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Modified Newtonian dynamics by Milgrom is a paradigm for explaining the rotation curves of spiral
galaxies and various other large scale structures. This paradigm includes several different theories. Here we
present Milgrom’s modifed inertia (MI) theory in terms of a simple and tractable nonconservative
Newtonian dynamics, which is useful in obtaining observable predictions of MI. It is found that:
1) Modified inertia theory is equivalent to a Newtonian theory, with a nonconservative gravitational field,
and dark matter density; 2) The tidal force in the equivalent Newtonian dynamics is nonconservative, and
its effect on a binary system in free fall in the gravitational field of a spheroid is addressed. We also discuss
attempts to restore conservations in MI.
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I. INTRODUCTION

To solve the plateau of rotation curves of spiral galaxies
there are two paradigms, dark matter (DM) and modified
Newtonian dynamics (MOND), which was proposed by
Milgrom [1,2] and has been vastly investigated by Milgrom
himself [3–9] and various other authors [10,11]. For a review
of MOND and dark matter we refer the reader to [12–16].
MOND is not a single theory, it refers to several theories.

The basic idea behind them is that one can change
Newtonian dynamics on the scale of galaxies, so that the
plateau of the rotation curves could be explained with no
need to add dark matter halos. The first version of MOND
as proposed by Milgrom [1] is the modified inertia (MI) in
the form mμðaÞa ¼ h, where h ¼ −∇ϕ is the Newtonian
gravitational field. Later, Bekenstein and Milgrom [10]
studied the so-calledmodified gravity (MG) theories, which
keep ma ¼ F intact, but the gravitational field is not the
Newtonian one. There appeared several modified gravity
theories which tried to implement Milgrom’s idea. For a
comparison of these theories see Zhao and Famaey [17],
where the authors use a generalized virial theorem to
compare different modified gravity theories.
In this article, we would like to present a system which is

mathematically equivalent to Milgrom’s MI. The benefit of
this equivalent system is to provide a framework for finding
predictions of the MI—predictions that could be used for
verification or refutation of the theory. This is just the first
step towards simplifying MI, just like quasilinear MOND
made MOND easier [17,18], with the possible advantage of
tackling the nonconservativeness challenge of making MI

mathematically easier. The original idea of modifying
Newtonian dynamics is to write the governing differential
equations not as the usual Newtonian form F ¼ ma, but as
the equationF ¼ maμðaÞ, where μ is a function character-
izing the theory (to be discussed below). It should be noted
that we are deliberately using F instead of F; while F
denotes the force field in the MOND framework, F denotes
the force field in the Newtonian framework.
The function μðaÞ, called the interpolating function, is a

monotonically increasing function of the absolute value of
the acceleration a ¼ jaj, such that for large enough values
of a (compared to some fundamental acceleration of the
theory, denoted by a0), μðaÞ ≃ 1, and for very small values
of a, μðaÞ ≃ 0. Milgrom showed that this modification of
the Newtonian dynamics, for a0 ∼ 10−10 ms−2, could
account for the flatness of the rotation curves of spiral
galaxies, with no need of introducing any extra darkmatter.
To find which one of these paradigms is chosen by nature,

various groups proposed or did experiments [18,19].
Gundlach et al. [20] have shown that, for accelerations as
small as 10−14 ms−2, the Newtonian equation F ¼ ma is
valid. Existence of galaxies without dark matter is another
reason against MOND [21]. Though there are arguments
against such reasoning [22], it seems reasonable that the
rotation curves support standardmatter [23].McGaugh et al.
[24] reported a correlation between the radial acceleration
traced by rotation curves and the observed distribution of
baryonic matter, which might be construed as a signal
against the dark matter paradigm (since this means dark
matter must somehow be correlated to baryonic matter). But
we should note that MOND is not the only way to interpret
this correlation. In another direction, recentlyChae et al. [25]
published evidence for the violation of the strong equiv-
alence principle in favor of MOND.
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To interpret observations and to predict observable
phenomena, we have to have a theoretical framework. In
this article, we emphasize a theoretical argument, based on
a transformation from a MOND differential equation of a
test particle to Newtonian equations, which leads to various
conclusions and predictions in the framework of MOND.
We use a transformation to write the MI equation h ¼
μðaÞa in the Newtonian equivalent form a ¼ g, where g is
obtained from h unambiguously. We then use this equiv-
alent version to study the consequences of modifying
inertia, and to study the relation between MI and MG
versions. We found that modifying inertia leads to the
nonconservation of energy in a binary system which is in
free fall in the halo of the galaxy. This result could not be
derived by the method of Zhao and Famaey [17], the results
of which are valid for the modified gravity theories.

