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We present the first numerically stable nonlinear evolution for the leading-order gravitational effective
field theory (quadratic gravity) in the spherically-symmetric sector. The formulation relies on (i) the
harmonic gauge to cast the evolution system into quasilinear form (ii) the Cartoon method to reduce to
spherical symīmetry in keeping with the harmonic gauge, and (iii) order reduction to first order (in time) by
means of introducing auxiliary variables. The well posedness of the respective initial-value problem is
numerically confirmed by evolving randomly perturbed flat-space and black-hole initial data. Our study
serves as a proof-of-principle for the possibility of stable numerical evolution in the presence of higher
derivatives.
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I. INTRODUCTION

General relativity (GR) is in excellent agreement with an
ever-growing body of experimental tests. At the same time,
theoretical considerations strongly suggest that the theory is
incomplete: It is not known how to consistently couple GR
to quantum field theories of matter once backreactions are
non-negligible. Moreover, even classical matter distribu-
tions are prone to gravitational collapse and thus to the
formation of curvature singularities, typically accompanied
by geodesic incompleteness. See [1–4] for singularity
theorems in static and highly symmetric settings and,
e.g., [5,6] for numerical explorations in less symmetric
and dynamical settings.
Said theoretical breakdowns strongly motivate to embed

GR into the modern framework of effective field theory
(EFT) and treat the Einstein-Hilbert action merely as the
leading-order term in a local-curvature expansion of a
general diffeomorphism-invariant action of gravitational
(and matter) degrees of freedom. Inconsistencies in the
coupling to matter and the formation of singularities can
then be interpreted as a consequence of extrapolating the
EFT beyond its regime of validity: As the curvature grows
during gravitational collapse, higher-order terms in the EFT

will eventually become non-negligible and alter the dynam-
ics of GR at some, as of now untested, curvature scale. We
may encounter this scale anywhere between the largest
currently probed curvature scales and the Planck scale.
Indeed, quantum fluctuations are widely expected to induce
such EFT curvature corrections, cf. [7–11] for perturbative
quantum gravity, [12,13] for string theory, and [14–16] for
reviews in the context of asymptotic safety.
Since GR tends to hide regimes of growing curvature

behind event horizons [17], experimentally probing the
horizon-scale physics of black holes is presumably one of
the most promising ways to push the limits of the EFT of
gravity. A rapidly increasing number of gravitational-wave
(GW) events fromblack-hole binarymergers [18,19] provide
access to this, previously uncharted, strong-gravity regime.
Utilizing this data to constrain new physics beyond GR

requires obtaining alternative predictions for the leading-
order corrections in the above gravitational EFT. As large-
curvature regimes reveal the nonlinear character of
(beyond) GR dynamics, such predictions require numerical
relativity simulations, cf. [20–23] for pioneering work in
numerical GR. It is therefore crucial to find a well-posed
numerical evolution for said leading-order EFT corrections.
The existence of a well-posed initial value problem (IVP),
see [24,25] for reviews in GR, could pose a restriction for
any viable theory. Certainly, a well-posedness IVP (for
physically meaningful sets of initial data) is necessary to
perform any stable numerical evolution.
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First numerical simulations have been achieved in
specific beyond-GR theories such as dynamical Chern-
Simons [26,27], Einstein-dilaton-Gauss-Bonnet [28–32],
Horndeski theories [33], k-essence [34], and a study of EFT
terms at quartic order in curvature [35]. A stable numerical
evolution is guaranteed by either iterative treatment
[26,27,30], a dampening of high-frequency modes [35],
or by an established well-posed evolution at weak coupling
[31,36–38]. In contrast, at strong coupling the onset of ill-
posed regimes has been observed in [28,29].
Here, we investigate quadratic gravity (QG), i.e., the

gravitational EFT including all independent terms up to
quadratic order in curvature—sometimes also referred to as
Stelle gravity [8,39]. At the formal level, it has been shown
—without any constraint to weak coupling—that QG
admits a well-posed IVP [40], see also [41].
Accounting for EFT corrections to GR naturally implies

higher-order equations of motion. The latter are theoreti-
cally disfavored by the Ostrogradski theorem [42], which
states that nondegenerate higher-derivative theories result
in linearized degrees of freedom with opposite-sign kinetic
terms. Any nonvanishing coupling between these modes
implies the onset of a linear instability, cf., e.g., [43–46] for
related recent developments in the context of a unitary
quantum evolution of QG.
We emphasize that an Ostrogradski (in)stability and well

posedness are not necessarily related. On the one hand, the
Ostrogradski theorem is a physical statement: Theories that
exhibit opposite-sign kinetic terms can develop physical
instabilities. On the other hand, well posedness is a
mathematical property of partial-differential equations
(PDEs), crucial for numerical simulations, but not neces-
sarily related to physical implications. In particular, the
same theory can admit, both, well-posed and ill-posed
IVPs. We add that the absence of any well-posed IVP
would also signal a true physical shortcoming.
In fact, the present work can be viewed as a proof of

principle for a higher-derivative gravitational theory with
Ostrogradski ghosts, which nevertheless admits a well-
posed IVP and, in which, we can thus simulate spacetime
dynamics numerically. The proof in [40] establishes the
existence of a well-posed IVP at the level of the four-
dimensional equations of motion. As in GR, it remains
nontrivial to translate it into (3þ 1) form to obtain a well-
posed IVP suitable for actual numerical evolution. Here, we
do so in the reduced sector of spherically-symmetric
dynamics. This allows us to present the first nonlinear
evolution of physical initial data in QG.
The rest of the paper is organized as follows: in Sec. II,

we review the well-posed IVP formulation of QG, cf. [40];
in Sec. III, we use the Cartoon method [22,47] to reduce the
evolution equations to spherical symmetry and perform the
order-reduction in the symmetry-reduced setup; in Sec. IV,
we present the resulting stable numerical evolution for
perturbations of flat spacetime, as well as for perturbations

of the Schwarzschild solution, and find no indications for
ill-posed behavior; in Sec. V we conclude with a summary
and discuss the implications of our results for future works.
As for conventions, we use the ð−;þ;þ;þÞ signature;

we work in geometrized units, where (c ¼ 1, G ¼ 1), and
use latin letters as Lorentzian spacetime indices. Round
(square) brackets denote (anti-)symmetrization of the
enclosed pair of indices.

