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How long does a light bulb shine in odd dimensional flat spacetimes, according to a distant observer?
This question is nontrivial because electromagnetic and gravitational waves, despite being comprised of
massless particles, can develop tails; they travel inside the light cone. To this end, I attempt to close a gap in
the literature by first deriving, strictly within classical field theory, the real-time electromagnetic dipole and
gravitational quadrupole energy and angular momentum radiation formulas in all relevant dimensions. The
even-dimensional case, where massless signals travel strictly on the null cone, depends on the time
derivatives of the dipoles and quadrupoles solely at retarded time, whereas the odd-dimensional ones
involve an integral over their retarded histories. Despite the propagation of light inside the null cone,
however, I argue that a monochromatic light bulb of some intrinsic duration in odd dimensions remains
approximately the same apparent duration to a distant detector, though the tail effect does produce a phase
shift and adds to the signal several transitory nonoscillatory inverse square roots in time. Analogous
remarks apply to a distant gravitational wave detector hearing from a finite duration quasiperiodic
quadrupole source.
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I. MOTIVATION

The flat spacetime wave operator ∂2 in even dimensions
higher than two (d ≥ 4) admits the retarded Green’s
function

Gevend≥4½x − x0� ¼
�
−

1

2πR
∂
∂R

�d−4
2 δ½T − R�

4πR
; ð1Þ

T ≡ t − t0; R≡ jx⃗ − x⃗0j; ð2Þ

while in all odd dimensions (d ≥ 3), it admits instead the
retarded Green’s function

Godd d≥3½x − x0� ¼
�
−

1

2πR
∂
∂R

�d−3
2 Θ½T − R�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 − R2

p : ð3Þ

With the Minkowski metric given by ημν≡
diag½1;−1;…;−1�, both Green’s functions in Eqs. (1)
and (3) obey the wave equation

∂2
xGd½x − x0� ¼ ∂2

x0Gd½x − x0� ¼ δðdÞ½x − x0�; ð4Þ

where ∂2 ≡ ηαβ∂α∂β and δðdÞ is the d-dimensional Dirac
delta function. By viewing xμ ¼ ðt; x⃗Þ as the location of
some observer, and x0μ ¼ ðt0; x⃗0Þ as that of the source,
Eq. (4) tells us the retarded Green’s function is the signal at

x generated by a spacetime point source at x0. Moreover, the
Dirac δ-function in Eq. (1) tells us (massless) waves
propagate strictly on the null cone T ¼ R in even dimen-
sions d ≥ 4; whereas the Heaviside step function in Eq. (3)
informs us the odd dimensional counterparts develop
tails—namely, the signal permeates the interior of the light
cone T > R. To further elaborate this distinction between
the causal structure of the wave signals in odd versus even
dimensions, consider the massless scalar wave equation

∂2ψ ¼ J; ð5Þ

whose solution can be expressed as the convolution

ψ ½x� ¼
Z
R1;d−1

Gd½x − x0�J½x0�ddx0: ð6Þ

As I illustrate in Fig. 1, due to the Dirac delta function of
Eq. (1) enforcing null cone only signal transmission, the
observer receives waves emitted only from the intersection
between her past null cone with the source’s world tube
(dashed line). Whereas, in odd dimensions, due to the tail
transmission of signals arising from the step function of
Eq. (3), the observer receives waves emitted from the entire
past history of the source’s world tube that lies within the
interior of her past null cone.
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One of the primary motivations behind the current work
is the real-time gravitational quadrupole formula—the
leading nonrelativistic expression for power emitted by a
gravitational system—is not known in odd dimensions
d ≥ 5.1 Specifically, Cardoso, Dias, and Lemos [2] and
Cardoso, Dias, and Figueras [3] encountered difficulties
deriving it because of the tail effect. In the latter [3], the
gravitational quadrupole formula was in fact obtained in all
dimensions, but only in frequency space; moreover, it was
derived by employing quantum field theory techniques to
extract the answer from the vacuum-to-vacuum transition
amplitude. That such sophisticated quantum methods have
to be brought in to derive an incomplete classical result,
where the real-time information is lost, suggests more effort
is warranted to improve our physical understanding of this
basic result in gravitation.
But why bother to understand better the quadrupole

formula in a dimension other than the 3þ 1 ones we reside
in? One reason is that d, the spacetime dimension, may be
considered a parameter in the equations of physics, and by
varying it we may develop a deeper appreciation of the
phenomenon that follow from them peculiar to our 4D
world. For instance, although null-traveling plane-wave
solutions of the homogeneous equation ∂2ψ ¼ 0 exist in all

dimensions, namely ψðxÞ ¼ expðik⃗ · x⃗� ijk⃗jtÞ, the signals
produced by a physically isolated system arises from the
superposition of the Green’s function weighted by the
associated source(s) and is therefore only tail-free in even
dimensions d ≥ 4. Since Green’s functions are s-waves
with respect to the variables T and R, there therefore
appears to be a fundamental incompatibility between
spherical waves and strictly-null propagation of physical
signals in odd dimensions.
Four dimensions is also the only dimension where both

radiation and the static Coulomb and Newtonian potentials
appear at the same order in the asymptotic 1=r expansion,
where r is the radial distance between observer and source.
To see this, first recall that, in an inertial Lorentz frame,
the spatial volume measure in spherical coordinates is
rd−2drdΩ, where dΩ is the infinitesimal solid angle. If Tμν

is the (pseudo)energy-momentum shear-stress tensor of the
associated radiation and r̂ is the unit radial vector, the
energy flux is

dE
dtΩ

¼ lim
r→∞

rd−2T0ir̂i: ð7Þ

2Hence, to yield a well defined nonzero energy loss to
infinity, the radiative portions of T0i must scale as 1=rd−2.
As we shall witness below, because Tμν for both electro-
magnetism and gravitation are quadratic in the fields, the
radiative terms of the photon and graviton field must in turn
scale as 1=rðd=2Þ−1. On the other hand, in the static limit,
both photon and graviton fields must satisfy some version
of Gauss’ law. For a point charge or mass, the correspond-
ing linearized field is the Green’s function of the Laplacian,
which scales as 1=rd−3. [The special case of d ¼ 3 does not
even return a power law Green’s function, but rather a

logarithm: 1=∇⃗2 ¼ ð2πÞ−1 ln r.] The unique solution to
1=rðd=2Þ−1 ¼ 1=rd−3 is d ¼ 4. By taking the far-zone limits
of the solutions to the Lorenz gauge vector potential and the
linear de Donder gauge gravitational metric perturbations
in, respectively, Eqs. (A74)–(A75) and (B11)–(B12) of [4],
we further see that the coefficients of 1=rðd=2Þ−1 are
proportional to (in odd dimensions) ðd − 3Þ=2 and (in even
dimensions) ðd − 4Þ=2 time derivatives of the associated
electromagnetic current and matter stress tensor; whereas
that of the 1=rd−3 has zero time derivatives acting on these
same sources. To this end, in Secs. III and IV below, wewill
not only compute the electromagnetic and gravitational
energy flux given in Eq. (7), but also their angular
momentum radiated. By considering rotations on the spatial
ði; jÞ-plane, the associated angular momentum flux is

FIG. 1. Causal structure of signals in odd versus even dimen-
sional Minkowski spacetime. The Dirac delta function of Eq. (1),
when employed in Eq. (6), tells us the signal received by
the observer can only come from her past light cone. This is
the dashed segment, representing the intersection between the
observer’s backward light cone and the world tube of the source
responsible for the waves. In contrast, the step function of Eq. (3)
when employed in Eq. (6) says the signal detected by the observer
comes from within her null cone (gray region). This means the
signal she receives at a given moment is the superposition of the
waves emitted from the source’s world tube lying within this gray
region.

1It should be noted, however, that the real-time massless scalar
synchrotron radiation in odd (2þ 1)- and (4þ 1)-dimensions has
been computed by Gal’tsov and Khlopunov [1].

2Throughout this paper, Latin/English alphabets run over
spatial indices whereas Greek ones run over spacetime, with
the zeroth component denoting the time coordinate. Einstein
summation is in force unless otherwise stated.
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dLij

dtdΩ
¼ lim

r→∞
rd−2x½iTj�kr̂k: ð8Þ

Studying physics in Minkowski spacetime of various
dimensions may also provide us with a simpler context
to study not only why the tail effect exists but also how to
analyze and compute its consequences. This could poten-
tially lead to novel methods or insights into the curved
spacetime scenario, where understanding the tail induced
self-force acting upon compact objects orbiting super-
massive black holes at the center of galaxies is important
(at least within the de Donder gauge) for modeling
gravitational waves from such extreme-mass-ratio-inspiral
(EMRI) systems—a prime target for the upcoming space-
based LISA mission.
The contents of this paper are as follows. As a warm up

to the technically more arduous gravitation calculation, in
Sec. III, I shall first generalize the leading order non-
relativistic electromagnetic dipole radiation formula in
four-dimensions, namely the Heaviside-Lorentz and c ¼ 1
natural units3 based expression

dE
dt

����
d¼4

¼ ð∂2
t d⃗½t − r�Þ2

6π
; ð9Þ

to all dimensions (d ≥ 3) greater than two. Throughout, I
shall denote the dipole moment as d⃗ and I will always
assume the spatial origin 0⃗ to be located somewhere within
the electromagnetic current or matter energy-momentum
tensor, so that t − r is the retarded time. In even dimensions
d ≥ 4, we will discover below

dE
dt

¼ d − 2

2dπ
d−3
2 Γ½dþ1

2
� ð∂

d
2
t d⃗½t − r�Þ2; ð10Þ

where Γ is the Gamma function and the square of a
multicomponent object will always mean the Euclidean
dot product with itself (e.g., a⃗2 ≡ a⃗ · a⃗). On the other hand,
in odd dimensions d ≥ 3,

dE
dt

¼ d − 2

2dπ
d−1
2 Γ½dþ1

2
�

�Z
∞

0

dμ

μ
1
2

∂dþ1
2
t d⃗½t − r − μ�

�
2

: ð11Þ

The retarded history integral over μ ∈ ½0;∞Þ sums the
ð1=2Þðdþ 1Þth time derivative of the dipole’s contribution
to the electromagnetic power from retarded time t − r to
past infinity limμ→∞ðt − r − μÞ. Its presence is the direct
result of the tail effect, for since massless waves do travel
inside the null cone in odd dimensions, the observer is now
sensitive to the entire past history of the relevant sources.
Using the Fourier (frequency-)space decomposition

convention given by

f½t� ¼
Z
R

dω
2π

e−iωtf̃½ω�; ð12Þ

I will also demonstrate that the corresponding frequency
space expression of Eqs. (10) and (11) is

dE
dω

¼ d − 2

2dþ1π
d−1
2 Γ½dþ1

2
�ω

dd⃗½ω� · d⃗½ω��; ð13Þ

with � denoting complex conjugation.
After deriving the closely related electromagnetic angu-

lar momentum flux, I will then proceed to examine the
retarded history integral of a monochromatic dipole of
duration T, which I view as a toy model of a finite duration
light bulb.
In Sec. IV, I will apply the experience gained in the

electromagnetic calculations to the case of general relativity
(GR) with the cosmological constant set to zero. The d ¼ 4
gravitational quadrupole radiation formula

dE
dt

¼ GN

5
∂3
t Q

ðtÞ
ab½t − r�∂3

t Q
ðtÞ
ab½t − r�; ð14Þ

where GN is Newton’s constant, is responsible for the
decrease in the orbital period of the Hulse-Taylor binary
pulsar system, a phenomenon verified to be consistent with
GR at the subpercent level [5]. This gave physicists
confidence that gravitational waves do exist, long before
their direct detection by the LIGO experiment [6]. In even
dimensions, d ≥ 4, I will find its generalization to read

dE
dt

¼ dðd − 1Þðd − 3ÞGN

2dðd − 2Þπd−5
2 Γ½dþ3

2
� ∂

dþ2
2
t QðtÞ

ab½t − r�∂dþ2
2
t QðtÞ

ab½t − r�:

ð15Þ

Here, the traceless quadrupole moment is defined in terms
of the quadrupole Qab as

QðtÞ
ab½t − r; evend ≥ 4�≡

�
1

2
δfia δ

jg
b −

δijδab
d − 1

�
Qij½t − r�:

ð16Þ

4The d-dimensional Newton’s constant is defined via
Einstein’s equations Gμν ¼ 8πGNTμν. On the other hand,
in odd dimensions d ≥ 5,5 I will demonstrate that

3Which I shall deploy throughout the rest of this paper.

4In this paper, the convention for symmetrization and anti-
symmetrization are Sfαβg ≡ Sαβ þ Sβα and A½αβ� ≡ Aαβ − Aβα.

5It is widely accepted that gravitational radiation does not exist
in 3D. Below, I will provide a (partial) analysis that shows the far
zone effective energy-momentum (pseudo)tensor of gravitation is
zero in ð2þ 1ÞD.

ELECTROMAGNETIC AND GRAVITATIONAL RADIATION IN … PHYS. REV. D 104, 084074 (2021)

084074-3



dE
dt

¼ dðd − 1Þðd − 3ÞGN

2dðd − 2Þπd−3
2 Γ½dþ3

2
� ∂

dþ3
2
t QðtÞ

ab½t − r�∂dþ3
2
t QðtÞ

ab½t − r�;

ð17Þ

where the dependence on the traceless quadrupole
moments now features an additional integral over its entire
past history due to the tail propagation of gravitational
perturbations

QðtÞ
ab½t − r; odd d ≥ 5�

≡
�
1

2
δfia δ

jg
b −

δabδ
ij

d − 1

�Z
∞

0

dμ

μ
1
2

Qij½t − r − μ�: ð18Þ

Additionally, the angular-frequency space counterpart to
Eqs. (15) and (17) is6

dE
dω

¼ dðd − 1Þðd − 3ÞGN

2dþ1ðd − 2Þπd−3
2 Γ½dþ3

2
�ω

dþ2Q̃ðtÞ
ab½ω�Q̃ðtÞ

ab½ω��: ð19Þ

After working out the gravitational angular momentum
flux—which in 4D is responsible for circularizing initially
eccentric binary systems—I will then close in Sec. V.
In Appendix I discuss the solid-angle tensor integrals used
to obtain the total radiation rate (dE=dt or dLij=dt) from
the differential direction-dependent ones (dE=ðdtdΩÞ
or dLij=ðdtdΩÞ).

