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We perform extensive nonlinear numerical simulations of the spherical collapse of (charged) wave
packets onto a charged black hole within Einstein-Maxwell theory and in Einstein-Maxwell-scalar theory
featuring nonminimal couplings and a spontaneous scalarization mechanism. We confirm that black holes
in full-fledged Einstein-Maxwell theory cannot be overcharged past extremality and no naked singularities
form, in agreement with the cosmic censorship conjecture. We show that naked singularities do not form
even in Einstein-Maxwell-scalar theory, although it is possible to form scalarized black holes with charge
above the Reissner-Nordström bound. We argue that charge and mass extraction due to superradiance at the
fully nonlinear level is crucial to bound the charge-to-mass ratio of the final black hole below extremality.
We also discuss some “descalarization” mechanisms for scalarized black holes induced either by
superradiance or by absorption of an opposite-charged wave packet; in all cases the final state after
descalarization is a subextremal Reissner-Nordström black hole.
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I. INTRODUCTION AND EXECUTIVE SUMMARY

Thought experiments (also known as gedanken experi-
ments [1]) have always played a crucial role in the history
of scientific discoveries. They have been of paramount
importance in the development of new theories, in high-
lighting the crisis of old ones, or to elucidate particularly
counterintuitive aspects of certain theories in a more
accessible way. Limiting to physical sciences, notable
examples are Newton’s bucket, Schroedinger’s cat,
Einstein’s elevator, Feynman’s sprinkler, Dyson’s sphere,
etc. The importance of gedanken experiments relies on the
fact that some deep consequences or internal inconsisten-
cies of a theory can be explored by devising an ideal
experiment regardless of the (im)possibility of its actual
realization. In particular, the outcome of the experiment
depends only on logic and on the given theoretical
framework and is not affected by possible measurement
errors or real-world noise.
Within general relativity (GR) a particularly relevant

series of gedanken experiments is devoted to test Penrose’s
cosmic censorship conjecture, according to which in four
spacetime dimensions naked singularities (i.e., curvature
singularities not covered by an event horizon) cannot form
from typical regular initial data (see [2] for an overview and
a list of historical references). This conjecture has been put
to the test by trying to overcharge/overspin a black hole
(BH) past extremality, by throwing test particles [3–9],

shells of matter [4], fluids [10], test fields [9,11–13], etc.
Indeed, charged (respectively, spinning) BHs in GR have a
maximum amount of charge (respectively, angular momen-
tum) in units of their mass and above a critical value the
Reissner-Nordström (RN) (respectively, Kerr) solution
describes a naked singularity.
An ideal framework to perform gedanken experiments

are numerical simulations, since they allow to explore the
dynamics of a full-fledged theory, without approximations
that can “contaminate” the thought experiment. For
example, in the test-particle limit it is possible to over-
charge/overspin a BH past extremality [5], but including
backreaction and finite-size effects seems to rescue the
cosmic censorship [14–22]. A particularly relevant ques-
tion is whether the cosmic censorship is valid within GR
in all cases, since Penrose’s conjecture still lacks a formal
proof. Another important question is whether the cosmic
censorship is a prerogative of GR or whether it exists in
some form also in other theories. The latter point is
particularly interesting given the fact that BHs in modified
gravity are in general not described by the Kerr-Newman
family. Furthermore, in recent years considerable attention
has been put onto theories in which a spontaneous
scalarization mechanism (originally devised for compact
stars in scalar-tensor theories [23,24]) is at play also for
BHs [25–27]. In these theories the Kerr-Newman solution
coexists with other “hairy BH” solutions endowed with a
scalar field (or with fields of other types [28,29]), which
can be linearly stable and entropically favored over the
standard GR BH solution, and can indeed be the endstate of*fabrizio.corelli@uniroma1.it

PHYSICAL REVIEW D 104, 084069 (2021)

2470-0010=2021=104(8)=084069(19) 084069-1 © 2021 American Physical Society

https://orcid.org/0000-0001-9558-0877
https://orcid.org/0000-0002-9076-1027
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.084069&domain=pdf&date_stamp=2021-10-19
https://doi.org/10.1103/PhysRevD.104.084069
https://doi.org/10.1103/PhysRevD.104.084069
https://doi.org/10.1103/PhysRevD.104.084069
https://doi.org/10.1103/PhysRevD.104.084069


a tachyonic instability affecting the latter. Presently, little is
known about the possibility of overcharging/overspinning a
scalarized BH in these theories.
In this paper we perform gedanken experiments in

GR and in theories featuring a spontaneous scalarization
mechanism, with the scope of challenging the cosmic
censorship. We shall present numerical simulations that
assume spherical symmetry but are otherwise exact
and attempt to produce a naked singularity in various
ways, especially by overcharging a BH with several wave
packets.
Our main results can be summarized as follows:
(i) We simulated the spherical collapse of an ingoing

charged scalar field in an initially flat spacetime
within Einstein-Maxwell theory, aiming at produc-
ing a BH that exceeds the RN bound. The final BH is
always subextremal, confirming the results obtained
in Ref. [30], which we extend to values of the final
BH very close to extremality.

(ii) We performed extensive simulations trying to
overcharge a RN BH within Einstein-Maxwell
theory by throwing a charged scalar wave packet.
In this case a fraction of the wave packet is
repelled by the Coulomb interaction and the
remaining part—absorbed by the BH—is never
sufficient to overcharge it past extremality,
even when starting with nearly extremal BHs. This
again confirms the cosmic censorship in Einstein-
Maxwell theory.

(iii) We repeated the same gedanken experiment in an
Einstein-Maxwell-scalar theory with spontaneous
scalarization that allows for hairy charged BH
solutions also with a charge above the RN limit.
In this case we can form overcharged hairy BHs
but in none of the simulations we observed the
formation of naked singularities. We conclude
that also in these theories the cosmic censorship
is preserved, although the RN bound can be
violated.

(iv) We unveiled the crucial role played by BH charge
and mass extraction due to superradiance at the fully
nonlinear level (see [20] for an overview on super-
radiance) in preserving the cosmic censorship both
in Einstein-Maxwell and in Einstein-Maxwell-scalar
theory. As a by-product, we confirm and extend the
results of [31] for the superradiant amplification
of charged wave packets scattered off a charged BHs
at the nonlinear level (see also Ref. [32] for a
related study).

(v) For a fixed coupling constant, scalarized BHs in
the nonminimally coupled theories at hand exist
only above a certain value of the charge-to-mass
ratio [33,34]. We show that these hairy BHs can
“descalarize” either by absorbing opposite-charged
wave packets, or by a novel superradiantly induced

descalarization mechanism. In all cases the endstate
of descalarization is an ordinary RN BHs below
the extremal limit, again confirming the cosmic
censorship.

We use geometric units with G ¼ c ¼ 4πε0 ¼ 1 and the
Einstein summation convention throughout. In particular,
Greek indices will run over the spacetime dimensions
(μ; ν;… ∈ f0; 1; 2; 3g), while Latin indices will run over
the spatial dimensions (i; j;… ∈ f1; 2; 3g). In Sec. II we
present the field equations, our numerical scheme to evolve
them, and discuss the initial and boundary conditions for
the dynamical fields. The expert reader might wish to skip
Sec. II and read directly Sec. III where we present the
results of various types of simulations.

II. SETUP

A. Action of the theory and field equations

We consider the Einstein-Maxwell-scalar model studied
in Ref. [33], minimally coupled to an additional (complex)
charged scalar field:

S ¼ 1

16π

Z
Ω
d4x

ffiffiffiffiffiffi
−g

p fR − 2ð∇μϕÞð∇μϕÞ

− F½ϕ�FμνFμν − 4ðDμξÞðDμξÞ�g; ð1Þ

where ϕ and ξ are the real and the complex scalar
fields respectively, Aμ is the vector field, F½ϕ� is the
coupling function, Fμν ¼ ∇μAν −∇νAμ is the electromag-
netic tensor, Dμ ¼ ∇μ þ iqAμ is the gauge covariant
derivative for Uð1Þ symmetry, q is the electric charge of
the complex scalar field, and � denotes the complex
conjugate operation. gμν is the spacetime metric, and R
is the Ricci scalar.
The field equations that can be derived from (1) are

Gμν ¼ 8πðTSF
μν þ TEM

μν þ Tξ
μνÞ; ð2Þ

∇μFμν ¼ −Fμν 1

F½ϕ�
δF½ϕ�
δϕ

∇μϕ

þ iq
F½ϕ� ½ξðD

νξÞ� − ξ�ðDνξÞ�; ð3Þ

□ϕ ¼ ∇μ∇μϕ ¼ 1

4

δF½ϕ�
δϕ

FμνFμν; ð4Þ

□ξ ¼ −iqð∇μAμÞξ − 2iqAμ∇μξþ q2AμAμξ; ð5Þ

where Gμν ¼ Rμν − 1
2
Rgμν is the Einstein’s tensor and

TSF
μν ¼ 1

4π
ð∇μϕÞð∇νϕÞ −

1

8π
ð∇αϕÞð∇αϕÞgμν; ð6Þ
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TEM
μν ¼