II. TRANSFORMING TO AN EQUIVALENT
NEWTONIAN THEORY

The basic idea behind this article is that F ¼ ma is a
framework to write the dynamics [26]. Newtonian dynam-
ics (ND) is based on the differential equation

ND F ¼ ma; ð1Þ

where a ¼ d2r=dt2 is the acceleration. The most important
feature of this is that the differential equations governing a
point particle are of second order, such that when put them
in the form F ¼ ma, the Newtonian force F depends on
the position and the velocity of the particle, and not on the
acceleration a itself. In classical electrodynamics, the
reaction force of a radiating charged particle violates this
assumption, but that is beyond our present considerations.
In a gravitational field g, the motion of a test particle is
given by the equation a ¼ g, where g is determined by the
field equations ∇ × g ¼ 0 and ∇ · g ¼ −4πGρ, with ρ
being the mass density of the source.
The MI version of MOND states that the differential

equations for a test particle of mass m are

MOND F ¼ maμðaÞ; ð2Þ

where the interpolating function μðaÞ is a dimensionless,
smooth, positive, and monotonically increasing function of
the absolute value of the acceleration a ¼ jaj, depending on
a fundamental small acceleration a0 ∼ 10−10 ms−2, and
having the following properties:

lim
a→0þ

μðaÞ ¼ 0; ð3Þ

lim
a→∞

μðaÞ ¼ 1; ð4Þ

μ0ðaÞ > 0 ∀ a > 0: ð5Þ

As Milgrom [1] stated explicitly: “The force field F is
assumed to depend on its sources and to couple to the body,
in the conventional way.” Consider the MI equation for a
gravitational field h, where μðaÞ is the interpolating
function which defines the MI, and where h solves the
usual Newtonian field equations. Thus, the MI version of
MOND is given by the following system:

aμðaÞ ¼ h; ð6Þ

∇ · h ¼ −4πGρm; ð7Þ

∇ × h ¼ 0: ð8Þ

Here, ρm is the mass density function in the MOND
framework.
It is easy to see that F ¼ maμðaÞ can be transformed to

F ¼ ma. To do this, we first introduce the pseudo-
acceleration field

h ¼ m−1F ; ð9Þ

and write the MOND equations as

h ¼ aμðaÞ: ð10Þ

Since h and a are parallel, we have h ¼ aμðaÞ. Using the
inverted interpolating function νðhÞ (see Appendix A), we
write this as a ¼ hνðhÞ. Multiplying it with â ¼ ĥ (the unit
vector), we get

a ¼ hνðhÞ: ð11Þ

We can also multiply by m to get

ma ¼ Fν

�
F

m

�
¼ F: ð12Þ

This is the usual Newton’s equation of motion, for the
acceleration field

g ¼ hνðhÞ: ð13Þ

Thus, the modified inertia equation maμðaÞ ¼ F could be
written as ma ¼ mg, where h ¼ m−1F is what we call the
pseudo-acceleration field, and g ≔ hνðhÞ is the acceler-
ation field.
Since we have good experience with the Newtonian

equation a ¼ g, and because it is completely equivalent to
the modified inertia equation aμðaÞ ¼ h, we could now
derive some useful information about MI theories.
Defining g by (13), the MI version of the MOND

equation of motion of a test particle is equivalent to the
Newtonian one:
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a ¼ g: ð14Þ

Using (7), (8), and (13), it is easy to find field equations
governing g:

∇ · g ¼ −4πGρmνðhÞ þ h · ∇νðhÞ; ð15Þ

∇ × g ¼ −h × ∇νðhÞ: ð16Þ

So the dynamics of a test particle in the MI version of
MOND is equivalent to the system of equations (14)–(16)
where h is the solution to (7) and (8).