II. GREEN’S FUNCTIONS IN THE FAR ZONE:
ωr → ∞

Because the radiation formulas of Eqs. (7) and (8)
involve the far zone r → ∞ limits, the main objective of
this section is to provide a step by step guide to lead the
reader from the exact Green’s functions in Eqs. (1) and (3)
to their respective leading order 1=rðd=2Þ−1 and next to
leading order 1=rd=2 far zone radiative limits in Eqs. (50)
and (53) below. I shall then use the results to first solve
explicitly the massless scalar-wave equation in Eq. (6). As
we will witness in the next two sections, the Lorenz gauge
vector potential and the linear de Donder gauge gravita-
tional perturbation can be directly obtained from
Eq. (6). Since these solutions are already in the far zone
C1=rðd=2Þ−1 þ C2=rd=2 þ � � � form, the desired radiation
formulas in Eqs. (7) and (8) then follow readily.

A. Driven simple harmonic oscillator

First, we shall see that rewriting the Green’s functions in
Eqs. (1) and (3) in frequency space would allow us to
perform a clean separation of variables, which will then
facilitate this 1=r expansion,

Gd½x − x0� ¼
Z
R

dω
2π

e−iωTG̃d½ωR�: ð20Þ

T ≡ t − t0; R≡ jx⃗ − x⃗0j: ð21Þ
Referring to Eq. (6), obtained by integrating J against
Eq. (20) tells us ω corresponds to the angular frequency of
the source producing these waves

ψ ½t; x⃗� ¼
Z
R

dω
2π

e−iωt
Z
Rd−1

dd−1x⃗0G̃½ωR�J̃½ω; x⃗0�; ð22Þ

where J̃½ω; x⃗0� ¼ R
R dt0eiωt0J½t0; x⃗0�. The field ψ in Eq. (22)

is simply the sum over harmonic oscillators, driven by J̃,
and analogous statements apply for the Lorenz gauge
vector potential Aν and the de Donder gauge gravitational
perturbation h̄μν just by replacing ψ → Aν and J → Jν or
ψ → h̄μν and J → −16πGNTμν.

B. Frequency space and separation of variables

In even dimensions d ≥ 4, we first employ the Fourier
integral representation of the Dirac delta function

δ½T − R� ¼
Z
R

dω
2π

e−iωðT−RÞ ð23Þ

on Eq. (1), followed by recalling that the Hankel function of
the first kind with order 1=2 is

Hð1Þ
1
2

½z� ¼ −i
ffiffiffiffiffi
2

πz

r
eiz; ð24Þ

to deduce

G̃even d≥4½ωR� ¼
iω

4
ffiffiffiffiffiffi
2π

p
�
−

1

2πR
∂
∂R

�d−4
2
Hð1Þ

1
2

½ωR�ffiffiffiffiffiffiffi
ωR

p : ð25Þ

In odd dimensions d ≥ 3, upon multiplying Eq. (3) by eiωT

and integrating over T ∈ R, we may first recognize the
integral representation of the Hankel function

Hð1Þ
0 ½x > 0� ¼ −

2i
π

Z
∞

1

eixtffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 1

p dt; ð26Þ

followed by analytic continuation to all x ∈ R, to infer

G̃odd d≥3½ωR� ¼
i
4

�
−

1

2πR
∂
∂R

�d−3
2

Hð1Þ
0 ½ωR�: ð27Þ

Finally, let us utilize the identity, for non-negative integers
n ¼ 0; 1; 2; 3;…,

6Aword on notation; the GN here is the Gd in Eq. (4.25) of [3].
However, while our frequency-space expressions are really
energy or angular momentum per angular frequency (dE=dω
or dLij=dω) their answer is the energy loss per frequency
(dE=dν), where ω½here� ¼ 2πν, even though they still call it
dE=dω.
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�
1

z
d
dz

�
n Hð1Þ

ν ½z�
zν

¼ ð−Þn H
ð1Þ
νþn½z�
zνþn ; ð28Þ

to arrive at the following frequency space Green’s functions
for all d ≥ 3,

G̃d¼4þ2n½ωR� ¼
iω2nþ1

4ð2πÞ12þn

Hð1Þ
1
2
þn
½ωR�

ðωRÞ12þn
; ð29Þ

G̃d¼3þ2n½ωR� ¼
iω2n

4ð2πÞn
Hð1Þ

n ½ωR�
ðωRÞn : ð30Þ

The factor Hð1Þ
ν ½ωR�=ðωRÞν obeys addition formulas that

separates the r≡ jx⃗j and r0 ≡ jx⃗0j dependence in
R ¼ jx⃗ − x⃗0j. Denoting r< ≡min½r; r0�, r> ≡max½r; r0�,
r̂≡ x⃗=r and r̂0 ≡ x⃗0=r0,

Hð1Þ
0 ½ωR� ¼

Xþ∞

l¼−∞
Jl½ωr<�Hð1Þ

l ½ωr>�eilϕ; ð31Þ

Hð1Þ
ν ½ωR�
ðωRÞν ¼ 2νΓ½ν�

Xþ∞

l¼0

ðνþ lÞ Jνþl½ωr<�
ðωr<Þν

Hð1Þ
νþl½ωr>�
ðωr>Þν

×CðνÞ
l ½r̂ · r̂0�; ν ≠ 0;−1;−2;−3;…:

ð32Þ

For all even dimensions d ¼ 4þ 2n ≥ 4, therefore,

G̃4þ2n½ωR�¼
iω1þ2n

4ð2πÞ12þn
2

1
2
þnΓ

�
1

2
þn

�

×
Xþ∞

l¼0

�
lþ1

2
þn

�J1
2
þnþl½ωr<�
ðωr<Þ12þn

Hð1Þ
1
2
þnþl

½ωr>�
ðωr>Þ12þn

×C

�
1
2
þnÞ

l ½r̂ · r̂0�; n¼0;1;2;3;…; ð33Þ

where Jν½z� is the Bessel function, CðνÞ
l ½z� is Gegenbauers

polynomial. (For the 4D case, recognizing C
ð1
2
Þ

l to be Pl,

the Legendre polynomial, would recover the familiar
result found in most advanced electromagnetism
textbooks.)
For odd dimensions, d ¼ 3þ 2n ≥ 3,

G̃þ
3 ½ωR�¼

i
4

Xþ∞

l¼−∞
Jl½ωr<�Hð1Þ

l ½ωr>�eilϕ; r̂ · r̂0≡cosϕ;

ð34Þ

G̃þ
3þ2n½ωR� ¼

iω2n

4ð2πÞn 2
nΓ½n�

Xþ∞

l¼0

ðnþ lÞ

×
Jnþl½ωr<�
ðωr<Þn

Hð1Þ
nþl½ωr>�
ðωr>Þn

CðnÞ
l ½r̂ · r̂0�;

n ¼ 1; 2; 3;…: ð35Þ

C. Far zone: Frequency space

For our radiation calculations, r, the observer-source
distance is always much larger than r0, which is at most
the size of the source itself, since we will be integrating x⃗0
against the electromagnetic current or the stress-energy tensor
of matter. (Recall: we will always place 0⃗ inside the source.)
The ωr dependence therefore occurs in the factor

Hð1Þ
ν ½ωr�=ðωrÞν in Eqs. (33) through (35). If we then replace

theseHð1Þ
ν ½ωr�with their large argument expansions—a finite

power series for ν ¼ 1
2
þ lþ n (even dimensions) and an

asymptotic one for ν ¼ nþ l (odd dimensions)

Hð1Þ
ν ½ωr� ¼ 2ffiffiffiffiffiffiffiffiffiffiffi

2πωr
p eiðωr−π

2
ν−π

4
Þ

×

�
1þ i

2

ðν − 1
2
Þðνþ 1

2
Þ

ωr
þO½ðωrÞ−2�

�
; ð36Þ

the even-dimensional result in Eq. (33) may now evaluated in
the far zone ωr → ∞ as

G̃4þ2n≥4½ωR� ¼
ð−iωÞn

2ð2πrÞ1þn 2
1
2
þnΓ

�
1

2
þ n

�
eiωr

×
Xþ∞

l¼0

ð−iÞl
�
lþ 1

2
þ n

� J1
2
þnþl½ωr0�
ðωr0Þ12þn

�
1þ i

2

nðnþ 1Þ þ lðlþ 2nþ 1Þ
ωr

þO½ðωrÞ−2�
�
C
ð1
2
þnÞ

l ½r̂ · r̂0�: ð37Þ

Whereas the same ωr → ∞ far zone limit of the odd-dimensional results in Eq. (34), with r̂ · r̂0 ≡ cosϕ, it becomes

G̃3½ωR� ¼
i

2
ffiffiffiffiffiffiffiffiffiffiffi
2πωr

p eiðωr−π
4
Þ Xþ∞

l¼−∞
ð−iÞlJl½ωr0�

�
1þ i

2

�
− 1

4
þ l2

ωr

�
þO½ðωrÞ−2�

�
eilϕ; ð38Þ
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and that in Eq. (35) turns into

G̃3þ2n≥5½ωR� ¼
ð−iÞn−1ω2nðn − 1Þ!
4πn

ffiffiffiffiffiffi
2π

p ðωrÞ12þn
eiðωr−π

4
Þ

×
Xþ∞

l¼0

ð−iÞlð2nþ 2lÞ Jnþl½ωr0�
ðωr0Þn

�
1þ i

2

n2 − 1
4
þ lðlþ 2nÞ
ωr

þO½ðωrÞ−2�
�
CðnÞ
l ½r̂ · r̂0�: ð39Þ

Next, we recognize the lðlþ 2nþ 1Þ, l2, and lðlþ 2nÞ
occurring within the summations in Eqs. (37) through (39)
as the eigenvalue lðlþ d − 3Þ of the negative Laplacian
on the (d − 2)-sphere, for all d ≥ 3. Specifically, we may
replace them with the negative Laplacian acting on the eilϕ

or Gegenbauer polynomial C
ðd−3

2
Þ

l because

−∇⃗2
S1 eilϕ ¼ l2eilϕ; ðd ¼ 3Þ ð40Þ

−∇⃗2
Sd−2C

ðd−3
2
Þ

l ½r̂ · r̂0� ¼lðlþd−3ÞCðd−3
2
Þ

l ½r̂ · r̂0�; ðd≥ 4Þ:
ð41Þ

Upon the replacement lðlþ d − 3Þ → −∇⃗2
Sd−2 in Eqs. (37)

through (39), we will recognize the remaining summations
to be nothing but the Bessel function expansion of the plane
wave. In d − 1 ¼ 2 spatial dimensions,

eik⃗·x⃗ ¼
Xþ∞

l¼−∞
ilJl½kr�eilϕ; ð42Þ

and in three and higher spatial dimensions, d − 1 ≥ 3,

eik⃗·x⃗ ¼ 2
d−3
2 Γ

�
d − 3

2

�X∞
l¼0

�
d − 3

2
þ l

�

× il
Jd−3

2
þl½kr�

ðkrÞd−32 C
ðd−3

2
Þ

l ½r̂ · r̂0�: ð43Þ

D. Results

We have arrived at the far zone ωr → ∞ frequency space
Green’s functions. The even (d ≥ 4) and odd (d ≥ 3)
dimensional Green’s functions are, respectively,

G̃4þ2n≥4½ωR� ¼
ð−iωÞn

2ð2πrÞ1þn

�
1þ i

2

nðnþ 1Þ − ∇⃗2
S2nþ2

ωr
þO½ðωrÞ−2�

�
eiωðr−r̂·x⃗0Þ; ð44Þ

G̃3þ2n≥3½ωR� ¼
ð−iωÞn

2ð2πrÞn ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffi
−iωr

p
�
1þ n2 − 1

4
− ∇⃗2

S2nþ1

2ð−iωrÞ þO½ðωrÞ−2�
�
eiωðr−r̂·x⃗0Þ: ð45Þ

To carry out the derivatives associated with ∇⃗2
Sd−2 , let us record that the Laplacian on Sd−2 acting on a function that depends

on angles solely through the object c≡ r̂ · r̂0 is, for all d ≥ 3,

∇⃗2
Sd−2ψ ½r̂ · r̂0� ¼ 1

ð1 − c2Þd−42 ∂cðð1 − c2Þd−22 ∂cψ ½r̂ · r̂0�Þ ð46Þ

¼ ð1 − c2Þψ 00½c� − ðd − 2Þcψ 0½c�: ð47Þ

The expanded forms of Eqs. (44) and (45) then read

G̃4þ2n≥4½ωR� ¼
ð−iωÞn

2ð2πrÞ1þn

�
1þ 1

2

nðnþ 1Þ þ ð2nþ 2Þð−iωÞðr̂ · x⃗0Þ − ð−iωÞ2ðr02 − ðr̂ · x⃗0Þ2Þ
−iωr

þO½ðωrÞ−2�
�
eiωðr−r̂·x⃗0Þ;

ð48Þ

G̃3þ2n≥3½ωR� ¼
ð−iωÞn

2ð2πrÞnþ1
2

ffiffiffiffiffiffiffiffiffi
−iω

p
�
1þ 1

2

n2 − 1
4
þ ð2nþ 1Þð−iωÞðr̂ · x⃗0Þ− ð−iωÞ2ðr02 − ðr̂ · x⃗0Þ2Þ

ð−iωrÞ þO½ðωrÞ−2�
�
eiωðr−r̂·x⃗0Þ:

ð49Þ
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1. Relativistic corrections

Before moving on, I wish to highlight the presence of the
−r̂ · x⃗0 in the exponential eiðωr−r̂·x⃗0Þ as a relativistic correc-
tion. By examining the e−iωTG̃ in Eq. (20), we see that the
combination e−iωðt−t0−rÞ arising from the expressions in
Eqs. (48) and (49) describes an outgoing spherical wave,
with angular frequency ω associated with that of the source.
Since −r̂ · x⃗0 scales as the characteristic size of the source
rs, it does not produce an appreciable phase shift as long as
ω · ðr̂ · x⃗0Þ≡ ð2πfÞðr̂ · x⃗0Þ is much less than 2π. Physically,
this indicates that as long as the characteristic timescale of
the source (ts ∼ 1=f) is much slower than its characteristic
size—namely, ωrs ∼ 2πðrs=tsÞ ≪ 2π—then this factor is
negligible. To further corroborate this relativistic correction
interpretation, also observe that rs is, in natural c ¼ 1 units,

the light-crossing time of the source (i.e., the nonrelativistic
limit is simply the situation where the light-crossing time is
much shorter than the characteristic time scale of the source
itself).