�
1

4π
FμαgαβFνβ −

1

16π
FαβFαβgμν

�
F½ϕ�; ð7Þ

Tξ
μν ¼ 1

4π
½ðDμξÞðDνξÞ� þ ðDμξÞ�ðDνξÞ

− ðDαξÞðDαξÞ�gμν�: ð8Þ

If F½ϕ� ¼ 1, the model reduces to the well-studied
Einstein-Maxwell theory minimally coupled to two
(respectively neutral and charged) scalar fields. In particu-
lar, the RN BH with ϕ ¼ ξ ¼ 0 is a stable solution of the
theory with F½ϕ� ¼ 1. On the other hand, if F½0� ¼ 1 and
F00½0� > 0, the RN BH becomes unstable against spherical
perturbations of the real scalar field, and the scalarized
charged BH might be favored [33].
It is worth mentioning that, when considering a spheri-

cally symmetric spacetime, the choice of a positive cou-
pling function is a sufficient condition for the null energy
condition to be satisfied. We report the proof of this
statement in Appendix A. For the sake of generality
for the moment we shall not assume any specific
form of F½ϕ�, but we shall require F½0� ¼ 1. In the result
section we shall instead focus on the simplest model
that gives rise to spontaneous scalarization, namely
F½ϕ� ¼ 1 − λϕ2 with λ < 0. In this model, the null energy
condition is satisfied.
While the real scalar field can trigger spontaneous

scalarization of the BH, the complex scalar field is
minimally coupled and is included in our setup only to
change the charge of the BH. As such, stationary BH
solutions in this theory have ξ ¼ 0.

B. Evolution scheme

For the time integration of the equations of motion we
will use a generalization of the original Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formalism [35,36] in
spherical symmetry [37,38]. The line element is given by

ds2 ¼ ð−α2 þ βrβ
rÞdt2 þ 2βrdtdr

þ e4χðr;tÞðaðr; tÞdr2 þ bðr; tÞr2dΩ2Þ; ð9Þ

where α is the lapse, β⃗ is the shift vector (which in spherical
symmetry has only radial component), and eχ is the
conformal factor. The 3-metric of the spacelike hyper-
surfaces is γij ¼ e4χdiagða; br2; br2 sin2 θÞ and the lower

radial component of β⃗ is given by βr ¼ γrrβ
r ¼ e4χaβr.

Due to spherical symmetry, all functions depends on ðt; rÞ
only. The metric functions a and b are initialized in such a
way that the conformal metric γ̂ij ¼ e−4χγij is flat, and then
in the evolution we considered the condition

∂tγ̂ ¼ ð1 − σÞð2γ̂∇̂mβ
mÞ; ð10Þ

where γ̂ is the determinant of γ̂ij, ∇̂ is the covariant
derivative with respect to the conformal 3-metric, and σ
is a parameter that is set to 0 for the so-called Eulerian
evolution, and to 1 for the Lagrangian evolution [37]. In the
simulations described in this paper we used the latter.
We also introduce the scalar and vector electromagnetic

potentials

φ ¼ −nμAμ; ð11Þ

ai ¼ γiμAμ; ð12Þ

where γμν is the projector onto the foliation Σt, and nμ is the
orthogonal vector of Σt. The conjugate momenta of the real
and complex scalar fields are respectively defined as

Π ¼ nμ∇μϕ ð13Þ

P ¼ nμ∇μξ: ð14Þ

With these definitions we can rewrite Eqs. (4) and (5) as
two sets of first-order equations:

∂tϕ ¼ βr∂rϕþ αΠ; ð15Þ

∂tΠ ¼ βr∂rΠþ αΠK þ ð∂rϕÞð∂rαÞ
ae4χ

þ α

ae4χ

�
∂2
rϕþ ð∂rϕÞ

�
2

r
−
∂ra
2a

þ ∂rb
b

þ 2∂rχ

��

þ 1

2
αae4χðErÞ2 δF½ϕ�

δϕ
; ð16Þ

for the real scalar field ϕ, and

∂tξ ¼ βr∂rξþ αP; ð17Þ

∂tP ¼ βr∂rPþ αPK þ ð∂rξÞð∂rαÞ
ae4χ

þ α

ae4χ

�
∂2
rξþ ð∂rξÞ

�
2

r
−
∂ra
2a

þ ∂rb
b

þ 2∂rχ

��

þ 2iqα

�
φPþ ar∂rξ

ae4χ

�
− q2α

�ðarÞ2
ae4χ

− φ2

�
ξ; ð18Þ

for the complex scalar field ξ. Here K is the trace of the
extrinsic curvature Kij.
Due to spherical symmetry the magnetic field vanishes

and the only nonvanishing component of the electric
field and of the vector electromagnetic potential is the
radial one. Fixing the gauge with the Lorenz condition
∇μAμ ¼ 0, we can write the equations of motion for the
electromagnetic field as
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DiEi ¼ −Erð∂rϕÞ
1

F½ϕ�
δF½ϕ�
δϕ

þ iq
F½ϕ� ½−ξ

�Pþ ξP� þ 2iqφjξj2�; ð19Þ

∂tEr ¼ αKEr þ βr∂rEr − Er∂rβ
r

− αΠEr 1

F½ϕ�
δF½ϕ�
δϕ

þ α

F½ϕ�
2q2

ae4χ
jξj2ar

þ α

F½ϕ�
iq
ae4χ

½ξð∂rξÞ� − ξ�ð∂rξÞ�; ð20Þ

∂tar ¼ βr∂rar þ ar∂rβ
r − ∂rðαφÞ − αae4χEr; ð21Þ

∂tφ ¼ βr∂rφþ αφK −
ð∂rαÞar
ae4χ

−
α

ae4χ

�
∂rar þ ar

�
2

r
−
∂ra
2a

þ ∂rb
b

þ 2∂rχ

��
;

ð22Þ

where Di is the covariant derivative with respect to the
3-metric γij. Equations (19) and (20) have been obtained
by projecting the field equation for the electromagnetic
field (3) onto nμ and onto Σt, respectively. The evolution
equation for ar has been obtained from the definition of the
electric field Eν ¼ −nμFμν, while Eq. (22) has been derived
from the Lorenz gauge condition [30,39].
For the gravitational field we used the equations of

the generalized BSSN formalism in spherical symmetry
[37,38]. Introducing the traceless conformal extrinsic
curvature Âij ¼ e−4χðKij − 1

3
KγijÞ, we define Aa ¼ Âr

r

and Ab ¼ Âθ
θ. These two variables are not independent,

since Âij is traceless and Aa þ 2Ab ¼ 0, therefore we only
evolved Aa. We also introduce the BSSN variable

Δ̂i ¼ γ̂mnðΓ̂i
mn − Γ

∘ i
mnÞ; ð23Þ

where Γ̂i
mn and Γ

∘ i
mn are the Christoffel symbols of the

conformal and the flat metrics, respectively.
Having fixed the notation, we can now write the

evolution equations for the gravitational sector as

∂tχ ¼ βr∂rχ −
1

6
αK þ σ

6
∇̂mβ

m; ð24Þ

∂ta ¼ βr∂raþ 2a∂rβ
r − 2αaAa −

2

3
σa∇̂mβ

m; ð25Þ

∂tb ¼ βr∂rbþ 2b
βr

r
− 2αbAb −

2

3
σb∇̂mβ

m; ð26Þ

∂tK ¼ βr∂rK −D2αþ α

�
A2
a þ 2A2

b þ
1

3
K2

�

þ 4παðSa þ 2Sb þ EÞ; ð27Þ

∂tAa ¼ βr∂rAa þ αKAa −
�
DrDrα −

1

3
D2α

�

þ α

�
Rr

r −
1

3
R

�
−
16πα

3
ðSa − SbÞ; ð28Þ

∂tΔ̂r ¼ βr∂rΔ̂r − Δ̂r∂rβ
r þ 2

b
∂r

�
βr

r

�
þ 2αAaΔ̂r

− 2αðAa − AbÞ
2

br
−
2

a
ðAa∂rαþ α∂rAaÞ

þ 1

a
∂2
rβ

r þ σ

3

�
1

a
∂r∇̂mβ

m þ 2Δ̂r∇̂mβ
m

�

þ 2α

a

�
∂rAa þ ðAa − AbÞ

�∂rb
b

þ 2

r

�

þ 6Aa∂rχ −
2

3
∂rK − 8πjr

�
; ð29Þ

where Rij and R are respectively the Ricci tensor and the
scalar curvature of the 3-metric γij, and the constraint
equations read

H ¼ Rþ 2

3
K2 − ðA2

a þ 2A2
bÞ − 16πE ¼ 0; ð30Þ

M ¼ ∂rAa þ ðAa − AbÞ
�∂rb

b
þ 2

r

�

þ 6Aa∂rχ −
2

3
∂rK − 8πjr ¼ 0: ð31Þ

The source terms can be divided into three contributions:
(i) from the electromagnetic field we have

