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We provide an exhaustive analysis of the complete set of solutions of the equations of stellar equilibrium
under semiclassical effects. As classical matter we use a perfect fluid of constant density; as the
semiclassical source we use the renormalized stress-energy tensor (RSET) of a minimally coupled massless
scalar field in the Boulware vacuum (the only vacuum consistent with asymptotic flatness and staticity). For
the RSETwe use a regularized version of the Polyakov approximation. We present a complete catalogue of
the semiclassical self-consistent solutions which incorporates regular as well as singular solutions, showing
that the semiclassical corrections are highly relevant in scenarios of high compactness. Semiclassical
corrections allow the existence of ultracompact equilibrium configurations which have bounded pressures
and masses up to a central core of Planckian radius, precisely where the regularized Polyakov
approximation is not accurate. Our analysis strongly suggests the absence of a Buchdahl limit in
semiclasical gravity, while indicating that the regularized Polyakov approximation used here must be
improved to describe equilibrium configurations of arbitrary compactness that remain regular at the center
of spherical symmetry.

DOI: 10.1103/PhysRevD.104.084071

I. INTRODUCTION

The study of spherically symmetric models of relativ-
istic stars with isotropic pressures is a well-know subject
and has provided some of the most important insights into
the nature of stellar configurations [1]. These configura-
tions are the relativistic version of the Newtonian fluid
spheres in hydrostatic equilibrium. In the Newtonian
theory, there are no bounds to how compact fluid spheres
can be as, given a regular density profile, there is always a
regular pressure profile able to withstand the gravitational
pull. However, in general relativity, where pressure acts
itself as a source of spacetime curvature, gravitational
collapse is unavoidable for bodies that surpass the
Buchdahl limit [2]. Buchdahl’s theorem states that, for
fluid spheres satisfying reasonable regularity conditions,
the compactness C (the quotient between twice their
Misner-Sharp mass at the surface and their radius) must
be smaller than 8=9 in geometrical units. The constant-
density relativistic star, derived by Schwarzschild in 1916
[3], saturates this limit, being the stellar configuration that
has the smallest central pressure for a given compactness.
Therefore, standard classical general relativity predicts
that black holes should be formed at some point as a
matter of principle.

The idea that behind the astrophysical black-holelike
objects there are indeed entities with a structure very close
to that of relativistic black holes is supported by a mixture
of theoretical and observational arguments. On the one
hand, there are constraints to the compactness and bright-
ness of these objects [4,5]; on the other hand, the black
holes predicted by general relativity are arguably the
simplest and better motivated model consistent with these
observations. Nonetheless, the new observational capacity
into astrophysical black holes (mainly, gravitational waves
and Event Horizon Telescope observations), together with
some somewhat stalled theoretical tensions when extending
the classical model of black holes into the quantum regime
(think e.g., on the information loss problem [6]) motivates a
renewed interest in analyzing alternatives to black holes.
The search for alternatives to black holes comprises an
active research field, with proposals that vary from exotic
equilibrium configurations still below the Buchdahl limit
(e.g., boson stars [7]) to ultracompact objects whose
surface lies extremely close to their gravitational radius.
Known proposals typically involve exotic effective matter
contents, such as anisotropic fluids [8], quark stars [9], or
gravitational-vacuum-condensate stars [10,11] (see [5,12]
for a more detailed list of proposals). Those that allude to
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semiclassical or quantum theories of gravity [13,14]
typically modify the standard black hole picture only from
a radius extremely close to the gravitational radius inwards.
In the next years, electromagnetic and gravitational obser-
vations will improve the testability of these models by
putting constraints to the various observational parameters
that identify these alternatives [15].
This work is motivated by the search of ultracompact

objects within the realm of semiclassical gravity [16–18].
These hypothetical ultracompact and horizonless equilib-
rium configurations (so-called black stars) would be sup-
ported by vacuum polarization, i.e., the contribution of the
vacuum energy of quantum fields to spacetime curvature, in
the form of a renormalized stress-energy tensor (RSET). It is
the subject of semiclassical gravity to account for the way
spacetime responds to such effects. While in flat spacetime
the contribution of zero-point energies of fields to curvature
can be fully subtracted, in curved spacetimes it must undergo
a covariant renormalization procedure [19,20], rendering a
finite contribution. The resulting object is the RSET, whose
expectation value hT̂μνi in some vacuum state enters the
right-hand side of the semiclassical field equations,

Gμν ¼ 8πðTμν þ ℏhT̂μνiÞ: ð1Þ

Here, Greek indices take 4 spacetime values and we have
chosen units c ¼ G ¼ 1. The RSET is a function of the
components of the metric and their derivatives and, as such,
responds to the geometry of spacetime and backreacts on it.
The contribution of vacuum energy to curvature, being

proportional to ℏ, is negligible in most astrophysical
scenarios. However, vacuum polarization becomes relevant
in the presence of high spacetime curvatures [21–23] (close
to spacetime singularities), in the early universe [24–27], and
in the vicinity of horizons [28,29]. The RSET can violate the
(pointwise) energy conditions [30–32] being able to, tenta-
tively, serve as a source of quantum repulsion on matter and
so allowing for equilibrium in situations forbidden in the
classical theory [18]. In fact, it is known that a configuration
with its surface hovering just above its gravitational radius
would experience important semiclassical deviations from its
classical dynamics [13,18,29,33,34], opening the possibility
of reaching stability.
This paper belongs to a series of investigations put

forward to analyze systematically whether qualitatively
new equilibrium configurations are naturally possible
within semiclassical gravity. For reasons explained in the
next subsection, our investigations have started using as
quantum field a single minimally coupled massless scalar
field whose RSET is a regularized version of the Polyakov
approximation. Before turning to more refined analyses, we
decided to exhaust this framework to clearly see its scope
and limitations. In a previous paper we analyzed the form
of the self-consistent vacuum solutions of semiclassical
gravity [35]. Here, we add a classical perfect fluid of

constant energy density to the semiclassical vacuum. This
matter content is specially interesting for its simplicity, but
moreover because it leaves the pressure term free to evolve
in the precise form needed to attain equilibrium. During
these analyses we have realized the importance of under-
standing not just the regular solutions to the gravitational
equations, but also the different nonregular solutions that
appear. This paper specifically focuses in presenting the
complete set of self-consistent solutions of the semiclass-
ical equation (1) for constant-density spheres, both regular
and nonregular, and comparing them with the equivalent set
of classical solutions.
We aim to determine the spacetime geometry and the

semiclassical sources simultaneously. Given that the sol-
utions cannot be found in closed form, we use analytical
approximations and various numerical explorations to
describe them. This combination allows us to present an
adequate characterization of these solutions.

A. The RSET and its usage in stellar physics

Computing an exact expression for the RSET is far from
straightforward. In conformally flat spacetimes with con-
formally invariant fields, this tensor is determined solely by
the local geometry [27,36], up to a collection of free
parameters that depend on the fields under consideration. In
general static and spherically symmetric spacetimes, how-
ever, the exact RSET can only be computed numerically for
the scalar [37] and spin-1=2 [38] fields, which hinders the
task of finding solutions to (1). Despite technical difficul-
ties, some numerical self-consistent solutions have been
found [39] using the analytical approximation to the exact
RSET of a scalar field of Anderson et al. [37,40].
Introducing an elaborate form of the RSET allows us to
capture more of the physics of the system at the price of
calculations becoming more intricate. Moreover, these
involved expressions often carry along an increase in the
degrees of freedom of the equations of motion, triggering
the appearance of spurious solutions [27,41].
As a consequence, it is standard to appeal to convenient

analytical approximations where closed expressions of the
RSET can be provided in particularly simple scenarios.
This is the case of the Polyakov RSET [42], obtained
through dimensional reduction to a 1þ 1 manifold, and
taking advantage of the conformal invariance of the
reduced set of equations. After a point-splitting renormal-
ization [19], the resulting 2-dimensional RSET is then
converted to a 4-dimensional quantity via a dimensional
transformation that renders an independently conserved
RSET in 4 dimensions. This approach only considers
spherically symmetric fluctuations and ignores backscatter-
ing of the wave modes. However, it suffices to capture some
of the most prominent features of vacuum states and has
been used in numerous works (see e.g., [18,23,43–46]).
Coming from a calculation in a dimensionally reduced
spacetime, the Polyakov RSET lacks knowledge about the
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r ¼ 0 point, and is indeed singular there. Before attempting
to construct regular, self-consistent solutions, this singu-
larity has to be dealt with.
In a previous work [35] we presented a regularization

scheme for the Polyakov RSET. Following [43,44] we
constructed a regularized Polyakov RSET devoid of the
r ¼ 0 singularity, thus allowing for a self-consistent treat-
ment of the field equations in vacuum. While sufficient for
the analysis of the vacuum field equations, in this paper we
will highlight some limitations of this regularization that
motivate its generalization to adequately describe stellar
configurations. Previous works [47–49] already realized that
static spacetimes in the Boulware vacuum state do not admit
nonextremal horizons, and instead have them replaced by a
wormhole neck that connects the asymptotically flat region
to an internal null singularity. In [35], we obtained the
complete set of solutions (which we refer to as semiclassical
counterparts) to the spherically symmetric static vacuum
field equations and proved that the set of solutions broadens
when the regularized Polyakov RSET is considered, admit-
ting solutions with arbitrarily small wormhole necks. The
counterparts that we obtained displace the horizon of a
classical black hole to an asymptotic region (r → þ∞)
inside the wormhole neck, but at a finite proper distance
from it. Moreover, this asymptotic horizon becomes singular
(curvature scalars diverge there). When considering the
RSET in the s-wave approximation [47] this asymptotic
null singularity becomes a proper naked singularity (i.e., it
becomes timelike and uncovered by any horizon). This
finding led us to conclude that the static vacuum solutions of
semiclassical gravity are far from representing reasonable
astrophysical objects by themselves (in this respect the
situation is quite different than in classical general relativity;
for a discussion of this issue see [50]). To obtain reasonable
stellar configurations it is compulsory to add some classical
matter component to the gravitational sources, and this is
what we do in this paper.
We have also analyzed the nature of self-consistent

solutions in the case of extremal horizons [51]. Given a
background configuration with an extremal horizon one can
show that the RSET associated with the Boulware vacuum
diverges there [52]. We have shown [51] that the self-
consistent semiclassical solution makes this horizon singular
(it accommodates a nonscalar curvature singularity). All in
all we have accumulated strong evidence that semiclassical
gravity does not allow for regular and asymptotically-flat
geometries with static horizons. Then, the collapse of a star
can either follow the standard Hawking evaporation
paradigm (with nonstatic horizons and potential loss of
information) or find a way to settle to an ultracompact static-
equilibrium configuration without horizons [50], precisely
the configurations that are the subject of this work.
Concerning semiclassical corrections to the Schwarzschild

stellar interior solution, the amount of works is somewhat
scarce. There exist calculations [53] based on the

Page-Brown-Ottewill approximation [54,55] that rely on
the conformal invariance of the classical Schwarzschild
stellar interior solution. Here, local semiclassical contribu-
tions amount to a perturbative correction over the classical
spacetime. As the compactness of solutions approaches the
Buchdahl limit, the RSET of a scalar field acquires negative
energy densities at r ¼ 0. More recently, computations
involving a nonlocal approximation to the RSET [56]
invalidate some of the points made in [53] for the case of
Newtonian stars, where nonlocal contributions are shown to
dominate over local ones both inside and outside the stellar
structure. Applications of the exact RSET (for fields of spin
0; 1=2 and 1) have been limited to, as far as we know,
computing first-order corrections over the fixed Schwar-
zschild and Reissner-Nördstrom background spacetimes
[22,37,57–59]. No calculation of the exact RSET exists for
the matter region of stellar spacetimes, nor have backreaction
effects been analyzed self-consistently. In the context of
perturbation theory, semiclassical and effective quantum-
gravitational corrections to the Schwarzschild stellar interior
solution have been considered as well [60,61]. Recent works
have addressed semiclassical corrections to stars with linear
equations of state using the Polyakov approximation for the
RSET [62,63].
A good candidate for backreaction studies would be the

s-wave approximation used in [47], which is more refined
than the Polyakov approximation as it does not neglects
backscattering of the wave modes. The expressions found
in [45] are constructed following a mode decomposition
which is consistent with wormhole and black-hole con-
figurations. However, this decomposition is not adequate to
analyze stellar-like configurations, where r ¼ 0 becomes a
regular point of the spacetime. This is another reason why
in this paper we stick to the regularized Polyakov RSET
(RP-RSET). Our approach is heuristic, aiming at under-
standing the limits of using the Polyakov approximation
and its different well-motivated extensions.
Equipped with the regularized Polyakov RSET, our

aim is to obtain the complete set of static, spherically
symmetric solutions to Einstein equations with a perfect
fluid of constant density in the semiclassical theory (the
classical counterparts were found by Lemaître [64], with
the exception of one solution [65]). Constant-density
solutions depict inhomogeneous and isotropic cosmolo-
gies. Among all the cosmological spacetimes analyzed,
we focus on stellar spacetimes: those which have a
surface that connects smoothly with the Schwarzschild
vacuum solution. The Schwarzschild stellar interior
solution belongs to this latter family. We will obtain
self-consistent solutions for sub-Buchdahl (with com-
pactness C < 8=9) as well as super-Buchdahl configura-
tions (8=9 < C < 1). There will be situations in which the
semiclassical solutions here obtained are nonperturbative,
in the sense that they do not have a classical counterpart
in the ℏ → 0 limit.
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This work is organized as follows. We will start in the
next section by presenting a structured summary of the
catalogue of solutions that we have found. A table will
allow a clear comparison of the classical and semiclassical
situations. We will also show a second table containing
pictorial examples for each of the situations. Before
presenting these tables, we will introduce an important
aspect of stellar equilibrium configurations that we have
denoted criticality. Criticality is related to the existence of
constant masses introduced by hand and will serve as a
classifying criterion. After that, the following sections will
provide the technical details associated with each class of
solutions, both classical and semiclassical. Section III
contains a review on the classical equations of stellar
structure and their constant-density solutions. These sol-
utions are already in the literature but we describe them
here for easier comparison with the semiclassical case. In
addition, our presentation of this section is original as it
emphasizes the interplay between regular and nonregular
solutions. Later, in Sec. IV, we review the construction of
the regularized Polyakov RSET and write down the self-
consistent semiclassical equations. In Sec. V we turn to the
analysis of the solutions to the self-consistent semiclassical
field equations, the core of the paper, in which the notion of
criticality is more subtle than in the classical case. We have
nevertheless been able to characterize completely the space
of solutions, obtaining numerical solutions of particular
interest as well as analytical approximate expressions in
certain regimes. Section VI will provide some conclusions
and discuss aspects that could be studied in future
investigations.

