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The objective of this paper is to construct the accurate (say, to 11 decimal places) frequencies of the
quasinormal modes of the five-dimensional Schwarzschild-Tangherlini black hole using three major
techniques: the Hill determinant method, the continued fractions method, and the WKB-Padé method and
to discuss the limitations of each. It is shown that for the massless scalar, gravitational tensor, gravitational
vector, and electromagnetic vector perturbations considered in this paper, the Hill determinant method and
the method of continued fractions (both with the convergence acceleration) always give identical results,
whereas the WKB-Padé method gives the results that are amazingly accurate in most cases. Notable
exception are the gravitational vector perturbations (j ¼ 2 and l ¼ 2), for which the WKB-Padé approach
apparently does not work. Here we have an interesting situation in which the WKB-based methods (WKB-
Padé and WKB–Borel–Le Roy) give the complex frequency that differs from the result obtained within the
framework of the continued fraction method and the Hill determinant method. For the fundamental mode,
deviation of the real part of frequency from the exact value is 0.5% whereas the deviation of the imaginary
part is 2.7%. For l ≥ 3 the accuracy of the WKB results is similar again to the accuracy obtained for other
perturbations. The case of the gravitational scalar perturbations is briefly discussed.

DOI: 10.1103/PhysRevD.104.084066

I. INTRODUCTION

The quasinormal modes of the static and spherically
symmetric black holes are the solutions of the ordinary
second-order Schrödinger-like differential equation

d2

dx2
ψ þ ðω2 − V½rðxÞ�Þψ ¼ 0; ð1Þ

where V½rðxÞ� is the potential, x is the tortoise coordinate,
and ψ ¼ ψ ½rðxÞ� describes the radial perturbations, satisfy-
ing the purely outgoing boundary conditions at infinity and
purely ingoing at the horizon. We assume that the potential
is constant as jxj → ∞ (the limits may be different) and has
a maximum at some point x0. The complex frequencies of
the quasinormal modes, ω, the real part of which gives the
frequency of the oscillation and the imaginary part
describes damping of the signal, are labeled by the spin
weight, j, the multipole number, l, and the overtone
number n. Since their discovery, the quasinormal modes
have been the subject of intense research and debate.
Although currently we have a good understanding of their
nature and the reliable results at our disposal span from
wormholes to black holes and from pulsars to analog
black holes, there are still more questions than answers.

The interested reader can consult a few excellent review
papers [1–4]. (See also Ref. [5].)
A huge number of results that have been obtained so far

can be classified with respect to the type and dimension of
the black hole, the type of the perturbations, adapted
methods, and accuracy. The more specific classification
may differentiate between long-lived and highly damped
modes, presence of the algebraically special solutions, and
the aims of the researcher. In this paper we shall concentrate
on the static and spherically symmetric black holes
described by the Schwarzschild-Tangherlini line element

ds2 ¼ fðrÞdt2 − f−1ðrÞdr2 − r2dΩ2
D−2; ð2Þ

with

fðrÞ ¼ 1 − r3−D; ð3Þ

where D is the dimension. Our aim is twofold. First, we
calculate the highly accurate (accurate to, say, 11 decimal
places) complex frequencies of the quasinormal modes of
the five-dimensional Schwarzschild black holes for the
massless scalar, gravitational tensor, gravitational vector,
and electromagnetic vector perturbations. In this regard it
can be thought of as an extension of the important papers
[6,7]. The methods of choice are the WKB-Padé method,
the Hill determinant method, and the method of continued*jurek@kft.umcs.lublin.pl
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fractions. Second, we compare the methods and the
accuracy of the results they give. We shall accept the
result only if at least two methods agree to the assumed
accuracy. All the complex frequencies presented in this
paper do satisfy this requirement, and in most cases there is
full agreement of all three approaches. Additionally, each
result obtained with the Hill determinant method has been,
in fact, obtained in the course of the two independent
calculations using the four-term and the three-term recur-
rences. Similarly, the method of continued fraction has
been implemented in two different ways.
Only the last of the three methods is well known and