III. PHYSICAL IMPLICATIONS

We are now going to obtain information about the MI
version of MOND using systems (7), (8), and (14)–(16).

A. Dark matter in disguise

We see that in the ND equivalent version, the mass
density is being modified [multiplied by νðhÞ], and we have
an extra term in the right-hand side of ∇ · g, which could be
interpreted as a dark mass density.

ρd ¼ −
1

4πG
h · ∇νðhÞ ¼ −

1

8πG
·
ν0ðhÞ
h

h · ∇h2: ð17Þ

For the simple form of the function μðaÞ [from (A9)],
we get

ρd ¼
1

8πG
·

a0
h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ 4a0h

p h · ∇h2: ð18Þ

By assuming that the accelerations due to visible and dark
matter are always parallel, Dunkel [27] showed that the
MOND equations can be derived from classical Newtonian
dynamics, provided one also takes into account the gravi-
tational influence of a DM component. Sivaram [28] took a
similar approach. The approach of the present article,
however, is more general and shows that dark matter is
an an inevitable consequence of modifying inertia. This
will be more clear in the following section.

B. Dynamics around a point particle

As an example, let us consider the acceleration around a
point mass M. Here h ¼ −ðGM=r2Þr̂, for which h ¼
GM=r2. Using the simple form of the MOND function
μ, we get

∇ · g ¼ −4πGMδðrÞ − 2a0
r

�
1þ 4a0r2

GM

�−1=2
; ð19Þ

∇ × g ¼ 0: ð20Þ

This clearly shows that accepting the modified inertia
equation aμðaÞ ¼ h for a point particle is equivalent to
accepting an infinite dark matter, with density

ρd ¼
a0

2πGr

�
1þ 4a0r2

GM

�−1=2
: ð21Þ

Defining

b ≔

ffiffiffiffiffiffiffiffi
GM
4a0

s
; ð22Þ

this becomes

ρd ¼
ρ0

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p ; ð23Þ

where s ¼ r=b and

ρ0 ¼
1

π

�
a0
GM

�3
2

M ¼ 1

8π
·
M
b3

: ð24Þ

One should note the scalings:

b ∝ M
1
2; ð25Þ

ρ0 ∝ M−1
2; ð26Þ

ρ0b3 ∝ M: ð27Þ

For a0 ¼ 1.0 × 10−10 ms−2 and the solar massM ¼ M⊙ ¼
2.0 × 1030 kg, we get

b ¼ 5.8 × 1014 m ¼ 1.9 × 10−2 pc; ð28Þ

ρ0 ¼ 4.1 × 10−16 kgm−3 ¼ 6.0 × 103 M⊙ pc−3: ð29Þ

We see that for a point mass, the corresponding dark
matter density ρd [given by (21) or (23)] behaves as r−2 for
large r, so that limr→∞r2ρdðrÞ ¼ ρ0 and the mass contentR
ρdd3r diverges linearly. Unlike conventional dark matter

theories which could circumvent this infinity by stating that
limr→∞ r2ρdðrÞ ¼ 0, in MI the behavior of ρd for large r is
dictated by νðhÞ, which is uniquely determined by the
function μðaÞ. As far as the asymptotic behavior of νðhÞ for
small values of h is νðhÞ ∝ h−1=2, we get ρd ∝ r−2 for large
r. Both the simple and standard forms of μðaÞ lead to this
asymptotic behavior (A8). In fact, if μðaÞ ∝ a for a ≪ a0,
as was proposed explicitly by Milgrom [1], then it is easy to
see that νðhÞ ∝ h−1=2 for h ≪ a0. Therefore, there is no
escape from this linear divergence of mass content in MI.
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C. Nonconservation of momentum

As was pointed out by Felten [29], momentum of a two
body system is not conserved in MI. Using the equivalent
system a ¼ g, where g ¼ hνðhÞ, we can easily see why this
is so. Consider two bodies, with masses m1 and m2, a
distance r apart. In MI one assumes that at the position of
m2 we have h2 ¼ −Gm1=r2n̂, and at the position of m1 we
have h1 ¼ þGm2=r2n̂, where n̂ is the the unit vector
joining 1 to 2. The forces therefore are

F1→2 ¼ −
Gm1m2

r2
ν1n̂; ð30Þ

F2→1 ¼ þGm2m1

r2
ν2n̂; ð31Þ

where ν1 ¼ νðGm1=ðr2a0ÞÞ, ν2 ¼ νðGm2=ðr2a0ÞÞ. Since
ν1 ≠ ν2, Newton’s third law is violated, and momentum is
not conserved.