II. CATALOGUE OF SOLUTIONS

This section contains a summary of all the findings of
this work contextualized and compared with the classical
theory. We start by introducing the necessary preliminaries
to present our classification scheme.
We consider the static and spherically symmetric line

element

ds2 ¼ −e2ϕðrÞdt2 þ 1

1 − CðrÞ dr
2 þ r2dΩ2: ð2Þ

Here, dΩ2 is the line element of the unit 2-sphere, e2ϕðrÞ
represents the redshift function of the geometry, which is
related to the redshift suffered by outgoing light rays.
These become unable to escape to infinity when ϕ → −∞,
so the redshift function encodes how close the geometry is
to having a horizon. The other function, CðrÞ, denotes the
compactness of the geometry. It is equivalent to 2mðrÞ=r,
where mðrÞ is the Misner-Sharp mass of the geometry
[66–68]. Compactness represents the amount of mass
contained within a spherical surface of radius r. In the
classical vacuum, the metric (2) has the particular form

e2ϕ ¼ 1 − C ¼ 1–2M=r, and has a horizon at r ¼ 2M,
with M being a positive constant, the ADM (Arnowitt-
Deser-Misner) mass.
When a matter fluid is introduced in the form of some

stress-energy tensor (SET), the relation e2ϕ ¼ 1 − C no
longer holds. In this situation, a surface of unit compactness
is not necessarily associated with a vanishing redshift
function. For some of the geometries that we will discuss,
it will be convenient to use a different (proper) radial
coordinate l defined through the relation

dr
dl

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − C

p
: ð3Þ

The coordinate l can run along the entire real line, being
particularly well adapted to study wormhole spacetimes,
characterized by the existence of a minimal surface, and
cosmological spacetimes, which can display multiple radial
origins r ¼ 0. The resulting line element (2) then becomes

ds2 ¼ −e2ϕðlÞdt2 þ dl2 þ rðlÞ2dΩ2: ð4Þ

Let us now consider two definitions that will describe
part of the solutions discussed in this paper:
* Strict stellar spacetime: A regular geometry in which

matter extends from rðl0Þ ¼ 0, representing the center of
the structure, up to a finite radius rðlSÞ ¼ R. The geometry
for l > lS is the asymptotically flat Schwarzschild solution
for the classical field equations or its semiclassical counter-
part [35] for the semiclassical equations. At the center
l ¼ l0 (we will set l0 ¼ 0 in the following without loss of
generality), the geometry must be regular, in particular
having finite curvature scalars.
Computing the Kretschmann scalar K ¼ RμνρλRμνρλ

yields

K ¼ 4

r4
f½−1þ ðr0Þ2�2 þ 2½ðr0ϕ0Þ2 þ ðr00Þ2�r2

þ ½ðϕ0Þ2 þ ϕ00�2r4g; ð5Þ

where 0 denotes the derivative with respect to the l
coordinate. From Eq. (5) it follows that the regularity of
curvature invariants at l ¼ 0 implies, for a strict stellar
spacetime in which rð0Þ ¼ 0, that the metric functions must
behave as

e2ϕðlÞ ¼ ζ þ λl2 þOðl3Þ; rðlÞ ¼ lþ γl3 þOðl4Þ; ð6Þ

where ζ > 0, λ, and γ are constants fixed by solving the
field equations for some SET. From Eqs. (3) and (6) we
realize that strict stellar spacetimes must have
Cðl → 0Þ → 0. We will see below that, if there is no
classical matter (the only source being the semiclassical
vacuum) the above conditions cannot be fulfilled for any
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nonzero ADM mass M, while setting M ¼ 0 recovers
Minkowski spacetime.
* ϵ-strict stellar spacetime: This is a possibly irregular

spacetime (e.g., with diverging curvature invariants) but
such that it does not show any signs of these possible
irregularities if analyzed only for radii larger than some
rϵ ¼ rðlϵÞ ≪ R; rϵ > 0. By this we specifically mean that
the pressure and compactness are finite for l > lϵ, and that

jCðrϵÞj < 2MP
r2ϵ
l3P

¼ 2ρPr2ϵ : ð7Þ

The radius rϵ represents an internal close-to-Planckian
sphere and this last condition implies that, whatever
happens inside this core, its effective mass (either positive
or negative) does not exceed Planckian values. By con-
struction, all strict stellar spacetimes are ϵ-strict spacetimes
for arbitrary values of ϵ down to ϵ ¼ 0.

A. Classical equations of stellar equilibrium

The SET of a perfect fluid is given by

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð8Þ

where ρ and p are the energy density and the isotropic
pressure of the fluid, measured by an observer comoving
with the static fluid with 4-velocity uμ. Possible contribu-
tions to the curvature coming from shear stress, fluid
viscosity, or heat transfer are not included in this model.
The tt and ll components of the Einstein equations
resulting from considering the SET (8) are

−2r00rþ 1 − ðr0Þ2 ¼ 8πr2ρ; ð9Þ

2rr0ϕ0 − 1þ ðr0Þ2 ¼ 8πr2p: ð10Þ

In addition, covariant conservation of the SET provides the
continuity equation

p0 ¼ −ðρþ pÞϕ0: ð11Þ

If we interpret a relativistic star as a finite potential well, the
continuity equation (11) guarantees that any decrease of
the redshift function with decreasing l, or deepening of the
potential, is compensated by a corresponding growth in the
fluid pressure.
Equations (9)–(11) form a closed system of differential

equations as long as we supply them with an equation of
state that relates pressure and density. In the present work
we will consider the equation of state

ρ ¼ const: ð12Þ

This idealized incompressible fluid is insensitive to
changes in pressure [69]. This equation of state both allows

for a simple treatment and uncovers interesting phenomena.
For instance, as the energy density is independent from
pressure, it allows for a better understanding of how the
fluid arranges itself toward attaining equilibrium. In addi-
tion, the density profile (12) saturates one of the hypotheses
of Buchdahl’s theorem [2,70] stating that energy density
must be nonincreasing toward the surface. With this
equation of state we can see in a clear form the appearance
of the Buchdahl compactness bound.
We proceed by constructing the differential equation for

the pressure known as the TOV (Tolman-Oppenheimer-
Volkoff) equation, obtained by replacing Eq. (11) in
Eq. (10),

p0 ¼ −
ðρþ pÞ½8πr2pþ 1 − ðr0Þ2�

2rr0
: ð13Þ

This relation guarantees that pressure decreases monoton-
ically outwards as long as r0ðlÞ > 0 and the numerator
remains positive. Turning points for pressure can take place
only if the numerator vanishes. This can occur either
because the Misner-Sharp mass is negative [which implies
r0 > 1 in virtue of (3)], or because pressure reaches
sufficiently negative values. These situations are realizable
in the uniform density case and will be explored in Sec. III.

B. Criticality

Now we are going to introduce the notion of criticality in
the context of the classical solutions of stellar equilibrium,
which will be later transported to the semiclassical sol-
utions. In general terms, the integration of Eq. (9) with the
change of variable (3) leads to

r0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8πr2ρ
3

−
M0

r

r
: ð14Þ

In this equation there is an integration constant M0, first
noticed by Tolman and Volkoff [71,72], that accounts for a
constant mass in the spacetime.
By inspection of Eq. (14) together with condition (6) it

becomes evident that having a nonzero M0 produces a
curvature singularity at the radial origin. Let us also
highlight that, by replacing Eq. (14) inside the TOV
equation (13), we observe that the latter admits a complete
analytical solution only in the M0 ¼ 0 case (progress
toward obtaining analytical solutions for nonzero M0

was made by Wyman [73]), requiring numerical integration
otherwise.
Endowing the spacetime with a constant mass, generat-

ing a singularity at r ¼ 0, implies that the solution acquires
features of vacuum geometries. These are characterized by
the mass being a constant parameter of the solution and not
a quantity identified with some well-defined physical
source. In that sense,M0 can be either positive or negative.
A positive M0 indicates the presence of a positive, singular
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mass, endowing the solution with a singular horizon at
some rðldivÞ > 0 where the pressure diverges. The final
configuration resembles a black hole surrounded by matter
forced to maintain hydrostatic equilibrium, causing the
horizon to become singular. On the other hand, a negative
M0 introduces a naked singularity in the spacetime, as in
the negative-mass Schwarzschild solution. This negative
mass exerts a repulsive force that, in a sense, aids the fluid
toward attaining equilibrium, but at the cost of introducing
a singularity at r ¼ 0.
Analyzing how the total ADM mass relates to the matter

content of the spacetime, we can find a correspondence
between three notions of mass: the ADM mass, the mass
coming from the fluid energy density ρ, and M0, given by

MADM ¼ Mcloud þM0: ð15Þ

Here, Mcloud equals the outcome of the integral

Mcloud ¼
Z

R

0

dr4πr2ρ: ð16Þ

When the ADM mass is equal to Mcloud we are in the
critical situation. Consider integrating the equations of
stellar equilibrium from the surface of a star of radius R
and total mass M inwards. Since Mcloud is related to the
energy density of the sphere of fluid, the value of ρ that
enforces M0 ¼ 0 in (15) is given by

ρ ¼ ρc-clas ¼
3CðRÞ
8πR2

ð17Þ

and we will refer to this particular value as the critical
density of the geometry. Any deviation from the critical
value ρ ¼ ρc-clas results in a noncritical solution with a
nonzeroM0 that accounts for the respective excess or defect
in mass. Particularly, an underdensity (subcritical case)
translates into a positiveM0 to account for the missing mass
in the right-hand side of (16), while an overdensity
(supercritical case) is balanced by a negative M0.
Noncritical constant-density solutions have been

sparsely noticed in the literature. These were first analyzed
by Oppenheimer and Volkoff [72,74], while further insight
was provided by Wyman [73]. Since the equation for the
compactness in the classical equations (10) is readily
integrable, relation (17) alone guarantees regularity in
the compactness. In the semiclassical theory, however,
the equation for the compactness is inextricably linked
with that of the redshift function and it is difficult to discern
whether negative energies, which have the potential to tame
divergences in p, originate from semiclassical zero-point
energies or from a supercritical unbalance. When integrat-
ing the semiclassical equations from the surface of a star of
radius R and mass M inwards, it is not directly clear which
density parameter should be used for the integration. One
has to (numerically) explore different values of ρ and

discern the precise value that separates two types of
behavior. This is the reason behind the need to properly
understand both critical and noncritical configurations.
Let us adopt the following definition:
* Critical stellar spacetime:As we have discussed, when

integrating inwards from a radius R, with compactness
CðRÞ < 1 and density ρ, the classical equation for the
compactness exhibits a qualitative change of behavior
when going from ρ < ρc to ρ > ρc, where ρc stands for
a critical value of the density. In the classical case, this
follows straightforwardly from Eq. (14), as the integration
constantM0 in the latter equation changes sign. As we will
show, we find equivalent changes in behavior in the
semiclassical case. We will call a configuration critical
when it is precisely the separatrix between two different
behaviors of the compactness, which in the classical case
corresponds to a configuration with regular compactness
and M0 ¼ 0. However, notice that our definition of
criticality does not imply regularity. On the one hand,
the pressure can be divergent in some critical solution. On
the other hand, as we will show in the semiclassical case
using the RP-RSET, some critical solutions lack a strictly
regular compactness at the radial origin. All strict stellar
spacetimes are critical stellar configurations, but the con-
verse is not true. As we will show, around critical solutions
the semiclassical equations uncover new forms of ϵ-strict
stellar spacetimes which are absent in classical gravity.
Finally, notice that criticality is a common property of

stellar spacetimes and not just an artifact of considering a
constant-density equation of state. The observations raised
here are expected to apply to a broad class of equations of
state even if, for them, a relation such as Eq. (14), whereM0

appears explicitly, cannot be derived.

C. The catalogue of solutions

The purpose of this subsection is two-fold. First, it is
aimed to serve as a distilled guide for the content and main
results of the rest of the paper; second, it is devised as a map
of the classical and semiclassical sets of stellar configura-
tions with constant density. We encourage the reader to
return to this catalogue at any point for guidance while
reading the rest of the paper.
All the stellar solutions described in this paper are listed

in the table of Fig. 1. In addition, Fig. 2 shows illustrative
numerical plots that highlight the overall features of the
solutions described in the table in Fig. 1. These figures are
organized as follows:

(i) First of all we distinguish between the classical and
the semiclassical theory based on the regularized
Polyakov RSET. In both cases, we discriminate
between sub-Buchdahl and super-Buchdahl stars,
depending on whether their surface compactness is
below or above the Buchdahl limit (given by the
most compact strict stellar spacetime in each sit-
uation). In the classical case and for a star of constant
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density, this limit corresponds to CðRÞ ¼ 8=9. In the
semiclassical theory there is no clear notion of
Buchdahl limit due to the introduction of a preferred
length scale lP. Now, the maximumCðRÞ allowed by
strict stellar spacetimes depends on the values of R,
ρ, and the particular regularization scheme adopted
for the Polyakov RSET. In our semiclassical inte-
grations, we do not impose any additional restriction
on how large the values of the classical pressure can
become as long as they are finite. We do this to make
the discussion as close as possible to the analysis of

classical configurations approaching the Buchdahl
limit, in which the same logic is followed.

(ii) Taking a stellar radius R and a surface compactness
CðRÞ we can integrate the equations of equilibrium
inwards for different values of ρ. By changing the
parameter ρ one realizes that there is a gross change
in behavior for the compactness function when
passing through a critical value ρc. Attending to
this value, we separate the different solutions as
being subcritical, critical, or supercritical.

FIG. 1. This table shows the complete set of classical and semiclassical stellar solutions of constant density. We distinguish whether
the energy density ρ takes values below, above, or at the critical value ρc; if the compactness is below or above the Buchdahl limit; and,
for semiclassical stars, if their surface is located outside, inside, or at the neck itself. Each cell shows the behavior of pressure and
compactness at the smallest value of l in the domain of definition of the solution. Light-green (light grey) cells correspond to singular
geometries. Yellow cells (grey) are strict stellar spacetimes. The orange color (black) percolating into the rightmost part of sub-critical
cells and the leftmost part of supercritical cells represents ϵ-strict spacetimes. This family of spacetimes includes the subset of subcritical
solutions with small wormhole necks. See Fig. 2 for the respective numerical solutions for each cell of the table.
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FIG. 2. This table shows numerical integrations for each of the distinct regimes that we have found exploring classical and
semiclassical stellar solutions of constant density. The criteria for classifying the solutions is the same followed in Fig. 1. The three
regimes (subcritical, critical and supercritical) appear represented for sub-Buchdahl and super-Buchdahl stars in both classical and
semiclassical theories. In the semiclassical case, distinction is made on whether the star surface is located outside, inside, or at the neck
of the vacuum wormhole geometry. In the semiclassical regime we show ϵ-strict solutions in the cases where no regular critical solutions
exist. Each cell shows a numerical integration of a constant-density star. All but critical sub-Buchdahl stars, which are integrated from
l ¼ 0 outwards, are integrated from the surface lS ¼ R ¼ 2 inwards until the center of spherical symmetry or a singularity is reached. We
stick to the following color criteria for the represented functions throughout the rest of the paper: the shape function rðlÞ is represented in
green, the pressure pðlÞ in red, and the compactness function CðlÞ in blue. The region where the classical fluid is present is filled in
yellow for pictorical purposes. Spacetime singularities are depicted by a vertical zigzag line and correspond in every case with a
divergent pressure. In super-Buchdahl supercritical plots the pressure grows inwards outside the plot window (with no divergences), to
just come back inside the plot window when closer to the radial origin. Inside-the-neck sub-Buchdahl stars have CðRÞ < 8=9 and their
compactness function grows to 1 inside the structure, generating a local maximum in the shape function rðlÞ just below the surface. The
semiclassical critical profiles from the fourth row downwards are pictorial representations of how the respective exact solutions would
look like, rather than complete numerical integrations. This is due to the numerical instability of our numerical algorithm at the critical
density. We have attached a Mathematica notebook that generates all the plots appearing in this table [75]. The reader can access it in
order to consult the values ofCðRÞ, ρ and α used for integrating the equations. See Fig. 1 for the asymptotic behaviors of the pressure and
the compactness in each situation.
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(iii) For the semiclassical case, we distinguish three
possibilities depending on where the star surface
connects with the vacuum solution. Since the vac-
uum solution has a wormhole shape, the matter
boundary can be located outside, inside, or at the
neck itself. The value of ρc changes strongly depend-
ing on the region where the surface is located.
Regardless, we find a similar distinction between
critical and noncritical geometries.

(iv) For each of the cells in the classification scheme
from Fig. 1 (see Fig. 2 for the corresponding
numerical solutions) we have added the asymptotic
behavior of the pressure pðlÞ and the compactness
CðlÞ at the smallest value of l reached by each
solution. This corresponds to l ¼ 0 for stars which
extend to r ¼ 0, independently of whether the
configuration is regular or singular there, or to
some l ¼ ldiv > 0 for stars with a singularity
at rðldivÞ > 0.

(v) Finally, the cells corresponding to strict stellar
spacetimes have yellow background and those in
which we find ϵ-strict stellar configurations have
orange background.

We will describe the different regimes shown in Fig. 1 in
the remaining of the section.
Let us start this summary from the subcritical sub-

Buchdahl corner of the classical solutions (Subsec. III C).
These configurations are irregular. When the density reaches
the critical value ρc for a given compactness the geometry
becomes a strict stellar spacetime (Subsec. III A). Going into
the supercritical regime (Subsec. III D), the compactness
CðrÞ becomes irregular at the origin, diverging to −∞. For a
small window of densities just above the critical solution ρc
we find ϵ-strict stellar configurations.
Focusing now on the subcritical super-Buchdahl cell we

have again irregular solutions (Subsec. III C). The difference
with the sub-Buchdahl case is that when reaching the critical
density ρc, although the compactness function is well-
behaved at the radial origin, the pressure diverges before
reaching the origin (a divergence at the origin happens
precisely in the Buchdahl limit; Subsec. III B). Going further
into the supercritical regime (Subsec. III D) one is able to
find solutions for which the pressure is regular until the
origin, but that is at the cost of making a highly irregular
compactness. ϵ-strict configurations are only found very
close to criticality at the Buchdahl limit or below it.
Turning now to the semiclassical counterparts, the

Schwarzschild vacuum geometry is drastically modified
by semiclassical corrections in the Boulware vacuum
state, becoming an asymmetric wormhole [35] (see
Subsec. IV B for a brief description of this geometry
and Fig. 6 for an illustrative numerical solution). This
leaves three distinct regions (outside, inside, or at the
wormhole neck itself) in which to match the vacuum
geometry with the surface of a star.