II. QUADRATIC GRAVITY AND THE NOAKES
EQUATIONS

QG incorporates the leading-order, i.e., curvature-
squared, corrections to GR and can be parametrized by
the action

SQG ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
1

16πG
Rþ αRabRab − βR2

�
: ð1Þ

Note that we have chosen the minus sign in the last term to
agree with conventions in the equations of motion in [40].
The first term is the common Einstein-Hilbert term where
we have, for the present section, reinstated Newton’s
constantG. In 4D, the most general corrections of quadratic
order in curvature can be parametrized by the two dimen-
sionless constants α and β. A potential Riemann-squared
term can be rewritten into the former through the Gauss-
Bonnet identity.
The associated equations of motion for QG contain (up

to) fourth-order derivative terms [8] and read

2Tab ¼ ðα − 2βÞ∇a∇bR − α□Rab −
�
1

2
α − 2β

�
gab□R

þ 2αRcdRacbd − 2βRRab −
1

2
ðαRcdRcd − βR2Þ

þ 1

16πG

�
Rab −

1

2
gabR

�
: ð2Þ

Here, we have included an energy-momentum tensor Tab
for potential matter sources.
In the linearized theory, it has been shown, cf. [8], that, in

addition to the massless spin-2 mode of GR, the linearized
Ricci scalar and linearized traceless Ricci tensor propagate
a massive scalar and massive spin-2 modes with respective
masses

m2
0 ¼

1

32πGð3β − αÞ ; m2
2 ¼

1

16πGα
: ð3Þ

The massive spin-2 mode is an Ostrogradski ghost, i.e., in
the linearized theory, its kinetic term has the opposite sign
in comparison to the massless graviton. In [40], Noakes
finds that the nonlinear evolution can be formulated with
the same degrees of freedom. Following this insight, the
Ricci scalar R≡ gabRab and the traceless Ricci tensor
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R̃ab ≡ Rab − 1=4gabR can be elevated to independent
variables, as indicated by the curly notation. From here
on, these should no longer be evaluated on the metric.
Rather, they are treated as independent evolution variables.
Reexpressing the parameters α and β by the two massesm2

0

and m2
2, the equations of motion can be separated into a

trace (second equation below) and a traceless (third
equation below) part, i.e.,

RabðgÞ ¼ R̃ab þ
1

4
gabR; ð4Þ

□R ¼ m2
0Rþ 2Tc

c; ð5Þ

□R̃ab ¼ m2
2R̃ab þ 2TðTLÞ

ab

−
1

3

�
m2

2

m2
0

− 1

��
∇a∇bR −

1

4
gabm2

0R
�

þ 2R̃cdCacbd −
1

3

�
m2

2

m2
0

þ 1

�
RR̃ab

− 2R̃a
cR̃bc þ w

1

2
gabR̃

cdR̃cd: ð6Þ

Here,wehave supplemented the trace and traceless equations
by the definition of the Ricci curvature in terms of the metric
(on the left-hand side) and in terms of the fiducial variables
(on the right-hand side), cf. Eq. (4). The latter provides a
second-order evolution equation for the metric in which the
fiducial variables appear as sources, i.e., without derivatives.
The matter sources are also split into trace and traceless parts
(indicated by a ðTLÞ superscript) and, in turn, only source the
fiducial variables. Furthermore, we have introduced the
Weyl-tensor Cabcd for brevity. The latter can equivalently
be expressed in terms of Rabcd, R̃ab, and R as

Cabcd ¼ Rabcd þ gb½cR̃a�d þ gd½aR̃c�b þ
1

6
ga½dgb�cR: ð7Þ

Therefore, the metric appears in the trace and traceless
equation, cf. Eqs. (5)–(6), only as part of the covariant
derivatives, as well as in Rabcd.
The trace and traceless Ricci variablesR and R̃ab appear

merely as “fiducial sources,” i.e., as terms without deriv-
atives. Thus, the metric equation, cf. Eq. (4), can be treated
as in GR, where (generalized) harmonic coordinates allow
us to express the Ricci tensor as a strongly hyperbolic
quasilinear second-order differential operator. More explic-
itly, the Ricci tensor on the left-hand side of Eq. (4) can be
expressed as

RabðgÞ ¼ −
1

2
gcdgab;cd þ gcðaFc

;bÞ þO1
abð∂gÞ; ð8Þ

where we use the usual comma notation for partial
derivatives, and Fa ¼ −gcdΓa

cd is a gauge potential which,

provided one works in (generalized) harmonic gauge, i.e.,
Fa ¼ 0 (Fa ¼ const), reveals the strongly hyperbolic
quasilinear character. Additional lower-order derivative
terms are denoted by O1

abð∂gÞ.
With (generalized) harmonic coordinates at hand and by

expanding the Riemann tensor, as well as all covariant
derivatives in terms of the metric, the evolution of the
variables gab, R, and R̃ab can be written as

gcdgab;cd ¼ −2R̃ab −
1

2
gabRþO1

abð∂gÞ; ð9Þ

gcdR;cd ¼ m2
0R; ð10Þ

gcdR̃ab;cd ¼ O2
abð∂∂R; ∂R̃; ∂∂gÞ: ð11Þ

Again, we summarize lower-order terms with O1
abð∂gÞ and

O2
abð∂∂R; ∂R̃; ∂∂gÞ with the notation in brackets indicat-

ing the highest order of derivatives of these terms. As will
become clear below, their explicit form is irrelevant
regarding well posedness. Nevertheless, we explicitly
provide their form in Appendix, where we also correct
some typos in comparison to [40,41].
The above system is not yet of diagonal quasilinear

form, due to both ∂∂R and ∂∂g terms appearing in the
traceless equation, cf. Eq. (11). However, the system is
amenable to diagonalization because of the lack of ∂R̃
contributions in the (already diagonal-form) equations for
R [Eq. (10)] and g [Eq. (9)], see [40] for more formal and
general statements. More explicitly, the given PDEs can be
diagonalized by introducing extra variables, Va ≡R;a and
habc ≡ gab;c, and adding derivatives of the former two
equations to the system, i.e.,

gmnVa;mn ¼ Oað∂V; hÞ; ð12Þ
gmnhabc;mn ¼ Oabcð∂hÞ; ð13Þ

gmnR̃ab;mn ¼ O2
abð∂V; ∂h; ∂R̃Þ: ð14Þ

This extended system is now of diagonal quasilinear form
and the standard theorems for hyperbolicity [48] apply,
cf. [40] for a more detailed proof and our separate
publication [49] for a full (3þ 1) formulation of QG.
Treating R̃ab and R as independent variables, Eqs. (4)–