D. Nonconservation of energy

If ρmðrÞ has spherical symmetry, h is parallel to r̂ and
h × ∇νðhÞ vanishes. But, in general, we do not have
spherical symmetry. Consider for example the gravitational
field of a spheroid. Relative to the center, the first two terms
of the multipole expansion of the potential consists of a
monopole of mass M and a quadrupole of moment ϵMd2,
where d is the length scale of the quadrupole moment, and
ϵ ¼ �1 for prolate or oblate spheroids. In spherical-polar
coordinates ðr; θ;ϕÞ we can write the Newtonian potential
for large r (see Appendix B), from which we find

∇ × g ¼ −
3

4
ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GMa0

p
·
d2

r4
sinð2θÞêφ þO

�
1

r6

�
; ð32Þ

valid for r ≫ 2b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a0

p
[see (B6)]. A nonvanishing

curl of the g field would imply some effects, because from
a ¼ g, one could easily get the work-kinetic energy
theorem

Δ
�
1

2
mv2

�
¼ m

Z
g · dr: ð33Þ

If ∇ × g ≠ 0, then the line integral depends on path, and in
particular it does not vanish for a closed path. Let us define
δg by

g ¼ hþ δg: ð34Þ
Since ∇ × h ¼ 0, we haveI

∇ × g · dr ¼
I

∇ × δg · dr: ð35Þ

Therefore, the work-kinetic energy theorem could be
written as

Δ
�
1

2
mv2 þ V

�
¼ m

Z
δg · dr; ð36Þ

where V is the usual Newtonian potential energy defined by
mh ¼ −∇V. If δg is small, we can consider the right-hand
side as a perturbation and deduce some observable results.

E. Effect on a binary system

Before getting to the subject, it should be noted that the
investigation by Zhao et al. [18] on modified Kepler’s law
and two-body problem in MOND is in the context of a
conservative theory given by a Lagrangian; however, the
treatment we present here is in the context of MI.
In MI theory, consider two objects with masses m1 and

m2 forming a binary and in free fall in the gravitational field
h of a galaxy. Transforming to the equivalent system
[Eqs. (14)–(16)], and assuming that for the internal
dynamics of the binary we can use ordinary Newtonian
gravitation, we get the following differential equations:

m1 ̈r1 ¼ þGm1m2

r
r3

þm1gðr1Þ; ð37Þ

m2 ̈r2 ¼ −Gm1m2

r
r3

þm2gðr2Þ; ð38Þ

where r ¼ r2 − r1. It follows from these two equations that

̈r ¼ −Gðm1 þm2Þ
r
r3

þ aT; ð39Þ

where aT is the galactic tidal field

aT ¼ r · ∇gðRÞ; ð40Þ

with R being the center of mass of the binary.
In the Newtonian theory, ∇ × g ¼ 0, and it follows that

∇ × aT also vanishes, because

∇ × aTjr ¼ ∇ × gjR: ð41Þ

In MI however, because of (16), the galactic tidal field is
not conservative.
If n̂ is the unit vector normal to the orbital plane, along

the angular momentum of the binary, then the work done on
the binary by the tidal field of the galaxy, in one revolution,
would be

ΔW ¼ μ

I
aT · dr ¼ μ

ZZ
∇ × aT · n̂da ð42Þ

¼ μ

ZZ
∇ × g · n̂da; ð43Þ

where μ is the reduced mass of the binary. Consider
a binary with elliptical orbit—semimajor axis s and
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eccentricity ε—and center of mass at ðr0; θ0;ϕ0Þ; and let us
approximate the gravitational field of the galaxy by a
massþ quadrupole ðM; ϵMd2Þ at the origin. Let the angu-
lar momentum of the binary (which defines its orbital
plane) make an angle β with êϕðϕ0Þ. Using (32), and noting
that for s ≪ r0 both ∇ × g and êϕ are almost constant over
the orbit of the binary, we get