Let us start the route from the subcritical, sub-Buchdahl,
outside-the-neck configurations. These are irregular con-
figurations that display characteristics from vacuum sol-
utions, i.e., they are singular wormhole-like configurations
(Subsec. V B). For the critical case we find strict stellar
spacetimes (Subsec. VA) that amount to perturbative
corrections of the classical regular stars. On the other side,
supercritical configurations display naked singularities,
with negative divergent compactness and Misner-Sharp
mass at r ¼ 0 (Subsec. V C).
Passing to the subcritical super-Buchdahl case, we again

find wormholelike configurations (Subsec. V B). In the
same manner, the supercritical regime exhibits naked
singularities (Subsec. V C). We find that the critical
solution is one with a special profile of divergent pressure
and compactness, which appears resilient to quantum
corrections (Subsec. V D). An important difference
between the classical and semiclassical super-Buchdahl
critical configurations is that, in the latter case, close to
criticality we find an ample window of ϵ-strict configura-
tions. In Fig. 2, for the cases where no regular critical
configuration exists, we have shown an example of these
ϵ-strict configurations instead.
Stars matched at the neck, analyzed in Subsec. VG,

show as well three distinct regimes (subcritical, supercriti-
cal and critical) which depict asymptotic behaviors similar
to those of the super-Buchdahl outside-the-neck case,
depending on whether the density is above or below the
critical value ρc. Additionally, we find that the surface of
the star displays different properties depending on the value
of ρ. For sufficiently small ρ, the surface of the star
corresponds to a minimal surface for the shape function
r, or neck. By increasing ρ, this bouncing surface for the
shape function gets pushed toward the interior of the star,
disappearing eventually for ρ ≥ ρc.
The situation for stars inside the neck (Subsec. V F) can

be summarized saying that there are again three regimes,
subcritical, supercritical, and critical, with the same asymp-
totic behaviors seen for the super-Buchdahl, outside-the-
neck case. The only caveat is that the critical density ρc
increases as the surface of the star R is moved away from
the neck, becoming trans-Planckian not far from it (in
proper distance, see Fig. 19 below). Therefore, reaching
criticality for these configurations requires extremely dense
classical fluids that compensate the negative masses gen-
erated by vacuum polarization [49].

III. CLASSICAL SOLUTIONS

Next we turn to the analysis of the set of solutions to the
classical equations of stellar equilibrium for a perfect fluid
of constant density. Throughout this section we will
describe the solutions from the first two rows in Figs. 1
and 2. We have found that it is more convenient to start the
analyses by considering how the equations of equilibrium
integrate outwards starting from a regular radial origin.
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A. Solutions with a regular center

The first set of solutions we are going to describe can be
seen as part of inhomogeneous cosmologies. In this
context, they were analyzed by Lemaître [64] and later
by Tolman [71]. Here we shall recall these analyses using
our notation and perspective. Some of these solutions can
be used to build interiors of stellar spacetimes. The suitable
interiors retrieved in this first analysis are all critical, by
construction, and result in sub-Buchdahl configurations
(the only ones that are regular in the classical theory).
First, integrating Eq. (14) returns

r ¼ sin ðAlÞ
A

; ð18Þ

with A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πρ=3

p
. The periodic character of the shape

function rðlÞ is consistent with a cosmological interpre-
tation. The shape function extends between two zeroes
which correspond to two poles of the inhomogeneous
cosmologies.
With both ρ and r known, integration of the TOV

equation (13) is straightforward and yields

p ¼ ρ

�
2

3
½1 − B0 cos ðAlÞ�−1 − 1

�
: ð19Þ

Let us now extract the physical content of the above
expression. The central pressure pð0Þ is determined by
the integration constant B0. For any B0 ≠ 1 pressure is
finite at l ¼ 0, so these kind of geometries (those with
regular center), will be analyzed first. By varying the value
of p at the origin, we can divide cosmological solutions in
the following three families, with their respective
separatrices:
(1) pð0Þ > −ρ=3. This guarantees that both the strong

energy condition (SEC) and the null energy con-
dition (NEC) hold at l ¼ 0. As Fig. 3 shows, the
resulting cosmologies are regular everywhere and
have a pressure that decreases between the two
poles. Solutions with pð0Þ > 0 reach a surface of
zero pressure at lS where the geometry can be
matched with the Schwarzschild vacuum geometry,
and thus resemble strict stellar spacetimes (Fig. 3).
On the other hand, solutions with pð0Þ < 0 lack
such surface and therefore resemble inhomogeneous
cosmologies.

(2) −ρ < pð0Þ < −ρ=3. In this case the SEC is violated
at l ¼ 0 while the NEC holds. Solutions with
pð0Þ ∈ −ðρ=3; 2ρ=3Þ correspond to the mirror-
reflected version of type 1 profiles. Can one
construct a regular star whose interior corresponds
to this left-hand side pole of the solution? In these
interior solutions pressure decreases inwards from
its zero value at the star’s surface, becoming all the
way negative. This interior geometry can be

matched with a patch of the Schwarzschild vacuum
spacetime. However, in this case the shape function
rðlÞ is initially increasing (at the surface) toward the
interior, so one cannot smoothly connect (without
introducing a shell of matter) this interior with a
patch of Schwarzschild that extends toward the
asymptotically flat region; one could only connect
this interior with a Schwarzschild patch covering
r < R. Therefore, these solutions do not serve to
construct regular stars. Decreasing the central
pressure below pð0Þ < −2ρ=3 maintains the pre-
vious characteristics: pressure increases outwards
and crosses zero at a finite radius. The difference
with the previous situation is that if one now
continued the internal solution beyond the surface
of vanishing pressure, one would uncover a curva-
ture singularity at

ldiv ¼
arccos ð1=B0Þ

A
: ð20Þ

This singularity has an infinite positive pressure.
The right-hand part of these geometries (that is,
beyond the surface of zero pressure outwards)
cannot be used to construct regular hydrostatic
equilibrium configurations. As we will see shortly
these solutions appear when integrating critical
super-Buchdahl stellar configurations from the
stellar surface inwards.

(3) pð0Þ < −ρ. This guarantees SEC and NEC are
violated. Pressure decreases from the radial origin

1 2 3 4 5 6
0

1

2

-2

-1

FIG. 3. Plot of a positive pressure solution to the equations of
structure. The above and below green lines represent the shape
function rðlÞ and the region in between both curves has been
colored for pictorial purposes. The blue line denotes the compact-
ness function of the geometry CðlÞ, which reaches 1 at the radial
maximum and vanishes at the poles. The red curve is the pressure
of the solution (in units of ρ) for a star with ρ ¼ 0.03 and
pð0Þ ¼ 2ρ. Notice that the region of positive pressure corre-
sponds to a relativistic star with CðlSÞ ≃ 0.82. This solution has
an enormous density compared to that of astrophysical objects,
but the physics of classical critical solutions is scale-invariant.
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outwards, eventually diverging toward −∞ at (20).
Later we will briefly comment on these solutions,
since they describe the interior patch of the gravastar
model [76].

For the sake of completeness, let us comment briefly
about the separatrices between families 1-3. The case
between the first and second type of solutions corresponds
to Einstein’s static and homogeneous universe, where
pressure is constant [by virtue of (24) and (11)] and equal
to −ρ=3. The instability of this model has a long and
interesting story (see for example [77]).
The remaining separatrix solution saturates the null

energy condition with constant pressure equal to −ρ.
Addition of Eqs. (9) and (10) leads to the relation

r00

r0
¼ ϕ0; ð21Þ

which results in

e2ϕ ¼ ½cos ðAlÞ�2; ð22Þ

presenting a horizon at l ¼ π=2A. This metric corresponds
to de Sitter spacetime in static coordinates

ds2 ¼ −½cos ðAlÞ�2dt2 þ dl2 þ ½sin ðAlÞ�2
A2

dΩ2; ð23Þ

revealing the existence of a cosmological horizon
at rðlHÞ ¼ A−1.

B. Critical Buchdahl and super-Buchdahl solutions

Note that taking B0 ¼ 1 in (20) makes the pressure
diverge at l ¼ 0. The redshift function, obtained from
integrating Eq. (10),

e2ϕ ¼ e2ϕ0 ½B0 cos ðAlÞ − 1�2; ð24Þ

vanishes at l ¼ 0 for B0 ¼ 1. Here, ϕ0 is an irrelevant
integration constant that amounts to a rescaling of t. For this
particular B0, the pressure (19) is found to diverge at the
origin as

p ≃
1

2πl2
: ð25Þ

Since this solution does not have a regular center, we
appeal to integrations from the star surface lS to explore this
and other similar cases. For that purpose, one needs to
impose the following boundary conditions at the surface of
the star:

pðlSÞ ¼ 0; rðlSÞ ¼ R;

ϕðlSÞ ¼
1

2
ln ½1 − CðlSÞ�; r0ðlSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − CðlSÞ

p
; ð26Þ

with CðlSÞ ¼ 2MADM=R. With these boundary conditions,
solution (25) corresponds to a surface compactness

CðlSÞ ¼ 1 − ½r0ðlSÞ�2 ¼ 8=9: ð27Þ

This result denotes the maximum compactness of regular
perfect fluid spheres in hydrostatic equilibrium, or
Buchdahl limit [2]. Stellar configurations that have iso-
tropic pressures, have an outward nonincreasing ρ, and
whose exterior geometry is the Schwarzschild vacuum
geometry are subject to the upper compactness bound (27).
More compact (super-Buchdahl) stars will have the surface
of infinite pressure gradually moved from r ¼ 0 toward
r ¼ R. Beyond this curvature singularity we can find
another geometric patch extending up to r ¼ 0, in which
p takes values below −ρ. Matching these two solutions
through a regularizing shell in the limit CðlSÞ → 1 displays
a gravastar geometry, a stellar model whose interior is
supported by a cosmological constant [10]. This model has
been proposed as a candidate for ultra-compact objects that
relies on classical properties of the Schwarzschild interior
solution in the ultra-compact limit [76].
This ends our discussion concerning classical critical

solutions, which will guide us in the classification of their
semiclassical counterparts. In the following we turn to the
analysis of noncritical configurations, which lack a regular
center from the start.

C. Subcritical solutions

The analysis of solutions out of criticality is interesting
because in the semiclassical case it is not directly clear how
to associate a failure in criticality to the value of the mass at
the origin. An understanding of the role played by non-
criticality at the classical level will therefore allow us to
distinguish between critical and noncritical solutions in the
semiclassical case.
Let us start by describing what is seen in the inwards

integration of a subcritical star. Reference to these solutions
can be found in [72,78]. An example of a subcritical sub-
Buchdahl star is shown in Fig. 4. By imposing ρ < ρc-clas
the geometry acquires a positive constant mass M0. The
gravitational effect of this mass is perceived by the fluid,
which responds to it with an increase in pressure. This
increase happens more quickly than in the critical case as to
compensate for the extra gravitational pull induced by M0.
As we deepen through the star, compactness passes through
a turning point and starts increasing as the radius decreases.
Not far below this turning point, the pressure diverges and
the geometry has a curvature singularity, as seen in Fig. 4.
Let us derive the form of this curvature singularity by

solving the continuity equation for the perfect fluid of
constant density (11)

p ¼ −ρþ κe−ϕðlÞ; ð28Þ
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where κ is a constant of integration with dimensions of
inverse of length squared. This expression ensures that the
pressure is infinite at any surface of zero redshift function,
i.e., when ϕðldivÞ → −∞. Assuming that such surface
exists, we approximate the TOV equation at leading order
in the pressure as

p0ðlÞ ¼ −
4πrp2 þOðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8πr2ρ

3
− M0

r

q : ð29Þ

Take into account that the pressure diverges while the
denominator in (29) is still nonvanishing. In this regime, we
can assume the following behavior for the pressure

p ≃
pþ

ðl − ldivÞn
; pþ > 0; n > 0: ð30Þ

Replacing this ansatz in Eq. (29) and solving for pþ and n
we find

p ≃ ðl − ldivÞ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8πr2divρ

3
− M0

rdiv

q
4πrdiv

; ð31Þ

where rdiv ¼ rðldivÞ. The pressure diverges positively at the
surface l ¼ ldiv, whose location depends on the boundary
conditions of the star and, consequently, on M0. By
decreasing ρ (increasing M0), this divergence approaches
the surface of the star. Equivalently, the more super-
Buchdahl the star is, the further the pressure divergence
moves toward the surface of the star. Recall that, for the
super-Buchdahl critical case, we know the position of the
infinite pressure divergence in terms of boundary condi-
tions. This explicit expression is lost in the subcritical
situation, since we lack a complete analytic solution.
The resulting geometry resembles a black hole sur-

rounded by matter forced to maintain equilibrium, causing

a runaway in the pressure of the fluid. This divergence in
the pressure takes place at the same position at which the
redshift function, obtained from solving Eq. (28) in the
l → ldiv, vanishes:

e2ϕ ≃
�
l − ldiv
ldiv

�
2

: ð32Þ

Since this geometry is not vacuum but filled with a perfect
fluid, there is a curvature singularity at the horizon. This is
foreseeable by recalling that horizons are incompatible with
matter fluids in hydrostatic equilibrium.

D. Supercritical solutions

Now, we turn to the analysis of supercritical configura-
tions, where we distinguish between sub- and super-
Buchdahl stars.
Recall [Subsec. III C or Eq. (14)] that in the sub-

Buchdahl case, the effect of going supercritical (i.e., taking
ρ > ρc-clas) is to add a negative mass M0 to the spacetime.
The repulsive effect that this negative mass exerts on the
fluid makes pressure reach a maximum value at some
r > 0. This can be viewed in the vanishing of the numerator
of Eq. (13) when r0 [as of Eq. (14)] becomes large enough
as to compensate for the positive 1þ 8πr2p term. In this
case, the perfect fluid extends up to r ¼ 0, where a naked
curvature singularity resides. Figure 5 shows examples of
pressure profiles for several supercritical configurations.
Notice how the growth of the pressure is dampened as the
solutions are made increasingly supercritical. Integrating
(14) in the r → 0 limit leads to the relation

0.5 1.0 1.5 2.0
0
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12

FIG. 5. Plot of the pressure profile for a supercritical, super-
Buchdahl star with CðRÞ ¼ 0.96. The curves denote the pressure
pðrÞ (in units of ρ) for the values of the energy density (from right
to left) ρ=ρc-clas ¼ 1, 1.8, 2, 2.13, 2.26, 2.4 and 3. The dashed
curve (ρ=ρc-clas ∼ 2.13) corresponds to a separatrix for which
pressure diverges at r ¼ 0. Note how the divergence in pressure
of super-Buchdahl stars moves inwards as the density increases.
An increase of the negative mass M0 finally regularizes the
pressure, which tends to the value p ¼ −ρ at the origin.
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FIG. 4. Plot of a subcritical, sub-Buchdahl star with R ¼ 2;
CðRÞ ¼ 0.8 and ρ ¼ 0.84ρc-clas. Green lines represent the shape
function rðlÞ, while red and blue lines denote the functions p and
C, respectively. The presence of a positive constant mass M0 ≃
0.07 generates a (singular) event horizon at l ≃ 7.25.
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r ≃
�
3

ffiffiffiffiffiffiffiffiffijM0j
p
2

l

�2=3
: ð33Þ

Therefore, there exists a neighborhood of r ¼ 0 in which
the geometry is well-approximated by the Schwarzschild
vacuum solution with negative ADM mass.
The TOV equation (13) can be integrated in terms of

analytical functions by making the coordinate change (3)
and taking the limits r → 0 and C → −∞, which yields

p0 ≃
ðρþ pÞ

2r
: ð34Þ

Integrating and replacing (33) we obtain

p ≃ −ρþM−2
0

�
l

jM0j
�

1=3
: ð35Þ

In the presence of a constant negative mass, the pressure
acquires the equation of state of vacuum energy in the limit
r → 0 as a consequence of the gravitational repulsion
induced by M0. Note that this finite value for the central
pressure is reached with infinite derivative, which results in
the redshift function being divergent in the l → 0 limit as

e2ϕ ≃
�jM0j

l

�
2=3

: ð36Þ

In some situations, semiclassical contributions can
appear as a cloud of negative mass in the spacetime.
The pressure-regularizing effect of this cloud is similar
to that of supercriticality. We will revisit this discussion in
the analysis of semiclassical solutions. Here, given a super-
Buchdahl star, gradually increasing ρ (decreasing M0)
displaces the pressure divergence toward the radial origin,
eventually making pressure finite for densities above some
ρ ¼ ρreg-p. These aspects apply to more generic equations
of state as well [79–82]. This value of the density con-
stitutes an infinite-pressure separatrix between supercritical
solutions singular and regular in pressure (see the dashed
line in Fig. 5). Hence, solutions with ρ > ρreg-p will be
regular in the pressure (although the pressure gradient
diverges at l ¼ 0) but irregular in the compactness. The
value of ρreg-p increases with the surface compactness of the
star, eventually diverging toward þ∞ in the CðlSÞ → 1
limit. The particular features of this separatrix solution are
analyzed right below.