(6) only describe the physical evolution of QG if additional
constraints guarantee that R̃ab andR equate to their metric
counterparts. This can be captured by introducing a
constraint variable Cab ¼ Gab − R̃ab þ 1=4gabR, describ-
ing the deviation of the fiducial variables from the physical
Einstein tensor. Demanding that Cab and its first time
derivative vanish (Bianchi constraints), ensures that the
initial data is physical. Similarly, since the above formu-
lation as a quasilinear system requires harmonic coordi-
nates, we need to ensure that the initial data does so too.
Overall, the initial-data constraints read
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Fa ¼ 0; ð15Þ

£nFa ¼ 0; ð16Þ

Cab;b ¼ 0; ð17Þ

ð£nCabÞ;b ¼ 0; ð18Þ

where £n denotes Lie derivatives along a timelike normal
vector na, orthogonal to the initial-data hypersurface. A
similar order reduction, as for the evolution equations
above, cf. [40], ensures that also the propagation of the
constraints can be written as a quasilinear diagonal second-
order system.
In addition, initial data has to obey the usual Gauss-

Codazzi (or Hamiltonian and shift) constraints of GR,
which read

nanbCab ¼ 0; ð19Þ

nahbcCab ¼ 0: ð20Þ

Finally, also the physical constraints are preserved in the
temporal direction (secondary constraints).
Counting the number of pieces of independent initial data

reveals that the nonlinear theory retains the same number of
degrees of freedom as the linearized one. Equations (4)–(6)
constitute a set of 20 second-order evolution equations
[equivalent to the ten fourth-order equations in Eq. (2)].
At the same time, the harmonic constraints [Eqs. (15)–(16)],
the Bianchi constraints [Eqs. (17)–(18)], and the Gauss-
Codazzi constraints [Eqs. (19)–(20)] require 8 relations
among the initial data (including the respective secondary
constraints), each. Overall this amounts to 40 − 24 ¼ 16
pieces of independent initial data, corresponding to eight
degrees of freedom, i.e., a massless spin-2 (two degrees of
freedom), a massive scalar (one degree of freedom), and a
massive spin-2mode (five degrees of freedom).Wewill keep
track of this counting in the order reduction and the reduction
to spherical symmetry below.

III. REDUCTION TO SPHERICAL SYMMETRY
VIA THE CARTOON METHOD

Unfortunately, choosing coordinates in which spherical
symmetry is explicit makes it impossible to maintain the
harmonic gauge condition □xa ¼ 0 [50]. However, as we
have seen in the last section, the latter is crucial to achieve a
well-posed formulation, cf. discussion below Eq. (8). We,
therefore, remain in Cartesian coordinates ðt; x; y; zÞ and
follow theCartoonmethod [22,47] tomake use of theKilling
vector fields associated with spherical symmetry, i.e.,

ξμ1 ¼ xð∂yÞμ − yð∂xÞμ;
ξμ1 ¼ yð∂zÞμ − zð∂yÞμ;
ξμ1 ¼ zð∂xÞμ − xð∂zÞμ:

Note that the bold font ∂x;y;z indicates the basis 1-forms and
not partial derivatives. Expanding the respective vanishing
Lie-derivatives LξiX ¼ 0 acting on tensorial objects X, one
can reexpress partial derivatives in two of the spatial
directions, for instance ðy; zÞ, in terms of the third, for
instance, x. For scalarsΦ, vectorsΨa, and tensorsΠab, which
are preserved along the Killing vector field, one finds

∂yΦ ¼ y
x
∂xΦ;

∂yΨa ¼
1

x
ðy∂xΨa þ Ψxδ

y
a −Ψyδ

x
cÞ;

∂yΠab ¼
1

x
ðy∂xΠab − 2xδxðaΠbÞy þ 2yδyðaΠbÞxÞ;

and equivalently for (y ↔ z). These relations allow us to
reduce all spatial derivatives in Eqs. (9)–(11) to those with
respect to a single coordinate, e.g., x.
Furthermore, a coordinate transformation from a coor-

dinate system in which the spherical symmetry is manifest,
i.e., transforming X̄ ¼ ðt; r; θ;ϕÞ back to Cartesian coor-
dinates X ¼ ðt; x; y; zÞ, gives symmetry relations between
tensor components via

Πā b̄ ¼
∂Xa

∂X̄ā

∂Xb

∂X̄b̄
Πab: ð21Þ

For the present case of spherical symmetry, transformation
of the symmetry identities Πtθ ¼ 0, Πtϕ ¼ 0, Πrθ ¼ 0,
Πrϕ ¼ 0, Πθϕ ¼ 0, and Πθθ sin2 θ¼Πϕϕ back to Cartesian
coordinates implies the relations

Πty ¼
yΠtx

x
; Πtz ¼

zΠtx

x
; ð22Þ

Πxy ¼
xyðΠxx − ΠyyÞ

x2 − y2
; Πxz ¼

xzðΠxx − ΠyyÞ
x2 − y2

; ð23Þ

Πyz ¼
yzðΠxx − ΠyyÞ

x2 − y2
; ð24Þ

Πzz ¼
ðx2 − z2ÞΠyy − ðy2 − z2ÞΠxx

x2 − y2
: ð25Þ

Naturally, all of the above also holds for raised indices. For
R̃ab,we can additionallymake useof tracelessness to remove
one further component.
With the above relations, the evolution equations in

Eqs. (9)–(11) (with the explicit form of lower-order terms
provided in Appendix) can be expanded into evolution

AARON HELD and HYUN LIM PHYS. REV. D 104, 084075 (2021)

084075-4



equations for only eight independent variables, which we
group into

u ¼ ðR; gtt; gtx; gxx; gyyÞ and v ¼ ðR̃tt; R̃tx; R̃xxÞ;
ð26Þ

according to whether their associated evolution equations
are already quasilinear or not. The set of eight second-order
equations takes the form

∂2
tu ¼ Oðu; v; ∂tuÞ; ð27Þ

∂2
t v ¼ Oðu; v; ∂tu; ∂tv; ∂2

tuÞ: ð28Þ

Unfortunately, the explicit expressions are too large to
meaningfully be displayed here. Instead, we provide them,
along with all the subsequent reductions, in ancillary files
[51] and restrict the following discussion to a schematic
form. We note that, in distinction to Sec. II, the above
notation only keeps track of the order of time derivatives
such that all instances of O can potentially contain up to
second-order spatial derivatives.
The above second-order evolution system naively prop-

agates 16 free initial data functions, i.e., 8 degrees of
freedom. These are subject to physical constraints, which
we will come back to in Sec. III C. For now, we only want
to keep track of additional auxiliary constraints, which
appear due to the order-reduction below.