EEM ¼ nμnνTEM
μν ¼ 1

8π
ae4χðErÞ2F½ϕ�; ð32Þ

SEMa ¼ ðð3ÞTEMÞrr ¼ −
1

8π
ae4χðErÞ2F½ϕ�; ð33Þ

SEMb ¼ ðð3ÞTEMÞθθ ¼
1

8π
ae4χðErÞ2F½ϕ�; ð34Þ

(ii) from the real scalar field we have

ESF ¼ nμnνTSF
μν ¼ 1

8π

�
Π2 þ ð∂rϕÞ2

ae4χ

�
; ð35Þ

jSFr ¼ −γμrnνTSF
μν ¼ −

1

4π
Π∂rϕ; ð36Þ
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SSFa ¼ ðð3ÞTSFÞrr ¼
1

8π

�
Π2 þ ð∂rϕÞ2

ae4χ

�
; ð37Þ

SSFb ¼ ðð3ÞTSFÞθθ ¼
1

8π

�
Π2 −

ð∂rϕÞ2
ae4χ

�
; ð38Þ

(iii) and from the complex scalar field

Eξ ¼ nμnνTξ
μν ¼ 1

4π

�
jP̃j2 þ jΨ̃j2

ae4χ

�
; ð39Þ

jξr ¼ −γμrnνT
ξ
μν ¼ −

1

4π
ðΨ̃P̃� þ P̃Ψ̃�Þ; ð40Þ

Sξa ¼ ðð3ÞTξÞrr ¼
1

4π

�
jP̃j2 þ jΨ̃j2

ae4χ

�
; ð41Þ

Sξb ¼ ðð3ÞTξÞθθ ¼
1

4π

�
jP̃j2 − jΨ̃j2

ae4χ

�
; ð42Þ

where we have defined the terms

P̃¼nμDμξ¼nμ∇μξþ iqnμAμξ¼P− iqφξ; ð43Þ

Ψ̃ ¼ γμrDμξ ¼ γμr∇μξþ iqγμrAμξ ¼ ∂rξþ iqarξ:

ð44Þ

Note that, for practical reasons, in our code we evolved the
variable e−2χ instead of χ.
For the evolution of the lapse function we use the

nonadvective 1þ log slicing condition [40]

∂tα ¼ −2αK; ð45Þ

while for the shift we use the Gamma-driver condition
[38,41]; namely we define a new variable Br such that

∂tBr ¼ 3

4
∂tΔ̂r; ð46Þ

∂tβ
r ¼ Br: ð47Þ

C. Electric charge in Einstein-Maxwell-scalar theory

Due to the nonminimal coupling, in this theory it is
possible to define the electric charge in two different ways.
The equation for the electromagnetic field can in fact be
written as ∇μFμν ¼ −4πJνEM, where

JνEM ¼ 1

4π

�
1

F½ϕ�
δF½ϕ�
δϕ

ð∇μϕÞFμν

−
iq
F½ϕ� ½ξðD

νξÞ� − ξ�ðDνξÞ�
�
; ð48Þ

but also as ∇μðF½ϕ�FμνÞ ¼ −4πJ̃νEM, where

J̃νEM ¼ −
iq
4π

½ξðDνξÞ� − ξ�ðDνξÞ�: ð49Þ

Both these two currents are conserved, namely ∇μJ
μ
EM ¼

0 ¼ ∇μJ̃
μ
EM, and allow to define the electric charge in

two ways:

Q ¼ 1

4π

Z
V
dVDiEi ¼

Z
V
dVρ; ð50Þ

Q̃ ¼ 1

4π

Z
V
dVDiðF½ϕ�EiÞ ¼

Z
V
dVρ̃; ð51Þ

where the two charge densities are

ρ ¼ −nμJ
μ
EM ¼ 1

4π

�
−Erð∂rϕÞ

1

F½ϕ�
δF½ϕ�
δϕ

þ iq
F½ϕ� ½−ξ

�Pþ ξP� þ 2iqφjξj2�
�
; ð52Þ

ρ̃ ¼ −nμJ̃
μ
EM ¼ iq

4π
½−ξ�Pþ ξP� þ 2iqφjξj2�: ð53Þ

As it can be seen from the above equations, while the
chargeQ includes the contribution of the real scalar field, Q̃
accounts only for the charge carried by the complex field ξ.
In Einstein-Maxwell theory (F½ϕ� ¼ 1) or when the scalar
field vanishes (F½ϕ ¼ 0� ¼ 1), the two charges coincide, as
expected.
For a spherically symmetric spacetime, following [30],

we can define the electric charge enclosed in the 2-sphere
Sr of radius r in two ways:

QðrÞ ¼
Z
Sr

dVρ ¼ 1

4π

Z
Sr

dVDiEi

¼ 1

4π

Z
∂Sr

dSsiEi ¼ ffiffiffi
a

p
be6χr2Er;

Q̃ðrÞ ¼
Z
Sr

dVρ̃ ¼ 1

4π

Z
Sr

dVDiðF½ϕ�EiÞ

¼ 1

4π

Z
∂Sr

dSsiEiF½ϕ� ¼ F½ϕ� ffiffiffi
a

p
be6χr2Er; ð54Þ

where si is the outward pointing unit vector normal to ∂Sr.
Note that, although we only made the radial dependence
explicit, the above quantities can generically depend also
on the time coordinate.
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We can see that the electric field can be written as

Er ¼ QðrÞ
b

ffiffiffi
a

p
e6χr2

¼ Q̃ðrÞ
F½ϕ�b ffiffiffi

a
p

e6χr2
; ð55Þ

and that the two definitions of charge can be related by

QðrÞ ¼ Q̃ðrÞ
F½ϕ� : ð56Þ

For a spherically symmetric BH spacetime with a vanishing
complex scalar field, Q̃ is homogeneous outside the
horizon, while Q is in general a radial function. For a
scalarized configuration there is a nonvanishing charge
density ρ outside the BH and the total charge of the system
does not coincide with the charge enclosed in the horizon.
However, the two charges coincide at infinity since we shall
always assume asymptotic flatness and hence ϕ → 0 and
F½ϕ� → 1 and r → þ∞.

D. Numerical integration scheme

In our framework the equations of motion are regular at
the origin, but contain terms that go as 1

r and
1
r2, which can

cause instabilities in the numerical integration. To handle
these terms we used the second-order partially implicit
Runge-Kutta (PIRK) method [42,43], which does not
require the implementation of an explicit regularization
procedure at the origin. This allows us to integrate the
equations that contain unstable terms with a partially
implicit method, while the other equations can be inte-
grated with an explicit method. The details of this imple-
mentation can be found in Appendix B.
For the numerical radial derivatives we used the fourth-

order accurate centered finite differences method, except
for the advection terms (which are of the form βr∂r) for
which we used the upwind scheme. In order to avoid the
appearance of high-frequency instabilities in the evolution,
we added to all the equations a Kreiss-Oliger dissipation
term, which we evolved explicitly; in this term the fourth
derivative has been computed with second-order accuracy.
In Appendix C we show the numerical convergence of
our code.

E. Initial conditions

Since our purpose is to study the collapse of a charged
scalar field and the possibility of forming overcharged BH
solutions, we choose an initial profile for ξ that carries a
nonvanishing amount of electric charge and propagates
toward the horizon:

ξðr; t ¼ 0Þ ¼ B0e
−1
2
σ2ξðr−r0;ξÞ2þik0ðr−r0;ξÞ;

Pðr; t ¼ 0Þ ¼ iB0e
−1
2
σ2ξðr−r0;ξÞ2þik0ðr−r0;ξÞ

× ðk0 þ iσ2ξðr − r0ÞÞ; ð57Þ

where B0, σ−1ξ , k0, and r0;ξ are respectively the amplitude,
width, frequency, and position of the initial profile of the
complex scalar field.
We choose a vanishing initial shift and a flat conformal

3-metric. We set to zero the auxiliary variable Br and the
radial component of the traceless extrinsic curvature Aa,
while we initialized Δ̂r using its definition in Eq. (23),
which in spherical symmetry reduces to [38]

Δ̂r ¼ 1

a

�∂ra
2a

−
∂rb
b

−
2

r

�
1 −

a
b

��
: ð58Þ

To find the initial profile of the electric field, the trace of
the extrinsic curvature, and the conformal factor we solved
Eq. (19) together with the Hamiltonian and momentum
constraints. We also initialize the electromagnetic poten-
tials to a configuration such that both φ and ar do not
evolve in a region sufficiently far from the horizon as long
as the signals do not reach the outer boundary. To achieve
this we set ar ¼ 0 at t ¼ 0, and we determined the profile
of φ by solving the equation ∂tar ¼ 0 which, using
Eq. (21), reduces to ∂rðαφÞ ¼ −αae4χEr.
The system of equations that we solved at t ¼ 0 for Er,

K, φ, and ψ ≔ eχ reads

∂2
rψ ¼ 1

48r2ab2
f2a2bψ ½r2bψ4ð−48πE þ 2K2Þ þ 6�

þ 6rð∂raÞb½rð∂rbÞψ þ 2bð2rð∂rψÞ þ ψÞ�
− 3a½−r2ð∂rbÞ2ψ þ 4b2ð8rð∂rψÞ þ ψÞ
þ 4rbð4rð∂rbÞð∂rψÞ þ ð3∂rbþ r∂2

rbÞψÞ�g; ð59Þ

∂rEr ¼ −
�∂ra
2a

þ ∂rb
b

þ 6
∂rψ

ψ
þ 2

r

�
Er

þ 2q
ξRPI − ξIPR

F½ϕ� − 2q2φ
jξj2
F½ϕ�

− Erð∂rϕÞ
1

F½ϕ�
δF½ϕ�
δϕ

; ð60Þ

∂rK ¼ 6½PR∂rξR þ PI∂rξI − qφðξR∂rξI − ξI∂rξRÞ�; ð61Þ

∂rφ ¼ −
∂rα

α
φ − aψ4Er; ð62Þ

where the subscripts XR and XI denote the real and
imaginary part of a complex variable X, respectively.

