theories with
more complex geometric terms such as fðRÞ and
fðR;Rμν; RμναβÞ, and theories featuring a nonminimal
coupling (NMC) between geometry and matter, such as
fðR;LmÞ theories [3–8] (see, however, [9,10]).
NMC theories of gravity feature significant changes not

only to cosmological dynamics and thermodynamics, but
also to energy-momentum conservation [11–16]. These
changes depend on the Lagrangian of the matter fields
which appears explicitly in the equations of motion and,
therefore, the use of the correct Lagrangian is crucial in
order to be able to derive useful constraints on NMC
gravity. In previous work Lm ¼ −ρ or Lm ¼ p have been
suggested as the on-shell Lagrangian of a perfect fluid with
proper energy density ρ and pressure p [17–21]. However,
the correct on-shell Lagrangian for a fluid composed of
classical particles of fixed rest mass and structure has been
shown to be given by the trace of the energy-momentum
tensor of the fluid Lm ¼ T [12,22]. This is expected to be

an excellent approximation in the case of baryons, dark
matter, and photons—in the latter case, the zero rest mass
limit should be considered. However, it does not apply to
dark energy (or to any fluid with an equation of state
parameter w outside the interval 0 ≤ w ≤ 1=3).
Etherington’s relation, also known as the distance-

duality relation (DDR), directly relates luminosity and
angular-diameter distances in GR, where they differ only
by a specific function of the redshift. It has recently come
into focus given the possibility of performing more
accurate tests of Etherington’s relation with new cosmo-
logical surveys of type Ia supernovae (SnIa) and baryon
acoustic oscillations (BAO)[23–28], as well as observations
from Euclid [29,30] and gravitational wave observatories
[31]. In this work we derive the impact of NMC theories on
the DDR, and use the most recent data available to impose
constraints on a broad class of NMC models.
Throughout this paper we use units such that c ¼ 1,

where c is the value of the speed of light in vacuum. We
adopt the metric signature ð−;þ;þ;þÞ, and the Einstein
summation convention shall be used as usual. We use
Greek and Latin indices for four- and three-dimensional
quantities, respectively.

II. NONMINIMALLY COUPLED GRAVITY

The action

S ¼
Z ffiffiffiffiffiffi

−g
p ½κf1ðRÞ þ f2ðRÞLðoffÞ

m �; ð1Þ

describes a wide class of fðRÞ-inspired NMC gravity
models. Here, κ ¼ ð16πGÞ−1, G is Newton’s gravitational

constant, g is the determinant of the metric gμν, L
ðoffÞ
m is the
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off-shell Lagrangian of the matter fields, and f1ðRÞ
and f2ðRÞ are generic functions of the Ricci scalar R.
This class of models allows for a broad range of cosmo-
logical dynamics while showcasing the effects of the NMC
on the dynamics of the matter fields, and is widely used
in the existing literature. Notice that GR is recovered if
f1ðRÞ ¼ R and f2ðRÞ ¼ 1. Extremizing the action with
respect to the metric, one obtains the equations of motion of
the gravitational field

FGμν ¼
1

2
f2Tμν þ ΔμνF þ 1

2
κf1gμν −

1

2
RFgμν; ð2Þ

where Gμν ¼ Rμν − 1
2
gμνR is the Einstein tensor, Rμν is the

Ricci tensor, Δμν ≡∇μ∇ν − gμν□, □≡∇μ∇μ,

F ¼ κf01ðRÞ þ f02ðRÞLm; ð3Þ

a prime denotes a derivative with respect to the Ricci scalar,
Lm is the on-shell Lagrangian of the matter fields, and the
energy-momentum tensor has the usual form

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LðoffÞ
m Þ

δgμν
: ð4Þ

Taking the covariant derivative of Eq. (2) and using the
Bianchi identities one obtains the following relation

∇μTμν ¼
f02
f2

ðgμνLm − TμνÞ∇μR; ð5Þ

which implies that the form of the on-shell matter
Lagrangian directly affects not only energy-momentum
conservation, but also particle motion [12,15,32].
The on-shell Lagrangian for a single-point particle with

action

S ¼ −
Z

dτm; ð6Þ

and energy-momentum tensor

Tμν ¼ mffiffiffiffiffiffi−gp
Z

dτuμuνδ4ðxσ − ξσðτÞÞ; ð7Þ

is given by the trace of the energy-momentum tensor (see,
for example, [15,33])