1. Infinite pressure separatrix

The separatrix solution lies between supercritical con-
figurations irregular and regular in the pressure. Consider a
supercritical solution extending to rð0Þ ¼ 0. SinceM0 < 0,
the solution for the shape function rðlÞ around the origin
always obeys Eq. (33), and the pressure function can only
follow two paths: either it goes to a constant value at r ¼ 0,

which has to be exactly −ρ, in virtue of (35), or it diverges
necessarily toward positive infinity at r ¼ 0. The separatrix
solution corresponds to this last possibility.
To derive the precise form of the divergence in pressure,

we expand the TOV equation (13) in the l → 0 limit under
the assumption that p ≫ ρ, yielding

p0 ≃ −
4πrp2

r0
: ð37Þ

Now, assuming the following ansatz for the pressure

p ¼ pþ
ln

; n > 0; ð38Þ

where pþ is a positive dimensionless constant, and replac-
ing Eq. (33) and this ansatz in Eq. (37), we find

n ¼ 2; pþ ¼ 1=3π: ð39Þ

Therefore, the pressure diverges, in the l → 0 limit, with the
same power of l as in the separatrix (25) between sub-
Buchdahl and super-Buchdahl configurations. However,
the way the areal radius of spheres rðlÞ approaches the
origin l ¼ 0 differs in both cases. In terms of the shape
function (33), solution (39) takes the form

p ≃
3jM0j
4πr3

; ð40Þ

revealing a direct dependence in the constant mass M0. A
pictorial representation of this separatrix is shown in Fig. 5.
On the other hand, the separatrix described around Eq. (25)
satisfies

p ≃
1

2πr2
; ð41Þ

revealing that the leading behavior in the pressure is
independent of M0 since this separatrix corresponds to a
critical configuration.
The separatrix solution (40) was analyzed in [72,73]

(see [83] for a compelling physical interpretation) and is
particularly interesting because semiclassical corrections
deform this solution into a separatrix for the compactness
as well (i.e., a critical configuration). The relevance of this
separatrix will be clear when analyzing the corresponding
semiclassical situation.

IV. SEMICLASSICAL STELLAR EQUILIBRIUM

In the following we are going to obtain the semiclassical
self-consistent counterparts to the previous classical set of
solutions. In doing so, first we need to address several
aspects pertaining to semiclassical gravity. We introduce, as
a source of curvature, the expectation value of the stress-
energy tensor of a single massless, minimally coupled
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scalar field. Such stress-energy tensor demands a renorm-
alization procedure in order to account for the genuine
contribution of zero-point energy to curvature. Given the
explained difficulties of handling the exact expressions for
the RSET in (3þ 1) dimensions, here we appeal to the
Polyakov approximation. In this approximation, the RSET
comes from uplifting to a (3þ 1)-manifold the RSET
calculated over a (1þ 1)-spacetime. This RSET is renor-
malized following the covariant point-splitting scheme
presented in [19]. Taking advantage of conformal sym-
metry, a closed expression of the RSET can be provided in
(1þ 1) dimensions. Its components, in ðt; lÞ coordinates,
take the form:

hT̂ttið2Þ ¼
l2P
2
½ðϕ0Þ2 þ 2ϕ00�e2ϕ þ hSTDi;

hT̂llið2Þ ¼ −
l2P
2

�
ϕ0

r0

�
2

þ hSTDi;

hT̂tlið2Þ ¼ hT̂ltið2Þ ¼ 0: ð42Þ

The terms hSTDi are the state-dependent parts of the
Polyakov RSET. We are taking the expectation value of
the RSET to be in the Boulware vacuum state, so hSTDi ¼ 0
and asymptotic observers measure zero particle content. In
this paper we will always use the Boulware vacuum as this is
the natural vacuum state for genuinely static and asymp-
totically flat configurations.
The (3þ 1) Polyakov RSET is obtained from promoting

to a (3þ 1)-spacetime the (1þ 1)-dimensional version of
the RSET (42)

hT̂μνiðPÞ ¼
1

4πr2
δaμδ

b
νhT̂abið2Þ; ð43Þ

where latin indices take 2 values. Consequently, the
Polyakov RSET contains no information about angular
pressures: the θθ and φφ components are zero. Its sim-
plicity (namely, the absence of higher-derivative terms)
favors the search of self-consistent solutions to (1). Albeit
its simple form, the Polyakov RSET properly encapsulates
the most prominent features of vacuum states [45], such as
nonlocal effects due to the quantum vacuum that can
encompass horizon-sized regions [23,43]. However, it does
leave aside several physical contributions: it ignores back-
scattering of the field modes due to the gravitational
potential and it neglects higher multipoles in the spherical
harmonic expansion of the scalar field. The prefactor 1=r2

in the (3þ 1) Polyakov RSET (43) is fixed by the
requirement that it is covariantly conserved with no further
modifications. However, this causes its components to
become irregular at r ¼ 0, even for geometries that fulfill
the regularity conditions (6) imposed by the finitude of the
Kretschmann invariant (5). This cannot occur with an exact
RSET, as the exact field modes must be regular in a regular
geometry and so must be its associated RSET. The

divergence at the radial origin of the (3þ 1) Polyakov
RSET simply points out its failure to approximate the exact
RSET even qualitatively when approaching r ¼ 0. Thus,
dealing with the singular character of the Polyakov RSET is
compulsory for finding regular, self-consistent solutions.

A. Regularized Polyakov RSET

In the need to craft a RSET that is both regular at r ¼ 0
and self-consistently tractable, we proposed [35] (following
[43,44]) the simplest regularization scheme one can think
of: one based on introducing a cutoff to the RSET value at
the radial origin. In this way we introduced a new
regularized Polyakov RSET (RP-RSET) where the ðt; lÞ
components of the RP-RSET are defined as

hT̂abiðRPÞ ¼
r2

r2 þ αl2P
hT̂abiðPÞ; ð44Þ

were α > 0 plays the role of a regulator. Covariant con-
servation of the RSET now requires the introduction of
nonzero angular components. All in all, our proposal for the
components of the RP-RSET are

hT̂ttiðRPÞ ¼
l2P

8πðr2 þ αl2PÞ
½ðϕ0Þ2 þ 2ϕ00�e2ϕ;

hT̂lliðRPÞ ¼ −
l2P

8πðr2 þ αl2PÞ
�
ϕ0

r0

�
2

;

hT̂θθiðRPÞ ¼
hT̂φφiðRPÞ
sin2φ

¼ −
αðl2Prϕ0Þ2

8πðr2 þ αl2PÞ2
: ð45Þ

The angular components are also well-behaved at r ¼ 0 (as
the tt and ll components) and decay sufficiently fast with
the radial distance as to ensure that the Polyakov RSET is
recovered for r ≫

ffiffiffi
α

p
lP. We will always take values of the

regulator α > 1. This is so because, although α > 0 is
sufficient for regularity of the RP-RSET at r ¼ 0, the self-
consistent semiclassical equations (namely, the dependence
of hT̂ttiðRPÞ on ϕ00) move the singularity of the RSET from
r ¼ 0 to r ¼ lP

ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
. Imposing α > 1 displaces the

singularity out of the domain of the radial coordinate [35].
The regularization scheme that we have adopted is by no

means unique, since there exists an infinite number of
regularizing functions that ensure that the regularized
RSET fulfills the desired properties. Let us note also that
the nonconservation induced by the regularization (44) can
be compensated by the introduction of angular components
as long as the whole construction remains static. In
dynamical scenarios, however, it is an arduous task to find
a regulating function that renders the RSET regular and
covariantly conserved simultaneously. We believe this is
why in some works the RSET is left nonconserved [43,44].
For us, the choice of regulating function (44) bows to a
minimalist approach, in an attempt to modify the Polyakov
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RSET in the mildest possible way while serving our
purposes. The choice of a better regulating function should
ideally contain information about characteristics of the
spacetime geometry close to the radial origin, and be
capable of reproducing the physics predicted by more
elaborate approximations to the RSET [53]. It will be
important to keep this in mind when extracting conclusions
from our analysis of the semiclassical equations.

B. Review of exterior vacuum solutions

Equipped with the RP-RSET, in previous works we
obtained the complete set of semiclassical solutions for a
single quantum massless scalar field in the absence of
classical matter [35] and also in the presence of a
Coulombian electromagnetic field [51]. See Fig. 6 for a
numerical example of the first case. Different patches of the
vacuum solutions to the semiclassical equations will con-
stitute the exterior geometry of semiclassical stars.
Moreover, we find that lessons from the semiclassical
counterpart of the Schwarzschild vacuum geometry are
of relevance in order to discuss the semiclassical counter-
parts of the Schwarzschild stellar interior solutions.
One important characteristic of the set of semiclassical

vacuum solutions is that, contrary to what happens for the
classical vacuum, they are devoid of horizons of any kind.
This result is foreseeable if one combines the following
series of arguments. It is well known that the Boulware
vacuum state is singular at the classical event horizon [20].

This divergence is linked to the choice of mode decom-
position of the field with respect to the Killing vector ∂t,
which becomes null at the event horizon. As a conse-
quence, the regularized Polyakov RSET is singular at the
horizon of the Schwarzschild metric. By assuming that the
metric (4) has a nonextremal horizon at some finite l ¼ lH,
so that e2ϕ ∝ ðl − lHÞ, we observe that the semiclassical
energy density

ρse ¼ −hT̂t
tiðRPÞ ¼

l2P
8πðr2 þ αl2PÞ

½ðϕ0Þ2 þ ϕ00� ð46Þ

diverges as

ρse ∝ −ðl − lHÞ−2: ð47Þ

Taking into account the backreaction of zero-point energies
on the classical geometry makes the horizon disappear
altogether as a consequence of the large vacuum polariza-
tion that builds up in its vicinity. The resulting semiclassical
counterpart to the Schwarzschild vacuum geometry is an
asymmetric wormhole, as depicted in Fig. 6. The classical
horizon is replaced by a wormhole neck located slightly
above the Schwarzschild radius. This neck connects an
asymptotically flat region with a new singular asymptotic
region whose singularity lies at a finite affine distance from
the neck. Backreaction has turned the RSET regular
everywhere except at this asymptotic singularity.
As these wormhole solutions describe the exterior

geometry of a semiclassical star, we immediately realize
that the surface of the star (i.e., the position at which we
start finding a nonvanishing classical matter contribution to
the total SET) can in principle begin either outside the neck,
inside the neck, or at the neck itself. We will analyze these
situations in their respective sections. It is also interesting to
recall [35] that once the vacuum geometry displays a, those
solutions become genuinely semiclassical as they do not
have a classical limit.
Before passing to the analysis of the interior solutions,

let us devote one moment to recall [51] what happens
when using a Boulware vacuum RSET to modify an
extremal horizon, instead of the nonextremal horizons
relevant to the analyses on this paper. We have analyzed
this issue in the context of the semiclassical counterparts
of the Reissner-Nordström vacuum solutions. When
analyzed in physical coordinates (those which are regular
at the extremal horizon), the RSET components are
divergent at the extremal horizon [52]. However,
the corresponding semiclassical counterpart preserves
the existence of a surface of zero redshift, whose size
and shape become modified in such a way that the
geometry develops a nonscalar curvature singularity at
the putative horizon. This result points out that the
Boulware vacuum state has a strong incompatibility with
horizons of any kind: it either destroys them, if
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FIG. 6. Numerical representation of the Schwarzschild vacuum
geometry. The right-hand side is the asymptotically flat region of
the spacetime. In an inwards integration, a minimal surface or
throat is encountered for the shape function rðlÞ (green curve, in
units of the neck radius), which connects to a null singularity at
finite affine distance. This singularity has a negative infinite mass
associated with it, which can be related to a runaway of vacuum
polarization, as shown by the blue curve denoting the compact-
ness CðlÞ and the yellow curve representing the redshift function
e2ϕðlÞ. We have chosenM ¼ 0.05 and α ¼ 1.01 to better highlight
the characteristics of the solution, but the qualitative behavior
of the geometry does not change for greater values of the
ADM mass.
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nonextremal, or converts them into nonscalar curvature
singularities, if extremal [51].

C. Semiclassical equations of stellar interiors

Let us now pass to the central part of the paper, the
analysis of the internal stellar solutions under the hypoth-
esis of having a classical matter component with a constant
density ρ in addition to the semiclassical contribution. The
semiclassical field equations are obtained by plugging the
RP-RSET components in Eq. (45) into Eq. (1),

−2r00rþ1−ðr0Þ2¼8πr2ρþ r2l2P
ðr2þαl2PÞ

½ðϕ0Þ2þ2ϕ00�; ð48Þ

2rr0ϕ0 − 1þ ðr0Þ2 ¼ 8πr2p −
r2l2P

ðr2 þ αl2PÞ
ðϕ0Þ2; ð49Þ

for the tt and ll components, respectively. The regularized
Polyakov RSET is independently conserved, and so is the
classical SET. The system of equations is thus completed
by the equation of conservation of the classical matter (11)
and the equation of state of the uniform density
fluid ρ ¼ const.
We can construct the semiclassical version of the TOV

equation [18] by combining Eqs. (49) and (11)

p0 ¼ ðρþ pÞr0 ðr
2 þ αl2PÞ
l2Pr

×

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
lP
r0

�
2 8πr2pþ 1 − ðr0Þ2

r2 þ αl2P

s �
: ð50Þ

The semiclassical TOVequation is a quadratic polynomial
for the gradient of the pressure. Therefore, two branches
of solutions are present (already in vacuum) in the semi-
classical theory, given by the � signs in Eq. (50). The −
sign or, as we shall call it, unconcealed branch, returns the
classical TOV equation (13) in the limit lP → 0 and can
correspond, in many situations, to a quantum perturbation
of the classical solution. On the other hand, the þ sign
branch or concealed is intrinsically quantum and has no
classical limit. This does not imply that the concealed
branch is not physically relevant, since jumps between
branches can occur when the radicand in (50) vanishes.
For example, a branch jump takes place at the neck of the
vacuum solutions (see Fig. 6), where the complete
geometry is described by a combination of the uncon-
cealed and concealed branches, resulting in a nonpertur-
bative modification of the classical Schwarzschild
solution. Therefore, the concealed branch is necessary
to give a complete description of semiclassical solutions.
Analytical solutions that describe ultracompact horizon-
less stars have been found [18] for the concealed branch
by solving Eq. (50).

For convenience in the upcoming analysis, field equa-
tions (48) and (49) can be combined to construct a single
differential equation that relates ϕ00ðlÞ to the functions
ϕ0ðlÞ, ρðlÞ, pðlÞ and rðlÞ. When expressed in terms of the
Schwarzschild coordinates ðt; r; θ;ϕÞ, for which the metric
takes the form (2), this differential equation reveals
convenient features that, in some situations, allow us to
determine univocally the form of the solution. The change
of variable from l to r amounts to the following replace-
ments

r0ðlÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − CðrÞ

p
; ϕ0ðlÞ → ψðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − CðrÞ

p
; ð51Þ

where ψðrÞ≡ ϕ0ðrÞ, the prime denoting now the derivative
with respect to the coordinate r. The resulting differential
equation is written as

ψ 0 ¼ DðA0 þA1ψ þA2ψ
2 þA3ψ

3Þ; ð52Þ

where

A0 ¼ 4πðρþ 3pÞ;

A1 ¼ 4πr

�
3ðρþ pÞ þ 2l2P

r2 þ αl2P
p

�
−
2

r
;

A2 ¼ 8πr2
�
ρ − pþ l2Pð3pþ ρÞ

2ðr2 þ αl2PÞ
þ l2Pr

2p
ðr2 þ αl2PÞ2

�

−
2l2Pðr2=2þ αl2PÞ
ðr2 þ αl2PÞ2

− 2;

A3 ¼
l2Pr

r2 þ αl2P

�
4πr2

�
ρ − pþ 2l2Pr

2p
ðr2 þ αl2PÞ2

�

−
αl4P

ðr2 þ αl2PÞ2
− 1

�
;

D ¼ r2 þ αl2P
ð1þ 8πr2pÞ½r2 þ ðα − 1Þl2P�

: ð53Þ

The right-hand side of (52) is a third-order polynomial in ψ .
Now, we can formally solve Eq. (11) with the equation of
state (12) to yield Eq. (28). In this way, replacing Eq. (28)
into Eq. (52) will result in an integro-differential equation
for the variable ψ (although this is not the way we are going
to solve the system of equations).
The convenience of this formulation comes from

Eq. (52) being expressible as a first order differential
equation for ψ in several approximate situations. The
clearest example being the vacuum case, obtained by
taking p and ρ equal to zero in Eq. (52). The resulting
first-order differential equation has two exact analytical
solutions

ψ� ¼ −
r2 þ αl2P

rl2P

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

l2P
r2 þ αl2P

s �
; ð54Þ
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which allow us to restrict the region where the solution can
take values, in virtue of the Picard-Lindelöf theorem. These
vacuum exact solutions also happen to be exact in the
general case. This becomes evident after rewriting (52) in
the form

ψ 0 ¼ F Schw þ Gðρ; p;ψ ; rÞðψ − ψ−Þðψ − ψþÞ; ð55Þ

whereF Schw is the vacuum-portion of the right-hand side of
Eq. (52), and

G ¼
4πl2Pr

2½ρð1þ rψÞ þ pð3þ rþ 2l2Pr
r2þαl2P

Þψ �
½r2 þ ðα − 1Þl2P�ð1þ 8πr2pÞ : ð56Þ

Therefore, matter-dependent contributions vanish for ψ ¼
ψ� in Eq. (55), leaving only the vacuum equation, for
which they are exact solutions. Another situation where
Picard-Lindelöf theorem can be applied requires assuming
pressure to be much larger than the energy density. It will
be useful afterwards to notice that, under the assumption
p ≫ ρ, all the p-dependence in Eq. (52) disappears,
making it a first order differential equation for ψ.