widely used. Indeed, since the publication of Leaver’s
paper [8] in 1985, the continued fractions method (with
smaller or greater modifications) have been successfully
employed in numerous cases. Usually, it is described as
robust, highly accurate, stable, and reliable. On the other
hand, the Hill determinant method [9] is less known. It is
criticized for losing the accuracy of the higher-order
overtones. However, such behavior is also typical for other
methods. It should be emphasized that in the continued
fractions method one can find asymptotic expression
describing the tail (i.e., the remaining part of the infinite
continued fraction) that certainly improves the quality of
approximants. All this reduced the Hill determinant method
to the inferior role of supplier of the initial values of ω for
more mature methods. In this paper however, we shall
propose an extension of the Hill determinant method,
which, in our opinion, partially answers the criticism
pronounced by some authors.
Finally, the WKB-Padé method [10–12] is a recent

extension and modification of the Iyer-Will approach
[13] (and its further generalizations [14]). It differs from
the previously discussed methods in several aspects, the
most important of which is its “black box” nature with the
potential VðxÞ treated as an input and the accurate quasi-
normal modes as the output. As in other WKB-based
methods, the frequency of the quasinormal mode is
(formally) given by a series of terms constructed, for a
given j and l, solely from the derivatives of the potential
VðxÞ at x0. Since this series is divergent, one can try to use
some standard techniques to obtain sensible results. For this
purpose, it has been proposed to apply the Padé transform
to the truncated series. This suggests that the WKB-Padé
method could be, in principle, applicable to a wide class of
potentials. Indeed, it has been shown that in many cases this
procedure, despite its simplicity, yields amazingly accurate
results. For example, and it is really impressive, all three
methods give (to 32 digits accuracy) exactly the same
frequency for the lowest fundamental mode of the gravi-
tational perturbations of the Schwarzschld black hole:

ω ¼ 0.74734336883608367158698400595410

− 0.17792463137787139656092185436905i: ð4Þ

Moreover, to 28 digits accuracy this result is confirmed by
independent calculations employing the confluent Heun
functions [15].
The literature on the quasinormal modes of the higher-

dimensional Schwarzschild-Tangherlini black hole is quite
rich. For problems not covered here the interested reader
may consult, for example, Refs. [16–20] and the references
cited therein. Specifically, we shall not discuss behavior of
the quasinormal modes which can easily be inferred from
low accuracy calculations. The ideal situation we have in
mind is the following: Suppose that we have very accurate
measurements of the quasinormal frequencies ω and
our task is to choose between the black hole models.
From the astrophysical point of view the most important
ones are the long-lived modes, such as considered here. Our
second goal, beyond natural curiosity, is to compare
accuracy and overall performance of various competing
methods. Finally, it should be emphasized that in order to
understand its pros and cons, every new method should be
extensively tested against the existing accurate results.
Consequently the role played by the highly accurate
values of the quasinormal frequencies should not be
underestimated.
The paper is organized as follows. In Sec. II we provide

basic equations and introduce the calculational strategies.
Specifically, in Sec. II A we discuss the Hill determinant
method. To the author’s knowledge it is a first attempt to
improve quality of the method by using the series accel-
eration techniques in the construction of the complex
frequencies of the quasinormal modes and a first attempt
to employ the Hill determinant method for the perturbations
of the higher-dimensional black holes. We also show that
the Gauss elimination is not a necessary ingredient for the
calculations involving four-term recurrence relations. (See
also Ref. [21].) In Sec. II B we introduce the continued
fraction method with the series acceleration and in Sec. II C
we briefly discuss the WKB-Padé method. In Sec. III Awe
present the results of the calculation of the quasinormal
frequencies of massless scalar and gravitational tensor
perturbations. We follow the normalization used in
Ref. [6]. Similarly, in Sec. III B we discuss our results
for gravitational and electromagnetic vector perturbations.
Finally, in Sec. IV we briefly discuss our preliminary
calculations of the quasinormal frequencies of the gravi-
tational scalar perturbations.

