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By treating black hole as the macroscopic stable state on the free-energy landscape, we propose that the
stochastic dynamics of the black hole phase transition can be effectively described by the Langevin
equation or equivalently by the Fokker-Planck equation in phase space. We demonstrate the turnover of the
kinetics for the charged anti–de Sitter black hole phase transition, which shows that the mean first passage
time is linear with the friction in the high damping regime and inversely proportional to the friction in the
low damping regime. The fluctuations in the kinetics are shown to be large/small in the high/low damping
regime and the switching behavior from the small fluctuations to the large fluctuations takes place at the
kinetic turnover point. Because the friction is a reflection of the microscopic degrees of freedom acting on
the order parameter of the black hole, the turnover and the corresponding fluctuations of the phase
transition kinetics can be used to probe the black hole microstructure.
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I. INTRODUCTION

Due to the pioneering work of black hole radiation by
Hawking [1], black hole has been studied as the novel
thermal entity [2,3]. It is widely acknowledged that the
black hole as the macroscopic state emergent from the
underlying microscopic degrees of freedom [4–12] can
have phase transitions [13–18] in analogy to the general
thermodynamic system. However, the dynamics of the
black hole phase transition is still an unresolved problem.
Recently, it was suggested [19–21] that the kinetics of

the black hole phase transition can be studied in terms of
the Fokker-Planck equation on the free-energy landscape
[22–26]. Due to thermal fluctuations, the horizon radius
fluctuates in a stochastic way. The key is to introduce the
horizon radius of the fluctuating black hole as the order
parameter on the free-energy landscape. The formalism is
in analogy to the stochastic motion of Brownian particles
[27]. However, these works [19–21] are only available in
the overdamped limit where the friction is assumed to be

large enough. It is natural to consider how the kinetics of
the black hole phase transition is affected by the friction.
To address the effect of the friction, we propose that the

stochastic dynamics of the black hole phase transition
should be effectively governed by the Langevin equation or
equivalently described by the Fokker-Planck equation in
phase space [28]. The proposal is inspired by the studies of
Feynman-Vernon [29] and Caldera-Leggett [30,31], and
based on the assumption that at the macroscopic emergent
level, there are three kinds of effective forces acting on the
order parameter of the black hole state originating from the
interactions between the order parameter and the micro-
scopic degrees of freedom of the effective thermal bath or
from the interaction among all the microscopic degrees of
freedom of the black hole. Kramers showed that the
escaping rates of a Brownian particle must have a maxi-
mum for the intermediate damping [32], which is known as
the Kramers turnover [33,34]. We will demonstrate the
kinetic turnover of the black hole phase transition by
calculating the mean first passage time (MFPT) and its
fluctuations. Our results show that the kinetics has dra-
matically different behavior in the high/low damping
regime. Because the friction is a reflection of the micro-
scopic degrees of freedom acting on the macroscopic
degrees of freedom (horizon radius) for the black hole
[35], studying the kinetics of the black hole phase transition
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in the whole friction regime provides us a new way to probe
the underlying microscopic interactions [9,10].

II. FREE-ENERGY LANDSCAPE OF
THE BLACK HOLES

We focus on the phase transition of the Reissner-
Nordström Anti–de Sitter (RNAdS) black hole [18] by
treating the cosmological constant as the thermodynamic
pressure [36–38]. In a certain temperature regime, there are
three branches of the RNAdS black hole solutions, i.e., the
small, the intermediate, and the large black holes, which
satisfy the Einstein field equations [18]. The large and the
small black holes are locally stable due to the timelike
boundary condition of the AdS spacetime [15,39,40], i.e.,
the Hawking radiation is reflected back and then absorbed
by the black hole in finite time [41]. However, the black
hole as a thermal entity fluctuates inevitably due to the
thermal noise [42]. In analogy to the bubbles generated
during the gas-liquid phase transition, the thermal noise
will give rise to the fluctuating black holes, which are not
necessarily the solutions to the Einstein field equations. We
construct the canonical ensemble at the specific temper-
ature T by including the three branches of the RNAdS black
holes as well as the fluctuating black holes [20]. The black
holes in the ensemble are distinguished by the continuous
order parameter, the horizon radius of the black hole.
The on-shell Gibbs free energy of the three branches of

the RNAdS black hole calculated from the Einstein-Hilbert
action can be properly rewritten as the thermodynamic
relationship of G ¼ M − THS. We define the generalized
off-shell Gibbs free energy of the fluctuating black hole
as [43,44]

G ¼ M − TS ¼ rþ
2

�
1þ 8

3
πPr2þ þQ2

r2þ

�
− πTr2þ; ð1Þ

where T is the ensemble temperature, rþ is the radius of the
fluctuating black hole or the order parameter, P ¼ − Λ