ΔW ¼ −
3ϵ

4

m1m2

m1 þm2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GMa0

p d2

r40

h
πs2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p i
× sinð2θ0Þ cos β: ð44Þ

By Kepler’s law, the frequency of the orbit is

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þm2Þ

4πs3

r
: ð45Þ

Therefore, due to the tidal force being nonconservative in
MI, the binary loses or gains energy with power

PMI ¼ −
3

ffiffiffi
π

p
ϵ

8

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
ðGm1m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

m1 þm2

s
d2s1=2

r40

×
ffiffiffiffiffi
a0

p
sinð2θ0Þ cos β: ð46Þ

This power has some peculiar properties:
(a) It is proportional to cos β, so that for β > 90° the sign

changes. In other words, the binary either loses energy
or gains energy according to its sense of rotation
around êϕ.

(b) It is proportional to sinð2θ0Þ, which means that there is
a sign change at θ0 ¼ 90°.

PMI is proportional to s1=2, which makes sense—it is a tidal
effect. In comparison, the power of the gravitational wave
radiation of the binary, as found by Peters and Mathews
[30] (see also [31]), is proportional to s−5. Thus:

PGW ¼−
32

5
·
G4m2

1m
2
2ðm1þm2Þ
c5s5

·
1þ 73

24
ε2þ 37

96
ε4

ð1− ε2Þ7=2 : ð47Þ

As an example, to see that this effect could be, in principle,
observable, consider a binary with m1 ≃m2 and ε ≃ 0. For
this binary we have

PGW ≃ −
�

m
M⊙

�
5
�
s
au

�
−5
ð4 × 1013Þ W: ð48Þ

Now, suppose this binary is at a distance r0 ¼ 15 kpc from
the center of the Milky Way. AssumingM ¼ 5 × 1010 M⊙,
d ¼ 10 kpc, and ϵ ¼ −1 [see (B14)–(B16)], we have
b ≃ 4 kpc, and the condition r0 ≫ b is almost fulfilled,
so we get

PMI ≃ ½sinð2θ0Þ cos β�
�

m
M⊙

�3
2

�
s

1 au

�1
2

�
a0

10−10 ms−2

�1
2

× ð2 × 1014Þ W: ð49Þ

The nonconservation of energy in a binary system we
just presented is a consequence of ∇ × aT ≠ 0, which is a
consequence of ∇ × g ≠ 0. For an N-body system like a
globular cluster, this means violation of the virial theorem,
which is valid in modified gravity theories (see [17]).

IV. MODIFIED INERTIA
VS MODIFIED GRAVITY

The Poisson equation of the Newtonian gravity,
∇2ϕ ¼ 4πGρ, is obtained from the Lagrangian density

LN ¼ −ρϕ −
1

8πG
j∇ϕj2: ð50Þ

Bekenstein and Milgrom [10] introduced the Lagrangian
density

LBM ¼ −ρψ −
1

8πG
F
�j∇ψ j2

a20

�
; ð51Þ

where the functions F and μ are related by

μðhÞ ¼ F 0ðh2=a20Þ; F 0ðxÞ ¼ dF
dx

; ð52Þ

and ψ now satisfies the following equation:

∇ · ½μðj∇ψ j=a0Þ∇ψ � ¼ 4πGρ: ð53Þ

For j∇ψ j ≫ a0, we have μ ≃ 1, and we get the usual
Poisson equation for the Newtonian gravitational field;
but for j∇ψ j≲ a0, we have deviations from Newtonian
gravity, consistent with rotation curves of spiral galaxies.
This theory is called the modified gravity version of
MOND.
Let us fix our terminology and notation. We have three

models:
MI The modified inertia theory of Milgrom [1], sum-
marized by Eqs. (6)–(8).

BM The modified gravity of Bekenstein and Milgrom
[10], given by LBM [Eq. (51)].

NN The nonconservative Newtonian dynamics given by
Eqs. (7), (8), (14)–(16).