E. Far zone: Real time

The real-time far-zone radiative Green’s function
requires that we perform the Fourier integral in Eq. (20).
To this end, we recognize all positive powers of −iω to be
time derivatives; namely, ð−iωÞne−iωT ¼ ∂n

t e−iωT . Note
that the nðnþ 1Þ=ð−iωrÞ term in Eq. (48) is nonzero only
for n ≥ 1, so together with the ð−iωÞn prefactor, we see that
it contains n − 1 time derivatives for d ¼ 4þ 2n > 4. We
then arrive at the far zone (radiation) Green’s function in
even dimensions d ¼ 4þ 2n ≥ 4,

G4þ2n½x− x0� ¼ 1

2ð2πrÞ1þn

�
∂n
t þ

1

2

nðnþ 1Þ
r

∂n−1
t þ 1

2

ðr̂ · x⃗0Þð2nþ 2Þ− ðx⃗02 − ðr̂ · x⃗0Þ2Þ∂t

r
∂n
t þO½r−2�

�
δ½t− t0 − rþ r̂ · x⃗0�:

ð50Þ

The odd-dimensional case in Eq. (49) requires the follow-
ing manipulation due to the presence of the inverse frac-
tional powers of frequencies, 1=ð−iωÞ12 at order 1=r12þn and
1=ð−iωÞ32 at order 1=r3

2
þn. By invoking the representation of

the Gamma function for Re½z� > 0 and Im½α� > 0,

1

ð−iαÞz ¼
1

Γ½z�
Z

∞

0

dμμz−1 exp ½iμ · α�; ð51Þ

where z ¼ 1
2
; 3
2
;…, and by replacing α → ωþ i0þ,

Eq. (49) is transformed into

G̃3þ2n½ωR� ¼
ð−iωÞn

2
ffiffiffi
π

p ð2πrÞnþ1
2

Z
∞

0

dμe−μ·0
þ
�
μ−

1
2 þ μ

1
2

n2 − 1
4
− ∇⃗2

S2nþ1

r
þO½r−1�

�
eiωðr−r̂·x⃗0þμÞ: ð52Þ

Here, we have replaced ð2nþ 1Þð−iωÞðr̂ · x⃗0Þ − ð−iωÞ2ðr02 − ðr̂ · x⃗0Þ2Þ with −∇⃗2
S2nþ1 for compactness of notation.

Multiplying Eq. (52) by e−iωT, replacing ð−iωÞn → ∂n
t , and integrating over T ∈ R hands us the far zone (radiation)

Green’s function in odd dimensions d ¼ 3þ 2n ≥ 3,

G3þ2n½x − x0� ¼ 1ffiffiffi
2

p ð2πÞnþ1 · rnþ1
2

∂n
t

Z
∞

0

dμ exp ½−μ · 0þ�

×

�
μ−

1
2 þ μ

1
2

n2 − 1
4
þ ðr̂ · x⃗0Þð2nþ 1Þ∂t − ðr02 − ðr̂ · x⃗0Þ2Þ∂2

t

r
þO½r−2�

�
δ½t − t0 − r − μþ r̂ · x⃗0�: ð53Þ

1. Massless scalar in even dimensions

Plugging Eq. (50) into Eq. (6) tells us the far-zone massless scalar solution in even d ¼ 4þ 2n takes the form

ψ ½t; x⃗� ¼ 1

2ð2πrÞ1þn

Z
R3þ2n

d3þ2nx⃗0
�
∂n
t J½t − rþ r̂ · x⃗0; x⃗0�

þ 1

2

nðnþ 1Þ∂n−1
t þ ðr̂ · x⃗0Þð2nþ 2Þ∂n

t − ðr02 − ðr̂ · x⃗0Þ2Þ∂nþ1
t

r
J½t − rþ r̂ · x⃗0; x⃗0� þO½r−2�

�
; ð54Þ

and its first and second derivatives are
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∂αψ ½t; x⃗� ¼
1

2ð2πrÞ1þn

Z
R3þ2n

d3þ2nx⃗0
�
ðδ0α − δlαr̂lÞ∂nþ1

t J½t − rþ r̂ · x⃗0; x⃗0�

þ δaαPab x
0b

r
∂nþ1
t J½t − rþ r̂ · x⃗0; x⃗0� − nþ 1

r
δlαr̂l∂n

t J½t − rþ r̂ · x⃗0; x⃗0�

þ 1

2

nðnþ 1Þ∂n−1
t þ ðr̂ · x⃗0Þð2nþ 2Þ∂n

t − ðr02 − ðr̂ · x⃗0Þ2Þ∂nþ1
t

r
ðδ0α − δlαr̂lÞJ½t − rþ r̂ · x⃗0; x⃗0� þO½r−2�

�
; ð55Þ

and

∂α∂βψ ½t; x⃗�¼
1

2ð2πrÞ1þn

Z
R3þ2n

d3þ2nx⃗0
�
ðδ0α−δlαr̂lÞðδ0β−δkβr̂

kÞ∂nþ2
t J½t−rþ r̂ · x⃗0; x⃗0�−δlα

Plk

r
δkβ∂nþ1

t J½t−rþ r̂ · x⃗0; x⃗0�

þδafαP
abx

0b

r
ðδ0βg−δkβgr̂

kÞ∂nþ2
t J½t−rþ r̂ · x⃗0; x⃗0�−nþ1

r
δlfαr̂

lðδ0βg−δkβgr̂
kÞ∂nþ1

t J½t−rþ r̂ · x⃗0; x⃗0�

þ1

2

nðnþ1Þ∂n
t þðr̂ · x⃗0Þð2nþ2Þ∂nþ1

t −ðr02−ðr̂ · x⃗0Þ2Þ∂nþ2
t

r
ðδ0α−δlαr̂lÞðδ0β−δkβr̂

kÞJ½t−rþ r̂ · x⃗0; x⃗0�þO½r−2�
�
:

ð56Þ

We have defined

Pab ≡ δab − r̂ar̂b; ð57Þ

which is orthogonal to the unit radial vector r̂ and also acts as a projector,

r̂aPab ¼ 0 and PabPbc ¼ Pac: ð58Þ

2. Massless scalar in odd dimensions

Along similar lines as the even-dimensional case, plugging Eq. (53) into Eq. (6) tells us the far-zone massless scalar
solution in odd d ¼ 3þ 2n takes the form

ψ ½t; x⃗� ¼ 1ffiffiffi
2

p ð2πÞnþ1 · rnþ1
2

Z
R2þ2n

d2þ2nx⃗0
Z

∞

0

dμ exp ½−μ · 0þ�
�
μ−

1
2∂n

τJ½τ; x⃗0� þ
μ

1
2

r

��
n2 −

1

4

�
∂n
τJ½τ; x⃗0�

þ ðr̂ · x⃗0Þð2nþ 1Þ∂nþ1
τ J½τ; x⃗0� − ðr02 − ðr̂ · x⃗0Þ2Þ∂nþ2

τ J½τ; x⃗0�
�
þO½r−2�

�
;

τ≡ t − r − μþ r̂ · x⃗0; ð59Þ

and its first derivative is

∂αψ ½t; x⃗� ¼
1ffiffiffi

2
p ð2πÞnþ1 · rnþ1

2

Z
R2þ2n

d2þ2nx⃗0
Z

∞

0

dμ exp ½−μ · 0þ�

×

	
μ−

1
2ðδ0α − δjαr̂jÞ∂nþ1

τ J½τ; x⃗0� þ μ−
1
2

r

�
δaαPabx0b∂nþ1

τ J½τ; x⃗0�−
�
nþ 1

2

�
r̂lδlα∂n

τJ½τ; x⃗0�
�

þ μ−
1
2

2r

��
n2 −

1

4

�
∂n
τJ½τ; x⃗0� þ ðr̂ · x⃗0Þð2nþ 1Þ∂nþ1

τ J½τ; x⃗0�− ðr02 − ðr̂ · x⃗0Þ2Þ∂nþ2
τ J½τ; x⃗0�Þðδ0α − δjαr̂jÞ þO½r−2�



:

ð60Þ

In the last line of Eq. (60), we have converted one of the τ derivatives into a negative μ derivative (i.e., ∂=∂τ ¼ −∂=∂μ), and
integrated it by parts. The surface term at μ ¼ ∞ is zero because of e−μ·0

þ
and that at μ ¼ 0 is zero because of μ1=2.

Finally, the second derivative of Eq. (59) is

YI-ZEN CHU PHYS. REV. D 104, 084074 (2021)

084074-8



∂α∂βψ ½t; x⃗� ¼
1ffiffiffi

2
p ð2πÞnþ1 · rnþ1

2

Z
R2þ2n

d2þ2nx⃗0
Z

∞

0

dμ exp ½−μ · 0þ�

×

	
μ−

1
2ðδ0α − δjαr̂jÞðδ0β − δkβr̂

kÞ∂nþ2
τ J½τ; x⃗0� − μ−

1
2

r
δaαPabδbβ∂nþ1

τ J½τ; x⃗0�

þ μ−
1
2

r

�
δafαP

abx0b∂nþ2
τ J½τ; x⃗0� −

�
nþ 1

2

�
r̂lδlfα∂nþ1

τ J½τ; x⃗0�
�
ðδ0βg − δkβgr̂

kÞ

þ μ−
1
2

2r

��
n2 −

1

4

�
∂nþ1
τ J½τ; x⃗0� þ ðr̂ · x⃗0Þð2nþ 1Þ∂nþ2

τ J½τ; x⃗0�

− ðr02 − ðr̂ · x⃗0Þ2Þ∂nþ3
τ J½τ; x⃗0�

�
ðδ0α − δjαr̂jÞðδ0β − δkβr̂

kÞ þO½r−2�


: ð61Þ

We now turn to tackle Maxwell’s electromagnetism and
the weak-field and zero-cosmological constant limits of
Einstein’s general relativity.

III. MAXWELL’S ELECTROMAGNETISM

A. Setup

Maxwell’s electromagnetism, sourced by a conserved
current Jν, is defined by

∂μFμν ¼ Jν and ∂νJν ¼ 0: ð62Þ

The antisymmetric electromagnetic tensor Fμν ¼ −Fνμ

itself is built out of the vector potential Aμ,

Fμν ≡ ∂ ½μAν� ≡ ∂μAν − ∂νAμ: ð63Þ

Given an inertial frame, the d − 1 components of F0i ¼
−Fi0 are electric fields and the ð1=2Þðd − 1Þðd − 2Þ com-
ponents of Fij ¼ −Fji are the magnetic fields. (The
diagonal terms of Fμν are zero.) The electric field may
always be regarded as a spatial vector, but only in d ¼ 4
can the magnetic ones be interpreted as such—i.e., it is the
only admissible solution to ð1=2Þðd − 1Þðd − 2Þ ¼ d − 1.

B. Energy flux

The conserved and symmetric energy-momentum tensor
of the electromagnetic fields is

Tμν ¼ −FμσFν
σ þ

1

4
ημνFρσFρσ: ð64Þ

In particular, the momentum density responsible for carry-
ing energy to infinity is

T0i ¼ −F0jFij: ð65Þ

Because the antisymmetric magnetic field Fij does not exist
in d ¼ 2 dimensions, we shall only focus on d ≥ 3 in this
section. Note that conservation ∂μTμν ¼ 0 is not an identity,

but only holds when the energy momentum is evaluated on
the solutions to Maxwell’s equations in (62).
In terms of the electromagnetic fields and the outward

point unit radial vector r̂, the energy flux in Eq. (7) is

dE
dtdΩ

¼ − lim
r→∞

rd−2F0jFijr̂i: ð66Þ

C. Angular momentum flux

For a fixed and distinct pair ði; jÞ, the angular-
momentum current is defined as

Jijμ ¼ x½iTj�μ: ð67Þ

In 4D, the Jij0 ¼ x½iTj�0 is simply the spatial Hodge dual of
the perhaps more familiar expression involving the cross
product between the position vector and the momentum
density; namely, Li ¼ ð1=2ÞϵijkJjk0 ¼ ϵijkxjTk0, where ϵijk

is the Levi-Civita symbol with ϵ123 ≡ 1. One may also
readily check that this current is conserved, ∂μJijμ ¼ 0, due
to the symmetry of the stress tensor (Tμν ¼ Tνμ) and its on-
shell conservation (∂μTμν ¼ 0). The angular-momentum
flux in Eq. (8) is thus

dLij

dtdΩ
¼ lim

r→∞
rd−2x½iTj�kr̂k: ð68Þ

The primary goal of this section is to compute Eqs. (66) and
(68) for Maxwell’s electromagnetism. Because they involve
the r → ∞ limit, we do not need the exact Fμν, but only its
asymptotic far-zone expression developed in powers of
1=r—for Eq. (66), to order 1=rðd=2Þ−1; and for Eq. (68), to
order 1=rd=2.

D. Lorenz gauge and far zone solutions

To solve Eq. (62) in terms ofAμ requires a gauge choice, as
otherwise the associated wave operator is not invertible. I will
choose the Lorentz covariant Lorenz gauge ∂μAμ ¼ 0, which
then translates Eq. (62) intodmassless scalarwave equations,
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∂2Aν ¼ Jν: ð69Þ

Comparison between Eqs. (5) and (69) tells us that the far-zone
solutions forAν canbe simply obtained fromEqs. (54) and (59)
by replacing ψ → Aν and J → Jν; whereas those for

Fαβ ¼ ∂ ½αAβ� may be obtained from Eqs. (55) and (60) by
replacing ψ → Aβ and J → Jβ followed by antisymmetriz-
ing αβ.
In even d ¼ 4þ 2n ≥ 4 dimensions, the far-zone vector

potential and electromagnetic fields are, respectively,

Aν½t; x⃗�¼
1

2ð2πrÞ1þn

Z
R3þ2n

d3þ2nx⃗0
�
∂n
t Jν½τ; x⃗0�þ

1

2

nðnþ1Þþðr̂ · x⃗0Þð2nþ2Þ∂t−ðx⃗02−ðr̂ · x⃗0Þ2Þ∂2
t

r
∂n−1
t Jν½τ; x⃗0�þO½r−2�

�
;

ð70Þ

with τ≡ t − rþ r̂ · x⃗0, and

Fαβ½t; x⃗� ¼
1

2ð2πrÞ1þn

Z
R3þ2n

d3þ2nx⃗0
�
ðδ0½α − δl½αr̂

lÞ∂nþ1
t Jβ�½τ; x⃗0� þ δa½αP

ab x
0b

r
∂nþ1
t Jβ�½τ; x⃗0� −

nþ 1

r
δl½αr̂

l∂n
t Jβ�½τ; x⃗0�

þ 1

2

nðnþ 1Þ þ ðr̂ · x⃗0Þð2nþ 2Þ∂t − ðr02 − ðr̂ · x⃗0Þ2Þ∂2
t

r
ðδ0½α − δl½αr̂

lÞ∂n
t Jβ�½τ; x⃗0� þO½r−2�

�
: ð71Þ

On the other hand, in odd d ¼ 3þ 2n ≥ 3 dimensions, the far-zone vector potential is