A. Reduction to quasilinear second-order form

In analogy to the 4D-diagonalization procedure in [40],
we introduce additional auxiliary variables

_u ¼ ð _R; _gtt; _gtx; _gxx; _gyyÞ≡ ∂tu ð29Þ

and differentiate the first two equations by time. Adding the
resulting equations to the evolution system results in

∂2
t _u ¼ Oðu; v; _u; ∂t _u; ∂tvÞ; ð30Þ

∂2
t v ¼ Oðu; v; _u; ∂t _u; ∂tvÞ; ð31Þ

∂tu≡ _u; ð32Þ

∂t _u ¼ Oðu; v; _uÞ: ð33Þ

In the above, we have added the definitions _u≡ ∂tu to the
evolution equations. Indeed, these defining equations for
the auxiliary variables act as first-order evolution equations
for u, while the original evolution equations become first-
order auxiliary constraints on _u since there are other
second-order evolution equations for the latter. Thereby,
the evolution system remains consistent with 21 − 5 ¼ 16
free functions of initial data.

B. Reduction to first-order form

By introducing eight further auxiliary variables,

ü≡ ∂t _u and _v≡ ∂tv; ð34Þ

the set of evolution equations is cast into a from in which it
becomes purely first order in time, i.e.,

∂tü ¼ Oðu; v; _u; ü; _vÞ; ð35Þ

∂t _v ¼ Oðu; v; _u; ü; _vÞ; ð36Þ

∂t _u≡ ü; ð37Þ

∂tu≡ _u; ð38Þ

∂tv≡ _v; ð39Þ

ü ¼ Oðu; v; _uÞ: ð40Þ

These evolution equations, which we have supplemented
by the defining equations for the auxiliary variables _u, _v,
and ü, now denote 21 first-order evolution equations.
It is now apparent that the original evolution equations

for u take the role of five auxiliary constraints, cf. Eq. (40),
such that the overall number of free functions to be
specified as initial data remains 21 − 5 ¼ 16.
We emphasize, once more, that we have hidden up-to-

second-order spatial derivatives in the notation such that the
auxiliary constraint in Eq. (40) is by no means algebraic but
rather a second-order spatial ordinary differential equation.
A formal proof of well posedness of the above evolution

equations would either require a further reduction of the
remaining higher-order spatial derivatives or to analyze
strong hyperbolicity as a first order in time and arbitrary
order in space systems along the lines of [54–56]. Instead of
pursuing such a formal proof, we focus on demonstrating a
stable numerical evolution in Sec. IV. Here, and in the
following, we use the term “numerical stability” to dis-
tinguish our setup from physical stability and emphasize
that a reliable numerical exploration of physical stability
requires a numerically stable setup. To be explicit, by
numerical stability, we refer to the apparent absence of
growth modes in the constraints.

C. Physical constraints

In spherical symmetry, the 24 physical constraints reduce
to 12 since in each four-component constraint equation two
Cartoon relations (arising from a relation equivalent to
Eq. (21) but for vectors) can be used. We are therefore left
with 21 − 5ðauxiliaryÞ − 12ðphysicalÞ ¼ 4 independent
pieces of initial data, i.e., two degrees of freedom.
More explicitly, the Hamiltonian and shift constraint

reduce to
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Ctt ≡Gtt − R̃tt þ
1

4
gttR ¼ 0; ð41Þ

Ctx ≡ Gtx − R̃tx þ
1

4
gtxR: ð42Þ

These physical constraints reproduce (some components
of) the auxiliary constraints, cf. Eq. (40), upon using
RðgÞ ¼ R. Since RðgÞ ¼ R and R̃abðgÞ ¼ R̃ab these are,
of course, the very relations which are supposed to be
enforced by the auxiliary constraints. This implies that
Hamiltonian and momentum constraints are automatically
fulfilled once the auxiliary constraints are fulfilled.
In the subsequent numerical analysis, we will monitor

the Hamiltonian constraint to confirm the absence of any
growth modes. Indeed, we find no indication for ill-posed
behavior.
Solving the constraints, both physical and auxiliary, is a

nontrivial task and will be addressed in future work. Below,
we will focus on perturbations of exact solutions of the
theory, for which all constraints are fulfilled. Moreover, we
focus on vacuum solutions of GR which, since they are
Ricci-flat, are exact solutions of QG as well.

IV. NUMERICALLY STABLE EVOLUTION

Having derived a set of first-order (in time) evolution
equations for the spherically-symmetric sector, cf. Eqs. (35)–
(39), we now proceed to solve these numerically. We evolve
random-noise perturbations of (i) flat spacetime and
(ii) Schwarzschild spacetime, cf. Sec. IVA for details of
the setup. In Sec. IV B, we perform convergence tests to
ensure that our system satisfies the expected order of
convergence. In Sec. IV C, we monitor the Hamiltonian
constraint Ctt, cf. Eq. (41), in order to confirm the absence of
any growth modes.

A. Numerical method

We use a fourth-order finite difference method to
evaluate spatial derivatives and a fourth-order Runge-
Kutta method to evolve in time. The computational domain
is chosen as x ∈ ð0; 10M� (x ∈ ð0; 10� for flat spacetime),
working in units of the mass M. We evolve all our
equations in a unigrid with Nx ¼ 1025 points. Hence,
the grid resolution is Δx ≃ 0.01M with the Courant-
Friedrichs-Lewy condition [57] set to 0.25. Therefore, as
we increase Nx (or decrease Δx), the time discretization Δt
decreases.
We perform several simulations in order to test whether

the numerical evolution of random initial data close to
(i) flat spacetime and (ii) Schwarzschild spacetime is
consistent with a well-posed IVP. For flat spacetime, we
initialize the evolution at

u0 ¼ ðR; gtt; gtx; gxx; gyyÞ ¼ ð0;−1; 0; 1; 1Þ;
v0 ¼ _v0 ¼ _u0 ¼ ü0 ¼ 0: ð43Þ

For Schwarzschild spacetime, we work in Cartesian Kerr-
Schild coordinates such that

gtt;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
rþ 2M

r
; gtx;0 ¼

2M
r

x
rþ 2M

;

gxx;0 ¼ 1þ 2Mx2

r3
; gyy;0 ¼ 1þ 2My2

r3
;

R0 ¼ 0;

v0 ¼ _v0 ¼ _u0 ¼ ü0 ¼ 0; ð44Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, and M is the mass of the

Schwarzschild black hole.
Given the respective background ðu0; v0; _u0; _v0; ü0Þ,

cf. Eq. (43) for flat and Eq. (44) for Schwarzschild
spacetime, we add random noise to all components of
initial data, i.e.,

uiðt ¼ 0Þ ¼ ui
0 þ AnoiseRANDðxÞ ∀ i ¼ 1;…; 5;

viðt ¼ 0Þ ¼ vi0 þ AnoiseRANDðxÞ ∀ i ¼ 1;…; 3;