F. Boundary conditions

Thanks to the PIRK integration method at the origin
we only impose the parity condition related to the spherical
symmetry. Therefore we shifted the numerical grid in such
a way that the origin is placed in the middle of a grid step,
and the first grid point is at r1 ¼ Δr

2
, where Δr is the
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grid step. To compute the numerical derivatives at r1 and r2
we added two ghost grid points at r−1 ¼ − Δr

2
and

r−2 ¼ − 3Δr
2

in which the variables are not evolved but
are set at each time step to values that satisfy the parity
conditions. In particular βr, Er, Br, ar, and Δ̂r have
odd parity at the origin while all the other variables have
even parity.
At the outer boundary we added four ghost zones which

are used to compute the fourth-order accurate upwind
derivatives. In these zones the variables are not evolved
and they remain constant. This can be done since we
consider an initial profile of φ such that the electromagnetic
potentials do not evolve at the outer boundary as long as the
signals coming from the horizon region are sufficiently
far from the outer boundary, and we consider a domain
large enough that outward-moving components of the
initial field profiles do not reach the outer boundary during
the time of integration.

III. RESULTS

A. Collapse of the charged field in a flat background
in Einstein-Maxwell theory

We start by neglecting the real field (ϕ ¼ 0, F½0� ¼ 1)
and study the collapse of the complex scalar field in flat
spacetime in Einstein-Maxwell theory, in order to explore
the RN BH formation and the robustness of the cosmic
censorship hypothesis in the standard case. This problem
was studied in [30] using momentarily static charged wave
packets as the initial data. In that case it was possible to
form a RN BH with final charge-to-mass ratio as large as
Q=M ∼ 0.6, therefore still far from extremality. In our
simulation, we start from an ingoing charged wave packet,
so we expect that we could form a BH with higher charge,
which is a more stringent test of the cosmic censorship.

1. Initial setup

We define an arbitrary mass scale M to normalize all
dimensionful quantities. We chose the parameters in
Eq. (57) in such a way that the initial profile of ξ is narrow
enough to obtain final configurations in which the (possibly
formed) final BH is close to extremality. In particular we set

B0 ¼ 0.012; k0M ¼ 5;

σ2ξM
2 ¼ 2.5; r0;ξ=M ¼ 5: ð63Þ

For this initial configuration the simulation is computa-
tionally demanding: high resolution and a low Courant-
Friedrichs-Lewy (CFL) factor are required. Therefore in
order to obtain higher accuracy without increasing exces-
sively the computational cost, we use a nonuniform grid
step by performing the following transformation on the
radial coordinate:

r̃ ¼ CðrÞ ¼ rþ 1 − η

Δ
ln

�
1þ e−Δðr−R1Þ

1þ eΔR1

�
;

∂r̃
∂r ¼ C0ðrÞ ¼ ηþ 1 − η

1þ e−Δðr−R1Þ ; ð64Þ

where we renamed the new radial coordinate as r and the
old one as r̃. In the above equation, R1 andΔ are the typical
radius and typical width of the buffer zone between the
area around the origin that requires the higher numerical
resolution and the asymptotic region, whereas η character-
izes the relative scale of the resolution. The parameters are
set to η ¼ 0.1, Δ ¼ 1=M and R1 ¼ 10M. The behavior of r̃
vs r is shown in Fig. 1, where it can be seen that a small
region around the center in the old coordinate r̃ is mapped
to a larger region in the new coordinates. In this way the
horizon of a final BH which is close to extremality is placed
at a higher value of r allowing for higher accuracy with a
larger grid step. On the other hand C0ðrÞ ∼ 1 for r ≫ R1,
and the two radial coordinates differ only by a constant near
the outer boundary. After this change of coordinates the
metric functions a and b of the flat spacetime are

aðr; t ¼ 0Þ ¼ C0ðrÞ2; ð65Þ

bðr; t ¼ 0Þ ¼ CðrÞ2
r2

; ð66Þ

and the initial profile of Δ̂r has been set according
to Eq. (58).
The lapse function α is initialized by imposing that

∂tK ¼ 0 at t ¼ 0, therefore we integrated numerically the
equation

FIG. 1. Coordinate transformation for the nonuniform grid step.
Near the origin small regions in the (original) r̃ domain are
mapped to large regions of the (new) r domain. Sufficiently far
from the origin the two coordinates differ only by a constant.
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∂2
rα ¼ ð∂rαÞ

�∂ra
2a

−
∂rb
b

− 2
∂rψ

ψ
−
2

r

�
þ ψ4αa

K2

3

þ 4παψ4aðE þ Sa þ 2SbÞ ð67Þ

together with Eqs. (59)–(62). To solve the equations for the
initial profile we used a shooting procedure starting the
numerical integration from the origin and moving out-
wards. We imposed regularity at r ¼ 0 and the asymptotic
behaviors

ψ ≔ eχ ¼ 1þMADM

2r̃
þO

�
1

r̃2

�
;

K ¼ O
�
1

r̃3

�
;

φ ¼ Q∞

r̃
þO

�
1

r̃3

�
;

α ¼ 1 −
MADM

r̃
þO

�
1

r̃2

�
; ð68Þ

where MADM is the Arnowitt-Deser-Misner (ADM) mass,
and Q∞ ¼ Qðr∞Þ is the electric charge computed at the
outer boundary. We performed the numerical integration
using the Runge-Kutta method at the fourth order of
accuracy, and the Newton’s method as a root-finding
algorithm in the shooting procedure. At the end of the
initialization process we computed the ADM mass and
electric charge at the outer boundary.
The numerical grid extends from the origin up to r

M ¼ 40,
with agrid stepΔr

M ¼ 0.005. TheCFL factorwasCFL ¼ 0.01,
and we integrated the equations up to T

M ¼ 24.

2. Results of the simulations

We performed the numerical integration of the evolution
equations for different values of qM ∈ ½0; 10�, and studied
the BH formation by computing the position of the
apparent horizon, r ¼ rAH. For the cases in which the
collapse has happened we computed the horizon charge as

QAH ¼ r2b
ffiffiffi
a

p
Ere6χ jr¼rAH ; ð69Þ

and the horizon mass using the Christodoulou-Ruffini mass
formula [44] in the case of vanishing spin:

MH ¼ Mirr þ
Q2

AH

4Mirr
; ð70Þ

where Mirr ¼
ffiffiffiffiffiffi
AH
16π

q
is the irreducible mass and AH is the

apparent horizon area.
The use of these formulas for the horizon mass and

charge is based on the assumptions that the end state of the
possible gravitational collapse is described by the RN
metric and the final configuration is approximately sta-
tionary near the origin at t ¼ T. The first assumption is

guaranteed by the uniqueness of the RN solution in
Einstein-Maxwell theory, while the second assumption is
satisfied for the value of T that we chose.
We then computed the initial (at t ¼ 0) charge-to-mass

ratio of the full spacetime, Q̄ST
i ¼ Q∞

MADM
, and the charge-to-

mass ratio of the final BH, Q̄BH
f ¼ QAH

MAH
, at t ¼ T. The results

are shown in the upper panel of Fig. 2. For qM ≲ 4.5
almost all the scalar field present at the beginning of the
simulation collapses and forms the final BH. When qM ∼ 5
the final configuration is close to extremality but the BH
remains subextremal. For qM ≳ 5 the charge-to-mass ratio
of the spacetime at t ¼ 0 exceeds unity and the electric
forces start preventing the gravitational collapse: Q̄BH

f

rapidly decreases until qM ∼ 5.65, where a BH stops
forming. As a convention, in the plot we set Q̄BH

f ¼ 0

for the cases in which a horizon does not form. The
maximum value of the BH charge-to-mass ratio that we
obtained in our simulations is Q̄BH

f ∼ 0.96.