II. THE QUASINORMAL FREQUENCIES
OF FIVE-DIMENSIONAL SCHWARZSCHILD-

TANGHERLINI BLACK HOLES

The differential (master) equation describing the mass-
less scalar, gravitational tensor, gravitational vector, and
electromagnetic vector perturbations of the D-dimensional
Schwarzschild-Tangherlini black hole [22–25] (D > 4) can
be written in a compact form:
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d2

dx2
ψ þ

�
ω2 − fðrÞ

�
lðlþD − 3Þ

r2
þ ðD − 2ÞðD − 4Þ

4r2
þ ð1 − j2ÞðD − 2Þ2

4rD−1

��
ψ ; ð5Þ

where j is given by

j ¼

8>><
>>:

0; massless scalar and gravitational tensor perturbations:

2; gravitational vector perturbations;
2

D−2 ; electromagnetic vector perturbations:

ð6Þ

On the other hand, the potential of the gravitational scalar perturbations is more complicated:

V ¼ fðrÞQðrÞ
4r2½2mþ dðdþ 1Þξ�2 ; ð7Þ

where

QðrÞ ¼ d4ðdþ 1Þ2ξ3 þ dðdþ 1Þ½4ð2d2 − 3dþ 4Þmþ dðd − 2Þðd − 4Þðdþ 1Þ�ξ2
− 12d½ðd − 4Þmþ dðdþ 1Þðd − 2Þ�mξþ 16m3 þ 4dðdþ 2Þm2; ð8Þ

d ¼ D − 2, m ¼ lðlþ d − 1Þ − d, ξ ¼ r3−D. It does not
belong to the class of potentials described by Eq. (5), and as
such it will not be considered here in any depth. Only a few
preliminary results obtained within the framework of the
WKB-Padé method will be briefly discussed at the end of
this paper. This case certainly deserves a separate and more
thorough study.
Following [6], we shall therefore confine ourselves to the

perturbations characterized by j ¼ 0; 2=3, and 2. Since one
of the aims of this paper is to perform the stress tests of the
three methods briefly discussed in the Introduction, one can
also use some “unphysical” values of j. For the even-
dimensional black hole the perturbation function ψðrÞ can
be expanded as a power series,

ψðrÞ ¼
�
r − 1

r

�
−iω=ðD−3Þ

eiωr
X∞
n¼0

an

�
r − 1

r

�
n
; ð9Þ

whereas for odd D it can be expanded as

ψðrÞ ¼
�
r − 1

rþ 1

�
−iω=ðD−3Þ

eiωr
X∞
n¼0

an

�
r − 1

r

�
n
: ð10Þ

Upon substituting the expansions (9) and (10) into themaster
equation (5) one obtains a (2D − 5)-term recurrence relation
and (2D − 6)-term recurrence relation, respectively.
Now, let us confine to the five-dimensional case. As has

been observed earlier, it is, in a sense, a typical one [6].
Indeed, for 5 ≤ D ≤ 9 the continued fraction method based
on Eqs. (9) and (10) can be used with only minor
modifications. Of course, the complexity of the recurrences
increases with dimension, but the general strategy is

practically unchanged. The D ≥ 10 case requires some
care in defining expansions of the functions ψðrÞ (see,
e.g., [18]). Moreover, D ¼ 5 is the lowest dimension in
which the recurrence requires (in the continued fraction
method) application of the Gauss elimination and the
lowest dimension in which one can use the Hill determinant
method in two different ways.
Making use of (10), after some algebra, one obtains four-

term recurrence relations:

0 ¼ α0a1 þ β0a0;

0 ¼ α1a2 þ β1a1 þ γ1a0;

0 ¼ αkakþ1 þ βkak þ γkak−1 þ δkak−2; ð11Þ

where

αk¼−2ðkþ1Þðk−2ρþ1Þ;

βk¼5k2þkð5−16ρÞþlðlþ2Þþ16ρ2−8ρþ9

4
ð1−j2Þþ3

4
;

γk¼−4k2þ8kρ−
9

2
ð1−j2Þþ4; ð12Þ

δk ¼ k2 − kþ 9

4
ð1 − j2Þ − 2; ð13Þ

and ρ ¼ iω=2. It should be noted that our recurrence
relations differ from these presented in Ref. [6] and can
easily be constructed or checked with the aid of any
computer algebra system.