_uiðt ¼ 0Þ ¼ _ui
0 þ AnoiseRANDðxÞ ∀ i ¼ 1;…; 5;

_viðt ¼ 0Þ ¼ _vi0 þ AnoiseRANDðxÞ ∀ i ¼ 1;…; 3;

üiðt ¼ 0Þ ¼ üi
0 þ AnoiseRANDðxÞ ∀ i ¼ 1;…; 5: ð45Þ

Here, Anoise is a noise amplitude, which we vary from 10−10

to 10−5, and RANDðxÞ generates random values between
−1 and 1. In Sec. IV B, we present the respective self-
convergence tests to validate our numerical implementation
and to verify the expected rate of convergence with
decreased noise amplitude. Since the random noise violates
the constraints, the above simulations constitute a robust
stability test. In Sec. IV C, we verify explicitly that the
Hamiltonian constraint does not exhibit any growth modes
that would signal an ill-posed IVP.

B. Convergence tests

We perform standard convergence tests to confirm the
validity of our implementation and to demonstrate con-
sistency with convergence of numerical errors to a well-
posed continuum system. Since we apply fourth-order
finite-difference stencils, the expected convergence rate
is four. We choose a coarsest resolution of h0 ¼ 0.01 and
then decrease to different resolutions hi with i ¼ 0; 1;…; 5
such that hiþ1 ¼ hi=2. Further, we decrease the grid
spacing by a factor of 2 when we increase the resolution.
Standard convergence tests have to be performed with

respect to a specified norm, suitable for the given system of
evolution equations. If second-order spatial derivatives of
the evolution variables dominate the numerical evolution,
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the standard L2 normmay not be appropriate and a different
norm, such as H1, may be more suitable, cf. [58,59] for
more comprehensive discussion. Indeed, the implemented
system of evolution equations, cf. Eqs. (35)–(39), may
contain second-order spatial derivatives. Due to the com-
plexity of the system, it is nontrivial to identify which of the
evolution variables are dominated by such second-order
spatial derivatives. Therefore, we perform and compare
convergence tests with respect to both the conventional L2

as well as the H1 norm.
Figure 1 summarizes the result of these convergence

tests. We plot differences (in L2 norm) of the constraint
value Ctt with different resolutions as a function of time.
The smaller resolution difference is rescaled by a factor of
16, which corresponds to the expected fourth-order con-
vergence rate, as detailed below. The differences remain
small and both lines lie on top of each other, which
confirms the fourth-order convergence.
To be specific, the self-convergence ratio is given by

Cself ¼ log2
jjFhi − Fhiþ1

jjq
jjFhiþ1

− Fhiþ2
jjq

; ð46Þ

where F is the state vector for all evolution variables, i.e.,
F ¼ ðu; v; _u; _v; üÞT , and jj · jjq is a general expression for
different norms. In the following, we denote with jj · jjL2

and jj · jjH1
the L2 and H1 norm, respectively. These norms

are computed in a discrete approximation that replaces each
continuum norm [60]. The exact convergence ratio, with
Fexact ¼ 0, is given by

Cexact ¼ log2
jjFhi − Fexactjjq
jjFhiþ1

− Fexactjjq
¼ log2

jjFhi jjq
jjFhiþ1

jjq
: ð47Þ

Determining Cexact only requires two different resolutions
and is thus numerically cheaper than determining Cself .
Given the employed fourth-order scheme, the expected
convergence rate is four, in both cases.
The appropriate rescaling of the random noise, with

decreased resolution, is determined by the respective norm.
Let Ahi be an amplitude of the random noise associated
with the respective resolution hi. For the L2 norm, we have

Cexact ¼ log2
jjFhi jjL2

jjFhiþ1
jjL2

∼ log2
OðAhiÞ
OðAhiþ1

Þ : ð48Þ

Hence, for the fourth-order numerical scheme at hand, we
need to multiply the amplitude of random noise with a
factor of 1=16 when doubling the resolution. For the H1

norm, we have

Cexact ¼ log2
jjFhi jjH1

jjFhiþ1
jjH1

¼ log2
jjFhi jjL2

þ jj∇Fhi jjL2

jjFhiþ1
jjL2

þ jj∇Fhiþ1
jjL2

∼ log2
OðAhiÞ

2OðAhiþ1
Þ ; ð49Þ

where ∇F is spatial derivative of F (not a covariant
derivative). To compute ∇F, the centered second-order
finite-difference method is applied. In this case, the norm is
dominated by the derivative term. Hence, for the fourth-
order numerical scheme at hand, we need to multiply the
amplitude of random noise with a factor of 1=32 when
doubling the resolution. In both cases, the arguments also
hold for the self-convergence ratio.
For all convergence tests, we choose a coarsest noise

amplitude of Ah0 ¼ 10−5. The self-convergence tests are
performed for flat and Schwarzschild spacetime in the L2

andH1 norm, cf. Figs. 3 and 4. The exact convergence tests
for the L2 andH1 norm are shown in Fig. 2. In all cases, we
verify the expected convergence ratio, both in L2 and H1,
although the L2 result is slightly more noisy. This is
consistent with a well-posed evolution with respect to both
norms, and we refrain from conclusively determining
whether second-order spatial derivatives dominate the
evolution. To do so, we would need to examine the system
of evolution equations, cf. Eqs. (35)–(39), term by term.

C. Absence of growth modes in the constraint violations

Here, we monitor the behavior of the Hamiltonian
constraint, cf. Eq. (41), for sufficiently long evolution
time. Since the other constraints (and the evolution equa-
tions) are coupled, it can be expected that violations of any
other constraint will percolate into the Hamiltonian con-
straint. The absence of growth modes in the constraint
violations suggests that we are evolving a well-posed IVP.