D. Semiclassical criticality

The classical notion of criticality described in section II
B is greatly affected by quantum corrections. The vacuum
polarization of the scalar field generates a cloud of mass
that coats the spacetime, extending to infinity. The semi-
classical equivalent to relation (15) would now haveMcloud
defined as

Mcloud ¼
Z

∞

0

dr4πr2½ΘðR − rÞρþ ρse�; ð57Þ

where Θ is the Heavyside step function and ρse ¼ −hT̂t
ti

denotes the semiclassical energy density. In the vacuum
portion of the spacetime, the only contribution to Mcloud is
semiclassical. It supplies a negative contribution in such a
way that the Misner-Sharp mass grows from its asymptotic
ADM value as we approach the surface of the object. Once
inside the object, we have semiclassical as well as classical
contributions to the density. As in the classical case, the
Misner-Sharp mass can be ill-defined at the origin (recall
that in the classical case this is exclusively related to the
possible presence of an M0 offset). The difference now is
that the Misner-Sharp mass can fail to approach zero at the
origin by different intertwined reasons. It might be that
there is a mismatch between the internal mass and the
classical density due to the presence of a nonzero M0; it
might also be that the semiclassical density (46) diverges at
the origin; or it might be a combination of both.
As in the semiclassical case the equation for the

compactness is intertwined with that of the pressure: given
a star radius and compactness, we ignore a priori which

value of ρ we should use to find a regular compactness at
the radial origin (i.e., a zero Misner-Sharp mass at the
origin). As we will see, the situation is even more
complicated, as in some important cases there does not
exist a value of ρ such that the compactness at the origin
vanishes. What we do find is that there always exists a value
ρc of ρ separating two rather different qualitative behaviors
for the compactness. Therefore, in general terms we will
say that a configuration is critical when its density is such
that it represents a separatrix between these two regimes.
Having posed these difficulties and a definition of

criticality, we now proceed to analyze the semiclassical
set of solutions. First, we will study configurations with a
regular origin, in the same spirit as we did in the classical
analysis of cosmological solutions. Solutions with different
sorts of irregularity will be analyzed in detail in the sections
that follow.

V. SEMICLASSICAL STELLARLIKE SOLUTIONS

The introduction of the RSET as an additional source of
curvature makes exploring the space of stellar solutions of
the semiclassical equations a more subtle task than in the
classical theory. This difficulty can be attributed, in part, to
the new length scale lP that makes the physics of solutions
sensitive to the overall size of the star. In this section we
address every solutions belonging to the semiclassical
sector of Figs. 1 and 2.
Considering stars whose surface is outside the neck, Fig. 7

shows a pictorial representation of an R ≫ lP slice of the
space of solutions. We distinguish four differentiated regions
depending on whether the star is sub- or supercritical, and on
whether its compactness surpasses Buchdahl limit or not.
The central black dot represents the most compact configu-
ration that is regular in both compactness and pressure. We
have observed that by increasing the density while decreas-
ing the radius accordingly, this point can be moved toward
higher values of the compactness. Here, we refer to this
compactness bound as the Buchdahl bound for semiclassical
stars sourced by the specific regularization of the Polyakov
RSET that we are using. For this particular regularization,
stars with large (stellarlike) radius and mass show a
Buchdahl limit that corresponds to a perturbative correction
over the classical compactness bound of CðRÞ ¼ 8=9. From
now on, we distinguish between sub-Buchdahl or super-
Buchdahl stars attending to this bound. This will be useful to
divide the space of solutions in different regions, as in Fig. 7,
although the reader should take into account that this
definition has only an operational meaning, and cannot be
directly identified as a Buchdahl limit in semiclassical
gravity. In particular, defining this limit, which may exist
or not, may require a better regularization of the Polyakov
RSET. We are interested in probing whether it is possible to
obtain regular or quasiregular configurations largely surpass-
ing the Buchdahl limit. Particularly, we will aim at the
rightmost portion of the diagram 7, or ultra-compact limit,
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where semiclassical corrections meet the conditions to
become comparable in magnitude to that of the classical
SET, thus potentially inducing significant departures from
the classical solutions. In what follows we will obtain the
specific form of the solutions for all four regions, together
with the form of the separatrix solutions ρc.
We now turn to the analysis of integrations from the

asymptotically flat region toward the center of the star. This
treatment allows to better probe how the RSET acts in
response to changes in the surface compactness and the
classical density parameter used in the integrations. The
boundary conditions required at the surface of the star
follow from the classical ones (26), with an extra condition
for ϕ0,

pðlSÞ ¼ 0; rðlSÞ ¼ R;

ϕðlSÞ ¼ ϕS; r0ðlSÞ ¼∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − CðRÞ

p
:

ϕ0ðlSÞ ¼
R2 þ αl2P

Rl2P

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

R2 þ αl2P

CðRÞ
1 − CðRÞ

s
� 1

�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − CðRÞ

p
; ð58Þ

whereCðRÞ is the value of the compactness at the surface of
the star. Here, the � signs select the side of the wormhole
where the surface of the star is located. We choose the þ
sign in r0 and the − sign in ϕ0 for stars whose surface lies
outside the neck, and vice versa if the star surface is located
inside the neck. Any other sign combination is not
compatible with a stellar spacetime.
The above boundary conditions can be inserted in the

semiclassical field equations to study how the RP-RSET
behaves at the surface of stars in the CðRÞ → 1 limit.
Computing the RSET over the classical background of the
Schwarzschild interior solution causes that both the semi-
classical energy density and pressure diverge at the surface
of the star R in the limitCðRÞ → 1. This divergence appears
both from the interior region of the star, where ρ is constant
and positive, and from the exterior, vacuum portion, where
ρ ¼ 0. This is so because this limit corresponds to locating
the surface on top of the event horizon, where the Boulware
state is, by definition, singular.
In a self-consistent approach, on the contrary, the RSET

backreacts on the metric and there is no horizon. Instead,
we encounter a wormhole neck where the RSET compo-
nents are finite and have no trace of divergences. Starting
from Eqs. (48), (49), the RP-RSET components at the
surface of a star in the CðRÞ → 1 limit are

pr
se ¼ hT̂l

liðRPÞ ¼ −
1

8πR2
þOð

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − C

p
Þ;

pθ
se ¼ hT̂θ

θiðRPÞ ¼ −
αl2P

8πR2ðR2 þ αl2PÞ
þOð

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − C

p
Þ;

ρse ¼ −hT̂t
tiðRPÞ ¼ −

1

8πR2
þ ρþOð

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − C

p
Þ: ð59Þ

Every component of the RP-RSET is finite and negative at
the surface. In the ultracompact limit, the radial pressure
and the energy density are able to compensate their Oðl2PÞ
suppression, becoming comparable to the classical SET
components. The finite jump in ρ at the surface of the fluid
sphere contributes positively to the semiclassical energy
density. Consequently, the total energy density (the sum of
classical and semiclassical contributions) will be positive at
the surface given that

ρ >
1

16πR2
: ð60Þ

This result comes from a local analysis at the surface; the
particular form of the RP-RSETat the bulk relies heavily on
the classical pressure and density profiles. We expect more
accurate approximations to the RSET to extend these
negative semiclassical contributions to the interior of the
star as well. For more realistic equations of state with
vanishing energy density at the surface, the complete SET
(the sum of the classical and quantum portions) violates all
energy conditions at the surface of ultracompact stars.

FIG. 7. Pictorial representation of an R ≫ lP slice of the phase
space of semiclassical constant-density stars. The vertical and
horizontal axes represent the energy density and the surface
compactness of stars. The curve ρc corresponds to a separatrix
solution. The vertical dotted line here denotes the Buchdahl limit,
in which the central black dot represents the most compact
configuration strictly regular in both pressure and compactness,
or Buchdahl solution. We distinguish four regions in the resulting
figure: region I represents subcritical sub-Buchdahl stars, region II
is for supercritical sub-Buchdahl, region III is for subcritical super-
Buchdahl; and region IV represents supercritical super-Buchdahl
stars. In the sub-Buchdahl semiplane (left-hand side of the vertical
dotted line), the separatrix ρc corresponds to strict stellar space-
times. For super-Buchdahl configurations this separatrix corre-
spond to nonregular solutions, but in its neighborhood we find
quasi-regular configurations (i.e., ϵ-strict stellar configurations).
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Now, picture a numerical integration starting at the
asymptotically flat region with a positive ADM mass.
While in vacuum, compactness increases monotonically
until the neck as in Fig. 6, and we can decide to locate
the surface of the perfect fluid either outside or inside it. At
the surface, compactness and radius are fixed, leaving the
energy density ρ as the only free parameter. With the aim of
constraining the various possibilities embraced by the
diagram in Fig. 7, we will first describe the behavior of
stars situated at regions I and III in the diagram (subcritical
regime) and at regions II, IV (supercritical regime). Since
stellar geometries should connect with the vacuum solution
in the ρ → 0 limit, we can always devise a star of any
compactness that belongs to the subcritical regime.
Similarly, given a star with any CðRÞ < 1, the supercritical
regime is explored by increasing ρ beyond the critical
density. This classification is valid for stars located either
outside or inside the neck, so we proceed by first inves-
tigating the former. Our results and acquired intuitions will
extend to the study of the latter situation as well.

A. Solutions with a regular center

From the complete set of solutions, we want to extract
first those solutions which are strict stellar configurations,
i.e., which have a regular radial center. Recall that these
configurations correspond to the critical sub-Buchdahl
solutions in Figs. 1 and 2. To obtain regular solutions to
the semiclassical equations of structure, we proceed by
performing numerical integrations from a regular origin.
The following boundary conditions must be imposed at
r ¼ 0 to integrate Eqs. (11), (48) and (49):

rð0Þ ¼ 0; ϕð0Þ ¼ ϕc; pð0Þ ¼ pc

r0ð0Þ ¼ 1; ϕ0ð0Þ ¼ 0: ð61Þ

Integrations from a regular origin share many features with
their classical counterparts. Given that the choice of ϕc
represents just a rescaling of time coordinate, the full space
of solutions with regular origin is determined by the two-
parameter set ðρ; pcÞ.
Depending on the relative values of pc and ρ, three

families of solutions are found, the separatrices between
them corresponding, as in the classical case, to pc=ρ ¼
−1=3 and pc=ρ ¼ −1. In this section we focus on the
semiclassical equivalent to the type 1 set of cosmological
solutions, for which the NEC and SEC hold at r ¼ 0. A
specific example has been plotted in Fig. 8 (see Fig. 9 for
details on the RSET). Recall from Sec. III A that the
positive-pressure portion of type 1 solutions (i.e., those
with pc, ρ > 0) corresponds to stellar spacetimes. This
characteristic persists in the semiclassical theory, so we
dedicate this section to exploring the semiclassical counter-
parts to these critical stellar spacetimes. Furthermore,
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FIG. 8. Plot of the semiclassical counterpart of Fig. 3 with ρ ¼ 0.03, pc ¼ 2ρ and α − 1 ¼ 10−3. We have plotted the functions rðlÞ,
CðlÞ and pðlÞ (in units of ρ) and they appear in green, blue and red, respectively. The right pole of the geometry is shown in detail. Notice
how the radial function has a minimal surface (vertical dashed line) at l ∼ 6.23 and the geometry connects to a singular region (vertical
zigzag line) located at r → ∞ but at finite proper distance from l ¼ 0.
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extending the perfect fluid beyond the surface of zero
pressure allows to find the semiclassical counterparts to the
classical cosmological solutions. In this section, by coun-
terparts, we are referring to the pair of classical and
semiclassical solutions with the same ρ and pc.
Firstly, we are going to describe the characteristics of the

solutions that we have been able to find through numerical
integrations. Unfortunately, this covers a quite limited
range of initial conditions. This is so because of the
numerical precision required to handle highly different
scales. In the semiclassical approximation, the scale of
semiclassical corrections is suppressed by lP, and has to be
resolved with the scale of typical compact objects, of the
order of kilometers. Thus, the results described in this
section need to be extrapolated with care to stars of
astrophysical size. An additional warning is that, as we
will argue, some of the conclusions that one might extract
from these solutions are opposite to those one might expect
using more realistic astrophysical numbers and more
refined approximations to RSET at the origin. With this
caveat in mind, let us describe the characteristics of the
numerical solutions and then what appropriate conclusions
one can extract from them.
Figure 8 depicts the semiclassical counterpart to the

classical cosmology from Fig. 3, with ρ ¼ 0.03 and
pc ¼ 2ρ. Restricting ourselves to the positive pressure
portion in Fig. 8, we observe that the RSET contributes
positively to the mass of the star on average (see the purple
curve in Fig. 9). For a star that fulfills the regularity
conditions (6) and satisfies the SEC and NEC (the pressure
is maximal at r ¼ 0), the semiclassical energy density (46)
is positive at the center,

ρse ¼
λ

4παζ
> 0; ð62Þ

its magnitude being inversely proportional to the value of
the regulator. As a consequence of this we find that, as long
as density remains within non-Planckian values, these
semiclassical stars—stars very small in astrophysical terms
but still with non-Planckian classical densities—are slightly
less compact than their classical counterparts. All these
stars are sub-Buchdahl and are more sub-Buchdahl than
their classical counterparts. We have obtained the maxi-
mum compactness of strict regular spacetimes in terms of
the density ρ. This curve always remains below the classical
Buchdahl limit CðRÞ ¼ 8=9 for small densities (in the
range of densities explored numerically). As ρ increases,
configurations that surpass the classical Buchdahl limit are
obtained, but these remain outside the regime of validity of
the semiclassical approximation as their density is trans-
Planckian.
When these low-density stars are analyzed as integrations

from the surface inwards, we find that, for counterparts of the
same R and CðRÞ, semiclassical critical stars happen to be

less dense than classical critical stars, the remaining mass
being supplied by the RSET so that relation (15) is fulfilled.
This underdensity then results in the classical fluid perceiv-
ing an amount of mass greater than the one generated by its
own classical energy density and pressures, needing to reach
central classical pressures greater than in the classical case to
retain equilibrium.
This result is counterintuitive with respect to initial

expectations that one may have regarding semiclassical
effects. Reasonably, we would have expected the total
semiclassical energetic contribution to a star to be negative.
In fact, the value of the semiclassical contributions to the
local density when crossing the surface of the star is
negative. This negativity increases as CðRÞ approaches 1,
but decreases as the classical energy density is raised. At this
point, we have two issues at stake. On the one hand, for sub-
Buchdahl stars, the negativity of the semiclassical contribu-
tion is very small (it is suppressed by lP and it is not
amplified by the surface of the star being close to its
gravitational radius). On the other hand, there is a strong
dependence on the behavior of the RSETat the origin. In our
approach, the regulating scheme for the RSET comes as a
cutoff to the total magnitude of the RSET at the origin.
Setting the value of α so that the RP-RSET is very
suppressed, this suppression applies to the entire interior,
diminishing also the RP-RSET at the surface of the star. In
fact, in the limit α → ∞ one eliminates completely any
semiclassical contribution, thus recovering the classical
solutions. On the other extreme, if we take α ∼ 1, then
the RP-RSET at the origin of sub-Buchdahl regular stars is
not suppressed by lP and can lead to very large and positive
semiclassical densities [as in Eq. (62)]. Then, in all the
numerical solutions, the central positive contribution to the
semiclassical energy widely outstrips the mild negative
energies at the surface, if any. To avoid these problems,
one would need to consider sufficiently large stars so that
there exists room to fix the regulator in a way that only
affects the core of the star without affecting the surface. In
addition, ideally, one would like to design a regulator
bringing the RP-RSET close to an exact RSET. This better
behaved RSETwould be sensitive to the local characteristics
of the geometry at the origin and so able to properly capture
the physics close to the radial origin. For instance, for regular
sub-Buchdahl configurations one expects the RSET to be
also small at the origin as neither large curvatures nor
horizons are present through the configuration. Notice that
from these arguments alone it is not straightforward to say
anything about the Buchdahl limit itself.
In any case, the analysis reported here is valuable in

clearly illustrating the limitations and strengths of the
Polyakov and regularized Polyakov RSETs. It is reasonable
to expect that the RP-RSET should be a trustworthy
approximation when the physics is driven by nonlocal
effects generated at values of the radius close to where a
horizon would have been classically located. On the
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contrary, it should not provide a reliable approximation
when the physics is driven by the values of the RSET at the
origin. This motivates our definition of ϵ-strict spacetimes
as the solutions of relevance for extracting robust con-
clusions, since the behavior of any solution close to the
origin is necessarily impacted by the choice of regulator. As
the regular solutions described in this section are a subset of
the ϵ-strict spacetimes, it cannot be assumed that these
provide a typical description of the properties of this larger
set of solutions. Nevertheless, the existence of a set of
nonregular but ϵ-strict solutions provides further motiva-
tion to analyze alternative regularizations of the Polyakov
RSET, exploiting the available freedom discussed men-
tioned in Sec. IVA, which may be sufficient to regularize
these solutions as well.