FIG. 2. Upper panel: total charge-to-mass ratio of the space-
time at t ¼ 0 (blue) and charge-to-mass ratio of the final BH
at t ¼ T (orange) as functions of the fundamental charge q of
the initial ingoing wave packet. Lower panel: total charge in the
spacetime at t ¼ 0 (blue) and amount of charge ΔQ outside the
horizon at t ¼ T (orange) as functions of q. For low values of q
almost all the initial pulse collapses and forms the final BH, for
qM ∼ 5 the charge-to-mass ratio of the final BH reaches its
maximum value and then decreases, due to the electromagnetic
interaction that starts becoming dominant; finally, for qM ≳
5.65 the gravitational collapse stops occurring, and there is no
formation of a horizon. This condition conventionally corre-
sponds to Q̄BH

f ¼ 0 (i.e., ΔQ ¼ Q∞).
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We also computed the amount of charge outside the final
BH, ΔQ, obtained by subtracting the horizon charge to the
final charge computed at the outer boundary, and we
compared it with the total electric charge at t ¼ 0; the
results are shown in the lower panel of Fig. 2. For qM ≲ 4.5
almost all the charge present in the initial pulse is enclosed
in the horizon, then the amount of charge outside horizon
starts increasing, and for qM ≳ 5.65 it coincides with the
initial charge of the spacetime, since for these values of q
the electromagnetic interaction is strong enough to com-
pletely prevent the gravitational collapse.

B. Collapse of the charged field towards
a RN BH in Einstein-Maxwell theory

Next, we consider the collapse of the complex scalar
field towards a RN BH within Einstein-Maxwell theory,
attempting to overcharge it. As we shall show, not only
does this allow to reach final BHs which are close to
extremality, but the process shows also superradiant ampli-
fication at full nonlinear level.

1. Initial setup

In this case the initial configuration of the system is
given by a complex scalar field on a RN background. The
parameters of the initial profile of ξ are:

B0 ¼ 0.002; k0M ¼ 5;

σ2ξM
2 ¼ 2.5; r0;ξ=M ¼ 20; ð71Þ

where in this case M is set to be equal to the initial BH
mass, MBH ¼ M, and all dimensionful quantities are
measured in terms of M.
For this analysis we wish to construct a background

configuration such that the mass and the charge of the
central BH are fixed as q varies. In order to achieve this
we implemented a shooting algorithm that integrates
Eqs. (59)–(62) starting from the outer boundary and
moving inward, and searches for the parameters MADM
(the ADM mass) and Q in the asymptotic expansions

Er ¼ Q
r2

þO
�
1

r3

�
;

ψ ≔ eχ ¼ 1þMADM

2r
−
Q2

8r2
þO

�
1

r3

�
;

K ¼ O
�
1

r3

�
;

φ ¼ Q
r
þO

�
1

r3

�
; ð72Þ

such that the horizon charge and mass assume the required
values. We used a precollapsed lapse [41] α ¼ 1

ψ2, and a

conformal metric with a ¼ b ¼ 1, while the horizon mass

was computed with the Christodoulou-Ruffini mass for-
mula. After the initialization we extracted the total ADM
mass and electric charge at the outer boundary.
The BH initial charge-to-mass ratio was set to

Q̄BH
i ¼ QBH

i
MBH

i
¼ f0.9; 0.95; 0.99g. The numerical grid

extends from the origin up to r∞
M ¼ 250 with a grid step

Δr
M ¼ 0.01, and the CFL factor was CFL ¼ 0.4. The final
time of integration was set to T

M ¼ 100, which is sufficient
to obtain an approximately stationary final configuration
near the horizon.

2. Results of the simulations

After the integration of the evolution equations for values
of qM ∈ ½0; 20�, we computed the charge-to-mass ratio of
the final BH, Q̄BH

f . We plotted the results in the upper panel
of Fig. 3, where the dots represent Q̄BH

f while the crosses
represent the initial charge-to-mass ratio of the entire
spacetime, Q̄ST

i . For low values of q the charge carried
by the complex field is smaller than its mass, the initial
pulse is totally absorbed by the BH and Q̄BH

f is smaller
than Q̄BH

i . As q increases the final charge-to-mass ratio
increases, then reaches a maximum and starts decreasing,
without producing overcharged final configurations. In this
experiment, the maximum charge-to-mass ratio of the final
BH achieved in our simulation is Q̄BH

f ∼ 0.986.
This is not only due to the increasing electromagnetic

repulsion that overcomes the gravitational attraction, but
also to mass and charge extraction due to superradiance
[20]. In fact for sufficiently high values of the parameter q
the BH mass decreases during the evolution, as it can be
seen from the middle panel of Fig. 3, where we show the
behavior of the difference between the final and the initial
BH mass as a function of q.
For a monochromatic test field on a RN background the

superradiance condition is [20]

ω < qΦH; ð73Þ

where ω is the wave frequency and ΦH is the horizon
electric potential. Therefore at a fixed frequency the
condition (73) is met for values of q which are above
the threshold qth ¼ ω

ΦH
. Since we are not considering a

monochromatic test field the superradiance condition is
more involved, because the initial wave packet contains
both frequencies that satisfy Eq. (73) and higher frequen-
cies which are instead absorbed by the BH. Nonetheless,
we made an estimate of the threshold value qth using
ω ¼ k0, where k0 is the frequency in the initial profile of ξ,
and the horizon electric potential of a RN BH ΦH ¼ QAH

RH
,

where RH is the horizon areal radius; the results are
summarized in Table I. As we can see the threshold values
that we obtained are compatible with the behaviors in the
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middle panel of Fig. 3, since they fall in the region where
the difference between the final and initial BH mass is
decreasing. Furthermore, the threshold value of q decreases
with Q̄BH

i , as expected. It is worth mentioning that the
energy of the initial complex field is ∼0.1M, so back-
reaction is relevant and the expectation from linear pertur-
bation theory are only indicative. Nonetheless, by
comparing the top and middle panels in Fig. 3, it is
interesting to notice that the maximum of the final
charge-to-mass ratio roughly corresponds to the BH mass
extraction, suggesting that (nonlinear) superradiance plays
an important role in preserving the cosmic censorship in
Einstein-Maxwell theory. We will come back to this point
later when performing a similar gedanken experiment in
Einstein-Maxwell-scalar theory.
Finally, in order to check the behavior of the entropy, in

the lower panel of Fig. 3 we show the difference between
the final and initial BH area. We can see that this value is
always positive, in agreement with the BH area law in GR.

C. Collapse of charged field towards a RN BH in
nonminimally coupled Einstein-Maxwell-scalar theory

Let us now move to our main analysis, which focuses on
the collapse in Einstein-Maxwell-scalar theory with non-
minimal couplings. We choose the simplest coupling that
gives rise to spontaneous scalarization, F½ϕ� ¼ 1 − λϕ2

with λ < 0. This provides a negative effective mass squared
in the scalar perturbations, triggering a tachyonic instability
of the RN BH. As a result of the instability, the BH
scalarizes and a real scalar field profile forms around it.

1. Static scalarized BHs

Before performing numerical simulations, we construct
the scalarized charged BH solution assuming zero complex
scalar field and a static spherically symmetric metric:

ds2 ¼ −
�
1 −

2mðRÞ
R

�
e−2δðRÞdt2 þ dR2

1 − 2mðRÞ
R

þ R2dΩ2;

ð74Þ

where R is the areal radius, mðRÞ, and δðRÞ are the metric
functions. Due to spherical symmetry, the only nonvanish-
ing Maxwell equation can be directly integrated:

∂RAtðRÞ ¼ Q̃
e−δðRÞ

R2ð1 − λϕðRÞ2Þ ; ð75Þ

where Q̃ is the charge excluding the effect of the real scalar
field (see Sec. II C). By expanding around the BH horizon
R ¼ RH, we obtain

mðRÞ ¼ RH

2
þ Q̃2ðR − RHÞ
2R2

Hð1 − λϕ2
HÞ

þOðR − RHÞ2; ð76Þ

TABLE I. Estimates of the threshold values of the parameter qth
from the superradiance condition (73). For ΦH we used the
horizon electric potential of a RN BH, ΦH ¼ QAH

RH
, and for ω we

used the frequency k0 in the initial profile of the complex scalar
field.

Q̄BH
i ΦH qthM

0.9 0.63 8.0
0.95 0.72 6.9
0.99 0.87 5.8

FIG. 3. Cosmic censorship at play in Einstein-Maxwell theory.
Upper panel: charge-to-mass ratio Q̄BH

f of the final BH (dots) and
total charge-to-mass ratio Q̄ST

i of the spacetime at the beginning
of the simulations (crosses) for the collapse in Einstein-Maxwell
theory. For low values of q the incoming pulse is absorbed by the
BH, and Q̄BH

f increases with q, while for higher values of q it
decreases due to the electric repulsion and superradiance. Final
configurations with an overcharged BH have never been pro-
duced. Middle panel: change of the BH mass during the
simulation. For high values of q superradiance takes place and
extracts mass from the initial BH. Lower panel: in all simulations
the BH area increases, in agreement with the BH area law. The
dotted lines in the three panels correspond to the threshold values
for the superradiance condition summarized in Table I.
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where ϕH ¼ ϕðRHÞ is the scalar field on the horizon. Using
a shooting method for finding ϕH with boundary condition
ϕðr → ∞Þ ¼ 0, we obtain the scalarized charged BH
solution (see also Refs. [33,34] where an equivalent
computation has been performed). In Fig. 4 we present
the domain of the existence of nodeless scalarized solutions
in this theory. The existence line is the threshold for the
stability of the RN BH, whereas the solutions on the critical
line are singular at the horizon. As shown in Fig. 4, for a
given value of λ < 0, scalarized BHs in this theory can exist
in a certain range of charge-to-mass ratio and their
maximum value of Q̃=M can exceed the RN bound.