Aν½t; x⃗� ¼
1ffiffiffi

2
p ð2πÞnþ1 · rnþ1

2

Z
R2þ2n

d2þ2nx⃗0
Z

∞

0

dμ exp ½−μ · 0þ�
�
μ−

1
2∂n

τJν½τ; x⃗0�

þ μ
1
2

r

��
n2 −

1

4

�
∂n
τJν½τ; x⃗0� þ ðr̂ · x⃗0Þð2nþ 1Þ∂nþ1

τ Jν½τ; x⃗0� − ðr02 − ðr̂ · x⃗0Þ2Þ∂nþ2
τ Jν½τ; x⃗0�

�
þO½r−2�

�
; ð72Þ

with τ≡ t − r − μþ r̂ · x⃗0. The associated electromagnetic fields are

Fαβ½t; x⃗� ¼
1ffiffiffi

2
p ð2πÞnþ1 · rnþ1

2

Z
R2þ2n

d2þ2nx⃗0
Z

∞

0

dμ exp ½−μ · 0þ�

×

	
μ−

1
2ðδ0½α − δj½αr̂

jÞ∂nþ1
τ Jβ�½τ; x⃗0� þ

μ−
1
2

r

�
δa½αP

abx0b∂nþ1
τ Jβ�½τ; x⃗0� −

�
nþ 1

2

�
r̂lδl½α∂n

τJβ�½τ; x⃗0�
�

þ μ−
1
2

2r
ðδ0½α − δj½αr̂

jÞ
��

n2 −
1

4

�
∂n
τJβ�½τ; x⃗0�

þ ðr̂ · x⃗0Þð2nþ 1Þ∂nþ1
τ Jβ�½τ; x⃗0� − ðr02 − ðr̂ · x⃗0Þ2Þ∂nþ2

τ Jβ�½τ; x⃗0�Þ þO½r−2�


: ð73Þ

The integral over μ in Eqs. (70) and (73) is the novel feature
in odd dimensions relative to that in the even-dimensional
Eqs. (72) and (71). In the latter, the signal at ðt; x⃗Þ was
emitted from the electromagnetic current only at retarded
time t − rþ r̂ · x⃗0, due to the Dirac delta function in Eq. (50)
enforcing strictly-null propagation of the signal. In the
former, however, the additional integral over μ describes
the fields at ðt; x⃗Þ as arising from the superposition of waves
emitted from the entire past history of the source—up to
retarded time t − rþ r̂ · x⃗0. This history dependence is the
signature of inside the null cone propagation, and as we saw
in Sec. II, is intimately tied to the presence of inverse
fractional powers of frequency in the far zone expansion.

E. Nonrelativistic limit and current conservation

We now assume the electromagnetic current is non-
relativistic and proceed to work out in this limit the leading-
order (i.e., dipolar) contribution to energy momentum and
angular momentum radiated to infinity. To this end, let us
first record that current conservation ∂μJμ ¼ 0 implies the
total charge of the system described by Jμ,

Q≡
Z
Rd−1

dd−1x⃗0J0½t; x⃗0�; ð74Þ

is time independent; _Q≡ ∂tQ ¼ 0. (We will see below
that electromagnetic energy-momentum radiation begins at
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the dipole order in all dimensions because the monopole
Q is conserved.) Current conservation implies the
dipole

di½t�≡
Z
Rd−1

dd−1x⃗0 x0iJ0½t; x⃗0� ð75Þ

is related to the total spatial current through its time
derivative

_di½t�≡ ∂τdi½t� ¼
Z
Rd−1

dd−1x⃗0 Ji½t; x⃗0�: ð76Þ

We will assume that Ji ∼ J0 · v scales as the charge density
J0 multiplied by some characteristic nonrelativistic speed
v ≪ 1 describing its internal dynamics; for e.g., _d ∼Q · v.
By Taylor expanding the currents in Eqs. (71) and (73) in
powers of r̂ · x⃗0, we may associate each factor of ðr̂ · x⃗0Þ∂t in
the ensuing expressions to scale as v. Higher orders in the
Taylor expansion therefore corresponds to a higher order in
the nonrelativistic expansion.
To leading order in v and for all even d ¼ 4þ 2n ≥ 4,

we may exploit Eqs. (74) and (75) to reveal via a direct
calculation that the electric fields are

F0i½t; x⃗� ≈
1

2ð2πrÞ1þn

�
−Pij∂nþ2

t dj½t − r�

þ 1

r

�ðnþ 1Þðnþ 2Þ
2

r̂i∂n
t Q −

n2 þ nþ 2

2
Pij∂nþ1

t dj½t − r� þ ð2nþ 2Þr̂ir̂j∂nþ1
t dj½t − r�

��
; ð77Þ

while the magnetic fields Fij are

Fij½t; x⃗� ≈
1

2ð2πrÞ1þn r̂
½iPj�a

�
∂nþ2
t da½t − r� þ 1

r
ðnþ 1Þðnþ 2Þ

2
∂nþ1
t da½t − r�

�
: ð78Þ

A similar calculation would indicate, for all odd d ¼ 3þ 2n ≥ 3, the leading nonrelativistic expansion of the electric
fields is

F0i½t; x⃗� ≈
1ffiffiffi

2
p ð2πÞnþ1 · rnþ1

2

Z
∞

0

dμ exp ½−μ · 0þ�

×

	
−μ−1

2Pij∂nþ2
t dj½t − r − μ� þ μ−

1
2

r

��
n2

2
þ nþ 3

8

�
r̂i∂n

t Qþ ð2nþ 1Þr̂ir̂j∂nþ1
t dj½t − r − μ�

−
�
n2

2
þ 7

8

�
Pij∂nþ1

t dj½t − r − μ�
�


; ð79Þ

and that of the magnetic fields is

Fij½t; x⃗� ≈
1ffiffiffi

2
p ð2πÞnþ1 · rnþ1

2

Z
∞

0

dμ exp ½−μ · 0þ�

×

	
μ−

1
2r̂½i∂nþ2

t dj�½t − r − μ� þ μ−
1
2

r

�
n2

2
þ nþ 3

8

�
r̂½i∂nþ1

t dj�½t − r − μ�


: ð80Þ

I have checked that Eqs. (77) through (80) satisfy Max-
well’s equations ∂iF0i ¼ 0 and ∂0F0j ¼ ∂iFij. I also
highlight here, it is important not to take the nonrelativistic
limit—replacing t − rþ r̂ · x⃗0 with t − r—too early. For
instance, in 4D, if we take from the outset the vector
potential as its leading-order expression, Aν ≈ ð4πrÞ−1R
R3 d3x⃗0Jν½t − r; x⃗0�, a quick calculation would reveal the
Lorenz gauge is violated ð∂νAν ≠ 0Þ and therefore
current conservation cannot be exploited consistently to
rewrite this Aν and its associated Fαβ into dipole
moments.

To reiterate, Eqs. (77) through (80) have been expanded
up to the dipolar order, with relative corrections that scale
as v ∼ ðr̂ · x⃗0Þ∂t, as well as both the 1=rðd=2Þ−1 and 1=rd=2

orders in the far zone expansion.

F. Dipolar energy-momentum radiation

Inserting the leading order 1=rðd=2Þ−1 even-dimensional
electromagnetic fields of Eqs. (77) and (78) and odd-
dimensional ones of Eqs. (79) and (80) into Eq. (66) now
hands us the corresponding dipole radiation formulas.
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For all even d ≥ 4,

T0i ¼ r̂i

4ð2πrÞd−2 ðP
ab∂d

2
tdb½t − r�Þ2ð1þO½r−1�Þ: ð81Þ

Because PiaPib ¼ Pab,

dE
dtdΩ

¼ 1

4ð2πÞd−2 ðP
ab∂d

2
tdb½t − r�Þ2

¼ sin2ϑ
4ð2πÞd−2

�
∂d

2
t d⃗½t − r�

�
2

; ð82Þ

where Pab∂d
2
tdb½t − r� ¼ ðδab − r̂ar̂bÞ∂d

2
tdb½t − r� is simply

the transverse part of the dipole at retarded time t − r and
the ϑ is the angle between the radial direction (to the
observer) and the (d=2)th time derivative of the retarded
dipole

j∂d
2
t d⃗½t − r�j · cos ϑ≡ r̂ · ∂d

2
t d⃗½t − r�: ð83Þ

For all odd d ≥ 3, on the other hand,

T0i ¼ r̂i

2ð2πÞd−1rd−2
�
Pab

Z
∞

0

dμ

μ
1
2

∂dþ1
2
t db½t − r − μ�

�
2

× ð1þO½r−1�Þ; ð84Þ

dE
dtdΩ

¼ 1

2ð2πÞd−1
�
Pab

Z
∞

0

dμ

μ
1
2

∂dþ1
2
t db½t − r − μ�

�
2

¼ sin2ϑ
2ð2πÞd−1

�Z
∞

0

dμ

μ
1
2

∂dþ1
2
t d⃗½t − r − μ�

�
2

; ð85Þ

with ϑ defined as the angle between the radial direction (to
the observer) and the ð1=2Þðdþ 1Þth time derivative of the
retarded history integral of the dipole

����
Z

∞

0

dμ

μ
1
2

∂dþ1
2
t d⃗½t−r−μ�

���� · cosϑ≡ r̂ ·
Z

∞

0

dμ

μ
1
2

∂dþ1
2
t d⃗½t−r−μ�:

ð86Þ

By appealing to the solid-angle tensor integrals in Eqs. (A4)
and (A16) below, we may integrate both sides of Eqs. (82)
and (84) over the (d − 2)-sphere and arrive at the dipole
radiation formula in Eqs. (10) and (11).
Here and below, we derive the electromagnetic and

gravitational energy, and angular momentum lost to infinity
per unit time; i.e., dE=dt and dLij=dt. Because they are
quadratic in the dipole or quadrupole moments, we may
integrate these expressions over all time and invoke
Parseval’s theorem to reexpress the total energy or angular
momentum loss as an integral over all angular frequencies.
For instance, starting from Eq. (10),

Z
R
dt
dE
dt

¼ d−2

2dπ
d−3
2 Γ½dþ1

2
�

Z
R

dω
2π

ð−iωÞd2d̃a½ω� ·ðþiωÞd2d̃a½−ω�;

ð87Þ

where d̃a½ω� denotes the Fourier coefficient of the real-time
dipole moment da½t�. This allows us to interpret the
integrand of the right-hand side as the rate of energy loss
per unit angular frequency, and thereby arrive at Eq. (13).
For the odd-dimensional case in Eq. (11), a similar argu-
ment applies if we first recognize the frequency decom-
position

Z
∞

0

dμffiffiffi
μ

p e−μ·0
þ
dj½t − r − μ�

¼
Z

dω
2π

ffiffiffi
π

p

ð−iðωþ i0þÞÞ12 exp ½−iωðt − rÞ�d̃j½ω�: ð88Þ

Even though the real-time electromagnetic dipole radiation
formula takes a different form in even versus odd dimen-
sions; we see its frequency space formulas take the same
form for all dimensions.
I further highlight here: by referring to the leading-order

terms in Eqs. (77) through (80), the factors within the
parenthesis in Eqs. (82) and (84) are readily seen to be the
time-dependent radiative pieces of the electromagnetic
fields. These will play a central role below in determining
the signal of our “light bulb” as seen by a distant observer.

G. Dipolar angular momentum radiation

We now turn to computing the net angular momentum
radiated to infinity, by employing Eq. (64) in Eq. (8)

dLij

dtdΩ
¼ lim

r→∞
rd−2ð−x½iFj�0Fk0r̂k þ x½iFj�lFklr̂kÞ: ð89Þ

The extra r arising from the x⃗ factor in this angular-
momentum calculation, relative to the energy-momentum
flux in Eq. (7), is why we need to develop Fαβ one order in
1=r beyond the leading 1=rðd=2Þ−1. Note that, a direct
calculation would show that the rightmost term of Eq. (90)
goes as r̂½iFj�lFklr̂k ∝ r̂lFklr̂k, and thus drops out of the
final result due to the antisymmetry of Fkl, so we really
have

dLij

dtdΩ
¼ − lim

r→∞
rd−2x½iFj�0Fk0r̂k: ð90Þ

In even dimensions d ¼ 4þ 2n ≥ 4, the rate of flow of the
ði; jÞ generator of rotations to infinity is

dLij

dtdΩ
¼ nþ 1

2ð2πÞ2þ2n r̂
½i∂nþ2

t dj�½t − r�r̂a∂nþ1
t da½t − r�; ð91Þ
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where I have discarded the term

1

4ð2πÞ2þ2n r̂
½i∂nþ2

t dj�½t − r� ðnþ 1Þðnþ 2Þ
2

∂n
t Q; ð92Þ

by assuming that

r̂½i∂nþ1
t dj�½t − r�jt¼∞

t¼−∞ ¼ 0; ð93Þ

so that Eq. (92) does not contribute to the total loss of
angular momentum. In any case, Eq. (92) is nonzero only
in d ¼ 4.
Exploiting Eqs. (A4) and (A16) below to integrate

Eq. (91) over solid angle,

dLij

dt
¼ d − 2

2dπ
d−3
2 Γ½dþ1

2
� ∂

d−2
2
t d½i½t − r�∂d

2
tdj�½t − r�: ð94Þ

In 4D this formula recovers the spatial Hodge dual of the
result in the Jackson problem 9.9 [7]

dLij

dt

����
d¼4

¼ 1

6π
∂td½i½t − r�∂2

t dj�½t − r�: ð95Þ

In odd dimensions d ¼ 3þ 2n ≥ 3, on the other hand,

dLij

dtdΩ
¼ 2nþ 1

2ð2πÞ2nþ2

Z
∞

0

dμffiffiffi
μ

p e−μ·0
þ
r̂½i∂nþ2

t dj�½t − r − μ�

×
Z

∞

0

dμ0ffiffiffiffi
μ0

p e−μ
0·0þ r̂a∂nþ1

t da½t − r − μ0�; ð96Þ

where I have dropped the (potentially divergent) total-time
derivative term

1

2ð2πÞ2nþ2

Z
∞

0

dμffiffiffi
μ

p e−μ·0
þ
r̂½i∂nþ2

t dj�½t − r − μ�

×
Z

∞

0

dμ0ffiffiffiffi
μ0

p e−μ
0·0þ

�
n2

2
þ nþ 3

8

�
∂n
t Q: ð97Þ

This amounts to assuming both the lower-limit term

r̂½i∂nþ1
t dj�½t − r − μ�jt¼−∞ ð98Þ

and upper-limit integral

lim
t→∞

Z
∞

−t

dμ0ffiffiffiffiffiffiffiffiffiffiffiffi
μ0 þ t

p e−ðμ0þtÞ·0þ r̂½i∂nþ1
t dj�½−r − μ0�; ð99Þ

can both be set to zero. Of course, a more careful analysis is
needed to understand the (physical) origin of the divergent
integral in Eq. (97), as well as how to handle it.