FIG. 1. Self-convergence test for Schwarzschild spacetime,
evolved until t=M ≃ 200 with M the mass of the black hole.
We choose m0 ¼ 0.01, m2 ¼ 0.01 in units of M. We plot the
differences of Ctt with different resolutions. The differences
remain small during the entire evolution. The smaller resolution
difference is rescaled by a factor of 16, in agreement with the
expected convergence rate of our implementation.
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For flat spacetime, we evolve initial data up to simulation
time t=ðtstep × ΔtÞ ≃ 15. We find that the Hamiltonian
constraint first decays and then stabilizes, cf. Fig. 5.
This indicates that the evolution time is sufficiently long
for the constraint violations to settle into a near-stable state.
There appear to be no growth modes in the constraint for
flat-space initial data, at least during the monitored time.
We conclude that the performed noise test finds no
indications of numerically unstable or ill-posed behavior.
Similar results persist for initial data corresponding to a

Schwarzschild black hole with mass M. We evolve sim-
ulations until t=M ≃ 200, which suffices for the constraint
violations to first decay and then to settle into a near-stable

state. We find no indication of numerically unstable or
ill-posed behavior, cf. Fig. 6.
In addition, we vary the masses m0 and m2 of the QG

spin-0 and spin-2 modes, cf. Eq. (3), in order to confirm
that the absence of growth modes in the constraint
evolution persists for a range of values for m0 and m2 in
the vicinity of the Schwarzschild mass M, cf. Fig. 7. We
observe numerically stable evolution for all tested values of
m0 and m2. The constraint decays and stabilizes over the
investigated time.
We emphasize that this does not test physical stability.

Even in mass ranges (for the QG masses m0 and m2) in
which the Schwarzschild solution could become physically
unstable, we expect the constraint evolution to be numeri-
cally stable. In particular, even during a potential physical
decay of Schwarzschild spacetime, possibly to some other

FIG. 3. Self-convergence test with flat spacetime as a function
of simulation time. We compute both L2 (upper panel) and H1

(lower panel) norms. Both cases exhibit the expected conver-
gence ratio.

FIG. 4. Self-convergence test for Schwarzschild spacetime as a
function of physical time. We compute both L2 (upper panel) and
H1 (lower panel) norms. Both cases exhibit the expected
convergence ratio.

FIG. 5. Constraint plot [L2 norm of the Hamiltonian constraint
in Eq. (41)] for flat-space initial data, performing a noise test with
different noise amplitudes, ranging from 10−5 to 10−10, top to
bottom. Each curve represents an increase by a factor of 10 in the
initial amplitude over the curve below.

FIG. 2. Exact convergence test. Both L2 (above) and H1

(below) are computed and show expected convergence ratio.
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solution of QG [61,62], the constraints should be preserved.
Wewill investigate such physical (in)stability in futurework.
Overall, we conclude that, both for flat space and for

Schwarzschild initial data, no indications of numerically
unstable behavior are found. In conjunction with the
convergence tests performed in Sec. IV B, this strongly
suggests that the evolution is indeed well posed.

V. CONCLUSION

As a proof of principle for well-posed numerical evolution
in beyond-GR theories with higher-curvature operators, we
successfully obtain the first fully nonlinear time evolution in
quadratic gravity, i.e., for a gravitational theory including the
lowest-order EFT corrections toGR.The systemof evolution
equations is obtained by (i) use of the harmonic gauge to treat
the Ricci scalar and traceless Ricci tensor as independent
variables, cf. [40], (ii) reduction to spherical symmetry,
which preserves harmonic gauge by use of the Cartoon
method [22,47], and (iii) order reduction to a set ofmanifestly
first-order (in time) evolution equations.

We perform nonlinear numerical simulations that are
fully consistent with an underlying well-posed IVP for
physically significant initial data. In particular, we observe
numerically stable dynamics, i.e., the absence of any
growth modes, in the spherically-symmetric sector for
random perturbations about flat spacetime and about the
Schwarzschild solution. (Being Ricci-flat, the latter is also
a solution of QG.)
This opens up several opportunities for future work. As a

direct application, we will investigate physically (un)stable
branches of Schwarzschild black holes (BHs) and other
exotic BHs in QG, cf. [62–68], to determine the final state
of spherical gravitational collapse.
As a long-term goal, the present study strongly motivates

that one can also establish a well-posed IVP in full (3þ 1)
dimensions, within computational infrastructures such as
[69,70]. We emphasize that while the proof in [40]
guarantees the existence of a well-posed IVP also in
(3þ 1) dimensions, the explicit construction of such a
formulation remains nontrivial. Establishing such a well-
posed IVP will eventually enable us to perform binary-
black-hole mergers to extract GW signals in this theory.
Finally, the presented methodology is, in principle, appli-

cable also to other theories with higher-order equations of
motion.As long as the order-reduced equations ofmotion are
amenable to diagonalization to quasilinear form, other
higher-derivative theories may also admit a well-posed IVP.
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APPENDIX: EXPLICIT FORM
OF LOWER-ORDER TERMS

The explicit form of the lower-order terms in the metric
Eq. (9) is given by

FIG. 6. Constraint plot [L2 norm of the Hamiltonian constraint
in Eq. (41)] for Schwarzschild initial data with added noise.
Different noise amplitudes were chosen as described in Fig. 5.

FIG. 7. Constraint plot for Schwarzschild initial data for
different QG mass parameters m0 and m2 (in units of the
Schwarzschild mass M).
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O1
abð∂gÞ ¼ FcΓðabÞc þ 2gedΓc

eðaΓbÞcd þ gcdΓe
adΓecb; ðA1Þ

where the first term vanishes upon use of harmonic coordinates. This comes about from the well-known expansion of the
Ricci tensor in harmonic coordinates.
The explicit form of O2

abð∂R; ∂R̃; ∂∂gÞ in the traceless equation, cf. Eq. (11), is given by

We have sorted the contributions in terms of their order in time derivatives: the first two lines collect all second-order terms,
lines three to five all first-order terms, the last two lines collect the zeroth-order contributions.
Furthermore, we have underlined terms arising from R̃cdRabcd (continuous) and from□R̃ab (dashed). The former agree

with [40] (apart from minor sign typos) but the latter do not. In any case, as discussed in the main text, a modification of
these terms (as long as their derivative order is preserved) does not impact Noakes’ proof of well posedness.

[1] R. Penrose, Phys. Rev. Lett. 14, 57 (1965).
[2] S. Hawking, Phys. Rev. Lett. 15, 689 (1965).
[3] R. P. Geroch, Phys. Rev. Lett. 17, 445 (1966).
[4] S. W. Hawking and R. Penrose, Proc. R. Soc. A 314, 529

(1970).
[5] M. Dafermos, Commun. Pure Appl. Math. 58, 0445 (2005).
[6] T. Harada, H. Iguchi, and K.-i. Nakao, Prog. Theor. Phys.

107, 449 (2002).
[7] G. ’t Hooft and M. J. G. Veltman, Ann. Inst. Henri Poincaré

Phys. Theor. A 20, 69 (1974).
[8] K. S. Stelle, Phys. Rev. D 16, 953 (1977).
[9] M. H. Goroff and A. Sagnotti, Phys. Lett. 160B, 81 (1985).

[10] I. G. Avramidi and A. O. Barvinsky, Phys. Lett. 159B, 269
(1985).