Lm ¼ T ¼ −
mffiffiffiffiffiffi−gp

Z
dτδ4ðxσ − ξσðτÞÞ; ð8Þ

where δ4ðxσ − ξσðτÞÞ denotes the four-dimensional Dirac
delta function, ξσðτÞ represents the particle worldline,
τ is the proper time, uμ are the components of the particle
4-velocity (uμuμ ¼ −1), and m is the proper particle mass.

An alternate derivation of this result, Lm ¼ T, for an ideal
gas is given in [12,22] (see also [33] for a detailed
discussion of the appropriateness of the use of different
Lagrangians to describe various components of the cosmic
energy budget). The covariant derivative of Eq. (7) may
thus be written as

∇νTμν ¼ mffiffiffiffiffiffi−gp
Z

dτð∇νuμÞuνδ4ðxσ − ξσðτÞÞ; ð9Þ

and using Eqs. (7), (8). and (9) in Eq. (5) one obtains the
equation of motion of a point particle

duμ

ds
þ Γμ

αβu
αuβ ¼ aμ; ð10Þ

where fμ ¼ maμ is a momentum-dependent four-force,
given by

fμ ¼ −m
f02
f2

hμν∇νR; ð11Þ

and hμν ¼ gμν þ uμuν is the projection operator.
Here we shall consider a flat, homogeneous and isotropic

Friedmann-Lemaître-Robertson-Walker (FLRW) universe
with line element

ds2 ¼ −dt2 þ a2ðtÞdr · dr; ð12Þ

where aðtÞ is the scale factor, t is the cosmic time, and r are
cartesian coordinates. Solving Eqs. (10) and (11) in this
metric one finds that the components of the 3-force on
particles f ¼ dp=dt are given by [15]

fi ¼ −
d lnðaf2Þ

dt
pi; ð13Þ

where pi are the components of the particle’s three-
momentum p, which therefore evolve as

pi ∝ ðaf2Þ−1: ð14Þ

See [12] for an alternate derivation of this result in the case
of solitons with fixed mass and structure. Assuming the
zero-mass limit for photons, this implies that their fre-
quency ν, and their energy E, no longer evolve with a−1 as
in GR. The equation for the evolution of E and ν in NMC
gravity is instead given by

E ∝ ν ∝
1

af2
¼ 1þ z

f2
; ð15Þ

where z is the redshift, and we have set a ¼ 1 at the present
time. This alteration to the dynamics of photons, associated
to the additional factor of f−12 , leads to stringent constraints
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on NMC theories from both cosmic microwave background
(CMB) and big bang nucleosynthesis (BBN) data [12].
We consider that the Universe is filled by a collection of

perfect fluids, with an energy-momentum tensor of the
form

Tμν ¼ ðρþ pÞUμUν þ pgμν; ð16Þ

where ρ and p are the proper density and proper pressure of
the fluid, respectively, and Uμ are the components of the
four-velocity of a fluid element, satisfying UμUμ ¼ −1.
Using Eqs. (12) and (16) in the field Eqs. (2), we obtain the
modified Friedmann equation (MFE)

H2 ¼ 1

6F
½FR − κf1 þ f2ρ − 6H _F�; ð17Þ

and the modified Raychaudhuri equation (MRE)

2 _H þ 3H2 ¼ 1

2F
½FR − κf1 − f2p − 4H _F − 2F̈�; ð18Þ

where a dot represents a derivative with respect to the
cosmic time, H ≡ _a=a is the Hubble factor, and F is
defined by Eq. (3) with Lm ¼ T ¼ 3p − ρ.