Integrating Eq. (96) over the solid angle,

dLij

dt
¼ d − 2

2dπ
d−1
2 Γ½dþ1

2
�

Z
∞

0

dμ0ffiffiffiffi
μ0

p e−μ
0·0þ∂d−1

2
t d½i½t − r − μ0�·

×
Z

∞

0

dμffiffiffi
μ

p e−μ·0
þ∂dþ1

2
t dj�½t − r − μ�: ð100Þ

Transforming the real-time Eqs. (94) and (100) into
frequency space, we discover they—like their energy flux
counterparts—now take the same form for all d ≥ 3

dLij

dω
¼ d − 2

2dþ1π
d−1
2 Γ½dþ1

2
�ω

d−1ðd̃½i½ω� · d̃j�½ω��Þ: ð101Þ

H. “Light Bulb” in even vs odd dimensions

In the final portion of this section on electromagnetic
radiation, let us attempt to answer the question posed in the
abstract:

“How long does a light bulb shine in odd-dimensional
flat spacetime, according to a distant observer?”

I will suppose that a light bulb may be modeled as a
incoherent collection of dipoles oscillating over a range of
frequencies. As a first pass to this problem, therefore, I will
focus on the propagation of the electromagnetic signal
generated by a single dipole at a fixed frequency.
Furthermore, if the dipole were active only over a finite
duration 0 ≤ t ≤ T, the key time-dependent factors in
Eqs. (82) and (84) may be described as

∂d
2
t d⃗½0 ≤ t ≤ T� ¼ C⃗l ·

sin ½ωlt�ffiffiffiffiffiffiffiffi
T=2

p ; ðEven d ≥ 4Þ;

ð102Þ

∂dþ1
2
t d⃗½0 ≤ t ≤ T� ¼ C⃗l ·

sin ½ωlt�ffiffiffiffiffiffiffiffi
T=2

p ; ðOdd d ≥ 3Þ;

ð103Þ

where ωl ≡ πl=T, and zero for t outside this interval.
These f ffiffiffiffiffiffiffiffi

2=T
p

sin½ωlt�jl ¼ 1; 2; 3;…g are orthonormal
basis functions that vanishes at t ¼ 0 and t ¼ T, and the
fCi

lg are arbitrary coefficients. It is certainly possible to
imagine that a collection of incoherent dipoles—when
averaged h…i over their coherence times—would produce

h∂d
2
tdi½0 ≤ t ≤ T�∂d

2
tdj½0 ≤ t0 ≤ T�i

¼
X∞
l¼1

Ci
lC

j
l ·

2

T
sin ½ωlt� sin ½ωlt0�; ðEven d ≥ 4Þ;

ð104Þ
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h∂dþ1
2
t di½0 ≤ t ≤ T�∂dþ1

2
t dj½0 ≤ t0 ≤ T�i

¼
X∞
l¼1

Ci
lC

j
l ·

2

T
sin ½ωlt� sin ½ωlt0�; ðOdd d ≥ 3Þ;

ð105Þ

so that the total signal would be the superposition from
each distinct frequency, without any cross terms.
With this in mind, let us return to the single-frequency

emitter of Eqs. (102) and (103). We see that the electro-
magnetic energy flux at a large distance in even d ≥ 4,
according to Eq. (82) is

dE
dtdΩ

¼ Ca
lP

abCb
l

2ð2πÞd−2T E½ωlðt − rÞ�2; ð106Þ

E½ωlðt − rÞ�
	¼ sin ½ωlðt − rÞ�; 0 ≤ t − r ≤ T
¼ 0 otherwise:

ð107Þ

Just like the 4D case, if the “light bulb” is turned on for a
duration T in even dimensions, the distant observer will see
it for the exactly the same duration T; the main differences
from the 4D case are the 1=ðobserver-source distanceÞd−2
dimension-dependent power law fall off as well as the

number of time derivatives acting on the dipole driving the
radiation.
The odd dimensional case is slightly more involved.

Inserting Eq. (103) into the history integral of Eq. (84),

Z
∞

0

dμ

μ
1
2

∂dþ1
2
t di½t − r

− μ�

8>>><
>>>:

¼ 0 t − r < 0

¼ Ci
l ·

R
t−r
0

dμffiffi
μ

p sin ½ωlðt−r−μÞ�ffiffiffiffiffiffi
T=2

p 0 < t − r < T

¼ Ci
l ·

R
t−r
t−r−T

dμffiffi
μ

p sin ½ωlðt−r−μÞ�ffiffiffiffiffiffi
T=2

p t − r > T:

ð108Þ

These integrals are related to the Fresnel cosine and sine
integrals, which I shall dub respectively as FC and FS. If we
write

dE
dtdΩ

¼ Ca
lP

abCb
l

ð2πÞd−2ðωlTÞ
E½ωlðt − rÞ�2: ð109Þ

Then, for retarded time t − r lying within the active
duration,

E½0 < ωlðt − rÞ < ωlT�≡ sin ½ωlðt − rÞ�FC
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωlðt − rÞ
π

r �
− cos ½ωlðt − rÞ�FS

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωlðt − rÞ

π

r �
; ð110Þ

whereas for t − r after the active duration,

E½ωlðt − rÞ > ωlT�≡ sin ½ωlðt − rÞ�
	
FC

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωlðt − rÞ

π

r �
− FC

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωlðt − r − TÞ

π

r �


− cos ½ωlðt − rÞ�
	
FS

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωlðt − rÞ

π

r �
− FS

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωlðt − r − TÞ

π

r �

: ð111Þ

To gain some insight into the behavior of this signal, let us first record the large argument asymptotic expansions of FS
and FC

FC½z ≫ 1� ∼ 1

2
þ sin½πz2

2
�

πz

X∞
m¼0

ð−Þmð1=2Þ2m
ðπz2=2Þ2m −

cos½πz2
2
�

πz

X∞
m¼0

ð−Þmð1=2Þ2mþ1

ðπz2=2Þ2mþ1
; ð112Þ

FS½z ≫ 1� ∼ 1

2
−
cos½πz2

2
�

πz

X∞
m¼0

ð−Þmð1=2Þ2m
ðπz2=2Þ2m −

sin½πz2
2
�

πz

X∞
m¼0

ð−Þmð1=2Þ2mþ1

ðπz2=2Þ2mþ1
; ð113Þ

where ðaÞn is the Pochhammer symbol. Utilizing
them in Eqs. (110) and (111) teaches us, whenever
ωlðt − rÞ ≫ 1, then to leader order in 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωlðt − rÞp

,
the time-dependent portion of the electromagnetic field
goes as

E½0 < ωlðt − rÞ < ωlT� ∼
sin ½ωlðt − rÞ − π

4
�ffiffiffi

2
p

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πωlðt − rÞp ð114Þ
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and

E½ωlðt−rÞ>ωlT�∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πωlðt−rÞp −
cos ½ωlT�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πωlðt−r−TÞp :

ð115Þ

In Fig. 2, I compare the exact expressions in Eqs. (110) and
(111) (bold line) to their asymptotic forms in Eqs. (114)
and (115) (dashed line), except for the narrow regions
around the transitions ωlðt − rÞ ∼ 0 and ωlðt − rÞ ∼ ωlT,
we see the latter describes the electromagnetic field very
well.

As alluded to earlier, the asymptotic results of integration
E occurring in Eqs. (114) and (115) arise from the time-
dependent factors of the electric and magnetic fields. When
the retarded time lies within the time period when the light
bulb is lit, the observer will see an electromagnetic field
with the same frequency as that of the ð1=2Þðdþ 1Þth
derivative of the dipole, except there is a phase shift of
−π=4. This sinusoidal signal suffers a ‘DC’ shift that
decays at leading order with retarded time as
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωlðt − rÞp

. By contrasting these results against the
even dimensional case in Eq. (106), we see the phase shift
and additional power law decay are the tail induced features
unique to odd dimensions.

FIG. 2. Top panel: The time-dependent part (E½ωlðt − rÞ�) of the leading order electromagnetic radiation field, for a “light bulb” of
duration ωlT ¼ 100, as a function of retarded time ωlðt − rÞ. The bold line is the exact time dependence in Eqs. (110) and (111);
whereas the dashed line is their asymptotic expansion in Eqs. (114) and (115). We see that the gradual downward shift of the sinusoidal
waveform is due to the 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωlðt − rÞp

in Eq. (114); whereas according to Eq. (115), after the active duration the signal decays to zero
rather quickly and without any oscillations. Note that the energy flux dE=ðdtdΩÞ of the “light bulb” in Eq. (103) is proportional to the
square of the bold line of this plot [cf. Eq. (109)]. Bottom left panel: Spacetime configuration of the observer receiving signals from the
source when her retarded time t − r lies within its active duration (dashed segment). This corresponds to the 0 ≤ ωlðt − rÞ ≤ 100 region
of the plot in the top panel. Bottom right panel: Spacetime configuration of the observer receiving signals from the source after her
retarded time t − r has passed its active duration (dashed segment). This corresponds to the ωlðt − rÞ > 100 region of the plot in the
top panel.
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After the light bulb has been turned off, t − r > T, the
remaining electromagnetic field strength—which is then
pure tail—is no longer oscillatory but is the superposition
of several power law decays. This qualitative behavior
indicates, even though the pure tail signal after the bulb has
ceased is nontrivial, it does decay away fairly rapidly. This
in turn verifies the assertion that the electromagnetic signal
of a light bulb of finite duration T as detected by a distant
observer is roughly of the same duration T, because the tail
signal in Eq. (115) quickly tends to zero.

IV. WEAK FIELD Λ= 0 LIMITS OF EINSTEIN’S
GENERAL RELATIVITY

A. Setup

I now move on to perform a similar analysis for the weak
field limit of Einstein’s general relativity without a cos-
mological constant (Λ ¼ 0); i.e.,

Gμν ¼ 8πGNTμν; ð116Þ

off a flat spacetime background

gμν ¼ ημν þ hμν; jhμνj ≪ 1: ð117Þ

For concrete calculations, it is convenient to perform a
change of field variables to

h̄μν ¼ hμν −
1

2
ημνh; ð118Þ

with the reverse transformation being

hμν ¼ h̄μν −
2

d − 2
ημνh̄: ð119Þ

Throughout the rest of this paper, whenever we are carrying
out gravitational perturbation theory, the indices on the
perturbations (either h̄μν or hμν) and on the partial derivative
∂μ will be moved with the flat metric. For example, the
inverse metric is a geometric series,

gμν ¼ ημν − hμσhσν þ hμσhσρhρν þO½h4�: ð120Þ

If we denote T̄μν as the portion of the energy-momentum
shear-stress tensor of matter without any h̄μν, and δnGμν and
δnTμν respectively as the piece of Einstein’s tensor Gμν and
the energy-stress tensor of matter Tμν containing exactly
n ≥ 1 powers of the metric perturbation h̄μν, then the
general relativity in Eq. (116) itself can be reexpressed
as an infinite series,

δ1Gμν ¼ 8πGN

�
T̄μν þ

Xþ∞

n¼1

δnTμν þ
Xþ∞

n¼2

δntμν

�
; ð121Þ

δntμν ≡ −
δnGμν

8πGN
: ð122Þ

The form of general relativity in Eq. (121) admits the
following interpretation. Away from the matter source, and
particularly in the r → ∞ far zone where Tμν ¼ 0, we may
associate the right-hand side with the energy-momentum
tensor of gravity itself in a Minkowski spacetime—for, as I
will now argue, it is not only symmetric, it is also
divergence free with respect to the flat metric when h̄μν
satisfies its equations of motion. Firstly, just like Maxwell’s
electromagnetism, to solve Einstein’s equations (perturba-
tively) one has to fix a gauge so that the associated wave
operator is invertible. We shall use the de Donder gauge

∂μh̄μν ¼ 0; ð123Þ

so that the linearized Einstein’s tensor becomes δ1Gμν ¼
−ð1=2Þ∂2h̄μν and Eq. (121) now reads

∂2h̄μν ¼ −16πGN

�
T̄μν þ

Xþ∞

n¼1

δnTμν þ
Xþ∞

n¼2

δntμν

�
: ð124Þ

Now, the left-hand side is no longer identically divergence-
free even though the nongauge fixed δ1Gμν is, but rather, its
divergence—and thus that of the right-hand side—is zero
when the h̄μν satisfies its equations of motion (as known as
“on shell”) and hence the de Donder gauge. In the r → ∞
far zone, we conclude

∂μ
Xþ∞

n¼2

δntμν ¼ 0 ðwhenever h̄αβ is on shellÞ: ð125Þ

The h̄μν itself may be solved by multiplying 1=∂2 on both
sides of Eq. (124), followed by iterating the right hand side
to any desired order in GN; the nth order iteration would
yield a solution accurate up toO½Gnþ1

N �. Since h̄μν begins at
first order in GN, we note that δntμν ¼ −δnGμν=ð8πGNÞ
must begin at order Gn−1

N . In this work, I will be content
with obtaining the first order in GN—i.e., the leading
contribution from δ2tμν—and in the nonrelativistic contri-
butions to the energy and angular-momentum flux. Our
central goals are therefore to calculate the linearized
solutions to h̄αβ and, from them, the on-shell n ¼ 2 term
of Eq. (122) energy flux

dE
dtdΩ

¼ lim
r→∞

rd−2δ2t0ir̂i ¼ −ð8πGNÞ−1 lim
r→∞

rd−2δ2G0ir̂i;

ð126Þ

and the angular-momentum flux
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dLij

dtdΩ
¼ lim

r→∞
rd−2x½iδ2tj�kr̂k

¼ −ð8πGNÞ−1 lim
r→∞

rd−2x½iδ2Gj�kr̂k; ð127Þ

of gravitational radiation. Notice, away from the matter
source and when evaluating on the linearized solutions of

Eq. (124)—i.e., δ1Gμν ¼ 8πGNT̄μν—the indices of δ2Gμν

may be moved with the flat metric ημν because δ1Gμν ¼ 0

in vacuum. Hence, in the far zone,

δ2Gρσ ¼
�
δμρδνσ −

1

2
ηρση

μν

�
δ2Rμν; ð128Þ

δ2Rμν ¼
1

2

	
1

2
∂μhαβ∂νhαβ þ hαβð∂ν∂μhαβ þ ∂β∂αhμν − ∂β∂νhμα − ∂β∂μhναÞ

þ∂βhανð∂βhμα − ∂αhμβÞ − ∂β

�
hαβ −

1

2
ηαβh

�
ð∂fνhμgα − ∂αhμνÞ



; ð129Þ

and
δ2Gρσ ¼ ηρμησνδ2Gμν: ð130Þ

B. Linearized Einstein’s equations

As already alluded to, the first order inGN solutions to h̄αβ
satisfy the linearized version of Einstein’s equations in
Eq. (124)

∂2h̄μν ¼ −16πGNT̄μν: ð131Þ
Comparison with Eq. (5) immediately tells us, we have at
hand a d × d matrix of massless scalar wave equations.