ACCURATE QUASINORMAL MODES OF THE FIVE- … PHYS. REV. D 104, 084066 (2021)

084066-3



A. The Hill determinant method

Inspection of the recurrence relations (11) shows that they define a sparse banded matrix H of the width w ¼ 4:

H ¼

2
66666666666666664

β0 α0

γ1 β1 α1

δ2 γ2 β2 α2

δ3 γ3 β3 α3

. .
.

δn−1 γn−1 βn−1 αn−1

δn γn βn αn

. .
.

3
77777777777777775

ð14Þ

The condition that a nontrivial solution of the recurrence
exists is given by the equation

detH ¼ 0: ð15Þ

Now, let hk denote determinant of ðkþ 1Þ × ðkþ 1Þmatrix
constructed from the infinite matrix H. Calculations of the
determinants of such matrices using standard techniques
may be impractical. The special form ofH suggests another
approach. Indeed, the Laplace expansion along nth row
gives simple recurrence formula

hn ¼ βnhn−1 − γnαn−1hn−2 þ δnαn−1αn−2hn−3: ð16Þ

Although Eq. (16) alone is sufficient for determination of
the quasinormal modes, having in mind other applications,
we transform the four-term recurrence relations to the
three-term ones. It can easily be done with the aid of the
Gauss elimination method. Standard manipulations give

α00a1 þ β00a0 ¼ 0;

α0kakþ1 þ β0kak þ γ0kak−1 ¼ 0; ð17Þ

where the primed coefficients are given by

α0k ¼ αk; ð18Þ

β0k ¼ βk;

β0k ¼ βk −
δk
γ0k−1

α0k−1; ð19Þ

γ0k ¼ γk;

γ0k ¼ γk −
δk
γ0k−1

β0k−1: ð20Þ

The thus-obtained three-term recurrence defines a tridiag-
onal matrix H0 (a sparse banded matrix of width 3):

H0 ¼

2
6666666666666664

β00 α00
γ01 β01 α01

γ02 β02 α02

. .
.

γ0n−1 β0n−1 α0n−1
γ0n β0n α0n

. .
.

3
7777777777777775

:

ð21Þ

Denoting the determinant of ðkþ 1Þ × ðkþ 1Þ matrix by
h0k, one has the following simple relation:

h0n ¼ β0nh0n−1 − γ0nα0n−1h
0
n−2; ð22Þ

which (formally) follows from the previous one by put-
ting δn ¼ 0.
The general idea of the calculations is quite simple: We

truncate the series expansion at some ñ, and calculate the
determinant, which is a polynomial (w ¼ 4) or a rational
function (w ¼ 3) of ρ. Subsequently, we find the roots, and,
finally, identify complex frequencies of interest. More
precisely, our strategy (the same in both cases) is as
follows: First, we calculate the roots of the polynomials
pi and identify the stable ones. With increasing i the roots
migrate on a complex plane and we consider the root as
stable, if its location does not change with increasing i to
the precision assumed. Sometimes, as we shall see, the
roots approach their limit in a quite interesting way. Finally,
we accelerate convergence of the series of the root
approximants using the well-known Wynn’s ϵ algorithm
[26]. In the case in hand, we assume the typical order of the
matrix N ¼ 250 for both the four-term and the three-term
recurrences. Since the calculations of the quasinormal
modes require knowlegde of all roots of some high-order
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polynomial one has to use effective and reliable algorithms.
Here we have used the Jenkins-Traub algorithm and some
frequencies have been checked with the aid of the modified
Schönhage algorithm.1