2. Challenging the cosmic censorship I:
Dynamical formation of scalarized charged BHs

Let us move to study the dynamical formation of
overcharged BHs in the presence of a nonminimal cou-
pling. We set the coupling parameter to λ ¼ −500 in such a
way that the dynamics of the spontaneous scalarization is
sufficiently fast and the computational cost of the simu-
lation is moderate.
The setup of our gedanken experiment is the following.

We shall initially throw a small real scalar field onto a RN
BH in a region of the parameter space in which the BH is
unstable and scalarizes. We then throw a second wave
packet (this time made of a charged scalar field) which
reaches the BH on longer time scales, i.e. when the BH is
reaching a stationary configuration. Given the separation of
scales, our setup is similar to trying to overcharge a hairy
charged BH from the onset.
Thus, we wish to construct the initial configurations in

such a way that the complex scalar field reaches the horizon
sufficiently after the real scalar field. To this aim we use the
same parameters as the previous analysis for the initial
profile of ξ and we initialized ϕ and Π to

ϕðr; t ¼ 0Þ ¼ A0 exp

�
−
ðr − r0Þ2

σ20

�
;

Πðr; t ¼ 0Þ ¼ 0; ð77Þ

where A0 ¼ 0.0003, r0=M ¼ 10 and σ0=M ¼ ffiffiffi
8

p
. This

initial profile coincides with the one used in Ref. [33]. Note
that the amplitude of ϕ can be small since, owing to the
tachyonic instability, the real scalar field initially grows
exponentially during scalarization. The initialization pro-
cedure is the same as in the previous section, with the
difference that now the equations contain also the terms
depending on ϕ as well as the corresponding dynamical
equation for it. Initially, the real scalar field has negligible
support near the BH so we can consider the latter to be
initially described by the RN metric. The grid parameters,
the time step, and the end time of the simulations are set to
the same values as in the previous section.
During the evolution we obtain stable hairy BHs with

nonvanishing profiles of the real scalar field. To compute
the mass of the scalarized BHs we cannot use Eq. (70),
since it is based on the hypothesis that the BH is
described by the RN metric. An alternative strategy for
extracting the mass could be to integrate the evolution
equations for longer times, in such a way that the real
scalar field profile of the final BH has reached a region of
the spacetime large enough to compute the ADM mass
explicitly. However this procedure is computationally
expensive, since it requires large numerical grids and
large integration times. We instead checked that at t ¼ T
the system has reached its final configuration near the
horizon while the contribution from the complex scalar
field can be neglected. In this case we can use the horizon
data to construct a static scalarized BH solution from
which we can then compute the ADM mass. This
procedure heavily reduces the computational cost since
it does not require to evolve the full system of equations
for very long times.
The stationary configuration can be solved as previously

explained (see Ref. [33] for details), using the ansatz (74).
In the integration of the equations the horizon areal radius
RH and the horizon electric charge Q̃AH are taken from the
numerical evolution at t ¼ T, while ϕðRHÞ and δðRHÞ are
found with a shooting procedure. We used the Newton’s
method as a root-finding algorithm. Since the scalarized
solution is not unique, we initialized ϕðRHÞ using the end
state of the evolution, in order to obtain the required profile
of the real scalar field.
We then computed the scalar charge D as

D ¼ −r2
dϕ
dR

				
R¼R∞

; ð78Þ

where R∞ is the areal radius at the outer boundary, and the
ADM mass as [33]

FIG. 4. Domain of the existence of nodeless scalarized solu-
tions in Einstein-Maxwell-scalar theory with F½ϕ� ¼ 1 − λϕ2.
See also Ref. [34] for an equivalent domain plot.
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M ¼ mðR∞Þ þ
Q̃2

AH þD2

2RAH
: ð79Þ

In order to show the accuracy of this procedure, we
performed a numerical integration of the field equations
in the case of Q̄BH

i ¼ 0.9 until t ¼ T ¼ 500M, using a grid
that extends up to r∞ ¼ 550M; we then compared the
profile of the scalar field at the final time with the static
scalarized solution computed extracting the parameters at
t ¼ 100M. The results are shown in Fig. 5, where we can
see that the static solution accurately reproduces the end
state of the numerical evolution, and the integration time
T ¼ 100M is sufficient to obtain reliable estimates of the
mass and electric charge of the final scalarized BH.
Once the mass has been extracted we can compute the

charge-to-mass ratio of the final BH using the definition of
the charge, Eq. (51).
One of our main results is shown in Fig. 6, where one can

see that overcharged configurations are generically pro-
duced. Nonetheless, the endstate of the collapse is always a
(scalarized) BH and no naked singularities were produced
in our gedanken experiments. This suggests that the cosmic
censorship is not a prerogative of GR but is also at play in
Einstein-Maxwell-scalar theory. We will further discuss
this point in Sec. III C 4.
For the static solution that we constructed the profile

of the electric field is given by Eq. (55); in this expression
the charge Q̃ accounts only for the contribution from the
charged fields (see discussion in Sec. II C), and ϕ appears at
the denominator via the coupling function, which is
positive. Therefore the appearance of overcharged solutions
may be explained by the action of the real scalar field that
quenches the electric interaction, allowing to construct
configurations in which a large amount of charged matter is

confined within the horizon due to gravitational attraction.

In this sense the electric charge Q ¼ Q̃
F½ϕ� can be interpreted

as a parameter that represents the “strength” of the
electromagnetic interaction. In Fig. 7 we show the charge
enclosed in the 2-sphere of areal radius R for a static
scalarized configuration, using the two definitions (50) and
(51); as we can see Q̃ is constant, while Q decreases near
the horizon due to the presence of the real scalar field.

FIG. 5. Profiles of the real scalar field obtained from the
numerical integration at T ¼ 500M (blue) and from the shooting
procedure extracting the parameters at t ¼ 100M (orange). The
static scalarized solution is an excellent approximation of the end
state of the evolution for R < T, as expected.

FIG. 6. Charge-to-mass ratio ˜̄QBH
f ¼ Q̃BH

f

MBH
of the final BH (dots)

and total charge-to-mass ratio Q̄ST
i of the spacetime at the

beginning of the simulations (crosses) for the collapse in
Einstein-Maxwell-scalar theory. This plot should be compared
with the top panel of Fig. 3. In this case overcharged configu-
rations are formed; this is due to the presence of the nonminimal
coupling that quenches the electromagnetic interaction and
allows to enclose a large amount of charge within the horizon.

FIG. 7. Charge enclosed in the 2-sphere of areal radius R for a
static scalarized solution computed at the end of the numerical
evolution. Q̃ accounts only for the contribution of the charged
field, and is constant in Rwhen the complex scalar ξ is absent. On
the other hand, Q can be seen as a parameter that measures the
strength of the electromagnetic interaction, and it decreases near
the horizon for a scalarized configuration.

CORELLI, IKEDA, and PANI PHYS. REV. D 104, 084069 (2021)

084069-12



Finally, it is worth mentioning that for high values of
Q̄BH

i overcharged final configurations are produced even
when q ¼ 0 and the field ξ does not carry any contribution
to the BH charge. This happens because part the mass of
the BH is ejected in a scalar spherical wave during the
scalarization process.

3. Induced descalarization of hairy BHs by absorption
of opposite-charged wave packets

Next, we study the possibility of forming a RN BH from
a previously scalarized configuration.
As we can see from Fig. 4 for low values of the BH

charge-to-mass ratio the system does not admit scalarized
configurations. Our objective is to dynamically produce a
RN BH from a previously scalarized one. To do this we will
start from a RN BH and induce the spontaneous scalariza-
tion with a perturbation of the real scalar field; once the
central BH has reached a stable configuration, we will send
a pulse of the complex scalar field with opposite charge in
such a way that the final BH has charge close to zero and it
is forced to descalarize.
We construct the initial configuration using the same

shooting procedure described before, setting the BH mass
to MBH

i ¼ M and the initial charge-to-mass ratio to
Q̄BH

i ¼ 0.5. For the real scalar field we consider the profile
in Eq. (77), while for the complex scalar field we exchange
the real and the imaginary parts in Eq. (57) (in order to have
a wave packet with opposite charge) and we set the
parameters to

B0 ¼ 0.0004; k0M ¼ 5;

σ2ξM
2 ¼ 2.5; r0;ξ=M ¼ 120: ð80Þ

We also set qM ¼ 20. In this way we obtain an inward-
moving, negatively charged initial profile for ξ, such that
the total charge of the spacetime is close to zero. The profile
of the electric charge contained in the 2-spheres of radius r
at t ¼ 0 is shown in Fig. 8.
For the numerical evolution we chose a grid that extends

up to r∞ ¼ 400M, with a grid step Δr ¼ 0.01M. The CFL
factor was CFL ¼ 0.5 and the final integration time
was T ¼ 240M.
In Fig. 9 we show some snapshots1 of the evolution of ϕ

(in blue) and the real part of ξ (in red). As we can see in the
first part of the evolution the BH is not affected by the
complex scalar field and scalarizes reaching a stable
configuration near in the central region. Later, the charged
pulse reaches the horizon and is absorbed by the BH that,
being in a region of the parameter space in which there is no
stable scalarized solution, descalarizes leaving a final
RN BH.