[11] A. E. M. van de Ven, Nucl. Phys. B378, 309 (1992).
[12] D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656

(1985).
[13] B. Zwiebach, Phys. Lett. 156B, 315 (1985).
[14] R. Percacci, An Introduction to Covariant Quantum

Gravity and Asymptotic Safety, Vol. 3 of 100 Years of
General Relativity (World Scientific, Singapore, 2017),
ISBN 9789813207172, ISBN 9789813207196,
ISBN 9789813207172, ISBN 9789813207196.

[15] A. Eichhorn, Front. Astron. Space Sci. 5, 47 (2019).
[16] M. Reuter and F. Saueressig, Quantum Gravity and the

Functional Renormalization Group (Cambridge University
Press, Cambridge, England, 2019), ISBN 9781107107328.

[17] R. Penrose, Riv. Nuovo Cimento 1, 252 (1969); Gen.
Relativ. Gravit. 34, 1141 (2002).

[18] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 116, 221101 (2016); 121, 129902(E) (2018).

[19] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. X 11, 021053 (2021).

[20] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428
(1995).

[21] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,
024007 (1998).

[22] F. Pretorius, Classical Quantum Gravity 22, 425 (2005).
[23] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).
[24] O. Sarbach and M. Tiglio, Living Rev. Relativity 15, 9

(2012).
[25] J. Isenberg, The Initial Value Problem in General Relativity

(Springer Berlin Heidelberg, Berlin, Heidelberg, 2014),
pp. 303–321, ISBN 978-3-642-41992-8.

[26] M. Okounkova, L. C. Stein, M. A. Scheel, and S. A.
Teukolsky, Phys. Rev. D 100, 104026 (2019).

AARON HELD and HYUN LIM PHYS. REV. D 104, 084075 (2021)

084075-10

https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1103/PhysRevLett.15.689
https://doi.org/10.1103/PhysRevLett.17.445
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1002/cpa.20071
https://doi.org/10.1143/PTP.107.449
https://doi.org/10.1143/PTP.107.449
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1016/0370-2693(85)91470-4
https://doi.org/10.1016/0370-2693(85)90248-5
https://doi.org/10.1016/0370-2693(85)90248-5
https://doi.org/10.1016/0550-3213(92)90011-Y
https://doi.org/10.1103/PhysRevLett.55.2656
https://doi.org/10.1103/PhysRevLett.55.2656
https://doi.org/10.1016/0370-2693(85)91616-8
https://doi.org/10.3389/fspas.2018.00047
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevD.52.5428
https://doi.org/10.1103/PhysRevD.52.5428
https://doi.org/10.1103/PhysRevD.59.024007
https://doi.org/10.1103/PhysRevD.59.024007
https://doi.org/10.1088/0264-9381/22/2/014
https://doi.org/10.1103/PhysRevLett.95.121101
https://doi.org/10.12942/lrr-2012-9
https://doi.org/10.12942/lrr-2012-9
https://doi.org/10.1103/PhysRevD.100.104026


[27] M. Okounkova, L. C. Stein, J. Moxon, M. A. Scheel, and
S. A. Teukolsky, Phys. Rev. D 101, 104016 (2020).

[28] J. L. Ripley and F. Pretorius, Classical Quantum Gravity 37,
155003 (2020).

[29] J. L. Ripley and F. Pretorius, Phys. Rev. D 101, 044015
(2020).

[30] M. Okounkova, Phys. Rev. D 102, 084046 (2020).
[31] W. E. East and J. L. Ripley, Phys. Rev. D 103, 044040

(2021).
[32] H. O. Silva, H. Witek, M. Elley, and N. Yunes, Phys. Rev.

Lett. 127, 031101 (2021).
[33] P. Figueras and T. França, Classical Quantum Gravity 37,

225009 (2020).
[34] M. Bezares, M. Crisostomi, C. Palenzuela, and E. Barausse,

J. Cosmol. Astropart. Phys. 03 (2021) 072.
[35] R. Cayuso and L. Lehner, Phys. Rev. D 102, 084008

(2020).
[36] A. D. Kovács, Phys. Rev. D 100, 024005 (2019).
[37] A. D. Kovács and H. S. Reall, Phys. Rev. Lett. 124, 221101

(2020).
[38] A. D. Kovács and H. S. Reall, Phys. Rev. D 101, 124003

(2020).
[39] K. S. Stelle, Gen. Relativ. Gravit. 9, 353 (1978).
[40] D. R. Noakes, J. Math. Phys. (N.Y.) 24, 1846 (1983).
[41] J. O. Morales and O. P. Santilln, J. Cosmol. Astropart. Phys.

03 (2019) 026.
[42] M.Ostrogradsky,Mem.Ac. St. PetersbourgVI 4, 385 (1850).
[43] D. Becker, C. Ripken, and F. Saueressig, J. High Energy

Phys. 12 (2017) 121.
[44] D. Anselmi and M. Piva, J. High Energy Phys. 05 (2018)

027.
[45] J. F. Donoghue and G. Menezes, Phys. Rev. D 100, 105006

(2019).
[46] A. Salvio, Phys. Rev. D 99, 103507 (2019).
[47] M. Alcubierre, S. Brandt, B. Bruegmann, D. Holz, E. Seidel,

R. Takahashi, and J. Thornburg, Int. J. Mod. Phys. D 10,
273 (2001).

[48] J. Leray and N., Institute for Advanced Study Princeton,
Hyperbolic Differential Equations (Princeton Institute for
Advanced Study, 1953), https://books.google.com/books?
id=q_w-AAAAIAAJ

[49] H. Lim and A. Held (to be published).
[50] E. Sorkin and M.W. Choptuik, Gen. Relativ. Gravit. 42,

1239 (2010).

[51] See the GitHub repository (https://github.com/aaron-hd/
QG-sphSymm-ancillary) for the Mathematica [52] script
and ancillary files. Parts of the derivation make use of the
xAct package [53] (http://www.xact.es/).

[52] W. R. Inc., Mathematica, Version 12.2, champaign, IL,
2020, https://www.wolfram.com/mathematica.

[53] J. M. Martin-Garcia, R. Portugal, and L. R. U. Manssur,
Comput. Phys. Commun. 177, 640 (2007).

[54] C. Gundlach and J. M. Martin-Garcia, Classical Quantum
Gravity 23, S387 (2006).

[55] R. Richter and D. Hilditch, J. Phys. Conf. Ser. 314, 012102
(2011).

[56] D. Hilditch and R. Richter, J. Hyperbol. Diff. Equat. 12, 1
(2015).

[57] R. Courant, K. Friedrichs, and H. Lewy, IBM J. Res. Dev.
11, 215 (1967).