B. The continued fractions method

As is well known, every three-term recurrence is closely
related to some continued fraction. The standard reference
for computationally oriented research is the article by
Gautschi [27]. Let us recall a few basic facts. The three-
term recurrence has generally two independent solutions,
and their particular linear combinations, qk, with the
property that qk=yk → 0 as k → ∞, where yk is any
solution not proportional to qk, form a one-dimensional
subspace in the space of all solutions. Elements of this one-
dimensional subspace are called minimal (minimal at
infinity) and the minimal solution is completely determined
by (one) initial value. This is very important because the
quasinormal mode corresponds to the minimal solution of a
recurrence relations. The convergence condition for the
series expansion (which simultaneously is the condition for
the quasinormal modes) can be written in the form of the
infinite continued fraction

β00 −
α00γ

0
1

β01 −
α0
1
γ0
2

β0
2
−

α0
2
γ0
3

β0
3
−…

¼ 0: ð23Þ

In what follows we shall use the more popular notation, in
which the above equation can be written in the form

β0 −
α0γ1
β1−

α1γ2
β2−

α2γ3
β3−

… ¼ 0: ð24Þ

Inverting Eq. (23) n times, one obtains

βn −
αn−1γn
βn−1−

αn−2γn−1
βn−2−

… −
α0γ1
β0

¼ αnγnþ1

βnþ1−
αnþ1γnþ2

βnþ2−
αnþ2γnþ3

βnþ3−
…: ð25Þ

Both forms are equivalent and may serve as defining
equations for calculations of the quasinormal frequancies.
Now, our strategy is as follows. First, we generate succes-
sive approximants of the continued fractions up to some n
(in our case n ≤ N ¼ 250) and solve the thus-obtained
equations. Each approximant is some function of ω. In the
next step we identify its stable roots and accelerate
convergence of the series of successive approximations
to ω using the ϵ algorithm. In order to make some
independent checks we have used both (24) and (25)

and since we are interested in fundamental modes and
their few long-lived overtones, only basic estimations of a
tail have been implemented. The more sophisticated
calculations would require construction of the asymptotic
representation of the remainder of the infinite continued
fraction. For the three-term recurrence construction of such
asymptotic formula is a five-finger exercise [8,28]; how-
ever, as the number of consecutive Gauss eliminations
necessary to construct the three-term recurrence grows with
the dimension D this problem becomes harder and harder
[21]. This may lead to the need to modify the computational
strategy.

C. The WKB-Padé approximation

The WKB-based methods are very popular tools for
calculating the frequencies of the quasinormal modes. They
are simple, yield reasonable results, and depend solely on
the derivatives of the potential at its (global) maximum. On
the other hand, however, they have severe limitations.
Indeed, they cannot be used in calculations of the frequen-
cies of higher overtones and may lead to erroneous results
for the potentials which are not positive definite or
described by complicated functions of the radial coordinate
with additional maxima and minima [29]. First, we expand
the potential in a Taylor series about its maximum located
at x0 to the required (even) order N0. Now, the main idea is
simple, and, effectively, it is encapsulated in the formula

iQ0ffiffiffiffiffiffiffiffiffi
2Q00

0

p −
XN
k¼2

Λk ¼ nþ 1

2
; ð26Þ

where N ¼ N0=2, relating ω, the overtone number n, and
the functions Λk. Each Λk is a combination of the
derivatives of QðxÞ ¼ ω2 − VðxÞ calculated at x ¼ x0
and its complexity grows fast with the order. Setting all
Λk equal to 0 results in the Schutz-Will formula [30,31],
extensively used in the current literature to study large l
behavior of the quasinormal frequencies. The Schutz-Will
formula is the starting point for various generalizations and
plays an important role in determining the order of
magnitude and the general behavior of the modes.
Retaining Λ2 and Λ3 in (26) gives the famous Iyer-Will
approximation [13]. Typically, it yields substantially better
results than the previous one. The Iyer-Will result has been
extended by Konoplya [14] to include the terms up to
N ¼ 6. This method usually gives even more accurate
results than the Iyer-Will method, and it seems that it is, in a
sense, the optimal one. Due to its simplicity and the quality
of the results it gives, it is the method of choice in numerous
applications.
The general form of the functions Λk are known for

k ≤ 16 and one can easily incorporate them into the general
formula (26). It should be noted, however, that since the
discussed methods rely on summing up the Λ terms they