8π ¼
3
8π

1
L2 is an effective thermodynamic pressure with Λ being

the cosmological constant (negative value corresponding to
AdS universe) and L being the AdS curvature radius, andQ
is the charge of the black hole.
We quantify the free-energy landscape by plotting the

generalized Gibbs free energy as a function of black hole
radius rþ in Fig. 1. When Tmin < T < Tmax, the free-
energy landscape exhibits the shape of the double well. The
small and the large black holes are locally or globally stable
states, while the fluctuating black holes and the intermedi-
ate black hole are unstable states. These unstable black
holes are treated as the transient states, which are the
bridges in the phase transition process. The probability of
generating a fluctuating black hole is then determined by
the generalized Gibbs free energy via the Boltzmann law
pðrþÞ ∼ e−GðrþÞ=kBT . In this sense, the generalized Gibbs

free energy can be taken as the effective potential when
studying the dynamics of the phase transition. This is the
free- energy landscape description of the RNAdS black
holes. This description is universal in studying the black
hole phase transition [19–21,45–53].

III. EFFECTIVE STOCHASTIC DYNAMICS OF
BLACK HOLE PHASE TRANSITION

We discuss the effective theory of the stochastic dynam-
ics of the black hole phase transition. For simplicity, we use
the symbol r to denote the black hole radius or the order
parameter. Note that the generation of the fluctuating black
hole is completely stochastic and the dynamical process is
assumed to have the coarse-grained description by using
the order parameter. Note that black hole is a macroscopic
object with the number of the microscopic degrees of
freedom proportional to eS. The horizon radius as the order
parameter emerges from certain combination of the micro-
scopic degrees of freedom while the rest of the microscopic
degrees of freedom plays the role of an effective heat bath
interacting with the order parameter (horizon radius). In
fact, we are considering the effective dynamics of the black
hole state described by the single order parameter in the
potential of the free- energy landscape, interacting with the
effective heat bath. The effective heat bath can be consid-
ered as the environment. When the system interacts with
the environments, general stochastic Langevin equation for
the evolution of the reduced system with the environments
averaged out can be derived from the microscopic dynam-
ics [29]. Our model is analogous to the well-known
Caldeira-Leggett model in the context of quantum dis-
sipative systems, which describes the single particle in the
one-dimensional potential coupled with a heat bath mod-
eled by a collection of harmonic oscillators [30,31].
For a generic discussion, we can follow the studies of

Feynman-Vernon [29] and Caldera-Leggett [30,31] to
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FIG. 1. Generalized Gibbs free energy as the function of black
hole radius rþ for P < Pc ¼ 1

96πQ2. In the plot, P ¼ 0.32Pc,

Q ¼ 1, Tmin ¼ 0.0256, Tmax ¼ 0.0344, and TPT ¼ 0.02703 is
the phase transition temperature. Pc is the critical pressure.
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assume that the total Hamiltonian of the system and
environment to be Htot ¼ Hs þHenv where Hs ¼ 1

2
mv2 þ

VðxÞ is the Hamiltonian of the system describing
the single particle in the one-dimensional potential
while Henv ¼ P

j ½12 mjv̄2j þ 1
2
mjω

2
jðx̄j − κj

mjω
2
j
xÞ2� is

the Hamiltonian of the environment including the inter-
actions between the system and the environment. The
environment is modeled as the combinations of the many
harmonic oscillators mimicking the underlying micro-
scopic degrees of freedom. The variables fx̄j; v̄j; mj;ωjg
are the coordinates, velocities, masses, and frequencies of
the harmonic oscillators of the environment, while fκjg
are the system-environment coupling constants. After
averaging the environments, the stochastic evolutionary
equation for the reduced system dynamics can be derived
as ẍ ¼ − 1

m ∂xVðxÞ −
R
t
0 ζðt − t0Þ_xðt0Þdt0 þ ηðtÞ, where

ζðtÞ ¼ 1
m

P
j

κ2j
mjω

2
j
cosωjt represents the friction caused by

the interactions between the order parameter x and the

environmental degrees of freedom, while ηðtÞ ¼
1
m

P
j κjf½x̄jð0Þ − κj

mjω
2
j
xð0Þ� cosωjtþ _̄xjð0Þ sinωjt

ωj
g repre-

sents the stochastic force. When the environmental
degrees of freedom fluctuate on a much faster timescale
than the system dynamics, the friction can be approximated
as ζðtÞ ¼ 2ζδðtÞ without memory. The stochastic
dynamics of the reduced system then follows
ẍ ¼ − 1

m ∂xVðxÞ − ζ _xþ ηðtÞ. If the initial degrees of the
freedom of the environment follow the Boltzmann equi-
librium distribution, then it can be shown that the stochastic
force follows Gaussian statistics, hηðtÞi ¼ 0 and
hηðtÞηðt0Þi ¼ 2ζT