Its solution can therefore be obtained by simply replacing in
Sec. II all the ψ’s with h̄μν and all the J’s with −16πGNT̄μν.
With this in mind, let us turn to its far-zone solutions needed
for Eqs. (126) and (127).

1. Far-zone limits

In the r → ∞ limits and in even dimensions d ¼ 4þ 2n,
with the relativistic retarded time denoted as τ≡ t−rþ r̂ · x⃗0,
the zeroth, first, and second derivatives are respectively

h̄μν½t; x⃗� ¼ −
16πGN

2ð2πrÞ1þn

Z
Rd−1

dd−1x⃗0
�
∂n
t T̄μν½τ; x⃗0�

þ 1

2

nðnþ 1Þ þ ðr̂ · x⃗0Þð2nþ 2Þ∂t − ðr02 − ðr̂ · x⃗0Þ2Þ∂2
t

r
∂n−1
t T̄μν½τ; x⃗0� þO½r−2�

�
; ð132Þ

∂αh̄μν½t; x⃗� ¼ −
16πGN

2ð2πrÞ1þn

Z
Rd−1

dd−1x⃗0
�
ðδ0α − δlαr̂lÞ∂nþ1

t T̄μν½τ; x⃗0�

þ δaαPab x
0b

r
∂nþ1
t T̄μν½τ; x⃗0� −

nþ 1

r
δlαr̂l∂n

t T̄μν½τ; x⃗0�

þ 1

2

nðnþ 1Þ þ ðr̂ · x⃗0Þð2nþ 2Þ∂t − ðr02 − ðr̂ · x⃗0Þ2Þ∂2
t

r
ðδ0α − δlαr̂lÞ∂n

t T̄μν½τ; x⃗0� þO½r−2�
�
; ð133Þ

and

∂α∂βh̄μν½t; x⃗� ¼ −
16πGN

2ð2πrÞ1þn

Z
Rd−1

dd−1x⃗0
�
ðδ0α − δlαr̂lÞðδ0β − δmβ r̂

mÞ∂nþ2
t T̄μν½τ; x⃗0� − δlα

Plm

r
δmβ ∂nþ1

t T̄μν½τ; x⃗0�

þ ðδ0fα − δlfαr̂
lÞδaβgPab x

0b

r
∂nþ2
t T̄μν½τ; x⃗0� −

nþ 1

r
δlfαr̂

lðδ0βg − δmβgr̂
mÞ∂nþ1

t T̄μν½τ; x⃗0�

þ 1

2

nðnþ 1Þ þ ðr̂ · x⃗0Þð2nþ 2Þ∂t − ðr02 − ðr̂ · x⃗0Þ2Þ∂2
t

r
ðδ0α − δlαr̂lÞðδ0β − δmβ r̂

mÞ∂nþ1
t T̄μν½τ; x⃗0� þO½r−2�

�
:

ð134Þ
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In the same far zone limit but odd-dimensional d ¼ 3þ 2n flat background spacetimes with the relativistic retarded time
now involving an additional history integral τ≡ t − rþ r̂ · x⃗0 − μ, the zeroth, first, second derivatives are respectively

h̄μν½t; x⃗� ¼ −
16πGNffiffiffi

2
p ð2πÞnþ1 · rnþ1

2

Z
Rd−1

dd−1x⃗0
Z

∞

0

dμ exp ½−μ · 0þ�
�
μ−

1
2∂n

τ T̄μν½τ; x⃗0�

þ μ
1
2

r

��
n2 −

1

4

�
∂n
τ T̄μν½τ; x⃗0� þ ðr̂ · x⃗0Þð2nþ 1Þ∂nþ1

τ T̄μν½τ; x⃗0� − ðr02 − ðr̂ · x⃗0Þ2Þ∂nþ2
τ T̄μν½τ; x⃗0�Þ þO½r−2�

�
; ð135Þ

∂αh̄μν ¼ −
16πGNffiffiffi

2
p ð2πÞnþ1 · rnþ1

2

Z
Rd−1

dd−1x⃗0
Z

∞

0

dμ exp ½−μ · 0þ�

×

	
μ−

1
2ðδ0α − δjαr̂jÞ∂nþ1

τ T̄μν½τ; x⃗0� þ
μ−

1
2

r

�
δaαPabx0b∂nþ1

τ T̄μν½τ; x⃗0� −
�
nþ 1

2

�
r̂lδlα∂n

τ T̄μν½τ; x⃗0�
�

þ μ−
1
2

2r
ðδ0α − δjαr̂jÞ

��
n2 −

1

4

�
∂n
τ T̄μν½τ; x⃗0�

þ ðr̂ · x⃗0Þð2nþ 1Þ∂nþ1
τ T̄μν½τ; x⃗0� − ðr02 − ðr̂ · x⃗0Þ2Þ∂nþ2

τ T̄μν½τ; x⃗0�
�
þO½r−2�



; ð136Þ

and
∂α∂βh̄μν½t; x⃗� ¼ −

16πGNffiffiffi
2

p ð2πÞnþ1 · rnþ1
2

Z
Rd−1

dd−1x⃗0
Z

∞

0

dμ exp ½−μ · 0þ�

×

	
μ−

1
2ðδ0α − δjαr̂jÞðδ0β − δkβ r̂

kÞ∂nþ2
τ T̄μν½τ; x⃗0�

þ μ−
1
2

r

	
ðδ0fα − δjfαr̂

jÞ
�
δaβgP

abx0b∂nþ2
τ T̄μν½τ; x⃗0� −

�
nþ 1

2

�
r̂lδlβg∂nþ1

τ T̄μν½τ; x⃗0�
�
− δaαPabδbβ∂nþ1

τ T̄μν½τ; x⃗0�



þ μ−
1
2

2r
ðδ0α − δjαr̂jÞðδ0β − δkβr̂

kÞ
��

n2 −
1

4

�
∂nþ1
τ T̄μν½τ; x⃗0�

þ ðr̂ · x⃗0Þð2nþ 1Þ∂nþ2
τ T̄μν½τ; x⃗0� − ðr02 − ðr̂ · x⃗0Þ2Þ∂nþ3

τ T̄μν½τ; x⃗0�
�
þO½r−2�



: ð137Þ

C. Nonrelativistic limit

I now turn to the nonrelativistic limit by first assuming
that the momentum and shear-stress of matter scales
respectively as v and v2 relative to the energy density,
namely T0i ∼ v · T00 and Tij ∼ v2 · T00, where v ≪ 1 is
some characteristic speed of its internal dynamics.
Furthermore, I will only study the case where the con-
tribution to the total energy-momentum shear-stress is
dominated by that of the matter itself, so that

∂μT̄μν ¼ ∂0T̄0ν − ∂iT̄iν ¼ 0: ð138Þ

This unfortunately does not cover the physically important
case of the compact binary system in 4D—nor any system
bound by its self-gravity. For, in such a scenario both
gravitational and matter necessarily contribute significantly
to the system’s total energy-momentum tensor. In fact,
because Eq. (138) does not contain any coupling to gravity,
if it were to hold for the compact binary system, it would

imply the two objects would be traveling on independent
straight lines in otherwise empty space—namely, a bound
system cannot exist.
By taking the time derivative of the total mass and spatial

momentum

M ≡
Z
Rd−1

T̄00½t; x⃗0�dd−1x⃗0; ð139Þ

Pi ≡
Z
Rd−1

T̄0i½t; x⃗0�dd−1x⃗0; ð140Þ

followed by using Eq. (138), one may learn that M and Pi

are time independent for a physically isolated body. Along
similar lines, the dipole moment—proportional to the
leading order center of mass—

di½t�≡
Z
Rd−1

x0iT̄00½t; x⃗0�dd−1x⃗0; ð141Þ
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obeys

∂tdi½t� ¼ Pi: ð142Þ
Below, we will see that gravitational energy-momentum
radiation begins at the quadrupole order in all dimensions
because the matter energy momentum ðM;PiÞ is
conserved.
Next, thedouble-timederivative of thequadrupolemoment

Qij½t�≡
Z
Rd−1

x0ix0jT̄00½t; x⃗0�dd−1x⃗0; ð143Þ

is related to the spatial components of the energy-momentum
tensor via the relation

1

2
∂2
t Qij½t� ¼

Z
Rd−1

T̄ij½t; x⃗0�dd−1x⃗0: ð144Þ

We may now write the de Donder gauge h̄μν solutions up to
the quadrupole order in the nonrelativistic expansion. Similar
to the electromagnetic case, this is achieved by Taylor
expanding the stress tensors in Eqs. (132) through (137)
with respect to time, in powers of r̂ · x⃗0; as well as utilizing
Eqs. (139)–(144) throughout these calculations. At leading
order, the h̄μν and its first and second derivatives are built

entirely out of the monopole M, dipole d⃗, and quadrupole
moment Qij. For instance, in even dimensions d ¼ 4þ 2n,
the 00 of the de Donder gaugemetric perturbations now takes
the form

h̄00½t; x⃗� ≈ −
16πGN

2ð2πrÞ1þn

�
∂n
t M þ r̂ · ∂n

t P⃗þ 1

2
r̂ar̂b∂nþ2

t Qab½t − r�

þ 1

r

	
nðnþ 1Þ

2
∂n−1
t M þ ðnþ 1Þðnþ 2Þ

2
r̂ · ∂n

t d⃗½t − r� −
�
δab

2
−
ðnþ 2Þðnþ 3Þ

4
r̂ar̂b

�
∂nþ1
t Qab½t − r�


�
:

ð145Þ
Whereas, the spatial vector part becomes

h̄0i½t; x⃗� ≈ −
16πGN

2ð2πrÞ1þn

�
∂n
t Pi −

r̂a

2
∂nþ2
t Qai½t − r� þ…

þ 1

r

	
nðnþ 1Þ

2
∂n−1
t Pi −

ðnþ 1Þðnþ 2Þ
4

r̂a∂nþ1
t Qai½t − r� þ ðnþ 1Þξi½t0�


�
; ð146Þ

where, for some arbitrary time t0, the ξi is defined through
the relations

Z
Rd−1

dd−1x⃗0ðr̂ · x⃗0ÞT̄0i½t; x⃗0� ¼ −
r̂a

2
∂tQai½t� þ ξi½t0� ð147Þ

ξi½t0�≡ r̂a

2
∂tQai½t0� þ

Z
Rd−1

dd−1x⃗0ðr̂ · x⃗0ÞT̄0i½t0; x⃗0�: ð148Þ

That Eq. (147) holds can be seen by verifying—via the
conservation law in Eq. (138) and the relationship between
the quadrupole’s acceleration and the shear-stress of
Eq. (144)—the (first-order) ordinary differential
equation

d
dt

Z
Rd−1

dd−1x⃗0ðr̂ · x⃗0ÞT̄0i½t; x⃗0� ¼ −
r̂a

2
∂2
τQai½t�: ð149Þ

The ξi in Eq. (148) are therefore the “initial conditions”.
Finally, the rank-two spatial components of the metric

perturbations are now

h̄ij½t; x⃗� ≈ −
16πGN

2ð2πrÞ1þn

�
1

2
∂nþ2
t Qij½t − r�

þ nðnþ 1Þ
4r

∂nþ1
t Qij½t − r�

�
: ð150Þ

Turning to the odd-dimensional d ¼ 3þ 2n case, the
metric perturbations now feature integrals over the retarded
history of the quadrupole moments,

h̄00½t; x⃗� ≈ −
16πGNffiffiffi

2
p ð2πÞnþ1 · rnþ1

2

�Z
∞

0

e−μ·0
þ
�
∂n
t M þ r̂ · ∂n

t P⃗þ r̂ar̂b

2
∂nþ2
t Qab½t − r − μ�

�
dμffiffiffi
μ

p

þ 1

r

	
2nþ 1

4

Z
∞

0

e−μ·0
þð3r̂ · ∂n

t P⃗ − ∂n
t MÞ ffiffiffi

μ
p

dμ

þ
Z

∞

0

e−μ·0
þ
�ð2nþ 3Þð2nþ 5Þ

8
r̂ar̂b − δab

�
∂nþ1
t Qab½t − r − μ� dμ

2
ffiffiffi
μ

p

�

; ð151Þ
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h̄0i½t; x⃗� ≈ −
16πGNffiffiffi

2
p ð2πÞnþ1 · rnþ1

2

�Z
∞

0

e−μ·0
þ
�
∂n
t Pi −

r̂a

2
∂nþ2
t Qai½t − r − μ�

�
dμffiffiffi
μ

p

þ 1

r

	
4n2 − 1

4

Z
∞

0

e−μ·0
þ∂n

t Pi
ffiffiffi
μ

p
dμ −

ð2nþ 1Þð2nþ 3Þ
8

Z
∞

0

e−μ·0
þ
r̂a∂nþ1

t Qai½t − r − μ� dμ
2

ffiffiffi
μ

p

�

; ð152Þ

h̄ij½t; x⃗� ≈ −
16πGNffiffiffi

2
p ð2πÞnþ1 · rnþ1

2

Z
∞

0

e−μ·0
þ
�
1

2
∂nþ2
t Qij½t − r − μ� þ 4n2 − 1

16 · r
∂nþ1
t Qij½t − r − μ�

�
dμffiffiffi
μ

p : ð153Þ

In Eqs. (151), (152), and (153), we have converted one of
the time derivatives acting on the quadrupole occurring
within the

R
∞
0 …

ffiffiffi
μ

p
dμ integral into a negative derivative

with respect to μ, followed by integrating it by parts. (As
explained before, the upper limit of the boundary term is
zero due to the e−μ·0

þ
and the lower limit is zero due to

the
ffiffiffi
μ

p
.) Furthermore, notice, for n ¼ 0 (i.e., d ¼ 3),

the integrals involving M and r̂ · P⃗ are divergent, whereas
this infinity is absent for all higher odd dimensions.
In fact, the de Donder gauge appears to be violated by
the divergent ð1=rÞ R∞

0 …
ffiffiffi
μ

p
dμ integrals in the second

lines of Eqs. (151) and (152); for a direct computation will
teach us

∂μh̄μν ¼ −
16πGNffiffiffi

2
p ð2πÞnþ1 · rnþ1

2

·
4n2 − 1

8r

×
Z

∞

0

e−μ·0
þðδiν∂n

t Pi þ δ0ν∂n
t MÞ ffiffiffi

μ
p

dμ: ð154Þ

This suggests the d ¼ 3 case requires special care to
develop a proper asymptotic series.
I also highlight here, in a similar spirit to the electro-

magnetic case, it is important not to take the nonrelativistic
limit—replacing t − rþ r̂ · x⃗0 with t − r—too early.