1The Jenkins-Traub algorithm is default method in MATHE-

MATICA whereas the modified Schönhage algorithm has been
implemented in PARI/GP.
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cannot be used to obtain highly accurate complex frequen-
cies. Moreover, increasing the number of Λ terms does not
improve the quality of the approximation. On the contrary,
it can be shown thatℜðωÞ and jℑðωÞj rapidly grow with the
number of the terms of WKB series summed.
Our approach consists of treating the right-hand side of

the expression

ω2 ¼ Vðx0Þ − i

�
nþ 1

2

� ffiffiffiffiffiffiffiffiffi
2Q00

0

q
ε̃ − i

ffiffiffiffiffiffiffiffiffi
2Q00

0

q XN
i¼2

ε̃jΛj

≡ Vðx0Þ þ
XN
i¼1

ε̃iΛ̃i ð27Þ

as the power series and instead of summing the terms
(which is probably a bad strategy for higher-order calcu-
lations given its divergent nature) we construct the Padé
approximants [10,11]. As is well known, the Padé approx-
imants of a truncated power series

P
akε̃k are defined as

the unique rational functions PM
N ðε̃Þ of the degree N in the

denominator and M in the numerator,

PM
N ðε̃Þ ¼

P
M
k¼0 Akε̃

kP
N
k¼0 Bkε̃

k ; ð28Þ

satisfying the simple relation [32]

PM
N ðε̃Þ −

XMþN

k¼0

akε̃k ¼ Oðε̃MþNþ1Þ: ð29Þ

Without loss of generality one can put B0 ¼ 1. It has been
explicitly demonstrated (see Refs. [10–12]) that in a
number of cases this strategy yields amazingly accurate
results. The Padé summation of the WKB terms in Eq. (27)
has been proposed in Ref. [10] and subsequently extended
in Ref. [11] to which the interested reader is referred for the
technical details and a general discussion. Although the
functions Λk for k ≥ 17 are unknown, they can easily be
constructed for a given potential with prescribed l and n
numerically [11,33,34]. Finally, observe that instead of the
Padé approximants, one can apply the Wynn algorithm to
the partial sums of the series (27).

III. RESULTS

A. Massless scalar and gravitational tensor
perturbations

We have used all three methods to calculate the complex
frequencies of the quasinormal modes of the massless
scalar and gravitational tensor perturbations (j ¼ 0) for
l ¼ 0, 1, 2 and their first four overtones (Tables I–III).
Although the calculations have been carried out with a very
high precision, the results presented here are rounded to 11
decimal places. Taking N ¼ 250 both the continued

TABLE I. The frequencies of the quasinormal modes of the scalar and gravitational tensor perturbations (l ¼ 0) of the five-
dimensional Schwarzschild-Tangherlini black hole calculated for n ¼ 0, 1, 2, 3, 4. The Hill determinant method (HD) and the continued
fractions method (CF), both with the convergence acceleration, yield identical results. The WKB-Padé results are slightly less accurate.
The frequencies are defined as ω̃ ¼ ω=TH , where the Hawking temperature TH ¼ 1=2π, and the last column gives the maximal order of
the (diagonal) Padé approximants.

n ω̃CF=ω̃HD ω̃WKB Padé

0 3.35418783669 − 2.40881848257i 3.35418783669 − 2.40881848257i (100,100)
1 2.33646259225 − 8.31019918700i 2.33646259253 − 8.31019918658i (250,250)
2 1.88699812446 − 14.78624149094i 1.88699618127 − 14.78624157678i (250,250)
3 1.69259527010 − 21.21981386107i 1.69260763003 − 21.21980227040i (350,350)
4 1.58414637600 − 27.60684313053i 1.58403980753 − 27.60684306759i (400,400)