m δðt − t0Þ, where T is the initial equilibrium
temperature of the environment. The relationship between
the fluctuation strength 2ζT

m and friction ζ is guaranteed by
the fluctuation-dissipation theorem. Thus we can see that if
we take the horizon size of the black hole as the order
parameter, the dynamics of the black hole state is then
determined by the gradient of the generalized free-energy
potential and the stochastic force where the fluctuation
strength is related to the friction between the horizon size
and the rest of the degrees of the freedom of the black hole
as well as the associated temperature.
Inspired by the Caldeira-Leggett model, we assume that

the effective stochastic dynamics describing the evolution
along the order parameter is determined by three forces
specified below. The first force is the effective friction
along the order parameter. It is interpreted as the interaction
or the dissipation of the microscopic degrees of freedom
from the effective heat bath acting on the order parameter.
The friction coefficient represents the strength of this
interaction. The second one is the thermodynamic driving
force emergent from the interactions among all the micro-
scopic degrees of freedom of the black hole. The free-
energy landscape plays the role of an effective potential.

The third force represents the stochastic force that comes
from the microscopic degrees of freedom of the effective
heat bath on faster timescale acting on the relatively slower
macroscopic order parameter. Since the black hole has a
huge number of the degrees of freedom, we can character-
ize the statistical nature of the stochastic force by approxi-
mating its probability distribution as Gaussian. It should be
noted that these interpretations are completely parallel to
the Caldeira-Leggett model. In this way, we can formulate
the effective theory of the stochastic dynamics for the black
hole phase transition as follows.
In analogy to the motion of a Brownian particle, we

propose that the dynamics of the black hole phase transition
is governed by the Langevin equation [27,28]:

̈r ¼ −ζ_r −
∂G
∂r þ ηðtÞ; ð2Þ

where the dot represents the time derivative, ζ is the friction
or damping coefficient, and ηðtÞ is the stochastic force
caused by the thermal fluctuation. The stochastic force is
the Gaussian white noise with zero mean, and satisfies the
fluctuation-dissipation theorem,

hηðtÞi ¼ 0; hηðtÞηðsÞi ¼ 2ζTδðt − sÞ; ð3Þ

where the Boltzmann constant kB is set to 1. Introducing
the velocity v ¼ _r, the Langevin equation can be cast into
the form of

_r ¼ v; _v ¼ −ζv −
∂G
∂r þ ηðtÞ: ð4Þ

The corresponding Fokker-Planck equation in phase space
is given by [28]

∂
∂t ρðr; v; tÞ ¼

�
−v

∂
∂rþ

∂G
∂r

∂
∂v

þ ζ

� ∂
∂v vþ T

∂2

∂v2
��

ρðr; v; tÞ: ð5Þ

Although the evolution dynamics at the emergent level is
stochastic and unpredictable as described by the Langevin
equation, the evolution of the distribution probability
ρðr; v; tÞ of the fluctuating black holes in the ensemble
satisfies the linear Fokker-Planck equation and is
predictable [27,28].

IV. KINETIC TURNOVER OF THE RNADS BLACK
HOLE PHASE TRANSITION

At this point, we do not know the strength of the
underlying interaction or the dissipation of the microscopic
degrees of freedom. However, the friction as a reflection of
the underlying interactions may affect the kinetics of the
black hole phase transition. In this section, we quantify the
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kinetics and its turnover of the RNAdS black hole phase
transition. When the potential barrier on the free-energy
landscape is high enough, the kinetics time is amenable to
the analytical derivations depending on whether ζ is large,
small, or intermediate [32–34].

A. Large ζ

For large ζ, the dynamics quickly reaches the terminal
velocity, so that _v ¼ 0. The dynamics is then effectively
one dimensional in r. By eliminating the variable v, the
time evolution of the reduced probability ρðr; tÞ ¼Rþ∞
−∞ ρðr; v; tÞdv is governed by the diffusion equation [28]

∂ρðr; tÞ
∂t ¼ D

∂
∂r

�
e−βGðrÞ

∂
∂r ½e

βGðrÞρðr; tÞ�
�
; ð6Þ

where D ¼ T=ζ is the diffusion coefficient and β ¼ 1=T is
the inverse temperature. This is the equation proposed in
[19–21] to describe the phase transition dynamics of
black holes.
Without loss of generality, we consider the MFPT of the

small black hole state ðr ¼ rsÞ escaping over the effective
potential barrier ðr ¼ rmÞ on the free-energy landscape as
depicted in Fig. 2. By choosing the initial distribution
ρðr; 0Þ ¼ δðr − rsÞ and the absorbing boundary condition
ρðrm; tÞ ¼ 0 at the end, the formal solution to the diffusion
equation (6) is [27]