[58] G. Calabrese, I. Hinder, and S. Husa, J. Comput. Phys. 218,
607 (2006).

[59] M. C. Babiuc, S. Husa, D. Alic, I. Hinder, C. Lechner, E.
Schnetter, B. Szilágyi, Y. Zlochower, N. Dorband, D. Pollney
et al., Classical Quantum Gravity 25, 125012 (2008).

[60] T. Giannakopoulos, D. Hilditch, and M. Zilhão, Phys. Rev.
D 102, 064035 (2020).

[61] V. Pravda, A. Pravdová, J. Podolský, and R. Švarc, Phys.
Rev. D 95, 084025 (2017).

[62] J. Podolský, R. Švarc, V. Pravda, and A. Pravdova, Phys.
Rev. D 101, 024027 (2020).

[63] H. Lu, A. Perkins, C. N. Pope, and K. S. Stelle, Phys. Rev.
Lett. 114, 171601 (2015).

[64] H. Lü, A. Perkins, C. N. Pope, and K. S. Stelle, Phys. Rev. D
92, 124019 (2015).

[65] H. Lü, A. Perkins, C. N. Pope, and K. S. Stelle, Phys. Rev. D
96, 046006 (2017).

[66] B. Holdom and J. Ren, Phys. Rev. D 95, 084034
(2017).

[67] K. Kokkotas, R. A. Konoplya, and A. Zhidenko, Phys. Rev.
D 96, 064007 (2017).

[68] A. Bonanno and S. Silveravalle, Phys. Rev. D 99, 101501
(2019).

[69] M. Fernando, D. Neilsen, H. Lim, E. Hirschmann, and H.
Sundar, SIAM J. Sci. Comput. 41, C97 (2019).

[70] R. Haas et al., The Einstein Toolkit, https://doi.org/10.5281/
zenodo.4298887 (2020); to find out more, visit http://
einsteintoolkit.org.

NONLINEAR DYNAMICS OF QUADRATIC GRAVITY IN … PHYS. REV. D 104, 084075 (2021)

084075-11

https://doi.org/10.1103/PhysRevD.101.104016
https://doi.org/10.1088/1361-6382/ab9bbb
https://doi.org/10.1088/1361-6382/ab9bbb
https://doi.org/10.1103/PhysRevD.101.044015
https://doi.org/10.1103/PhysRevD.101.044015
https://doi.org/10.1103/PhysRevD.102.084046
https://doi.org/10.1103/PhysRevD.103.044040
https://doi.org/10.1103/PhysRevD.103.044040
https://doi.org/10.1103/PhysRevLett.127.031101
https://doi.org/10.1103/PhysRevLett.127.031101
https://doi.org/10.1088/1361-6382/abb693
https://doi.org/10.1088/1361-6382/abb693
https://doi.org/10.1088/1475-7516/2021/03/072
https://doi.org/10.1103/PhysRevD.102.084008
https://doi.org/10.1103/PhysRevD.102.084008
https://doi.org/10.1103/PhysRevD.100.024005
https://doi.org/10.1103/PhysRevLett.124.221101
https://doi.org/10.1103/PhysRevLett.124.221101
https://doi.org/10.1103/PhysRevD.101.124003
https://doi.org/10.1103/PhysRevD.101.124003
https://doi.org/10.1007/BF00760427
https://doi.org/10.1063/1.525906
https://doi.org/10.1088/1475-7516/2019/03/026
https://doi.org/10.1088/1475-7516/2019/03/026
https://doi.org/10.1007/JHEP12(2017)121
https://doi.org/10.1007/JHEP12(2017)121
https://doi.org/10.1007/JHEP05(2018)027
https://doi.org/10.1007/JHEP05(2018)027
https://doi.org/10.1103/PhysRevD.100.105006
https://doi.org/10.1103/PhysRevD.100.105006
https://doi.org/10.1103/PhysRevD.99.103507
https://doi.org/10.1142/S0218271801000834
https://doi.org/10.1142/S0218271801000834
https://books.google.com/books?id=q_w-AAAAIAAJ
https://books.google.com/books?id=q_w-AAAAIAAJ
https://books.google.com/books?id=q_w-AAAAIAAJ
https://books.google.com/books?id=q_w-AAAAIAAJ
https://doi.org/10.1007/s10714-009-0905-8
https://doi.org/10.1007/s10714-009-0905-8
https://github.com/aaron-hd/QG-sphSymm-ancillary
https://github.com/aaron-hd/QG-sphSymm-ancillary
https://github.com/aaron-hd/QG-sphSymm-ancillary
http://www.xact.es/
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://doi.org/10.1016/j.cpc.2007.05.015
https://doi.org/10.1088/0264-9381/23/16/S06
https://doi.org/10.1088/0264-9381/23/16/S06
https://doi.org/10.1088/1742-6596/314/1/012102
https://doi.org/10.1088/1742-6596/314/1/012102
https://doi.org/10.1142/S0219891615500010
https://doi.org/10.1142/S0219891615500010
https://doi.org/10.1147/rd.112.0215
https://doi.org/10.1147/rd.112.0215
https://doi.org/10.1016/j.jcp.2006.02.027
https://doi.org/10.1016/j.jcp.2006.02.027
https://doi.org/10.1088/0264-9381/25/12/125012
https://doi.org/10.1103/PhysRevD.102.064035
https://doi.org/10.1103/PhysRevD.102.064035
https://doi.org/10.1103/PhysRevD.95.084025
https://doi.org/10.1103/PhysRevD.95.084025
https://doi.org/10.1103/PhysRevD.101.024027
https://doi.org/10.1103/PhysRevD.101.024027
https://doi.org/10.1103/PhysRevLett.114.171601
https://doi.org/10.1103/PhysRevLett.114.171601
https://doi.org/10.1103/PhysRevD.92.124019
https://doi.org/10.1103/PhysRevD.92.124019
https://doi.org/10.1103/PhysRevD.96.046006
https://doi.org/10.1103/PhysRevD.96.046006
https://doi.org/10.1103/PhysRevD.95.084034
https://doi.org/10.1103/PhysRevD.95.084034
https://doi.org/10.1103/PhysRevD.96.064007
https://doi.org/10.1103/PhysRevD.96.064007
https://doi.org/10.1103/PhysRevD.99.101501
https://doi.org/10.1103/PhysRevD.99.101501
https://doi.org/10.1137/18M1196972
https://doi.org/10.5281/zenodo.4298887
http://einsteintoolkit.org
http://einsteintoolkit.org
https://doi.org/10.5281/zenodo.4298887