1. Cosmological solutions

For completeness, as we did in the classical case, let us
mention some particularities of the cosmological solutions,
independently of whether they can be used as regular stellar
interiors or not. Coming back to Fig. 8, we observe that the
resulting “cosmology” never reaches its would-be right
pole. This difference with respect to the classical cosmol-
ogy from Fig. 3 comes from the aforementioned semi-
classical contribution to Mcloud. In an outwards integration
starting at the origin, the semiclassical energy density
giving rise to such contribution begins as positive and
changes sign eventually. In Fig. 9 we observe that the
semiclassical energy density grows as the origin r ¼ 0 is
approached, so that its weight at short distances is very
significant. The overall effect of this mass cloud is to
prevent the cosmology from being regular at its right pole.
As this region is approached, the solution shows a minimal
surface or neck that connects to an asymptotic, negative
mass singularity, in the same fashion as in the vacuum
solution, but now in presence of perfect fluid with divergent
pressure. As an additional comment note that, although
pressure has a second zero close to the neck, this surface
does not connect with the Schwarzschild vacuum geometry
in a way that resembles a stellar spacetime.
Now, decreasing pc below zero results in configurations

qualitatively similar to Fig. 8, but with pressure everywhere
negative in between the center and the neck. Taking
pc ¼ −ρ=3 results in an Einstein static universe, which
receives no semiclassical corrections whatsoever: the RP-
RSET is identically zero. Going below this separatrix for p
changes the sign of the pressure gradient outside the radial
origin, so that p increases outwards. For −2ρ=3≲ pc <
−ρ=3 the obtained cosmologies show no neck. Instead, a
second r ¼ 0 is reached in a singular manner. This is so
because the contribution to the Misner-Sharp mass that
comes from the RP-RSET is now negative overall. In
consequence, the solution tends to the semiclassical counter-
part of the Schwarzschild geometry with negative asymptotic
mass as the second r ¼ 0 surface is approached.

Taking pc ≲ −2ρ=3 causes the neck to reappear, leading,
once again, to an asymptotic singularity at radial infinity.
This singularity moves toward smaller l as pc decreases.
When the NEC is saturated, the divergence has engulfed the
radial maximum and the shape function increases mono-
tonically from r ¼ 0 outwards. Henceforth, all configura-
tions show a negative-pressure divergence at r → þ∞.
Note that, owing to the curvature singularity at infinite r,
these profiles cannot resemble the interior portion of
gravastar solutions anymore since their shape functions
do not match continuously with those of the positive-
pressure portion of super-Buchdahl stars.
In summary, the semiclassical counterparts to these

cosmological spacetimes have acquired features from
configurations with nonregular compactness profiles as
far as the behavior of the putative right-hand side pole is
concerned. This is due to the imbalance in mass that
originates from quantum corrections as encapsulated in the
regularized Polyakov RSET being used. Thus, solutions
with nonregular compactness solutions are important in the
study of cosmologies with one regular center. In the next
sections we derive the properties of solutions with irregular
(noncritical) compactness in detail, using the notion of
semiclassical criticality to catalogue them.

B. Subcritical configurations

We begin by considering a star with compactness well
below the Buchdahl limit and density well below ρc (we are
referring to the region I from Fig. 7). Taking ρ ¼ 0 we
recover the vacuum solution, which has a wormhole neck at
some radius rB ≳ 2MADM (the suffix B stands for a bouncing
surface of the shape function). By matching the vacuum
solution with the surface of a constant-density configuration
with small, positive ρ at some R > rB, the interior geometry
resembles the vacuum solution (in the sense that it develops a
wormhole neck in the interior) but with a perfect fluid added
to it. Recall that, as we saw for the cosmological solution
from Fig. 8, wormhole necks can appear in the presence of
matter. In this section we prove this statement and obtain
analytical approximations to this wormhole geometry in
certain regimes: around the neck and in the singular
asymptotic region deep inside the neck. The effect of
increasing ρ is to approach the critical solution ρc in the
space of solutions from Fig. 7, pushing the wormhole neck
[i.e., a surface where CðrB ¼ 1Þ] to smaller values of r until
it disappears for some ρc. Here, all solutions showing a
wormhole neck will be called subcritical. From a critical
value of the density upwards (supercritical regime), we find
that the geometries do not longer have a neck, having their
shape functions extended until r ¼ 0. The separatrix sol-
ution sits, obviously, between both regimes.
Let us consider in more detail the form of configurations

belonging to the subcritical regime and whose surface is
located outside the neck. The first three panels in Fig. 10
describe configurations of this kind (see Fig. 11 for details
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FIG. 10. Semiclassical stars integrated from the surface. The green and blue curves denote rðlÞ and CðlÞ, and the red curve represents
the function pðlÞ. All integrations correspond to stars with R ¼ 1.8 and α − 1 ¼ 10−3. Their surface compactness and their ρ=ρc-clas
quotients are, approximately and from top to bottom: (0.84, 0.71), (0.92, 1.16), (0.93, 1.34) and (0.96, 1.87). The second and third panels
show a zoomed plot of the near-neck region, highlighting the neck (vertical dashed line) and the singularity (zigzag line). Increasing ρ
generates a well of negative mass. This negative mass slows down the increase in pressure, causing a shrinkage of the wormhole neck.
Eventually, the neck disappears leaving a naked singularity at r ¼ 0. In between subcritical and supercritical configurations there is an
infinite pressure separatrix solution. As the wormhole neck can be as small as desired by adjusting ρ, a mild deformation of the geometry
at the core would suffice to make the whole construction regular. See Fig. 11 for the RP-RSET components from each solution.
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on the RSET components). In virtue of Eq. (50), pressure
grows monotonically inwards as long as the squared root
term is greater than unity. Similarly to the classical
subcritical case, the compactness function C, which
decreases as we move away from the surface inwards,
encounters a minimum value somewhere in the bulk of the
configuration, triggering a runaway in the pressure.
Restricting ourselves to the regime where the expression
for the pressure in Eq. (28) can be well approximated by

p ≃ κe−
R

ψdr; ð63Þ

we find that Eq. (52) is approximated by a first-order
differential equation of the form

ψ 0 ¼ Hðψ −R1Þðψ −R2Þðψ −R3Þ; ð64Þ

where

H ¼ −
l2Pr

2½r2 þ l2Pðα − 1Þ�
�
1 −

2l2Pr
2

ðr2 þ αl2PÞ2
�

ð65Þ

and fRig3i¼1 are three roots with involved and lengthy
expressions that depend on r, α and lP. Their approximate
asymptotic forms for r ≫

ffiffiffi
α

p
lP are

R1;2 ≃
3� ffiffiffiffiffi

33
p

4r
; R3 ≃ −

2r
l2P

: ð66Þ

These roots appear plotted in Fig. 12 alongside ψ� as
defined in Eq. (54), and an exact numerical solution
belonging to the subcritical regime. While R1, R2 are
monotonic, R3 reaches a maximum value precisely where
the ψþ exact solution intersects R3. This observation will
guide us in what follows since, as long as Eq. (52) is well-
approximated by a first-order differential equation, the
shape of the solution ψ is determined by ψ� and fRig3i¼1.
The approximate expression (63) implies that ϕ diverges

toward negative values, for which its derivative ψ needs to
diverge toward þ∞ at some radius rB. Therefore, the right-
hand side in Eq. (64) can be approximated to cubic order in
ψ . By solving this approximate equation and expanding the
solution in the limit r → rB we find

ψ ≃�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k0
4ðr − rBÞ

s
; ð67Þ

with

k0 ¼
2½r2B þ ðα − 1Þl2P�ðr2B þ αl2PÞ2
rBl2P½ðr2B þ αl2PÞ2 − 2r2Bl

2
P�

> 0: ð68Þ

Expression (67) shows that the modifications induced by
the RSET change the rate at which a surface of zero redshift

is approached. Classically, the Schwarzschild horizon is
approached as ψ ∝ ðr − rHÞ−1. Due to the increase in order
of the ψ terms in Eq. (52) coming from semiclassical
corrections, the classical Schwarzschild horizon is no
longer part of the solution. Instead, we find that ψ grows
more slowly in the semiclassical theory, the precise form of
Eq. (67) being integrable across the surface r ¼ rB. The
latter represents an asymmetric wormhole neck, where the
shape function r reaches a minimum value. Integrating
Eq. (67) and returning to the l coordinate, which is regular
through the neck, the approximate behavior of the metric
functions obtained is

r ≃
k1
4
ðl − lBÞ2 þ rB; ϕ ≃

ffiffiffiffiffiffiffiffiffi
k0k1

p
2

ðl − lBÞ þ ϕB; ð69Þ

where lB and ϕB are the values of the proper coordinate and
the exponent of the redshift function at the neck, and

k1 ¼
4ðr2B þ αl2PÞ

r2Bl
2
Pk0

> 0: ð70Þ

Replacing these expressions in Eq. (63), we see that the
pressure

p ≃ pB

�
1 −

ffiffiffiffiffiffiffiffiffi
k0k1

p
2

ðl − lBÞ
�

ð71Þ

is finite and positive through the neck as well. Therefore,
locally around the neck, the geometry resembles that of the
vacuum solution from Fig. 6, but covered by a perfect fluid
of constant density with pressures that exceed the value of
the density [note that ðpB ≫ ρÞ by consistency with (63)].
Inside the neck, the solution jumps from the unconcealed

to the concealed branch, where vacuum polarization grows
unbounded. Following similar arguments to those in [35]
for the vacuum solution, we can determine the form of the
metric in the new asymptotic region. In particular, noticing
that ψ takes the − sign of (67) at the interior (concealed)
side of the neck, and that rB > 0, ψ always takes values
below the three roots and the exact solutions that appear
represented in Fig. 12. By consistency of Eq. (64), ψ grows
with r until the most negative root, R3, is crossed. Beyond
this point ψ decreases linearly with r, taking values
between the exact solution ψþ and the rootR3. The former
cannot be crossed in virtue of the Picard-Lindelöf theorem,
and the latter cannot be encountered for a second time for
self-consistency of (64). Thus, in the r → ∞ limit, ψ
decreases linearly with r (at leading order) and essentially
corresponds to the vacuum solution.
To derive the asymptotic form of the metric deep inside

the wormhole neck (in radial distance), we assume ψ
deviates slightly from the exact solution as ψ ≃ ψþ þ βðrÞ.
Replacing this expression in Eq. (64) and neglecting terms
beyond linear order in β, we obtain
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β0 ≃ −
2r
l2P

β þOðβ2Þ: ð72Þ

Integrating yields

β ≃ −e−2r2=l2Pβ0; ð73Þ

where β0 is a positive constant of integration of dimensions
of inverse of length [the sign in Eq. (73) is chosen so that
the solution ψ approaches ψþ from below]. Now, we
further integrate ψ to derive the compactness function
and the asymptotic form of the metric. Written in
Schwarzschild coordinates, it takes the approximate form

ds2 ≃ e−2r
2=l2P

�
r
lP

�
1−4α

�
−a0

�
1 −

l2P
8r2

�
dt2

þb0

�
r
lP

�
2
�
1 −

ð9 − 32αÞl2P
r2

�
dr2

�
þ r2dΩ2: ð74Þ

Here, a0 and b0 are dimensionless integration constants. In
view of the above expression, the metric has a null
singularity at radial infinity, which is located at finite
affine distance from the neck for all geodesic paths. In
the asymptotic region, the pressure of the fluid diverges

exponentially toward positive infinity. The compactness
function diverges toward negative infinity exponentially as
well, due to the presence of an infinite cloud of negative
mass which is being generated by the vacuum energy of the
scalar field.
We observe that the characteristics of subcritical sol-

utions are identical to those of the vacuum solution i.e., an
asymmetric wormhole with an interior null singularity at
infinite r, but filled with an isotropic fluid of constant
density and divergent pressures. Despite the classical SET
being singular, the dominant contribution to the divergence
in curvature invariants comes from semiclassical contribu-
tions, and differences between vacuum and matter geom-
etries appear at subleading order in the approximate metric
(74). The uppermost panel in Fig. 10 contains an example
of a sub-Buchdahl, subcritical star (see top left panel in
Fig. 11 for details on the RSET).
Semiclassical stellar solutions can be interpreted as a

mixture of competing classical and quantum contributions.
Taking ρ ¼ 0 gives all predominance to the vacuum sector,
while increasing ρ endows the geometry with classical-like
properties. On the other hand, as the compactness at the
surface of the star CðRÞ is increased (while keeping ρ < ρc
at all times), the wormhole neck follows a trajectory similar
to the infinite positive pressure divergence from the
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FIG. 11. RSET components −hT̂t
ti (dark blue), hT̂l

li (magenta) and hT̂θ
θi (cyan) for various stars integrated from the surface. All the

integrations correspond to stars with R ¼ 1.8 and α − 1 ¼ 10−3. They correspond to the solutions appearing in Fig. 10, whose surface
compactness and ρ=ρc-clas quotients are, approximately: (0.84, 0.71) (top left), (0.92, 1.16) (top right), (0.93, 1.34) (bottom left), (0.96,
1.87) (bottom right). Note the abrupt change in the sign of the semiclassical energy density in the transition from the subcritical to the
supercritical regime.
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classical theory: it moves outwards as CðRÞ approaches the
Buchdahl limit. At this stage, keeping CðRÞ fixed and
giving predominance to the classical fluid (increasing ρ)
effectively pushes the wormhole neck toward smaller radii.
As a consequence of increasing ρ, a greater amount of the
contribution to Mcloud in Eq. (57) is coming from the
classical source rather than the semiclassical vacuum
polarization.
The second panel in Fig. 10 (top-right panel in Fig. 11 for

the RSET) exemplifies a super-Buchdahl, subcritical star
where ρ has been chosen so that the neck is pushed inwards
appreciably. Given a subcritical super-Buchdahl configura-
tion and increasing ρ moves the position of the wormhole
neck inwards. This is accomplished at the expense of
generating a nucleus of negative mass whose repulsive force
smears the growth in pressure. The increase in ρ makes the
classical fluid contribution prevail, causing compactness to
become negative, but not as negative as to compensate the
growth in pressure, resulting in a wormhole.