For example, in 4D, if we take from the outset
h̄μν ¼ −ð4GN=rÞ

R
d3x⃗0T̄μν½t − r; x⃗0�, a quick calculation

would reveal the de Donder gauge does not hold
(∂μh̄μν ≠ 0) and therefore Eq. (138) cannot be used con-
sistently to rewrite h̄μν, and its first and second derivatives,
in terms of quadrupole moments.
To reiterate, the solutions in Eqs. (145), (146), (150),

(151), (152), and (153) are Eqs. (132) and (135) expanded
up to the quadrupole order and up to 1=rd=2 order, with
relative corrections that scale as ðr̂ · x⃗0Þ∂t ∼ v or rs=r,
where rs is the characteristic size of the matter source. I
have also carried out this nonrelativistic expansion for
∂αh̄μν and ∂α∂βh̄μν. Furthermore, as a check of my non-
relativistic calculations, I have verified that both the wave
equation ∂2h̄μν ¼ 0 and the de Donder gauge ∂μh̄μν ¼ 0 ¼
∂μ∂αh̄μν are satisfied for all d ≥ 4.

D. Gravitational radiation: Energy flux

For even-dimensional d ¼ 4þ 2n asymptotically flat
spacetimes, inserting Eqs. (145), (146), (150), and their
first- and second-derivative results into Eqs. (126) and
(128)—together with considerable aid from xAct [8]—
reveals

δ2tμν ¼ −
1

8πGN

�
16πGN

2ð2πrÞ1þn

�
2

· ∂μðt − rÞ∂νðt − rÞ

×

�
−
∂nþ3
t QðttÞ

ab ½t − r�∂nþ3
t QðttÞ

ab ½t − r�
16

þ ∂
∂t

∂nþ2
t QðttÞ

ab ½t − r�∂nþ3
t QðttÞ

ab ½t − r�
8

�

þ terms linear in the quadrupole moments ∂nþ4
t Qab½t − r�; ð155Þ

where the transverse-traceless quadrupole is defined as

QðttÞ
ab ≡ PabijQij; ð156Þ

Pabij ≡ 1

2
PafiPjgb −

PabPij

d − 2
; Pij ≡ δij − r̂ir̂j: ð157Þ

Due to the projector properties in Eq. (58) as well as
Paa ¼ d − 2,

δabQðttÞ
ab ¼ 0 ¼ r̂aQðttÞ

ab : ð158Þ
The second term of the second line of Eq. (155) and
the terms linear in quadrupole moments would contribute
as a total time derivative to the gravitational energy flux
dE=ðdtdΩÞ in Eq. (126). If we assume
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∂nþ2
t Qab½t − r�∂nþ3

t Qij½t − r�jt¼�∞ ¼ 0

¼ ∂nþ3
t Qab½t − r�jt¼�∞; ð159Þ

then such a total time derivative would not contribute
to the total energy radiated. Moreover, one may readily
check that

∂μ

�∂μðt − rÞ∂νðt − rÞ
rd−2

A½t − r�B½t − r�
�

¼ 0 ð160Þ

for all dimensions d ≥ 3, and for arbitrary functions A and
B of the retarded time t − r. Altogether, that implies we
may discard the total time derivative terms of Eq. (155) and
identify the remaining term as the effective conserved
stress-energy tensor of gravitational radiation

rd−2δ2t
ðeffÞ
μν ½d ¼ 4þ 2n�

¼ GN

22nþ3π2nþ1
· ∂μðt − rÞ∂νðt − rÞ∂nþ3

t QðttÞ
ab ½t − r�∂nþ3

t

QðttÞ
ab ½t − r�: ð161Þ

It is worth pointing out, the coefficients of ∂nþ4
t Qab½t − r�

in Eq. (155) are either M or Pi. If the energy momentum
ðM;PiÞ were not constant, these ∂nþ4

t Qab½t − r� terms

would then contribute to δ2t
ðeffÞ
μν because they are no longer

total time derivatives.
Inserting Eq. (161) into Eq. (126) hands us the differ-

ential gravitational-wave energy flux per solid angle,

dE
dtdΩ

¼ GN

2d−1πd−3
∂dþ2

2
t QðttÞ

ab ½t − r�∂dþ2
2
t QðttÞ

ab ½t − r�:
ðEven d ≥ 4Þ ð162Þ

Because of the projector properties of Pij in Eq. (58),
PabmnPmnij ¼ Pabij, and the total energy flux can be
obtained from Eq. (162) as

dE
dt

¼ GN

2d−1πd−3
∂dþ2

2
t Qab½t − r�∂dþ2

2
t Qij½t − r�

·
Z
Sd−2

�
1

2
PafiPjgb −

PabPij

d − 2

�
dd−2Ω: ð163Þ

These solid-angle integrals involve Kronecker deltas, r̂ir̂j

and r̂ir̂jr̂ar̂b. Upon utilizing Eqs. (A4), (A16), and (17) of
Appendix below, we arrive at Eq. (15).
Let us move on to the odd-dimensional case d ¼ 3þ 2n.

Using xAct [8] to plug Eqs. (151), (152), and (153) into
Eqs. (126) and (128)

δ2tμν ¼ −
1

8πGN

�
16πGNffiffiffi

2
p ð2πÞnþ1rnþ1

2

�
2

· ∂μðt − rÞ∂νðt − rÞ

×

�
−
∂nþ3
t QðttÞ

ab ½t − r�∂nþ3
t QðttÞ

ab ½t − r�
16

þ ∂
∂t

∂nþ2
t QðttÞ

ab ½t − r�∂nþ3
t QðttÞ

ab ½t − r�
8

�

þ terms linear in the quadrupole moments
Z

∞

0

dμffiffiffi
μ

p ∂nþ4
t Qab½t − r − μ�; ð164Þ

QðttÞ
ab ½t − r� ¼ Pabij

Z
∞

0

dμffiffiffi
μ

p Qij½t − r − μ�: ð165Þ

Note that the transverse and traceless properties of
Eq. (158) render QðttÞ

ab trivial in 3D, i.e., for n ¼ 0. To
see this, simply pick r̂ to point, say, along the 1-axis. That

QðttÞ
ab is transverse then implies QðttÞ

1a ¼ 0 ¼ QðttÞ
a1 . The sole

remaining nontrivial component QðttÞ
22 must be zero too (by

the traceless condition). Hence, only the linear terms in the
quadrupole moments survive. If this result holds up after a
more careful asymptotic analysis is carried out that not only
avoids the de Donder gauge-breaking terms of Eq. (154)
but also the divergences involving M and Pi; then it would
confirm the widely accepted view that gravitational radi-
ation does not exist in a (2þ 1)-dimensional background
Minkowski spacetime.

For all odd d ≥ 5, as with the analysis in even dimen-
sions, we discard all total time derivative terms. To this end
I assume

∂nþ3
t Qab½t − r − μ�jt¼−∞ ¼ 0

¼ lim
t→∞

Z
∞

−t

dμ0ffiffiffiffiffiffiffiffiffiffiffiffi
μ0 þ t

p e−ðμ0þtÞ·0þ∂nþ3
t Qab½−r − μ0�; ð166Þ

and thus only retain the first term of Eq. (164). Following
this, I employ the resulting effective (conserved) stress
tensor in Eq. (126)

rd−2δ2t
ðeffÞ
μν ½d ¼ 3þ 2n ≥ 5�

¼ GN

22nþ2π2nþ1
· ∂μðt − rÞ∂νðt − rÞ∂nþ3

t

×QðttÞ
ab ½t − r�∂nþ3

t QðttÞ
ab ½t − r�; ð167Þ
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dE
dtdΩ

¼ GN

2d−1πd−2
∂dþ3

2
t QðttÞ

ab ½t − r�∂dþ3
2
t QðttÞ

ab ½t − r�:
ðOdd d ≥ 5Þ ð168Þ

Once again, we may recall Eqs. (A4), (A16), and (A17) to
integrate Eq. (168) over the (d − 2)-sphere to yield the
total gravitational energy flux in Eq. (17). Just like
the even-dimensional case, let us also record here that
the coefficients of the integral of ∂nþ4

t Qab in Eq. (164) are
either M or Pi. If the energy momentum ðM;PiÞ were not
constant, these ∂nþ4

t Qab terms would then contribute to

δ2t
ðeffÞ
μν because they are no longer total time derivatives.

Altogether, as already alluded to, we conclude that
gravitational energy-momentum radiation begins at the
quadrupole order because of matter energy-momentum
conservation.
At this point, Eq. (19)—the frequency space counterpart

to Eqs. (15) and (17)—may be deduced from Parseval’s
theorem and the decomposition in odd dimensions

Z
∞

0

dμffiffiffi
μ

p e−μ·0
þ
Qab½t − r − μ�

¼
Z

dω
2π

ffiffiffi
π

p

ð−iðωþ i0þÞÞ12 exp ½−iωðt − rÞ�Q̃ab½ω�:

ð169Þ

As was the case for electromagnetism, the gravitational
energy flux per angular frequency takes the same form for
all d ≥ 4, despite the distinction in the causal structure of
the real-time signals in even versus odd dimensions.

E. Gravitational radiation: Angular momentum flux

The gravitational angular momentum flux requires
developing δ2tμν to one higher order in the 1=r expansion,
because of the extra factor of r in the x½iTj�kr̂k.
For d ¼ 4þ 2n, inserting Eqs. (145), (146), (150) and

their first- and second-derivative results into Eqs. (127) and
(128) using xAct [8] discarding in the resulting expressions
the total derivative terms, which all are proportional to
either

∂tð∂nþ1
t Qab½t − r�∂nþ3

t Qij½t − r�Þ;
∂nþ3
t Qij½t − r�; or ∂nþ4

t Qij½t − r�; ð170Þ

followed by integrating over the solid angle with Eqs. (A4),
(A16), and (17) below,

dLij

dt
¼ dðd − 1Þðd − 3ÞGN

2d−1ðd − 2Þπd−5
2 Γ½dþ3

2
� ∂

d
2
tQa½i½t − r�∂dþ2

2
t Qj�a½t − r�:

ðEven d ≥ 4Þ ð171Þ

The d ¼ 4 result recovers the spatial Hodge dual of
Eq. (4.9) of Peters [9],

dLij

dt

����
d¼4

¼ 2

5
GN∂2

t Qa½i½t − r�∂3
t Qj�a½t − r�: ð172Þ

For the odd-dimensional case, d ¼ 3þ 2n, using xAct [8]
to plug Eqs. (151), (152), and (153) into Eqs. (127) and
(128); dropping in the ensuing expressions all total time
derivative terms—which are all proportional to

∂
∂t

�Z
∞

0

e−μ·0
þ∂nþ3

t Qnþ3
ab ½t − r − μ� dμffiffiffi

μ
p

·
Z

∞

0

e−μ
0·0þ∂nþ1

t Qab½t − r − μ0� dμ
0ffiffiffiffi
μ0

p
�
; ð173Þ

followed by integrating over the solid angle

dLij

dt
¼ dðd − 1Þðd − 3ÞGN

2d−1ðd − 2Þπd−3
2 Γ½dþ3

2
�

Z
∞

0

∂dþ1
2
t Qa½i½t − r − μ� dμffiffiffi

μ
p

·
Z

∞

0

∂dþ3
2
t Qj�a½t − r − μ0� dμ

0ffiffiffiffi
μ0

p : ð174Þ

In frequency space,

dLij

dω
¼ dðd − 1Þðd − 3ÞGN

2dðd − 2Þπd−3
2 Γ½dþ3

2
�ω

dþ1Q̃a½i½ω�Q̃j�a½ω��: ð175Þ

Once again, the angular momentum flux per angular
frequency takes the same form in all dimensions d ≥ 4.

F. Finite duration quasiperiodic quadrupole source

I close this section with a brief discussion to parallel the
one at the end of § Sec. III by considering a finite duration
(quasi)periodic quadrupole source of gravitational waves.
Instead of studying the real-time energy flux, however, I
will instead study the synchronous gauge metric perturba-
tion hðsÞij to leading order in 1=rðd=2Þ−1. This is because hðsÞij
is directly linked to the fractional distortion of space itself,
which is responsible for the changes in the interference
patterns measured by laser interferometer based gravita-
tional wave detectors. Specifically, if the initial perturba-
tions are zero, then the fractional distortion δL=L between
the spatial locations X⃗ and Y⃗, whose associated unit
direction vector I dub here as n̂≡ ðX⃗ − Y⃗Þ=jX⃗ − Y⃗j, is
given by the formula7

δL
L

¼ −
n̂in̂j

2

Z
1

0

hðsÞij ½t; X⃗ þ λðY⃗ − X⃗Þ�dλ: ð176Þ

7See, for example, Appendix C of [4].
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I remark in passing, that it is conceptually useful to relate

hðsÞij to the gauge-invariant linearized components of the
Riemann tensor via

R0i0j ¼ −
1

2
∂2
t h

ðsÞ
ij ½t; x⃗�; ð177Þ

so that Eq. (176) can in turn be recast in a manifestly gauge-
invariant form, at the cost of introducing two extra integrals.
In the far zone ωr ≫ 1, the synchronous gauge metric

perturbation is in fact equal to—up to additive zero
frequency initial conditions—the transverse-traceless por-
tion of the de Donder gauge spatial perturbation,8

hðsÞij ½t; x⃗� ≈ hðttÞij ½t; x⃗�; ð178Þ

hðttÞij ½t; x⃗�≡ Pijabh
ðde DonderÞ
ab ½t; x⃗�: ð179Þ

Since Pijabδ
ab ¼ 0 [recall Eq. (157)], note that hðttÞij ¼

Pijabh̄
ðde DonderÞ
ab too, because the second term on the right-

hand side of Eq. (119) would drop out. This in turn implies,
from Eqs. (150) and (153),

hðsÞij ½t; x⃗� ≈ −
8πGN

2ð2πrÞd2−1 ð∂
d
2
tQ

ðttÞ
ij ½t − r� þO½r−1�Þ;