III. THE DISTANCE-DUALITY RELATION

The luminosity distance dL of an astronomical object
relates its absolute luminosity L, i.e., its radiated energy per
unit time, and its energy flux at the detector l, so that they
maintain the usual Euclidian relation

l ¼ L
4πd2L

; ð19Þ

or in terms of the luminosity distance

dL ¼
ffiffiffiffiffiffiffi
L
4πl

r
: ð20Þ

Over a small emission time Δtem the absolute luminosity
can be written as

L ¼ Nγ;emEem

Δtem
; ð21Þ

where Nγ;em is the number of emitted photons and Eem is
the average photon energy. An observer at a coordinate
distance r from the source will, however, observe an energy
flux given by

l ¼ Nγ;obsEobs

Δtobs4πr2
; ð22Þ

where Nγ;obs is the number of observed photons and Eobs is
their average energy.
Note that while the number of photons is conserved,

Nγ;obs ¼ Nγ;em, the time that it takes to receive the photons
is increased by a factor of 1þ z, tobs ¼ ð1þ zÞtem, and as
per Eq. (15), their energy is reduced as

Eobs ¼
Eem

1þ z
f2ðzÞ
f2ð0Þ

; ð23Þ

where f2ðzÞ ¼ f2½RðzÞ� and f2ð0Þ ¼ f2½Rð0Þ� are respec-
tively the values of the function f2 at emission and at the
present time. The distance r can be calculated by just
integrating over a null geodesic, that is

ds2 ¼ −dt2 þ aðtÞ2dr2 ¼ 0

⇒ dr ¼ −
dt
aðtÞ

⇒ r ¼
Z

tobs

tem

dt
aðtÞ ¼

Z
z

0

dz0

Hðz0Þ ; ð24Þ

Using Eqs. (21), (22), (23), and (24) in Eq. (20), we finally
obtain

dL ¼ ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffi
f2ð0Þ
f2ðzÞ

s Z
z

0

dz0

Hðz0Þ : ð25Þ

In the GR limit f2 ¼ const, and we recover the standard
result.
The angular-diameter distance dA, on the other hand, is

defined so that the angular diameter θ of a source that
extends over a proper distance s perpendicularly to the line
of sight is given by the usual Euclidean relation

θ ¼ s
dA

: ð26Þ

In a FLRWuniverse, the proper distance s corresponding to
an angle θ is simply

s ¼ aðtÞrθ ¼ rθ
1þ z

; ð27Þ

where the scale factor has been set to unity at the present
time. So the angular-diameter distance is just

dA ¼ 1

1þ z

Z
z

0

dz0

Hðz0Þ : ð28Þ

Comparing Eqs. (25) and (28) one finds

DISTANCE-DUALITY IN THEORIES WITH A NONMINIMAL … PHYS. REV. D 104, 084079 (2021)

084079-3



dL
dA

¼ ð1þ zÞ2
ffiffiffiffiffiffiffiffiffiffiffi
f2ð0Þ
f2ðzÞ

s
: ð29Þ

Deviations from the standard DDR are usually para-
metrized by the factor η as

dL
dA

¼ ð1þ zÞ2η: ð30Þ

Constraints on the value of η are derived from observational
data for both dA and dL. Comparing Eqs. (29) and (30) one
immediately obtains

ηðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
f2ð0Þ
f2ðzÞ

s
; ð31Þ

(see also [34,35] for a derivation of this result in theories
with a NMC between the matter fields and a scalar field).
If f1 ¼ R, like in GR, any choice of the NMC function

apart from f2 ¼ 1 would lead to a deviation from the
standard ΛCDM background cosmology and would there-
fore require a computation of the modified HðzÞ and RðzÞ
for every different f2 that is probed. However, it is possible
to choose a function f1 such that the cosmological back-
ground evolution remains the same as in ΛCDM. In this
case, the Hubble factor is simply