In Sec. II, we showed that MI is equivalent to NN. But
BM could not be equivalent to NN, because if we write the
usual Lagrangian for the motion of a test particle in the BM
model as

L ¼ 1

2
mv2 −mψ ; ð54Þ
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we get the equation of motion

a ¼ −∇ψ : ð55Þ

But the equation of motion of the NN model is a ¼ g, and
we know that g ≠ −∇ψ , simply because ∇ × ∇ψ ¼ 0,
but ∇ × g ≠ 0.
As far as ψ is independent of time, from (54) it follows

that in BM the energy of a test particle is conserved. On the
other hand, MI theory is equivalent to NN with ∇ × g ≠ 0
(16), which means the potential is not well defined and the
energy is not conserved.

V. SUMMARY AND CONCLUSION

The modified inertia of Milgrom states that if ρm is the
mass distribution of a galaxy, the acceleration a of a test
particle (a star) is the solution of aμðaÞ ¼ h, where μðaÞ is a
function characterizing the theory (see Appendix A) and h
is the gravitational field satisfying ∇ · h ¼ −4πGρm, and
where ∇ × h ¼ 0. Introducing the function νðhÞ (see
Appendix A) we have a¼hνðhÞ. Introducing g ¼ hνðhÞ,
the dynamics of the particle are given by the Newtonian
dynamics equation a ¼ g, where g satisfies

∇ · g ¼ −4πGρmνðhÞ þ h · ∇νðhÞ; ð56Þ

∇ × g ¼ −h × ∇νðhÞ: ð57Þ

This means that the modified inertia version of MOND is
mathematically equivalent to an acceleration field with
three features:
(1) The mass density is modified, ρm → ρmνðhÞ;
(2) There is a dark matter with density ρd ¼

−ν0ðhÞh · ∇h=ð4πGÞ;
(3) The acceleration field is nonconservative. This leads

to nonconservativeness of the galactic tidal force
which has some observable effects on the binaries
and perhaps globular clusters of stars.

Besides, it was argued that the modified gravity theory of
Bekenstein and Milgrom [10] is not exactly equivalent to
the modified inertia theory of Milgrom [1]. It should be
noted that the nonconservative Newtonian system given in
this article is different from the quasilinear MOND of
Milgrom [7], which is conservative.
Modifications introduced by Milgrom started a fruitful

investigation by various researchers which still continues,
and this is invaluable. What we are saying in this article is
that some models could be interpreted in the framework (or
paradigm) of Newtonian dynamics, which could lead to
new insights.

A. Challenges to form a conservative MI theory

From the first days of introducing MOND by Milgrom,
there have been efforts to form a conservative MI theory.

One way to do this is to replace the standard action 1
2

R
v2dt

by a more complicated action of the form AmS½rðtÞ; a0�,
where Am depends on the body related to the particle’s
mass, and S is a functional of the trajectory of the particle,
but depending on the particle’s entire history [3,4].
Milgrom demonstrated that, in the context of such theories,
the simple MOND relation (2) is exact for circular orbits in
an axisymmetric potential (although not for general orbits)
[16]. Such theories are usually highly nonlocal [12,16].
Recently, Alzain [32] has tried to construct a relativistic
theory implementing Milgrom’s MI.
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APPENDIX A: THE INTERPOLATING
FUNCTIONS

Let us review the transformation μðaÞ → νðhÞ to invert
the interpolating function [14,17,33,34].
The equation h ¼ aμðaÞ, where μðaÞ satisfies (3)–(5),

could be solved for a. The proof is a simple application of
the inverse function theorem. Denoting the solution of h ¼
aμðaÞ by a ¼ fðhÞ, let us define νðhÞ ¼ h−1fðhÞ, so that
we have

a ¼ hνðhÞ: ðA1Þ

Dividing aμðaÞ ¼ h by a ¼ hνðhÞ, one gets μðaÞνðhÞ ¼ 1,
from which it follows that νðhÞ is a dimensionless,
monotonically decreasing function, asymptotic to 1 for
large h.

lim
h→0þ

νðhÞ ¼ þ∞; ðA2Þ

lim
h→∞

νðhÞ ¼ 1; ðA3Þ

ν0ðhÞ < 0 ∀ h > 0: ðA4Þ

The simple form of the interpolating function μðaÞ is
(Fig. 1)