ρðr; tÞ ¼ etDδðr − rsÞ; ð7Þ

with the operator D ¼ D ∂
∂r ½e−βGðrÞ ∂

∂r eβGðrÞ�.
Define ΣðtÞ ¼ R rm

0 ρðr; tÞdr to be the probability that the
state has not made a first passage by time t. Note that the
first passage time is a random variable. The distribution of

the first passage is given by FpðtÞ ¼ − dΣðtÞ
dt . Then the

MFPT is [27]

hti ¼
Z þ∞

0

tFpðtÞdt ¼
Z þ∞

0

dtðetD†
1Þ; ð8Þ

with the adjoint operator D† ¼ DeβGðrÞ ∂
∂r ½e−βGðrÞ ∂

∂r�. The
MFPT satisfies the adjoint equation D†hti ¼ −1, the
solution of which is given by [27]

hti ¼ 1

D

Z
rm

rs

dr
Z

r

0

dr0eβðGðrÞ−Gðr0ÞÞ; ð9Þ

where the reflecting boundary condition at r ¼ 0 is
imposed. One can get an approximate formula for the
MFPT. The generalized Gibbs free energy near the mini-
mum and the maximum can be approximated by the
quadratic expansion as

GðrÞ ¼ Gðrs=mÞ �
1

2
ωs=mðr − rs=mÞ2 þ � � � : ð10Þ

By performing the Gaussian integral, one can obtain the
approximate expression of the MFPT [27]:

hti≊ πζ

ωsωm
eβW; ð11Þ

whereW ¼ GðrmÞ −GðrsÞ is the barrier height. The MFPT
is proportional to the friction coefficient. We can also see
clearly that the MFPT is exponentially related to the barrier
height between the two states (the small and the inter-
mediate black holes in this case). The factor in front of the
exponential also contributes to the kinetics through the
fluctuation ωs around the basin and ωm at the top of
the barrier, although to a much lesser degree than that from
the barrier height in the exponential.
The friction coefficient represents the coupling strength

of the microscopic degrees of freedom between the
effective heat bath and the order parameter. In the strong
coupling regime, i.e., in the large friction regime, increas-
ing the friction coefficient results in the slowing down of
the state transitions from one black hole state to another.
The analytical result of the MFPT in Eq. (11) indicates that
the strong interaction of the microscopic degrees of free-
dom from the effective heat bath acting on the order
parameter of the black hole will slow down the transition
rate from one black hole state to another.
It should be noted that in the previous studies [19–21,45–

53] of the dynamics of black hole phase transition, the
friction is assumed to be large and the Fokker-Planck
equation (6) in the order parameter space is used to study
the dynamics of the black hole phase transition. In this
section, we have provided a formal derivation of the
analytical expression of the MFPT, which discloses the
dependence of the kinetic time of the black hole phase
transition on the friction. The essential property of the
kinetic time in the overdamped regime originates from the

rs

rm

rl

0 2 4 6 8 10
0.85

0.90

0.95

1.00

1.05

r

G
(r

)

FIG. 2. Generalized Gibbs free energy at the phase transition
point. In the plot, P ¼ 0.4Pc, Q ¼ 1, and T ¼ TPT ¼ 0.0298.
The radii of the small, the intermediate, and the large black holes
are 1.34, 3.67, and 7.09.
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fact that the Fokker-Planck equation (6) is a diffusion
equation in the order parameter space. Therefore, the
positive correlation between the MFPT and the friction
is within the expectation.

B. Small ζ

In the case of extremely weak friction, by introducing the
action variable I [28]

IðEÞ ¼
I

pðrÞdr; pðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE −GðrÞÞ

p
; ð12Þ

the Fokker-Planck equation (5) can be reduced to the
diffusion equation again in the energy space

∂
∂t ρðI; tÞ ¼ ζT

∂
∂I e

−E=T 2πI
ωðIÞ

∂
∂I e

E=TρðI; tÞ; ð13Þ

where ωðIÞ ¼ 2π ∂E
∂I is the angular frequency at the action I.

In analogy to the large friction case, the MFPT for the black
hole state with the initial energy E to arrive at the top of the
barrier is determined by the adjoint equation,

ζTeE=T
∂
∂I I

∂I
∂Ee−E=T

∂
∂I htðEÞi ¼ −1: ð14Þ

The solution is then given by [28]

htðEÞi ¼ 1

ζT

Z
W

E

dE0

I0
exp

�
E0

T

� Z
I0

0

exp

�
−
E00

T

�
dI00: ð15Þ

Using the parabola approximation of the generalized Gibbs
free energy, one can get the MFPT [28]:

hti ¼ 2πT
ζωsIðWÞ exp ðβWÞ ≈ T

ζW
exp ðβWÞ: ð16Þ

This result indicates that the MFPT of the black hole
phase transition in the weak coupling regime is inversely
proportional to the friction. This behavior is completely
different from that in the overdamped regime. However,
one should note that the dependence of the MFPT on the
barrier height is not changed. According to our assumptions
made in the previous section, the small friction coefficient
is a result of the weak coupling of the microscopic degrees
of freedom between the effective heat bath and the order
parameter. In the weak coupling regime, the dynamics
becomes ballistic in the order parameter and the effective
energy or action is almost conserved. Increasing the friction
can enhance the effective diffusion in energy or action
space. Correspondingly, the transition rate becomes faster
when increasing the friction coefficient.
The kinetic time characterized by the MFPT is shown to

be linear with the friction efficient in the high damping
regime and inversely proportional to the friction efficient in

the low damping regime. The behavior of the kinetic time in
the low and the high friction can be interpreted as follows.
In the overdamped regime, the friction is large. Then the
dynamics of the black hole phase transition is diffusive in
the order parameter space (horizon size). Thus, the larger
friction will impede the motions along the order parameter.
As a result, the kinetics will be slowed down. On the other
hand, in the underdamped regime, the friction is small.
Then, the dynamics of the of the black hole phase transition
is diffusive in the energy space. This is because, without the
friction, the energy is conserved. Adding a bit of the friction
promotes the drift or diffusive dynamics in energy space.
Therefore, the resulting kinetics will be faster when the
friction is increased. This explains the nonmonotonic
behaviors of the kinetics of the black hole phase transition.
This indicates when the coupling strength among the black
hole degrees of freedom is strong, the black hole kinetics is
slower when the coupling is increased, while when the
coupling strength among the black hole degrees of freedom
is weak, the black hole kinetics is faster when the coupling
is increased.
To get more physical intuitive insights on how the

friction can influence the kinetics of the black hole phase
transition, we look at the kinetic formula for the black hole
dynamics in the overdamped regime, which is given by
Eq. (9). Since D ¼ kT=ζ from the fluctuation-dissipation
relation, one can see that the friction or coupling among the
black hole degrees of freedom acts as an effective kinetic
contribution eln ζ=kT to the free energy for the kinetics.
Further increasing the friction will increase this kinetic
contribution in the overdamped regime. On the other hand,
in the underdamped regime, the friction or coupling among
the black hole degrees of freedom acts as an effective
kinetic contribution e− ln ζ=kT to the free energy for the
kinetics. Further increasing the friction will decrease this
kinetic contribution in the underdamped regime.
In the current situation, we cannot determine the

interaction strength of the microscopic degrees of free-
dom from the underlying quantum gravity theory, which
is not completely constructed yet. If we assume that the
interaction strength can be varied, the friction coefficient
representing this interaction strength can be taken as a
variable. If one changes the friction coefficient from the
relatively small value to a large value, the MFPT of
the black hole phase transition, which can be regarded as
the function of the friction coefficient, will decrease
firstly and increase eventually. From the analytical
expressions Eq. (11) and Eq. (16), we can conclude
that there is a turnover point of the MFPT. Therefore, we
have demonstrated the turnover of the kinetics of the
black hole phase transition analytically. This implies the
underlying interactions of the microscopic degrees
of freedom between the effective heat bath and the
order parameter do affect the kinetics of the black hole
phase transition.
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However, what we are really interested in is to probe or
determine the interaction strength of the microscopic
degrees of freedom by using the kinetics of the black hole
phase transition. It is expected that the turnover property
can be used to probe the coupling strength of the interaction
among the microscopic degrees of freedom of the black
hole. However, the MFPTof the black hole phase transition
is not quite adequate to determine the interaction strength,
because the MFPT is not a monotonic function of the
friction coefficient. In the next section, we will show
numerically that the relative fluctuation of the kinetic time
of the black hole phase transition is a monotonic function of
the friction coefficient. This implies that the interaction
strength determines the relative fluctuation uniquely. The
kinetic turnover and the monotony of the relative fluc-
tuation together can be used to probe the underlying
interaction strength among the degrees of freedom of the
black hole.

V. NUMERICAL RESULTS

Note that the analytical formulas of the MFPT is only
valid in the high potential barrier case [32–34], i.e.,
βW ≫ 1. In order to reveal the kinetic turnover of the
phase transition more precisely, we invoke the numerical
method. We have solved the Langevin equation [Eq. (2)] to
collect the trajectories of the black hole state evolution.
Although the initial condition for the black hole state is
chosen as the small black hole, the trajectories of the
simulations are different because of the stochasticity of the
thermal fluctuation. We can read off the time that the black
hole used to escape from the small black hole to the
intermediate black hole. This time is just the first passage
time we have defined. In this way, we can obtain the MFPT
as long as we have enough trajectories. In the simulations,
we have collected 10000 trajectories for each friction
coefficient.
The kinetic time characterized by MFPT and its relative