HðzÞ ¼ H0½Ωr;0ð1þ zÞ4 þ Ωm;0ð1þ zÞ3 þΩΛ;0�1=2; ð32Þ

and the scalar curvature R is given by

RðzÞ ¼ 3H2
0½Ωm;0ð1þ zÞ3 þ 4ΩΛ;0�; ð33Þ

where H0 is the Hubble constant, Ωr;0, Ωm;0, and ΩΛ;0 are
the radiation, matter and cosmological constant density
parameters at present time. The calculation of the appro-
priate function f1 must be done numerically, by integrating
either the MFE (17) or the MRE (18) for f1 with the
appropriate initial conditions at z ¼ 0 (when integrating
the MRE, the MFE serves as an additional constraint).
Considering that GR is strongly constrained at the
present time, the natural choice of initial conditions is
f1ð0Þ ¼ Rð0Þ and _f1ð0Þ ¼ _Rð0Þ.
Nevertheless, in the present paper we will consider that

significant deviations of f2 from unity are allowed only at
relatively low redshift, since CMB and BBN constraints on
NMC theories have already constrained f2 to be very close
to unity at large redshifts [12,13]. We have verified that the
function f1ðzÞ required for Eqs. (32) and (33) to be satisfied
deviates no more than 3% from the GR prediction f1 ¼ R
for z≲ 1.5, for the models investigated in this paper (using
the best-fit parameters in Table II).

IV. METHODOLOGY AND RESULTS

In [26], the authors used Pantheon and BAO data to
constrain a parametrization of the DDR deviation of the
type

ηðzÞ ¼ ð1þ zÞϵ; ð34Þ

and obtained, for a constant ϵ, ϵ ¼ 0.013� 0.029 at the
68% credible interval (CI). Here, we use the same datasets
and a similar methodology to derive constraints for speci-
fic NMC models. We present a brief description of the
methodology for completeness, but refer the reader to [26]
for a more detailed discussion.
In general, BAO data provides measurements of the ratio

dz (see, for example, [36]), defined as

dz ≡ rsðzdÞ
DVðzÞ

; ð35Þ

where DVðzÞ is the volume averaged distance [37]

DVðzÞ ¼
�
ð1þ zÞ2d2AðzÞ

cz
HðzÞ

�
1=3

; ð36Þ

and rsðzdÞ is the comoving sound horizon at the drag epoch.
Assuming that the evolution of the Universe is close to
ΛCDM, rsðzdÞ can be approximated as [38]

rsðzdÞ ≃
44.5 lnð 9.83

Ωm;0h2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 10ðΩb;0h2Þ3=4
q ; ð37Þ

where Ωb;0 is the baryon density parameter and h is the
dimensionless Hubble constant. Here we shall assume that
Ωb;0h2 ¼ 0.02225 in agreement with the latest Planck
release [39]. Notice that the BAO observations are used
to estimate dA, which remains unchanged in NMC theories
provided that the evolution of HðzÞ and RðzÞ is unchanged
with respect to the ΛCDM model. Thus, BAO data will
ultimately provide us with constraints on H0 and Ωm;0. The
original datasets that we shall consider in the present paper
come from the surveys 6dFGS [36], SDDS [40], BOSS
CMASS [41], WiggleZ [42], MGS [43], BOSS DR12 [44],
DES [45], Ly-α observations [46], SDSS DR14 LRG [47],
and quasar observations [48], but the relevant data is
conveniently compiled and combined in Appendix A
of [26].
Likewise, the luminosity distance can be constrained

using SnIa data, via measurements of their apparent
magnitude

mðzÞ ¼ M0 þ 5log10

�
dLðzÞ
Mpc

�
þ 25; ð38Þ

or, equivalently,
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mðzÞ ¼ M0 − 5log10ðH0Þ þ 5log10½ηðzÞd̂LðzÞ� þ 25; ð39Þ

where M0 is the intrinsic magnitude of the supernova and
d̂LðzÞ is the GR Hubble constant-free luminosity distance.
Note, that the intrinsic magnitude M0 is completely
degenerate with the Hubble constant H0, and thus simulta-
neous constraints on both quantities cannot be derived from
SnIa data alone. As per [26], we use the marginalized
likelihood expression from Appendix C in [49], which
takes into account the marginalization of both M0 and H0,
whenever possible. Likewise, we use the full 1048 point
Pantheon compilation from [50].
For simplicity, we shall consider two NMC models with

a single free parameter (the NMC parameter) which is
assumed to be a constant in the relevant redshift range
(0 < z < 1.5), and assume a flat universe evolving
essentially as ΛCDM. Since the contribution of radiation
to the overall energy density is very small at low
redshift we ignore its contribution, and therefore
ΩΛ;0 ¼ 1 −Ωm;0.
We use the Markov chain Monte Carlo (MCMC)

sampler in the publicly available Python package emcee
[51] to build the posterior likelihoods for the cosmological
parameters, H0 and Ωm;0, as well as the NMC parameter,
assuming flat priors for all of them. The MCMC chains are
then analyzed using the Python package GetDist [52],
in order to calculate the marginalized means and CIs, as
well as plots of the 2D contours of the resulting
distributions.