To check that the BH at t ¼ 100M can be described by a
scalarized solution, we compared the profile of the scalar
field with the static scalarized configuration obtained using
the shooting procedure described in the previous section.
The result is shown in Fig. 10, where we can see that there
is a good agreement between the two profiles. Thus we can
assume that in the central region the scalarization process is
completed, and that the subsequent part of the evolution
shown in Fig. 9 (i.e., t≳ 100M) can be considered a
descalarization process.

4. Challenging the cosmic censorship II:
Superradiantly induced descalarization

From the results shown in Fig. 6 we observe that
scalarized BHs beyond the RN bound can form dynami-
cally and their final charge-to-mass ratio grows with the
charge of the initial wave packet q. On the other hand, the
domain plot in Fig. 4 shows that, for a fixed value of λ < 0,
scalarized BHs can exist only below a critical value of the
charge-to-mass ratio. Although the critical value is above
unity and depends on λ, the situation is akin to the RN case.
It is therefore natural to ask whether one can overcharge a
scalarized BH past its own extremality, possibly producing
a naked singularity. In this section we study this problem,
showing that also in this case the superradiant extraction of
the BH charge and mass plays a crucial role to bound the
final charge-to-mass ratio below extremality.
To this purpose, we simulate the following process: we

start with a RN BH and a small perturbation of the real
scalar field so that the BH scalarizes; once the scalarization
process has completed in a region sufficiently large around
the horizon, a pulse of the complex scalar field interacts

FIG. 8. Profile of electric charge contained in the 2-spheres of
radius r at t ¼ 0. The charge carried by the complex scalar field
is such that the total charge in the spacetime is close to zero. In
this way when the pulse is absorbed by the BH, the system will
be in a region of the parameter space in which no scalarized
solutions exist.

1Some animations of this gedanken experiment are available
online [45].
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with the BH, and sets it to a new equilibrium state that we
want to study.
In this case the horizon electric potential that appears in

Eq. (73) should be computed by integrating Eq. (75), in
which the coupling function appears at the denominator.
Therefore in order to encounter the superradiant behavior
for low values of q, we chose a small (negative) value of the
coupling functions: λ ¼ −10. This makes the initial scala-
rization time scale longer than in the λ ¼ −500 case
previously explored, so we need to throw the complex
scalar field sufficiently later in order to make sure it

interacts with the BH after the scalarization has completed.
We therefore place the initial pulse of ξ far from the origin,
setting the initial profile of ξ according to Eq. (57) with
parameters

B0 ¼ 0.0003; k0M ¼ 2;

σ2ξM
2 ¼ 0.5; r0;ξ=M ¼ 150: ð81Þ

This guarantees that, when the pulse of the complex scalar
field reaches the BH, the scalarization process is completed
in the horizon region. We also chose a smaller k0 than in the
previous case of standard Einstein-Maxwell theory in order
for superradiance to occur at smaller values of q.
We implemented a nonuniform grid step in order to

reduce the computational cost of the simulations.
In particular the radial coordinate was transformed
according to

r̃ ¼ CðrÞ ¼ η2rþ
1 − η1
Δ

ln

�
1þ e−Δðr−R1Þ

1þ eΔR1

�

þ 1 − η2
Δ

ln

�
1þ e−Δðr−R2Þ

1þ eΔR2

�
;

∂r̃
∂r ¼ C0ðrÞ ¼ η1 þ

1 − η1
1þ e−Δðr−R1Þ þ

1 − η2
1þ e−Δðr−R2Þ ; ð82Þ

where again it is understood that r is the new coordinate
and r̃ is the old one. We choose Δ ¼ 1=M, η1 ¼ 0.1,
η2 ¼ 10, R1 ¼ 10M, and R2 ¼ 200M. The profile of the
derivative C0ðrÞ is shown in Fig. 11; for low values of r this
transformation is analogous to the one used for the collapse
on flat background, while far from the origin large intervals

FIG. 10. Comparison between the profile of the real scalar field
at T ¼ 100M for the induced descalarization process (blue) and
the static scalarized configuration obtained with the shooting
procedure described in Sec. III C 2 (orange). As we can see there
is a good agreement between the two profiles, and we can consider
that in the central region the scalarization process is completed.

FIG. 9. Snapshots of the evolution of the real scalar field ϕ
(blue) and the real part of the complex scalar field ξ (red) for the
process of scalarization and subsequent descalarization of a RN
BH. The black dashed line shows the position of the apparent
horizon. Initially the complex scalar field does not affect the
dynamics of the system and the perturbation of the real scalar
field triggers the spontaneous scalarization of the BH, which
reaches a stable configuration. Then, when the complex scalar
field reaches the horizon it is absorbed by the BH, which
descalarizes leaving a final RN BH.
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in the coordinate r̃ are mapped into small intervals in r. In
this way we can use a relatively large grid step without
losing accuracy at the horizon, and we satisfy the condition
that the signals do not reach the outer boundary even with a
smaller numerical grid.
To construct the initial configuration we used the same

shooting procedure as for the other simulations described in
this section, imposing the following asymptotic behaviors:

Er ¼ Q∞

r̃2 ∂r̃
∂r
þO

�
1

r̃3

�
;

ψ ≔ eχ ¼ 1þMADM

2r̃
þO

�
1

r̃2

�
;

K ¼ O
�
1

r̃3

�
;

φ ¼ Q∞

r̃
þO

�
1

r̃3

�
; ð83Þ

where again MADM is the ADM mass and Q∞ ¼ Qðr∞Þ.
The outer boundary was placed at r∞M ¼ 250, and the grid

step was Δr
M ¼ 0.025. The final time of integration was

T
M ¼ 300, and CFL ¼ 0.05.
We computed the final BH mass using the static

scalarized solution that approximates the configuration
of the system in the central region, and we studied the
behavior of the charge-to-mass ratio of the final BH; the
results are shown in the upper panel of Fig. 12. As we can
see the charge-to-mass ratio increases for small values
of q, then reaches a peak and starts decreasing, as in the
Einstein-Maxwell case. In the middle panel we show the
mass difference between the final BH and the intermediate

scalarized one. Interestingly, the mass of the final BH is
smaller, showing that superradiance is at play also for the
scalarized BH.2 Indeed, also in this case the maximum of

FIG. 11. Derivative of the transformation r̃ ¼ CðrÞ for the
implementation of the nonuniform grid step. In the horizon region
this transformation is analogous to the one used for the collapse
on flat background, allowing larger grid steps without losing
accuracy. Instead far from the origin large regions in the
coordinate r̃ are mapped into small regions in r, thus allowing
us to use of a smaller numerical grid.

FIG. 12. Results for the collapse of a complex scalar field in
Einstein-Maxwell-scalar theory, with quadratic coupling and

λ ¼ −10. Upper panel: charge-to-mass ratio ˜̄QBH
f of the final

BH (dots) and total charge-to-mass ratio Q̄ST
i of the spacetime at

the beginning of the simulations (crosses). Middle panel: mass
difference between the final and the intermediate scalarized BH.
Lower panel: scalar charge of the final BH. The charge-to-mass
ratio of the final BH increases for low values of q, then it reaches
a peak and starts decreasing. The negative ΔMBH for high values
of q indicates the presence of superradiance. This mechanism can
be efficient enough that the final charge-to-mass ratio falls below
the threshold value for scalarization (gray dashed line in the upper
panel), leading to the descalarization of the BH.

2Note that a linear study of superradiant scattering off a
scalarized BH in Einstein-Maxwell-scalar theory is much more
involved than in the RN case in Einstein-Maxwell theory, since
electromagnetic and scalar perturbations are coupled to each
other. Hence, in this case we do not have a prediction for the
threshold value of q.
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the charge-to-mass ratio roughly corresponds to the onset
of superradiance at the nonlinear level. As for the collapse
of the complex scalar field on a RN BH in Einstein-
Maxwell theory, the extraction of charge is more efficient

than the extraction of mass, so that ˜̄QBH
f decreases. In other

words, although the final charge-to-mass ratio can exceed
the RN bound, it cannot grow indefinitely due to super-
radiance and reaches a maximum which is below the
extremal value.
Interestingly enough, superradiance can be so efficient

that the charge-to-mass ratio of the final BH can eventually
cross the scalarization threshold (gray dashed line in the
upper panel of Fig. 12), leading to superradiantly induced
descalarization. This can be clearly seen from the behavior
of the final scalar charge D (lower panel of Fig. 12): for
large values of q the scalar charge goes to zero, indicating
that the final BH has lost all its scalar hair. See [45] for
some animations of these simulations.
Finally, in Fig. 13 we show the behavior of the difference

between the final and the initial horizon areas. The area
always increases, as expected from the area law, which
holds also in our model since the null energy condition is
satisfied.