1. Relevance of ϵ-strict stellar spacetimes and validity of
the Polyakov approximation

The third panel in Fig. 10 (see bottom left panel in
Fig. 11 for details on the RSET) shows a geometry with its
wormhole neck very close to the radial origin. This neck
has a Planckian radius, and lies in the regime where the
physics of the solution is subject to the particular regulator
scheme adopted for the RP-RSET. Hence, the regime
around where the wormhole neck is reached lies outside
the domain of reliability of the Polyakov approximation.
Notice that these configurations have the compactness
function bouncing from negative numbers to CðrBÞ ¼ 1
at the neck. Hence, by moving the ρ parameter, the
compactness of these solutions can be made as small as
desired arbitrarily close to r ¼ 0. In this precise sense, there
is a family among all subcritical semiclassical solutions that
describes ϵ-strict spacetimes, as for these solutions the
compactness can be made to obey the bound (7) in a sphere
of radius rϵ by taking a suitable ρ < ρc. Obtaining a strict
stellar spacetime from configurations of this sort would
amount to regularize their nucleus. As ϵ-strict spacetimes
are absent in the classical space of super-Buchdahl sol-
utions, semiclassical constant-density spheres of high
compactness are one step closer to being regular than
classical ones, precisely due to the way quantum correc-
tions operate within these structures.
The existence of ϵ-strict spacetimes is in a way related to

the failure of the Polyakov approximation to properly
account for the contributions of vacuum polarization in
presence of matter fluid spheres which extend all the way to
r ¼ 0 [equivalently, to distances where the spacetime
metric in Eq. (2) cannot be dimensionally reduced to its
nonangular sector accurately]. Were the spacetime geom-
etry sourced by a RSET adequate for computing back-
reaction effects over regular stellar spacetimes, the resulting

configurations might have been regular from the start. We
are demanding from the RSET more than just yielding
finite components at r ¼ 0, as we also look for a RSET that
captures more accurately the physics at the nucleus of
compact relativistic stars (i.e., the expected violation of
energy conditions that the RP-RSET seems unable to
reproduce at the core of regular stellar spacetimes that
approach the Buchdahl limit (62) but more precise, local
approximations account for [53]). The redshift function of
classical Buchdahl stars vanishes exactly at r ¼ 0, as seen
in Eq. (24). Thus, the result by Hiscock [53] indicates that
the RSET acquires a negative energy density when nearing
a surface of zero redshift. As the Polyakov RSET is
oblivious to the overall value of the redshift function [only
their derivatives enter the field equations (48), (49)], this
characteristic is not being well-captured by this
approximation.
The shrinkage of the neck as the density increases goes

on until we encounter a separatrix solution with distinct
features (see Subsec. V D below for details and Fig. 10 for a
series of configurations that approach this separatrix). For
this solution, pressure and compactness diverge toward
positive and negative infinity, respectively, at r ¼ 0. This is
a separatrix solution between two distinct behaviors in the
pressure and in the compactness. Hence, attending to our
definition of criticality from Subsec. II B, this solution
corresponds to a critical (and singular) configuration.
Beyond this critical density ρc, solutions have no neck
and their shape function extends to r ¼ 0, but in a singular
manner. These supercritical configurations are the ones
analyzed in the next subsection.

C. Supercritical stars

Returning to the phase space from Fig. 7, subcritical
solutions are situated between the pure vacuum solution,
with ρ ¼ 0, and solutions which have regular pressure
everywhere. Increasing the density allows to observe a
transition between the former and the latter, the separatrix
between both being ρ ¼ ρc. For stars well below the
Buchdahl limit, everything indicates that the lowest value
of the density that makes the neck vanish ensures the
regularity of the structure. These solutions correspond to
the configurations obtained integrating outwards from a
regular radial origin (see Subsec. VA). We find that this
critical solution stops being regular beyond certain value of
the compactness CðRÞ. This can be deduced from the fact
that we have not been able to obtain solutions starting from
a regular origin that end up corresponding to super-
Buchdahl stars (excluding those with trans-Planckian ρ).
Picture now a supercritical star, for which the solution

extends up to r ¼ 0. An example of this configuration
appears in the bottom panel of Fig. 10 (see bottom right
panel in Fig. 11 for the corresponding RSET components).
Sufficiently close to the radial origin, the geometry can be
approximated by that of the semiclassical Schwarzschild
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counterpart with negative mass ADM mass. By evaluating
Eq. (49) in the r → 0 limit assuming a finite pressure at the
origin, we obtain

ϕ0 ≃
−αþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αðα − 1Þp
r

r0; : ð75Þ

Notice that, in Schwarzschild coordinates, this corresponds
to the exact solution ψ−, which lives in the unconcealed
branch and connects smoothly with the classical solution in
the lP → 0 limit. Replacing Eq. (75) in Eq. (48), we obtain
the following relation for the shape function,

r0 ≃
�jM̃j

r

�ð1þαÞð
ffiffiffiffiffi
α

α−1

p
−1Þ

: ð76Þ

Here, M̃ is a constant of integration related to the deviations
of ρ from ρc. Integrating (76) returns the following
asymptotic form of the radial function

rðlÞ ≃
�
jM̃j−1þ

ffiffiffiffiffi
α

α−1

p
l

�½αð
ffiffiffiffiffi
α

α−1

p
−1Þþ

ffiffiffiffiffi
α

α−1

p
�−1
; ð77Þ

where, in the limit of big α, or when the RP-RSET is fully
suppressed, we recover the classical behavior (33). The
redshift function indeed diverges toward positive infinity in
the limit l → 0,

e2ϕ ≃
�jM̃j

l

� 2

1þ2
ffiffiffiffiffi
α

α−1

p
; ð78Þ

and the classical fluid acquires the equation of state of
vacuum energy at the radial origin

p ≃ −ρþ M̃−2
�

l

jM̃j
� 1

1þ2
ffiffiffiffiffi
α

α−1

p
: ð79Þ

The finite value of the central pressure is approached with
infinite gradient, as in the classical expression (35). The
divergence of the pressure gradient is stronger than the
classical one since the exponent of Eq. (79) vanishes in
the limit α → 1. Vacuum polarization gets stimulated by
the presence of this central negative mass, strengthening
the supercritical singularity with respect to the classical
situation.
We return now to the bottom picture in Fig. 10, which

shows an example of a super-Buchdahl, supercritical star.
The RP-RSET (bottom right panel in Fig. 11) shows drastic
differences with the subcritical case. Namely, ρse changes
sign with respect to its negative contribution at the surface,
diverging toward positive infinity at r ¼ 0. The semi-
classical pressures diverge toward negative infinity after
having encountered a maximum.

D. Semiclassical infinite pressure separatrix

The semiclassical separatrix between subcritical and
supercritical configurations is reminiscent of the classical
separatrix in several aspects that we will detail in what
follows. Let us work under the assumption that the
separatrix solution has infinite pressure at the radial origin
by similarity with the classical case in Sec. III D 1. First, we
go back to Eq. (52), expand the right-hand side in powers of
r, and neglect terms subleading in the pressure, as of (63).
The coefficients in Eq. (52) become

A0 ≃ 12πp;

A1 ≃ 4πr

�
3pþ 2p

α

�
−
2

r
;

A2 ≃ −8πr2p
�
1 −

3

2α
−Oðr2=l2PÞ

�
−
2

α
− 2;

A3 ≃ −
r
α

�
4πr2p½1 −Oðr2=l2PÞ� þ

1

α
þ 1

�
;

D ≃
α

ð1þ 8πr2pÞðα − 1Þ : ð80Þ

We arrange these coefficients in a particularly illustrative
form, yielding
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-60
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FIG. 12. Numerical plot of the roots R1, R2 and R3 (green,
blue and turquoise curves, respectively) together with the exact
solutions ψ� (orange and red dashed curves) and an exact
numerical solution in black (the neck radius rB is represented
by a vertical dashed line). The numerical solution corresponds to
a subcritical super-Buchdahl star with R ¼ 2, CðRÞ ¼ 0.95 and
ρ=ρc-clas ≃ 1.67 with its neck at l ≃ 0.45 (vertical dashed line).
These values have been chosen to aid visualization. The upper
portion of the exact solution lives in the unconcealed branch,
whereas the bottom portion lives in the concealed branch. The
concealed part of the exact solution gets confined between R3

and ψþ, converting toward the vacuum solution asymptotically.
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ψ 0 ≃
�
4πp½3αþ ð2þ 3αÞrψ þ ð3 − 2αÞr2ψ2 − r3ψ3�

−
2α

r
ψ − 2ð1þ αÞψ2 −

rðαþ 1Þ
α

ψ3

�

×
1

ðα − 1Þð1þ 8πr2pÞ : ð81Þ

This expression is describing a competition between
vacuum and matter contributions. By dropping the terms
proportional to the pressure in Eq. (81) we obtain the
solutions to the equation in vacuum [35]

ψ ¼ −
α� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αðα − 1Þp
r

; ψ ¼ 0; ð82Þ

where only the − sign returns the Schwarzschild solution in
the classical limit (taking α → ∞, an infinitely suppressed
RP-RSET). Note that Eq. (82) is equivalent to Eq. (75) for
the supercritical case, but expressed in Schwarzschild
coordinates.
In the regime of approximation described by Eq. (63),

the pressure is proportional to the integral of ψ . Let us
assume the ansatz

ψ ¼ η

r
: ð83Þ

For this ansatz, the pressure becomes, in virtue of (63)

p ≃ κ

�
r0
r

�
η

; ð84Þ

where r0 is an integration constant with dimension of
length and η needs to take positive values, since η < 0 is not
compatible with the infinite pressure assumption. Inserting
Eqs. (83) and (84) in Eq. (81), we obtain

ψ 0 ≃
�
4πκ

�
r0
r

�
η

½3αþ ð2þ 3αÞηþ ð3 − 2αÞr2η2 − η3�

−
ð1þ αÞη

r2
ð2αþ 2ηþ η2Þ

�

×
1

ðα − 1Þ½1þ 8πr2κðr0r Þη�
: ð85Þ

The value of η determines which source, classical or
quantum, provides the dominant contribution to the diver-
gence in ψ 0. For η < 2, the vacuum terms carry the
dominant divergence. For η ¼ 2, the terms in the first
and second line all contribute at the same order, whereas for
η > 2, terms proportional to the pressure dominate both the
numerator and the denominator in Eq. (85). Let us explore
these possibilities.

Replacing the derivative of Eq. (83) in Eq. (85) and
taking η ¼ 2 (which equates vacuum and matter contribu-
tions) yields the following relation between integration
constants,

κ ¼ 1þ α

2παr20
: ð86Þ

Replacing this behavior in the radial Einstein equation (49)
(in Schwarzschild coordinates) we obtain

C ≃
4ð1þ αÞð−1þ r20Þ

ð4þ 5αÞr20
þOðr2Þ; ð87Þ

from where only the value r0 ¼ 1 returns a vanishing
compactness at the radial origin. The solution

p ¼ 1þ α

2παr2
; ð88Þ

is reminiscent of the classical separatrix between critical
sub and super-Buchdahl configurations and connects
smoothly with the classical Buchdahl solution (41) in
the α → ∞ limit. The semiclassical counterpart to that
separatrix retains its critical character, in the sense that
Cðl → 0Þ ¼ 0, while the rate of growth of the pressure
increases as α is decreased. Hence, semiclassical correc-
tions contribution toward strengthening the divergence of
the pressure in this separatrix.
Once the Buchdahl limit is surpassed the separatrix

solution takes a different form. By taking η > 2 in Eq. (85),
we are assuming that pressure-dependent terms carry the
leading-order divergences in the expansion. Therefore,
Eq. (85) can be reduced to

−
η

r2
≃
r−η½3αþ ð2þ 3αÞηþ ð3 − 2αÞr2η2 − η3�

2ðα − 1Þr2−η ; ð89Þ

from where the only positive solution is η ¼ 3. We have a
pressure profile of the form

p ≃
κ̃

r3
: ð90Þ

where κ̃ is a positive integration constant of dimension length.
Replaced in the equation for the compactness we find

C ≃ −
8πακ̃

ð9þ 7αÞr : ð91Þ

The separatrix between subcritical and supercritical
configurations has an infinite compactness at the origin.
This divergence in the compactness is weaker than the
curvature singularity from supercritical configurations,
which fits right in the separatrix between sub- and
supercritical profiles in the super-Buchdahl case. Since
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the differential equation for the compactness (48) is not
integrable in terms of analytical functions, we do not
know the specific form of the constant κ̃. Nevertheless,
we expect it should present the correct classical limit.
Separatrices are only perturbatively deformed by

semiclassical corrections. Solutions belonging to the
subcritical regime are wormhole geometries, whereas
supercritical solutions are naked singularities. The sep-
aratrix solutions (84) and (90) are modified perturbatively
by regulator-dependent corrections. This is reminiscent,
in a sense, to what happens in the vacuum situation,
where the separatrix between wormhole geometries and
naked singularities at r ¼ 0 is precisely Minkowski
spacetime, for which vacuum polarization is exactly zero
[35]. The infinite pressure separatrices here obtained
apparently exhibit a similar stability with respect to
quantum corrections.

E. Outside-the-neck stars and pressure regularization

The analyzed behaviors for both sub- and supercritical
stars (i.e., top and bottom regions of the phase space in
Fig. 7) only depend on whether the value of ρ is below or
above ρc, and are thus universal for stars either outside or
inside the neck. Turning back to the diagram in Fig. 7,
which qualitatively describes stars with their surfaces
outside the neck, we now draw attention to the separatrix
solution between regions III and IV (or the super-
Buchdahl half-plane). Recall that numerical integrations
for these regimes (subcritical, critical and supercritical)
appear represented in the fourth row of Fig. 2. Beginning
with a subcritical configuration and integrating from the
surface, we can estimate numerically from surface inte-
grations (within some expected numerical uncertainty)
the value of the density that sits between the less dense
supercritical solution and the most dense subcritical

solution. To the limit of our numerical precision, this
density value coincides with ρc. Notice that with our
definition of criticality, this coincidence between
the pressure separatrix and the critical solution does
not happen in the classical case: by increasing the
parameter ρ we first find ρc, i.e., a change in behavior
of C, and later on for ρreg-p > ρc we find the first solution
for which pressure becomes finite at the origin. So, in
what follows, we will make use of ρreg-p to refer to the
classical separatrix in pressure and ρc to denote the
(semiclassical) critical solution, which is a separatrix
in pressure as well.
Let us numerically explore the behavior of the quantity

ρc in different situations. For semiclassical stars with the
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FIG. 13. Plot of ρreg-p in terms of the compactness for
classical (orange) stars and of ρc for semiclassical (green)
stars with R ¼ 2 and CðRÞ ∈ ð0; 1Þ. The blue line corresponds
to the classical critical density (17). The orange curve diverges
in the CðRÞ → 1 limit, whereas the green curve reaches a finite
value, in this case ρcðCðRÞ → 1Þ ≃ 1.366.
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FIG. 14. Plot of the Misner-Sharp mass at a central radius rcore ¼
OðlPÞ in terms of the surface compactness for classical (orange)
and semiclassical (green) stars with R ¼ 2. Notice how the orange
curve diverges in the CðRÞ → 1 limit, as infinite negative masses
are required to regularize the pressure in that limit. In the
semiclassical case, since the surface of CðRÞ ¼ 1 is a wormhole
neck. As pressure at the neck is finite [see Eq. (71)] the required
negative mass is finite, in this case McoreðCðRÞ → 1Þ ≃ −41.20.
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FIG. 15. Plot of ρc for semiclassical stars of various radii and
compactness CðRÞ ¼ 1 − 10−10. As R shrinks, the separatrix
density diverges, whereas for larger radii (in Planck units) it
decreases linearly.
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same radius and compactness as their classical counter-
parts, ρc is appreciably smaller than the corresponding
classical value ρreg-p. Figure 13 shows a comparison
between these two densities for stars of various CðRÞ,
together with the line ρc-clas. Remarkably, we find that ρc is
finite in the limit CðRÞ → 1. In turn, the negative masses
needed to halt the growth of the pressure are less negative
for semiclassical stars with CðRÞ → 1, when compared to
the classical case. See Fig. 14 for a detailed plot of the
approximate Misner-Sharp mass needed to regularize the
pressure in each situation.
The cause of this discrepancy between classical and

semiclassical stars in the CðRÞ → 1 limit comes from the
differences between their respective vacuum solutions. In
the case of a classical star the surface whereCðRÞ ¼ 1 is the
horizon, resulting in infinite surface pressures in the
CðRÞ → 1 limit, which can only be compensated by an
infinite amount of negative mass at the origin. In the
semiclassical case, however, the CðRÞ → 1 limit corre-
sponds to taking the surface of the star toward the neck,
where pressure is indeed finite, in virtue of Eq. (71). In
consequence, a finite increase in ρ regularizes the pressure
profile of the configuration. As observed in Fig. 15, the
parameter rc decreases linearly as the radius of the star is
increased while keeping CðRÞ fixed.
Finally, Fig. 16 shows that the negative mass core

induced by increasing ρ grows much faster than the rate at
which the total mass M ¼ RCðRÞ=2 increases with R
while keeping CðRÞ fixed. This core can be estimated
obtaining the value of the Misner-Sharp mass at a security
radius where the Misner-Sharp mass has not yet entered
into a runaway regime. The values of the density required
to strictly regularize the pressure of ultra-compact stars
are therefore many orders of magnitude greater than the
total Misner-Sharp mass associated with those stars.
However, these densities are finite in the CðRÞ → 1
limit thanks to the energy-condition violating contribu-
tions of the RSET at the surface of ultracompact stars
[recall Eq. (59)].
Figures 13–16 have been obtained by taking

α − 1 ¼ 10−6. We have observed that increasing the value
of α has the effect of making the solutions more alike to
their classical counterparts. Consequently, it seems reason-
able to assume that ρc approaches its classical value ρreg-p
in the limit α → ∞ as well.