fluctuations as the functions of the friction coefficient are
plotted in Fig. 3. The boundary condition used in the
numerical simulation is consistent with the absorbing
boundary condition ρðrm; tÞ ¼ 0 to derive Eq. (11). It is
shown that the numerical results coincide with the ana-
lytical formulas Eq. (11) and Eq. (16) in the small and large
friction limit, i.e., the MFPTof the kinetics of the black hole
phase transition is a linear function of the friction efficient
in the high damping regime and inversely proportional to
the friction efficient in the low damping regime. Therefore,
the kinetic turnover of the black hole phase transition is
confirmed numerically. The numerical results also show
explicitly that the MFPT is not a monotonic function of the
friction coefficient. If the MFPT of the black hole phase
transition can be observed in the future experiments, it still
cannot be used to determine the friction coefficient which
represents the interaction strength of the microscopic

degrees of freedom due to the nonmonotonic property of
the kinetic times.
The lower panel of Fig. 3 provides the numerical results

for the relative fluctuations of the MFPT. Firstly, it is
observed that the relative fluctuations of the kinetic time
show a sharp switching between the smaller values in the
low damping regime and the larger values in the high
damping regime. The reason can be explained as follows.
Since the relative fluctuations in the kinetics are related to
the strength of the stochastic force while the strength of the
stochastic force is proportional to the friction coefficient as
shown in Eq. (3), we can conclude that the amplitude of the
relative fluctuation is determined by the friction coefficient,
i.e., the larger relative fluctuation corresponds to the larger
friction and the smaller relative fluctuation corresponds to
the smaller friction.
Secondly, compared with the first panel of Fig. 3, it is

observed that the transition from the smaller relative
fluctuations to the larger relative fluctuations takes place
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FIG. 3. The MFPT (upper panel) and the relative fluctuations
(lower panel) as the functions of the friction coefficient ζ. In the
upper panel, blue dotted line is the numerical results obtained by
simulating the Langevin equation, while red and green lines are
plotted by using the MFPT formulas for the large and the small
friction coefficients. In the lower panel, the dotted line is the
numerical results and the red line is the corresponding plot of the
fitting function given by a tanhðbζÞ þ c. In this plot, P ¼ 0.4Pc,
Q ¼ 1, and T ¼ TPT ¼ 0.0298. The ratio of the barrier height
and the temperature is 3.23. The analytical formulas of the MFPT
are validated.
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at the kinetic turnover point of the black hole phase
transition. This result indicates that the kinetic turnover
can be detected not only by the MFPT but also by the
relative fluctuations in kinetics.
At last, the most important observation is that the relative

fluctuation in the kinetics is the monotonic function of the
friction coefficient. As explained in the last section, the
MFPT is not a monotonic function of the friction coef-
ficient, and therefore the MFPT cannot be used to deter-
mine the friction coefficient uniquely. Since the friction
coefficient represents how strong the order parameter
interacts with the microscopic degrees of freedom of the
black hole, theMFPT is not adequate to be used to probe the
strength of the microscopic interactions. The monotony of
the relative fluctuation as the function of the friction
coefficient provides a method to probe the strength of the
friction or the dissipation. In the future experiments, if the
first passage time of the black hole phase transition can be
measured and its relative fluctuation can be calculated, the
monotony property of the relative fluctuation as the function
of the friction coefficient can be used to determine the
interaction strength of the microscopic degrees of freedom
uniquely. Therefore, we conclude that the dramatically
different behavior of the kinetics and the corresponding
fluctuations of the black hole phase transition at the high/low
damping regime can be used to probe the coupling strength
of the microscopic degrees of freedom of the black hole.
We have also shown the numerical results of the kinetics

of the black hole phase transitions for different pressures
(corresponding to different cosmological constants) and
electric charges (details in Appendix B). The kinetics of
the black hole phase transition and the associated fluctua-
tions versus friction show similar behaviors. This suggests
the universality of the kinetics for the black hole phase
transition. On the other hand, due to the delicate balance
between energy (or enthalpy) and entropy multiplied by
temperature, the resulting free- energy landscape provides
the thermodynamic origin for the kinetic behavior of the
black hole phase transition [21]. As the pressure (the
absolute value of the cosmological constant) or the electric
charge increases, the free-energy barrier from the small to
the large black hole through the intermediate transition state
decreases. Therefore, it is easier or faster to switch from the
small black hole to the large black hole when increasing the
pressure (the absolute value of the cosmological constant) or
the electric charge.