μðaÞ ¼ a
aþ a0

: ðA5Þ

Solving aμðaÞ ¼ a2
aþa0

¼ h for a one gets

νðhÞ ≔ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a0

h

r �
: ðA6Þ

For later use, we note that the asymptotic form of νðhÞ is
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νðhÞ ≃ 1þ a0
h

h ≫ a0; ðA7Þ

νðhÞ ≃
ffiffiffiffiffi
a0
h

r
h ≪ a0; ðA8Þ

ν0ðhÞ ¼ −
a0

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ 4a0h

p ≃ −
a1=20

2h3=2
h ≪ a0: ðA9Þ

The standard form of the interpolating functions μðaÞ and
νðhÞ is the pair

μðaÞ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a20

p ;

νðhÞ ¼ 1ffiffiffi
2

p
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a20

h2

r �1=2

: ðA10Þ

It should be noted that both simple and standard forms of
μðaÞ lead to the same asymptotic behavior for νðhÞ for
small h, and therefore the same asymptotic form for ν0ðhÞ
for small h.

APPENDIX B: A MASS+QUADRUPOLE
SYSTEM

In spherical-polar coordinates ðr; θ;φÞ, consider the
potential

ψðr; θÞ ¼ −
GM
r

− ϵ
GMd2

r3

�
3

2
cos2θ −

1

2

�
; ðB1Þ

where ϵ ¼ �1. This potential describes a massþ
quadrupole system. It is straightforward to find h ¼ −∇ψ ,
and then, using g ¼ hνðhÞ, to find g.

h ¼ hrêr þ hθêθ; ðB2Þ

−
hr
GM

¼ 1

r2
þ ϵd2

r4
·
3

2
ð3cos2θ − 1Þ; ðB3Þ

−
hθ
GM

¼ ϵd2

r4
3

2
sinð2θÞ; ðB4Þ

h2

ðGMÞ2 ¼
1

r4
þ ϵ

d2

r6
ð3cos2θ − 1Þ þO

�
1

r8

�
: ðB5Þ

Using either the simple or the standard form of the
interpolating function, we get

ν0ðhÞ
h

≃
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0

ðGMÞ5
r

r5; r ≫

ffiffiffiffiffiffiffiffi
GM
a0

s
¼ 2b: ðB6Þ

Now, using

hr
r
¼ −

GM
r3

þO
�
1

r5

�
; ðB7Þ

∂h2
∂θ ¼ ϵ

G2M2d2

r6
3 sinð2θÞ þO

�
1

r8

�
; ðB8Þ

∂h2
∂r ¼ −

G2M2

r5
þO

�
1

r7

�
; ðB9Þ

we can find the leading term of ∇ × g.

∇ × g ¼ −h × ∇νðhÞ ðB10Þ

¼ −
ν0ðhÞ
2h

h × ∇h2 ðB11Þ

¼ −
ν0ðhÞ
2h

�
hr
r
∂h2
∂θ − hθ

∂h2
∂r

�
êφ ðB12Þ

¼ −
3

4
ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GMa0

p
·
d2

r4
sinð2θÞêφ þO

�
1

r6

�
: ðB13Þ

Using the values given by Sofue [35], we consider the
following mass distribution for the Milky Way (excluding
the halo):

(i) A central black hole of mass Mbh ¼ 3.6 × 106 M⊙.
(ii) A spherical bulge of mass Mb ¼ 9.2 × 109 M⊙.
(iii) A disk of mass MD ¼ 4.0 × 1010 M⊙ with expo-

nential density of length scale aD ¼ 5.0 kpc.
From these figures we get

M ¼ 4.9 × 1010 M⊙; ðB14Þ

ϵMd2 ¼ −5MDa2D ¼ −5.0 × 1012 M⊙ kpc2; ðB15Þ

d ¼ 10 kpc: ðB16Þ

FIG. 1. Simple form of the interpolating functions μðaÞ (A5),
solid; and νðhÞ (A6), dashed. The scale a0 is indicated by the
vertical dashed line. The horizontal dashed line indicates 1 on the
ordinate.
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