ðEven d ≥ 4Þ ð180Þ

≈ −
8πGNffiffiffiffiffiffi

4π
p ð2πrÞd2−1

Z
∞

0

e−μ·0
þð∂dþ1

2
t QðttÞ

ij ½t − r − μ�

þO½r−1�Þ dμffiffiffi
μ

p ; ðOdd d ≥ 5Þ ð181Þ

where the transverse-traceless quadrupole has been defined
in Eq. (156).
I now model the finite duration quasiperiodic quadrupole

as

∂d
2
tQij½0≤ t≤T�¼Cl

ij ·
sin½ωlt�ffiffiffiffiffiffiffiffi

T=2
p ; ðEvend≥4Þ ð182Þ

∂dþ1
2
t Qij½0≤ t≤T�¼Cl

ij ·
sin½ωlt�ffiffiffiffiffiffiffiffi

T=2
p ; ðOddd≥3Þ ð183Þ

and zero for t outside this interval. The frequency is labeled
by an integer l ¼ 1; 2; 3;… through ωl ≡ πl=T, and the
fCl

ijg are arbitrary coefficients. The even d ≥ 4 synchro-
nous gauge perturbation in Eq. (180) is now

hðsÞij ½t; x⃗�
8<
:

≈ − 8πGN

2ð2πrÞd2−1
PijabCl

ab
sin ½ωlðt−rÞ�ffiffiffiffiffiffi

T=2
p ; 0 ≤ t − r ≤ T

¼ 0 ðOtherwiseÞ:
ð184Þ

For the odd d ≥ 5 case in Eq. (181), borrowing the integration results at the end of Sec. III,

hðsÞij ½t; x⃗� ≈ −
8πGN

ð2πrÞd2−1
PijabCl

abffiffiffiffiffiffiffiffiffi
ωlT

p E½ωlðt − rÞ�; ð185Þ

with

E½ωlT < 0� ¼ 0; ð186Þ

E½0 < ωlðt − rÞ < ωlT� ¼ sin ½ωlðt − rÞ�FC
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωlðt − rÞ
π

r �
− cos ½ωlðt − rÞ�FS

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωlðt − rÞ

π

r �
; ð187Þ

E½ωlðt − rÞ > ωlT� ¼ sin ½ωlðt − rÞ�
	
FC

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωlðt − rÞ

π

r �
− FC

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωlðt − r − TÞ

π

r �


− cos ½ωlðt − rÞ�
	
FS

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωlðt − rÞ

π

r �
− FS

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωlðt − r − TÞ

π

r �

: ð188Þ

The leading asymptotic expansions of E are

8See Eq. (46) of [10]. The hðsÞij and hðttÞij here are the χðSynchÞij and χðttÞij in [10].

ELECTROMAGNETIC AND GRAVITATIONAL RADIATION IN … PHYS. REV. D 104, 084074 (2021)

084074-23



E½0<ωlðt−rÞ<ωlT�∼
sin ½ωlðt−rÞ− π

4
�ffiffiffi

2
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πωlðt−rÞp ;

ð189Þ

E½ωlðt−rÞ>ωlT�∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πωlðt−rÞp −
cos ½ωlT�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πωlðt−r−TÞp :

ð190Þ

Since the core of the electromagnetic and gravitational
solutions is the massless scalar Green’s function, it should
not surprise the reader that the fractional distortion of

space in Eq. (176) governed by hðttÞij yields a similar time
dependence as its real-time electromagnetic power loss
counterpart. In even dimensions, the gravitational wave
tracks the time dependence of the quadrupole source and is
nonzero only when the retarded time t − r lies within the
quadrupole’s active duration 0 ≤ t − r ≤ T. Whereas, in
odd dimensions—at least for sufficiently high frequencies—
the gravitational wave is phase shifted by −π=4 relative to
the quadrupole and is further appended by nonoscillatory
signals that fall off as inverse square roots of time. After the
retarded time has passed the quadrupole’s active duration
t − r > T, moreover, the now pure-tail fractional distortion
of space becomes strictly nonoscillatory and decays rapidly
to zero. As detected by a hypothetical LIGO experiment
residing in odd-dimensional spacetime, the duration of the
quadrupole’s active production of gravitational waves is still
roughly T, despite the presence of the tail effect. Fig. 2
captures the situation here, just as it did for the electromag-
netic case.

V. SUMMARY AND DISCUSSIONS

In this work, I have managed to generalize to all relevant
dimensions the leading-order nonrelativistic dipole radia-
tion formula of Maxwell’s electromagnetism and the weak
field quadrupole gravitational radiation formula of
Einstein’s general relativity without a cosmological con-
stant—d ≥ 3 for the former and d ≥ 4 for the latter. The
differential energy flux can be found in Eqs. (82) and (84)
for electromagnetism, and Eqs. (162) and (168) for weak-
field Λ ¼ 0 general relativity. Their corresponding inte-
grated power loss can be found in Sec. I. For angular
momentum radiated to infinity, the electromagnetic results
can be found in Eqs. (91), (94), (96), and (100). Whereas,
the gravitational wave angular momentum loss is found in
Eqs. (171) and (174). The main novelty uncovered here is
the dependence of the radiation on the entire past histories
of the dipoles and quadrupoles in odd-dimensional
Minkowski due to the tail effect—to my knowledge, these
real-time expressions have not appeared before in the
literature. This stark distinction between the causal struc-
ture of massless signals in odd versus even dimensions is

lost in their frequency-space expressions, where they take
the same form for all dimensions.
Despite this tail-induced history dependence in odd

dimensions, however, I have also shown that—apart from
a phase shift and additional nonoscillatory terms that
decays as inverse square roots of time—a (quasi)periodic
electromagnetic or gravitational source of duration T
remains roughly the same duration T when seen or heard
by a distant observer. It may be interesting to investigate
more complex radiating systems, where the tail effect may
exhibit other features that would further distinguish it from
tail-free propagation in even dimensions.
While the conceptual understanding of the tail effect as

inside the null-cone propagation allowed us to anticipate
that the far-zone radiation has to depend on the entire past
history of its sources, the key technical step involved the
integral representation of the Γ function in Eq. (51), an
insight I borrowed from quantum field theory. This con-
verted the inverse fractional powers of frequencies occur-
ring in the odd-dimensional Green’s functions—absent in
the even case—into a one-dimensional integral over μ
involving the outgoing wave exp½iωðt − rþ r̂ · x⃗0 − μÞ�;
see Eq. (52). In other words, the integral representation of Γ
is in fact the integral over the past history. For future work,
it may be illuminating to rederive the odd-dimensional
power loss results from the source point of view; i.e., by
energy conservation, the work done on the source by the
history-dependent electromagnetic and gravitational forces
must in fact be equal to the power loss to infinity. Instead of
the far-zone expansions I carried out in this paper, such an
analysis would require a near-zone one instead. The
techniques deployed could in turn be potentially relevant
for other self-force calculations.
To be sure, our gravitational results were derived with the

assumption that the energy-momentum shear-stress of
matter is conserved. This excludes self-gravitating systems
such as the compact binaries whose gravitational waves
LIGO has been hearing from; for such a scenario it is the
stress energy tensor of both matter and gravitation that is
conserved—even though the final answers are likely to be
the same, I hope in the near future to rederive the
quadrupole formulas for the self-gravitation case for all
d ≥ 4. Curiously, even gravitation textbooks and review
articles do not always treat this issue with care. For
instance, some assume the stress-energy tensor of matter
is conserved, but go on to claim that the formulas must be
valid for the compact binary system. I should mention, the
quantum field theory techniques used in [3] does take into
account the gravitational dynamics of the compact binary
system, and their results are therefore valid for self-
gravitating systems even though they were not able to
capture the real-time power loss.
I end with a remark on the far-zone radiation limit and its

relation to large number of dimensions d. For the radiation
signal—the 1=rðd=2Þ−1 piece of the field that contributes to
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energy loss to infinity—to be cleanly separated from all
the subleadingorders in the1=r expansion, itmust bedominant
in magnitude over the rest. As an estimate, let us examine the
first subleading terms (which scale as 1=rd=2) in Eqs. (48) and
(49), neglecting the ωr̂ · x⃗0 ¼ ðωrÞðr̂ · x⃗0=rÞ ≪ ωr terms. At
large dimensions, this radiation condition translates to
ωr ≫ n2=2 ∼ d2=8. For any detector placed at finite distances
from the source, we infer that the notion of radiation may
become increasingly ambiguous with extremely large number
of spacetime dimensions.
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APPENDIX: SOLID ANGLE INTEGRALS

We wish to evaluate the following tensor integral over
the (d − 2)-dimensional round sphere Sd−2

Ii1…iN
Sd−2 ≡

Z
Sd−2

dd−2Ωr̂i1 r̂i2…r̂iN : ðA1Þ

We may first observe that under parity, every unit radial
vector reverses sign, r̂i1…r̂iN → ð−ÞNr̂i1…r̂iN , while the
solid angle measure is invariant. This implies the tensor
integral is zero for all odd N ≥ 1. Next, notice

Ii1…iN
Sd−2 ¼ 1

iN
∂N

∂ki1…∂kiN
����
k⃗¼0⃗

Z
Sd−2

dd−2Ωeik⃗·r̂: ðA2Þ

The scalar integral ISd−2 ≡ R
dd−2Ωeik⃗·r̂ is thus a generating

function for the tensor integral Ii1…iN
Sd−2 , and may be tackled

by first utilizing the spherical symmetry of the problem to
set k⃗ ¼ kêd−1, where êd−1 is the unit vector along the
(d − 1)th spatial axis, so that k⃗ · r̂≡ k cos θd−2, with θd−2

denoting the (d − 2)th angle parametrizing the round
(d − 2)-sphere. Moreover, the solid angle measure dΩ in
(d − 1) and (d − 2)-spatial dimensions are related via

dd−2Ω ¼ dðcos θd−2Þð1 − cos2θd−2Þd−42 · dd−3Ω: ðA3Þ

Using the integral representation of the beta function
B½α; β� ¼ Γ½α�Γ½β�=Γ½αþ β�, one may then show by

repeated iteration of Eq. (A3) that the solid angle in
(d − 1)-spatial dimensions is

Z
Sd−2

dd−2Ω ¼ 2π
d−1
2

Γ½d−1
2
� : ðA4Þ

Altogether,
R
dd−2Ωeik⃗·r̂ is thus the solid angle subtended

by a (d − 3)-dimensional round sphere, multiplied by the
integral involving the final angular variable θd−2:

Z
Sd−2

dd−2Ωeik⃗·r̂ ¼ 2π
d−2
2

Γ½d−2
2
�
Z þ1

−1
dcð1 − c2Þd−42 exp ½ikc� ðA5Þ

¼ 2π
d−1
2

X∞
s¼0

i2sðδabkakbÞs
4s · s!Γ½d−3

2
þ sþ 1� : ðA6Þ

In the second line, we have further recognized the integral
representation of the Bessel function

Z þ1

−1
dcð1 − c2Þν−1

2 exp½icz� ¼
ffiffiffi
π

p
Γ½νþ 1

2
�

ðz=2Þν Jν½z�;

Re½z� > −
1

2
; ðA7Þ

and hence proceeded to use its power series
representation,

Jν½z� ¼
�
z
2

�
νX∞
l¼0

ðizÞ2l
22ll!Γ½νþ lþ 1� : ðA8Þ

Differentiating the i2sk⃗2s factor in Eq. (A5) N ¼ 2l
times—cf. Eq. (A2)—and setting k⃗ ¼ 0⃗ would yield a
nonzero result only from the s ¼ l term of the summation.
Furthermore, we may phrase the ensuing expression as a
‘sum over contractions’, to borrow quantum field
theory lingo. Define a contraction between a pair of k’s
by replacing them with the corresponding Kronecker delta;
for instance, contraction of kikj yields δij. Then, I claim
that

∂2l

∂ki1…∂ki2l k
2l¼2l ·l!

X
ðFull contractionsof ki1…ki2lÞ:

ðA9Þ

The first few cases are

∂2

∂ki1∂ki2 k
2 ¼ 2δi1i2 ; ðA10Þ

∂4

∂ki1…∂ki4 k
4 ¼ 8ðδi1i2δi3i4 þ δi1i3δi2i4 þ δi1i4δi2i3Þ; ðA11Þ
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∂6

∂ki1…∂ki6 k
6 ¼ 48ðδi1i2δi3i4δi5i6 þ δi1i3δi2i4δi5i6 þ δi1i4δi2i3δi5i6

δi1i2δi3i5δi4i6 þ δi1i3δi2i5δi4i6 þ δi1i5δi2i3δi4i6

δi1i2δi5i4δi3i6 þ δi1i5δi2i4δi3i6 þ δi1i4δi2i5δi3i6

δi1i5δi3i4δi2i6 þ δi1i3δi5i4δi2i6 þ δi1i4δi5i3δi2i6

δi5i2δi3i4δi1i6 þ δi5i3δi2i4δi1i6 þ δi5i4δi2i3δi1i6Þ: ðA12Þ

To prove this assertion, let us write k2l in terms of
contractions with the appropriate Kronecker deltas,

∂2l

∂ki1…∂ki2l k
2l¼ ∂2l

∂ki1…∂ki2l ðk
j1…kj2lδj1j2δj3j4…δj2l−1j2lÞ:

ðA13Þ

Each derivative acting on one of the k’s would simply
transfer the index on the derivative onto the Kronecker delta
that the particular k is contracted with; for example, in
∂kakbδbc ¼ δac, the a is transferred onto the Kronecker
delta. By the product rule, each derivative would act on
each k once, and therefore the result of Eq. (A13) must
simply be the product of l Kronecker deltas, summed over
all permutations of their indices evaluated on the set
fi1;…; i2lg. But since the Kronecker deltas are symmetric
rank-two tensors, and there are l of them in each product,
there must be 2l · l! identical terms. This proves Eq. (A9).

1. Results

Finally, applying Eq. (A9) to Eqs. (A2) and (A5) now
returns

Z
Sd−2

dd−2Ωr̂i1…r̂i2l ¼ π
d−1
2

2l−1Γ½d−3
2
þ lþ 1�

X

ðFull contractions of ki1…ki2lÞ: ðA14Þ

We also collect here the earlier parity-based argument, that
these tensor integrals are zero whenever there are odd
powers of r̂

Z
Sd−2

dd−2Ωr̂i1…r̂i2l r̂i2lþ1 ¼ 0; l ¼ 0; 1; 2;…: ðA15Þ

The two cases used in the body of this paper are

Z
Sd−2

dd−2Ωr̂i1 r̂i2 ¼ π
d−1
2

Γ½dþ1
2
� δ

i1i2 ; ðA16Þ

Z
Sd−2

dd−2Ωr̂i1 r̂i2 r̂i3 r̂i4

¼ π
d−1
2

2Γ½dþ3
2
� ðδ

i1i2δi3i4 þ δi1i3δi2i4 þ δi1i4δi2i3Þ: ðA17Þ
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