A. Power law

Consider a power law NMC function of the type

f2 ∝ Rn; ð40Þ

where n is the NMC parameter (GR is recovered
when n ¼ 0). Using Eqs. (33) and (40) in Eq. (31), one
obtains

ηðz;n;Ωm;0Þ ¼
�

Ωm;0 þ 4ð1 −Ωm;0Þ
Ωm;0ð1þ zÞ3 þ 4ð1 −Ωm;0Þ

�
n=2

: ð41Þ

The marginalized 68% CI results can be found in Table I,
and the 2D distributions for n and Ωm;0 are displayed in
Fig. 1 (see also the Appendix for the best-fit values, 95%
and 99% CIs, and the remaining distribution plots). A
reconstruction of Eq. (41) is also shown in Fig. 2. Note that
Eq. (35) implies that in the power-law case ηðzÞ only
depends on the parameters n and Ωm;0, which are not
completely degenerate. Therefore, SnIa data alone is able to
constrain both of these parameters. However, since BAO
data constrains both H0 and Ωm;0, we are able to combine

the two datasets to significantly improve the constraints on
n and Ωm;0.
The combined SnIa and BAO datasets constrain the

NMC parameter to n ¼ 0.013� 0.035 (68% CI). While
this constraint falls short of the ones previously
obtained from the black-body spectrum of the CMB,
jnj≲ few × 10−6, or from BBN, −0.002 < n < 0.003
[13], the present results are complementary as they more
directly constrain the value of n at much smaller redshifts.
Note that this rules out NMC models designed to mimic
dark matter, as these would require a power law with

TABLE I. Mean values and marginalized 68% CI limits
obtained from currently available data on the cosmological
parameters Ωm;0 and H0 (in units of km s−1 Mpc−1) and on
the NMC parameters n (dimensionless) and β (in units of
km−2 s2 Mpc2).

Parameter Probe Power law Exponential

BAO 66.8þ1.2
−1.4 66.8þ1.2

−1.4
H0 SnIa Unconstrained Unconstrained

SnIaþ BAO 66.1� 1.2 65.7� 1.0

BAO 0.300þ0.027
−0.035 0.300þ0.027

−0.035
Ωm;0 SnIa 0.191þ0.037

−0.061 Unconstrained

SnIaþ BAO 0.279þ0.024
−0.030 0.268� 0.019

BAO Unconstrained …

n SnIa 0.184þ0.092
−0.15

…

SnIaþ BAO 0.013� 0.035 …

BAO … Unconstrained
β SnIa … Unconstrained

SnIaþ BAO … ð1.24þ0.97
−1.2 Þ × 10−6

FIG. 1. 2D contours on the power-law parameter n and Ωm;0
using data from BAO (blue), SnIa (yellow), and the combination
of the two (red). The darker and lighter concentric regions
represent the 68% and 95% credible intervals, respectively.
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exponent in the range −1 ≤ n ≤ −1=7 in order to explain
the observed galactic rotation curves [18,21], in accordance
with previous results [13].