VI. CONCLUSION

In summary, we have studied the stochastic dynamics of
the phase transition of the RNAdS black holes. The
dynamics of black hole phase transition at the macro-
scopic emergent level can be described by the evolution
along the order parameter (black hole radius). We propose
that the stochastic dynamics of the black hole phase
transition caused by the thermal fluctuations can be

effectively described by the Langevin equation or equiv-
alently by the Fokker-Planck equation in phase space,
where the generalized Gibbs free energy plays the role of
the effective potential. Our framework is different from
the stochastic semiclassical gravity based on the Einstein-
Langevin equation [54].
Notice the analogy between this approach to the emer-

gent black hole dynamics and condensed-matter physics
such as superconductor and superfluidity. The associated
order parameter such as the coherent wave function of
copper pairing for superconductivity emerges from the
microscopic degrees of freedom of the electronic inter-
actions. The Landau-Ginzburg free-energy function that
emerges from the microscopic degrees of freedom has been
successfully applied to describe the associated dynamics.
By the same token, the dynamics of the black hole phase
transition at the macroscopic level can be described and
determined by the forces emergent from the underlying
microscopic degrees of freedom.
The effect of the friction coefficient on the kinetics of

the RNAdS black hole phase transition is also addressed.
The analytical and the numerical studies confirmed that the
MFPTof the kinetics for the small/large RNAdS black hole
phase transition is linear with the friction efficient in the
high damping regime and inversely proportional to the
friction efficient in the low damping regime. The fluc-
tuation of the kinetics is shown to be large/small in the
high/low damping regime. Our results show that the
kinetics of the black hole phase transition has dramatically
different behavior in the high/low damping regime.
Because the friction is a reflection of the coupling of the
microscopic degrees of freedom with the order parameter,
we can conclude that studying the kinetics and the
fluctuations of the black hole phase transition in the whole
friction regime can provide us a new way to probe the
underlying interactions of the microscopic degrees of
freedom, i.e., the microscopic structure of the black holes.
Although the escaping kinetics from the small black hole

state to the large black hole through the intermediate black
hole state is analyzed in the present work, the main
conclusions for the escaping kinetics and its fluctuations
versus friction from the large black hole state to the small
black hole through the intermediate black hole state will not
be changed. This work provides a general framework to
study the stochastic dynamics of the black hole phase
transition and the black hole microstructures based on the
free-energy landscape. We expect that the discussion can be
generalized to other types of black hole phase transition.
At last, we would also like to point out that our current

discussion on the black hole kinetics is restricted to the
situation where the timescale for the Hawking radiation is
much longer than that of the phase transition dynamics.
When the friction becomes very large characterizing the
situation where the coupling among the black hole degrees
of the freedom is very strong, the kinetics of the black hole
is slowed down and can be comparable to the Hawking
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radiation timescale. In this scenario, both the friction or the
coupling and the Hawking radiation can influence the black
hole phase transition kinetics. This is also an interesting
topic worth further study in the future.

APPENDIX A: ANALYTICAL DERIVATION OF
MFPT FOR THE INTERMEDIATE ζ

For completeness, we also present the derivation of the
MFPT for the intermediate ζ. For intermediate ζ, it is
convenient to find the stationary solution of Eq. (5).
Around the barrier, by substituting the ansatz

ρðr; vÞ ¼ ξðr; vÞ exp
�
−
�
1

2
v2 þ GðrÞ

�
=T

�
ðA1Þ

into the stationary Fokker-Planck equation, we have [28]
�
−v

∂
∂r − ½ω2

mðr − rmÞ þ ζv� ∂∂vþ ζT
∂2

∂v2
�
ξðr; vÞ ¼ 0;

ðA2Þ
where the parabola approximation to the generalized Gibbs
free energy is used near the intermediate black hole. Trying
a special solution

ξðr; vÞ ¼ fððr − rmÞ þ αvÞ ¼ fðuÞ; ðA3Þ
Eq. (A2) transforms into [28]

−½ð1þ ζαÞvþ ω2
mαðr − rmÞ�f0ðuÞ þ ζTα2f00ðuÞ ¼ 0:

ðA4Þ
In order for the above equation to become a proper
differential equation, the factor in front of the first deriva-
tive must be proportional to u, i.e.,

½ð1þ ζαÞvþ ω2
mαðr − rmÞ� ¼ −λu ðA5Þ

should be satisfied, which gives

λ� ¼ −
ζ

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m þ ζ2

4

r
;

α� ¼ λ�
ω2
m
: ðA6Þ

In this way, Eqs. (A2) and (A4) can be easily solved. Near
the bottom of the small black hole state well, all black hole
states in the ensemble are thermalized. Therefore, the
stationary solution is asymptotic to

ρðr; vÞ ¼ Z−1 exp

�
−
�
1

2
v2 þGðxÞ

�
=T

�
; ðA7Þ

with the normalization constant

Z ¼ 2πT
ωs

e−GðrsÞ=T: ðA8Þ

The approximate solution to the stationary Fokker-Planck
equation that satisfies the boundary condition ρðr >
rm; vÞ ¼ 0 and is asymptotic to the solution near the
bottom of the well is given by [28]