IV. CONCLUSION

We have performed extensive nonlinear numerical sim-
ulations of the spherical collapse of (charged) wave packets
in flat spacetime and onto a charged black hole within
Einstein-Maxwell theory and in an extension of the latter
featuring nonminimal couplings and a spontaneous scala-
rization mechanism. First, within Einstein-Maxwell theory,
we extended some previous analyses, confirming that no
naked singularities form in these simulations and the final
BH is always subextremal, in agreement with the cosmic
censorship conjecture. We then extended this result to

theories with spontaneous scalarization: although in that
case it is possible to form scalarized BHs with charge above
the RN bound, no naked singularities have been produced
in all our simulations. A crucial role to prevent the
formation of naked singularities and preserve the cosmic
censorship is played by the (fully nonlinear) superradiance
extraction of the BH charge and mass, which decreases the
final BH charge-to-mass ratio.
Furthermore, we showed that hairy BHs can descalarize

either by absorbing an opposite-charged wave packet or by
superradiant charge extraction, forming a subextremal RN
BH. Overall, our results suggest that the cosmic censorship
is at play also in Einstein-Maxwell-scalar theory featuring
spontaneous scalarization. As a by-product of our simu-
lations, we also studied, at the full nonlinear level, the
superradiant amplification of low-frequency charged wave
packets scattered off a charged (scalarized or not) BH. In
particular, the novel superradiantly induced descalarization
mechanism unveiled here deserves further studies. It would
be interesting to explore whether it is at play in BH binaries
to descalarize spin-induced scalarized BHs [46–48] in
modified gravity (see Ref. [49] for dynamical descalariza-
tion in the context of BH binaries beyond GR), in which
case it could have relevant astrophysical applications.
We expect that at least some of the phenomenology

unveiled here for nonminimal Einstein-Maxwell-scalar
theory would be similar for modified theories of gravity
featuring the same scalarization mechanism, such as
Einstein-scalar-Gauss-Bonnet gravity [25–27]. Recent
advances in numerical simulations within these theories
[50,51] can be used to perform similar gedanken experi-
ments as those presented here, thus challenging the cosmic
censorship at the nonlinear level also in extensions of GR.
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APPENDIX A: NULL ENERGY CONDITION

In this Appendix we show that in Einstein-Maxwell-
scalar theory with a positive coupling function and in
spherical symmetry, the null energy condition is always
satisfied. To prove this statement we have to show that

Tμνmμmν ≥ 0 ðA1Þ

for any null vector mμ, where Tμν is the total energy-stress
tensor. The latter is made of three terms, respectively due to

FIG. 13. Difference between the final and initial BH area. As
we can see the BH area always increases, in agreement with the
area law.
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the real scalar field ϕ, the complex scalar field ξ, and the
electromagnetic field Fμν.
Let us consider these three terms separately. For the two

scalar fields one can show that

TSF
μνmμmν ¼ 1

4π
ðmμ∇μϕÞ2 ≥ 0; ðA2Þ

Tξ
μνmμmν ¼ 1

2π
jmμDμξj2 ≥ 0: ðA3Þ

Finally, for the electromagnetic component we have

TEM
μν mμmν ¼ −

1

4π
mμFμαFα

νmνF½ϕ�: ðA4Þ

Now, in spherical symmetry the magnetic field is absent
and we can perform a 3þ 1 decomposition of the electro-
magnetic tensor as Fμν ¼ nμEν − nνEμ, where the electric
field Eμ is orthogonal to nμ (see Ref. [39]); therefore

TEM
μν mμmν ¼ −

1

4π
F½ϕ�mμmν½EμEν − nμnνðEjEjÞ�

¼ 1

4π
F½ϕ�½ðmμnμÞ2ðEjEjÞ − ðmiEiÞ2�; ðA5Þ

Since mμ is a null vector

0 ¼ mμmμ ¼ mμgμνmν ¼ mμðγμν − nμnνÞmν

¼ mimi − ðmμnνÞ2; ðA6Þ

and thus ðmμnνÞ2 ¼ mimi. Substituting in Eq. (A5) we
obtain that if F½ϕ� ≥ 0 then

TEM
μν mμmν ¼ 1

4π
F½ϕ�½mimiðEjEjÞ − ðmiEiÞ2� ≥ 0; ðA7Þ

where in the last step we used the Cauchy-Schwarz
inequality. Since the term Tμνmμmν can be decomposed
in a sum of three positive terms then the null energy
condition (A1) is satisfied.

APPENDIX B: IMPLEMENTATION
OF THE PIRK INTEGRATION SCHEME

Here, we summarize the PIRK integration scheme. The
equations of motion are written as [42,43]

∂tu ¼ L1ðu; vÞ;
∂tv ¼ L2ðuÞ þ L3ðu; vÞ; ðB1Þ

where u schematically denotes the variables that are
evolved fully explicitly whereas v the variables that are
evolved partially implicitly.
We used an analogous procedure to Ref. [52]. Namely

we first evolved explicitly the variables X, a, b, α, βr, Er, ξ

and ϕ. As a second step we evolved partially implicitly Aa
and K, using

L2ðKÞ ¼ −D2α;

L3ðKÞ ¼ βr∂rK þ α

�
A2
a þ 2A2

b þ
1

3
K2

�

þ 4παðSa þ 2Sb þ EÞ; ðB2Þ

L2ðAaÞ ¼ −
�
DrDrα −

1

3
D2α

�
þ α

�
Rr

r −
1

3
R

�
;

L3ðAaÞ ¼ βr∂rAa þ αKAa −
16πα

3
ðSa − SbÞ: ðB3Þ

Then, we evolved Δ̂r, Π, P, ar and φ using

FIG. 14. Convergence of the code. Continuous lines denote the
violation of the Hamiltonian constraint for the two spatial
resolutions, while the dots denote the behavior corresponding
to the higher resolution rescaled by the factor indicated in the
legend. These plots show third-order convergence near the
horizon, and second-order convergence in the outer region.

CHALLENGING COSMIC CENSORSHIP IN … PHYS. REV. D 104, 084069 (2021)

084069-17



L2ðΔ̂rÞ ¼
2

b
∂r

�
βr

r

�
− 2αðAa − AbÞ

2

br

þ − 2

a
ðAa∂rαþ α∂rAaÞ

þ 2α

a

�
∂rAa þ ðAa − AbÞ

�∂rb
b

þ 2

r

�

− 3Aa
∂rX
X

−
2

3
∂rK

�

þ 1

a
∂2
rβ

r þ σ

3

1

a
∂r∇̂mβ

m;

L3ðΔ̂rÞ ¼ βr∂rΔ̂r − Δ̂r∂rβ
r þ 2αAaΔ̂r

þ 2
σ

3
Δ̂r∇̂mβ

m −
16πα

a
jr; ðB4Þ

L2ðΠÞ ¼
αX2

a

�
ð∂rϕÞ

�
2

r
−
∂ra
2a

þ ∂rb
b

−
∂rX
X

�
þ ∂2

rϕ

�

þ ð∂rϕÞð∂rαÞ
a

X2 þ 1

2

αa
X2

ðErÞ2 δF½ϕ�
δϕ

L3ðΠÞ ¼ βr∂rΠþ αΠK; ðB5Þ

L2ðPÞ ¼
αX2

a

�
ð∂rξÞ

�
2

r
−
∂ra
2a

þ ∂rb
b

−
∂rX
X

�
þ ∂2

rξ

�

þ ð∂rξÞð∂rαÞ
a

X2 þ 2iqα

�
φPþ ar∂rξ

a
X2

�

− q2α

�ðarÞ2
a

X2 − φ2

�
ξ

L3ðPÞ ¼ βr∂rPþ αPK; ðB6Þ

L2ðarÞ ¼ ar∂rβ
r − ∂rðαφÞ −

αa
X2

Er

L3ðarÞ ¼ βr∂rar; ðB7Þ

L2ðφÞ ¼ −
αX2

a

�
ar

�
2

r
−
∂ra
2a

þ ∂rb
b

−
∂rX
X

�
þ ∂rar

�

−
ð∂rαÞar

a
X2

L3ðφÞ ¼ βr∂rφþ αφK: ðB8Þ

Finally, we evolved Br fully implicitly.

APPENDIX C: CONVERGENCE TESTS

We checked the convergence of our code by computing
the violation of the Hamiltonian constraint and studying its
scaling with respect to the grid step.
We evolved the evolution equations using the initial

condition discussed in Sec. III C, setting the initial BH
charge-to-mass ratio to 0.9, and qM ¼ 5. The grid extends
from the origin up to r∞ ¼ 250M, and the grid steps we
used are Δr ¼ 0.01M and Δr ¼ 0.005M. In both cases the
CFL factor was set to CFL ¼ 0.4.
We then computed the violation of the Hamiltonian

constraint at T ¼ 100M, and the results are shown in
Fig. 14. As we can see from the plot, near the horizon the
violation of the Hamiltonian constraint behaves as a third-
order term, while in an outer region it scales as a second-
order term, in agreement with the order of our numerical
scheme.
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