B. Exponential

Consider now an exponential NMC function,

f2 ∝ eβR; ð42Þ

where β is the NMC parameter, with dimensions of R−1

(GR is recovered when β ¼ 0). Using Eqs. (33) and (42) in
Eq. (31), one obtains

ηðz; β;Ωm;0; H0Þ ¼ exp

�
3

2
βH2

0Ωm;0ð1 − ð1þ zÞ3Þ
�
: ð43Þ

Note that η now depends on all three free parameters, β,
Ωm;0, andH0. Furthermore, sinceH0 is now also degenerate
with β and Ωm;0, we can no longer analytically marginalize
overH0, and SnIa data alone cannot be used to derive useful
constraints on any of these parameters. By combining the
BAO and SnIa datasets, however, one is able to break this
degeneracy, and derive constraints on all three parameters.
The marginalized results can be found in Table I, and the 2D
distributions for β and Ωm;0 can be found in Fig. 3 (see also
the Appendix for the best fit values, 95% and 99% CIs, and
the remaining distribution plots). A reconstruction of
Eq. (43) is also shown in Fig. 4.
The combined SnIa and BAO datasets constrain the

NMC parameter to β ¼ ð1.24þ0.97
−1.2 Þ × 10−6 (68% CI), in

units of km−2 s2 Mpc2. Once again this result complements
the one found for the same function using the method

presented in [13] for the variation of the baryon to photon
ratio, jβj ≲ 10−28, as they constrain the same parameter in
significantly different redshift ranges. Also notice that
while the marginalized results do not contain the GR limit
β ¼ 0 at the 68% CI, that limit is contained in both the
marginalized 95% CI, β ¼ ð1.2þ2.2

−2.1Þ × 10−6, and the 2D
68% credible region.
Future observations from LSST and the Euclid DESIRE

survey [29,30] will provide more data points in the range
z ∈ ½0.1; 1.6�. For the ϵ parametrization used in [26],
this will result in an improvement on the constraint of
about one order of magnitude. If this is the case, one

FIG. 2. Reconstruction of ηðzÞ for the power-law NMC model,
using the results from the analysis of combined BAO and SnIa
data. The dashed line represents the GR prediction η ¼ 1, while
the solid red line represents the mean value of η at every redshift.
The orange (darker) and yellow (lighter) contours represent the
68% and 95% credible intervals, respectively.

FIG. 3. 2D contours on the exponential parameter β and Ωm;0
using data from BAO (blue) and the combination of the SnIa and
BAO (red). The darker and lighter concentric regions represent
the 68% and 95% credible regions, respectively.

FIG. 4. Reconstruction of ηðzÞ for the exponential NMCmodel,
using the results from the analysis of combined BAO and SnIa
data. The dashed line represents the GR prediction η ¼ 1, while
the solid red line represents the mean value of η at every redshift.
The orange (darker) and yellow (lighter) contours represent the
68% and 95% credible intervals, respectively.
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could expect a corresponding improvement on the NMC
parameter constraints. Third-generation gravitational
wave observatories will also be able to provide data
points at even higher redshift (up to z ∼ 5), which will
serve as independent and complementary data for the
same purpose [31].

V. CONCLUSIONS

In this work, we have shown that the relation between the
luminosity and angular diameter distances is modified in
the presence of a NMC between gravity and the matter
fields, due to the change in energy and momentum that
photons experience as space expands. We have used the
most recent SnIa and BAO data to further constrain these
fðRÞ-inspired NMC theories in a redshift range closer to
the present time (up to z ∼ 1.5), which had previously not
been explored in the context of NMC gravity. We find that
the deviations from GR are expected to be small, in
accordance with previous results. These new constraints
also reinforce that NMC gravity cannot be used to
explain the observed galactic rotation curves in lieu of
dark matter.
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APPENDIX: FULL MARGINALIZED RESULT
TABLE AND DISTRIBUTION PLOTS

The distributions of the cosmological parameters, H0

and Ωm;0, and the NMC parameters, n and β, for the
combined SnIa and BAO datasets can be found in Figs. 5
and 6 for the power-law and exponential functions,
respectively. In Table II we have also included the best-
fit values for each parameter/dataset pair, as well as the
marginalized means, 68%, 95%, and 99% CIs, since the
distributions are not perfectly Gaussian.

FIG. 6. Constraints on the exponential parameter β, H0, and
Ωm;0 using combined data from BAO and SnIa. The darker and
lighter regions represent the 68% and 95% credible regions,
respectively.

FIG. 5. Constraints on the power-law parameter n,H0 and Ωm;0
using combined data from BAO and SnIa. The darker and lighter
regions represent the 68% and 95% credible regions, respectively.
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