ρðr; vÞ ¼ ð2πTÞ−3=2 exp
�
−
GðrÞ −GðrsÞ þ 1

2
v2

T

�
ωsωmffiffiffiffiffiffiffiffi
ζαþ

p

×
Z þ∞

ðr−rmÞ−λþv=ω2
m

exp

�
−

ω4
mu2

2ζTλþ
du

�
: ðA9Þ

For the intermediate friction coefficient, the MFPT is given
by [28]

hti ¼ k−1 ¼
�Z þ∞

−∞
vρðrm; vÞdv

�
−1

¼
��

1þ ζ2

4ω2
m

�
1=2

þ ζ

2ωm

�
2π

ωs
exp ðβWÞ: ðA10Þ

This formula is also valid in the large friction regime. For
the large friction limit, it reduces to hti≊ 2πζ

ωsωm
eβW , which is

different from Eq. (11) with a factor of 2. This is caused by
the different boundary conditions we have used in the
derivation.

APPENDIX B: NUMERICAL RESULTS FOR
DIFFERENT PRESSURES AND CHARGES

We compare the numerical results for different electric
charge Q and pressure P. Note that the thermodynamic
pressure is defined by the relation P ¼ 3

8π
1
L2 ¼ − Λ

8π.
Changing the pressure is equivalent to changing the
cosmological constant Λ. The Langevin equation (2) is

8 6 4 2 0 2 4

4

6

8

10

ln

ln
t

FIG. 4. The MFPT as the function of the friction coefficient ζ
for different pressure P. In this plot, Q ¼ 1. The pressure
P ¼ 0.4Pc; 0.6Pc, and 0.8Pc for the blue, the green, and the
red dotted lines. For the given pressure and charge, the phase
transition temperature is determined by the equal depths of the
double basins as shown in Fig. 2. The corresponding phase
transition temperatures in this plot are 0.0298, 0.0354, and
0.0396, respectively. The ratios of the barrier height and the
temperature are 3.23, 0.841, and 0.143.
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solved to collect the trajectories of the state evolution
process from the small black hole to the large black hole.
In Fig. 4, we have plotted the MFPT as the function of

the friction coefficient ζ for different pressure P. For

P ¼ 0.4Pc, we have compared the numerical results with
the analytical formulas in Fig. 3. When increasing the
pressure, the ratio between the barrier height and the
temperature gets smaller. Then the analytical formulas
are not valid. In Fig. 4, we do not compare the analytical
formulas with the numerical results. From Fig. 4, the
kinetic turnover can be observed for different pressure.
When the pressure increases, the MFPT for the specific
friction coefficient decreases. The main reason behind this
is that the barrier height between the small and the
intermediate black holes decreases when increasing the
pressure, although the width of the potential well also
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FIG. 5. The relative fluctuations as the functions of the friction
coefficient ζ for P ¼ 0.6Pc (upper panel) and 0.8Pc (lower
panel). The blue points are the numerical results and the red lines
are the fitting functions. The fluctuations for P ¼ 0.4Pc are
presented in the lower panel of Fig. 3.
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FIG. 6. The MFPT as the function of the friction coefficient ζ
for different electric chargeQ. In this plot, P ¼ 0.002. The charge
Q ¼ 1, 1.1, and 1.15 for the blue, the green, and the red dotted
lines. The corresponding phase transition temperatures are
0.0355, 0.0348, and 0.0345. The ratios of the barrier height
and the temperature are 0.821, 0.357, and 0.194.
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FIG. 7. The relative fluctuations as the functions of the friction
coefficient ζ for Q ¼ 1 (upper panel), Q ¼ 1.1 (middle panel),
and Q ¼ 1.15 (lower panel). The blue points are the numerical
results and the red lines are the fitting functions.
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influences the kinetics [47]. The relative fluctuations in
kinetics for different pressure are plotted in Fig. 5. The
transitions from the small fluctuations to the large fluctua-
tions are also observed.
In Fig. 6, we have plotted the MFPT as the function of

the friction coefficient ζ for different electric charge Q.
Because the ratio between the barrier height and the
temperature is small, the analytical formulas are also not
valid. Only the numerical results are presented. The kinetic
turnover is also observed. When the electric charge
increases, the MFPT for the specific friction coefficient
decreases. This is also caused by the decreasing of the
barrier height when increasing the electric charge. The
relative fluctuations for different electric charges are plotted

in Fig. 7. There are transitions from the small fluctuations
to the large fluctuations for different charges.
In summary, for different pressure P (cosmological con-

stant Λ) and electric chargeQ, we have observed the kinetic
turnover and the transition behavior of the relative fluctua-
tions in the phase transition process from the small black hole
state to the large black hole through the intermediate black
hole state. For the phase transition from the large black hole
state to the small black hole state, we expect the same
conclusion. This indicates the conclusion for the kinetics of
the black hole phase transition is universal. The kinetic
turnover and the transition behavior of the relative fluctua-
tions in the black hole phase transition process can then be
used to probe the black hole microstructure.
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