F. Inside-the-neck stars and pressure regularization

Up to now our analysis has focused on stars located
outside the neck of the wormhole. In this section we turn to
locating the surface of the star inside the neck, which in
particular implies that these solutions have no well-defined
classical limit. In this case, there is again a strong interplay
between contributions coming from the vacuum and
classical matter that results in subcritical, critical and

supercritical regimes. There exists also a distinction
depending on whether the surface is located close to the
neck (super-Buchdahl, [CðRÞ → 1]), or far from the neck
(sub-Buchdahl, [CðRÞ ≪ 1]). The last two rows in Fig. 2
display numerical plots for all these cases.
In the first of these scenarios the surface of the super-

Buchdahl star is located very close to the neck but inside it. If
the energy density is sufficiently big, a radial maximum takes
place just below the surface of the star, inverting the tendency
of the radial coordinate to increase as we deepen through the
neck. To illustrate this, wework in Schwarzschild coordinates
and consider a local analysis of Eq. (52) around the surface of
a star located inside the neck rB but very close to it, so that the
solution (67) remains a valid approximate solution. This is
guaranteed as long as

r − rB ≲ l2P
rB

: ð92Þ

Now, expanding Eq. (52) at leading order in ψ while taking
p ¼ 0 and ρ positive and constant, the solution is

ψ ≃ −
1

lP

�
−

l2Pαðr2 − r2BÞ
ðr2 þ αl2PÞðr2B þ αl2PÞ

− α ln

�
r2 þ αl2P
r2B þ αl2P

�

þð1þ αÞ ln
�
r2 þ l2Pðα − 1Þ
r2B þ αl2Pðα − 1Þ

�
− 4πρðr2 − R2Þ

þ4πρl2Pðα − 1Þ ln
�
r2 þ l2Pðα − 1Þ
R2 þ l2Pðα − 1Þ

��−1=2
: ð93Þ

For a positive (and sufficiently large) ρ, the term proportional
to ðr2 − R2Þ is the dominant contribution to (93), which
compensates the positive logarithmic terms from vacuum
contributions (recall that, initially, r increases as we move
away from the surface toward the interior of the star). The
interior of the squared root in (93) vanishes at some radius rM
inside the star, generating a radial maximum and taking the
solution back to the concealed branch. Once ρ is large enough
as to generate this radial maximum, we encounter again three
different scenarios depending on whether ρ is above or below
its critical value. If ρ < ρc, a second radial minimum or neck
takes place after the first maximum (this is the situation
depicted in Figs. 17 and 18). The metric functions around this
second neck have the form (69) and connect with a null
singularity. Further increments of ρ displace this second neck
toward smaller values of r and eventually makes solutions
supercritical if ρ > ρc, showing finite pressures everywhere.
Examples for each of these cases can be found in the last row
from Fig. 2.
The second possibility is to consider matter located

sufficiently deep inside the neck (in radial distance), the
negative mass generated by the scalar field becomes
comparable to that of the classical source. The three plots

SEMICLASSICAL CONSTANT-DENSITY SPHERES IN A … PHYS. REV. D 104, 084071 (2021)

084071-29



in the sixth line of Fig. 2 show the respective subcritical,
critical and supercritical regimes. Here we can observe that,
unless the density of the fluid is increased sufficiently, the
geometry will adopt the form (74) without reaching a radial
maximum. Such geometries are completely dominated by
vacuum polarization. In this regime, we cannot appeal to
the local analysis of (93), and we are forced to solve
numerically the complete equations. Figure 19 shows the
value of the energy density ρc for stars of various surface
compactness. These values of the compactness are directly
linked to how far inside the neck we are locating the surface

of the fluid (see the compactness curve in Fig. 6). The
energy density ρc is found to grow linearly as compactness
decreases (as we move the surface of the star far from
the neck).
Supercritical configurations of this kind (inside-the-neck

stars with a radial maximum) were analyzed in [49]. The
authors used the unregularized Polyakov RSET and thus
the solutions obtained always displayed a singularity at
r ¼ lP. For this reason, the authors understood as regular
stars those whose pressure remains finite up to a sphere
slightly outside the Planck radius. However, due to this
singularity, these analyses are unable to distinguish whether
the pressure regularization is attained at the expense of
producing a supercritical configuration with a nonregular
C, as it happens in the classical case. Here, by introducing a
cutoff to the Polyakov RSET, we have found that all
constant-density stars with their surface inside the neck are
singular. Infinite pressure separatrices are still expected to
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FIG. 16. Plot of the central negative mass Mcore for semi-
classical supercritical stars of various radii and surface compact-
ness CðRÞ ¼ 1 − 10−10. This estimated central mass is obtained
by stopping the integration at a security radius far from the region
where the Misner-Sharp mass diverges. Notice how the central
mass has to be many orders of magnitude higher than the total
mass of the star M ≃ R=2 for big stars. For small stars have their
pressure regularized by negative central masses comparable to
their total mass, indicating that the physics of Planckian stars may
be different from that of astrophysical bodies.
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FIG. 17. Plot of a subcritical star located inside the neck. The
blue green and blue curves represent the shape function rðlÞ and
the compactness CðlÞ, respectively. The red curve is the pressure
pðlÞ. The dashed and dot-dashed vertical lines represents the
radial minimum rB and maximum rM, respectively. The singu-
larity is represented by a zigzag line. The parameters chosen are
R ¼ 1.8, CðRÞ ¼ 0.96, ρ=ρc-clas ¼ 43.4 and α − 1 ¼ 10−3.
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FIG. 18. RSET components −hT̂t
ti (dark blue), hT̂l

li (magenta)
and hT̂θ

θi (cyan) for a subcritical star located beyond the neck. The
parameters of the integration are R ¼ 1.8, CðRÞ ¼ 0.96,
ρ=ρc-clas ¼ 43.4 and α − 1 ¼ 10−3.

0.92 0.94 0.96 0.98 1.00

20

40

60

80

FIG. 19. Plot of ρc in terms of the compactness for a star located
inside the neck. The density required to regularize the structure
grows linearly as compactness diminishes, reaching over Planck-
ian densities very quickly.
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be present, but the densities required to reach them are
trans-Planckian.

G. At-the-neck stars and pressure regularization

Finally, we want to wrap up this discussion by examining
the particular case of fluid spheres whose surface is located
at the neck of the vacuum wormhole geometry. The fifth
line in Fig. 2 shows the critical and noncritical regimes for
at-the-neck stars. As this wormhole neck rB corresponds to
CðrBÞ ¼ 1, this scenario has no classical counterpart. In
other words, it involves a nonperturbative departure from
the classical situation. Furthermore, it allows to illustrate
the aforementioned interplay between quantum and
classical contributions to the spacetime geometry.
Combining Eqs. (48) and (49) yields a differential

equation of the form

r00 ¼ Eðr6B0 þ l2Pr
4B1 þ l4Pr

2B2 þ l6PB3Þ; ð94Þ

where

B0 ¼ 4πl2Pðp − ρÞ þ ðr0Þ2;
B1 ¼ 1 −Hþ 8πl2P½αðp − ρÞ − p� þ ð3α − 2Þðr0Þ2;
B2 ¼ ð1 − 2αÞHþ 2αl2P½1þ 2παl2Pðp − ρÞ�

þ αð3α − 2Þðr0Þ2;
B3 ¼ αðαþ 1Þ½1 −Hþ ðα − 1Þðr0Þ2�;
E ¼ fl2Pr½r2 þ ðα − 1Þl2P�ðr2 þ αl2PÞg−1; ð95Þ

and

H ¼ f1þ 8πr2pþ ½r2 þ ðα − 1Þl2P�ðr0=lPÞ2g1=2

× r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ αl2P

q
: ð96Þ

Let us assume again that the semiclassical field equations
are integrated inwards from an asymptotically flat region
with positive ADM mass until the neck rB, where we
decide to locate the surface of radius R of a perfect fluid of
constant and positive classical density ρ. Continuity of the
metric at the neck demands the shape function and the
pressure, which are the only unknown functions appearing
in Eq. (94), obey expansions of the form

rðlÞ ¼ Rþ r1ðl − lSÞ2 þ r2ðl − lSÞ3 þO½ðl − lSÞ4�;
pðlÞ ¼ p1ðl − lSÞ þO½ðl − lSÞ2�; ð97Þ

where r1, r2 and p1 are arbitrary constants.
Replacing expressions (97) in Eqs. (94) and (50), we

obtain the following values for the first coefficients in the
expansion

r1 ¼
ðR2 þ αl2PÞð1 − 4πR2ρÞ þ αl4P
2RðR2 þ αl2PÞ½R2 þ ðα − 1Þl2P�

;

p1 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ αl2P

p
lPR

ρ; ð98Þ

where p1 < 0 for any positive ρ, indicating that pressure
always grows in the interior region of the star. The
coefficient r1, however, vanishes for the density value

ρneck ¼
1

4πR2

�
1þ αl4P

ðR2 þ αl2PÞ2
�
; ð99Þ

hence becoming positive if ρ > ρneck and negative if
ρ < ρneck. The density ρneck marks the boundary between
two distinct geometries: For ρ < ρneck, the geometry is
qualitatively similar to the vacuum solution depicted in
Fig. 6 (below the surface, rðlÞ increases as l decreases),
whereas for ρ > ρneck the geometry is such that, just below
the surface, the shape function diminishes with l, resem-
bling the first stages of a stellar configuration. Note that, if
ρ < ρc, a neck will nevertheless appear inside the region
filled with matter, endowing the solution with a subcritical
character.
The particular case where ρ ¼ ρneck is characterized by

having r1 ¼ 0. The next-order coefficient in the expansion
of the shape function, evaluated for ρ ¼ ρneck, yields

r2 ¼ −
½ðR2 þ αl2PÞ2 − 2R2l2P�½ðR2 þ αl2PÞ2 þ αl4P�

6R2lP½R2 þ ðα − 1Þl2P�ðR2 þ αl2PÞ5=2
; ð100Þ

which is a negative quantity. Therefore, this solution also
has a shape function that decreases just below the surface of
the star. It corresponds to a subcritical configuration since,
as long as R ≫ lP, it is guaranteed that (99) is smaller than
ρc (we infer this by extrapolating the tendency observed in
Fig. 15 to stars of large radii).
At-the-neck stars clearly show that the predominance of

vacuum effects (in the Polyakov approximation) drives the
solution toward the formation of a wormhole neck, an
“opening” of the spacetime geometry, which eventually
leads to an asymptotic singularity. The predominance of
classical matter, on the other hand, contributes toward
“closing” the geometry and forming a fluid sphere. The
interplay between these two effects is what eventually gives
rise to ϵ-strict stellar spacetimes. These correspond to
nearly “closed” configurations in which vacuum polariza-
tion effects end up dominating at the core of the star. In
order for the configuration to reach r ¼ 0 in a regular
manner it must be sourced by an RSET that properly
accounts for vacuum polarization at the core of com-
pact stars.
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VI. FURTHER DISCUSSION AND CONCLUSIONS

We have used a regularized Polyakov RSET as a toy
model to incorporate semiclassical corrections into the
equations of stellar equilibrium. We expect this RSET to
qualitatively capture the semiclassical effects caused by a
geometry that is near horizon formation, that is, describing
ultracompact configurations. On the other hand, the regu-
larization of the Polyakov RSET introduces ambiguities
that have an impact in the understanding of the solutions of
the semiclassical equations of stellar equilibrium.
First of all, we have found that the set of strict stellar

spacetimes for the semiclassical field equations analyzed here
is almost coincident with the corresponding classical set. That
is, only for sub-Buchdahl stars we find strictly regular semi-
classical solutions (with the exception of Planckian size stars
for which we can attain much higher compactness). However,
this should not be understood as showing that semiclassical
gravity exhibits a Buchdahl limit essentially equal to that in
classical general relativity. This can be illustrated by taking a
closer look at the super-Buchdahl nonregular solutions that
satisfy our definition of ϵ-strict spacetime.
When analyzing super-Buchdahl ultracompact configura-

tions of large size, there is a stark difference between the
classical and semiclassical cases. In the classical case, for
arbitrarily compact configurations it is not possible to define a
small value of the radius rϵ so that the compactness remains
small enough outside this radius, and at the same time the

pressure is finite up to this radius. For ultracompact stars the
pressure diverges very close to the surface, and the only way
to tame the divergence of the pressure so that it is maintained
finite up to rϵ is to become strongly supercritical in the
density; this in turn leaves us outside the regime that we have
denoted as ϵ-strict. In other words, in classical general
relativity there are no ϵ-strict solutions with a compactness
that is appreciably greater than the Buchdahl limit. In fact, the
compactness of ϵ-strict solutions is bounded by the Buchdahl
limit plus small OðϵÞ corrections.
On the contrary, super-Buchdahl solutions around the

critical solution in the semiclassical theory are just that in all
supercritical solutions the pressure is finite at the origin. For
the supercritical solution in Fig. 10, the compactness is
within the ϵ-strict bound for rϵ > 1.8lP. Going further into
the supercritical regime the compactness diverges more
strongly making the core to grow, thus making the geometry
go outside the notion of ϵ-strict spacetime, which requires
ϵ ≪ 1. On the other hand, the subcritical solutions close to
the critical one are such that the compactness turns from
negative to positive values, producing a wormhole neck.
Hence, there are subcritical solutions with cores in which the
compactness remains very close to zero, while the pressure
remains bounded. Therefore, close below and above criti-
cality we have solutions which are ϵ-strict configurations, for
any value of the compactness.
Figure 20 shows a comparison between a critical super-

Buchdahl star from the classical theory and a series of

FIG. 20. Left panel: series of classical super-Buchdal stars approaching a finite pressure solution. The green lines represent the shape
function r and the red curves denote the pressures p, which diverge at rðldivÞ (zigzag lines). Lighter colors correspond to stars whose
density is nearing ρreg-p (the critical solution ρc-clas has the darkest colors). Any attempt of regularizing the pressure makes the star highly
supercritical, causing p0 and r0 to diverge at l ¼ 0. The shape function of a regular star is drawn in blue for comparison. Right panel:
series of semiclassical subcritical super-Buchdahl stars approaching the critical solution. Again, the shape functions r are shown in
green, while the pressures p are plotted in red. Lighter colors correspond to stars whose density is nearing ρc. The critical solution is
approached together with the regularization in the pressure. The vertical dashed lines represent the necks of the solutions and
singularities are represented by vertical zigzag lines. We have drawn in blue the shape function of a hypothetical regular star. Note that
regularity requires r0ð0Þ ¼ 1þOðl2Þ. The classical supercritical configuration with finite pressure has r0ð0Þ → þ∞, whereas
semiclassical configurations with small wormhole necks are ϵ-strict stellar spacetimes. Regularization of these profiles amounts to
selecting a suitable regularization for the Polyakov RSET.
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semiclassical super-Buchdahl stars that approach the criti-
cal solution from the subcritical regime. Close-to-critical
semiclassical solutions are far closer to attaining regularity
than classical ones.
The lack of a compactness limit for ϵ-strict spacetimes in

semiclassical gravity is the main physical result of this
paper. Conceptually, this result illustrates that the Polyakov
approximation is successful in regularizing the super-
Buchdahl classical stellar profiles in the regions of space-
time in which the approximation is expected to be reliable.
It is clear that the only missing physical information to
complete the picture is the behavior of the semiclassical
source around r ¼ 0. There are different ways of regular-
izing the Polyakov approximation around r ¼ 0, and in this
first work we have used the simplest one, also on the basis
that it proved adequate for the analysis of vacuum space-
times. However, our results here show that alternative
regularizations must be studied in the presence of matter,
as it is reasonable to think that there may exist a regulari-
zation in which the ultracompact ϵ-strict spacetimes

discussed in this paper become regular. The possible
existence of such a regularization, and related issues such
as its physical interpretation, will be discussed elsewhere.
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