TABLE II. The frequencies of the quasinormal modes of the scalar and gravitational tensor perturbations (l ¼ 1) of the five-
dimensional Schwarzschild-Tangherlini black hole calculated for n ¼ 0, 1, 2, 3, 4. The HD method and the CF method, both with the
convergence acceleration, yield identical results. The WKB-Padé results are slightly less accurate. The frequencies are defined as
ω̃ ¼ ω=TH , where the Hawking temperature TH ¼ 1=2π, and the last column gives the maximal order of the (diagonal) Padé
approximants.

n ω̃CF=ω̃HD ω̃WKB Padé

0 6.38382253011 − 2.27657411582i 6.38382253011 − 2.27657411582i (100,100)
1 5.38079295983 − 7.27345089157i 5.38079295983 − 7.27345089157i (150,150)
2 4.16851774973 − 13.25239223151i 4.16851774973 − 13.25239223151i (200,200)
3 3.40134506823 − 19.70845126683i 3.40134506711 − 19.70845126619i (300,300)
4 2.95415287238 − 26.21483703856i 2.95415281867 − 26.21483706910i (350,350)
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fraction method and the Hill determinant method with the
convergence acceleration give identical result. In fact, each
result displayed in the second column of Tables I–III has
been obtained using four methods: two independent cal-
culations making use of the determinant of the four-
diagonal and the tridiagonal matrices, and two independent
calculations of the continued fractions given by Eqs. (24)
and (25), respectively. Our general calculational strategy is
as follows: as long as possible we try to perform analytical
calculations and apply the exact arithmetic. This pays off in
the high-precision stage of the numerical calculations.
Our results (when rounded to four decimal places) are

either in perfect agreement or are very close to the results
presented in Ref. [6]. As expected, the WKB-Padé method
yields results that are slightly less accurate for the overtones
of the fundamental mode; however, it gets progressively
better with increase of l. For example for l ≥ 2 we have a
perfect agreement of the methods. The order of the
(diagonal) Padé transforms, Pk

k, depends on the mode
and to carry out the calculations in a reasonable time k
never exceeds 400. To simplify calculations we have not
attempted to look for the smallest optimal order of the Padé
transforms that guarantees prescribed accuracy; instead, we
have assumed some safe, sufficiently big, value.
Now, let us define deviations of the WKB-Padé results

from the results obtained within the framework of the Hill
determinant method or the method of continued fractions:

ΔRω ¼ ℜðωWKBÞ −ℜðωHDÞ
ℜðωHDÞ

100% ð30Þ

and

ΔIω ¼ ℑðωWKBÞ − ℑðωHDÞ
ℑðωHDÞ

100%: ð31Þ

A closer examination of Table I shows that the deviations of
the real part of the frequency never exceed 7 × 10−3% and
7 × 10−7% for the real and the imaginary part, respectively.
It is an amazing result, which could possibly be made even
better by increasing the order of the WKB series and
calculating the higher-order Padé transforms. Inspection of
Tables II and III shows, as expected, that the WKB-Padé

method gets progressively better with increase of l. For the
fundamental mode l ¼ 1 and its four first overtones the
accuracy of the WKB-Padé based calculations is better than
1.82 × 10−6% and 1.16 × 10−7% for the real and the
imaginary part of the frequencies, respectively. For l¼2
we have a perfect agreement of all three methods.

B. The gravitational vector and electromagnetic
vector perturbations

Before we start analysis of the gravitational vector
perturbations let us discuss a typical behavior of the
Padé approximants of the series given by Eq. (27). A more
thorough analysis can be found in Ref. [11]. First, observe
that for sufficiently large l it suffices to retain relatively
small number of terms, as the stabilization of the approx-
imants around exact frequency ω is quite fast. However, for
the low-lying fundamental modes and their overtones the
stabilization of the results may be slow. Indeed, the
approximants may be scattered on the complex plane
without any visible pattern or trend, even for a great
number of terms retained in the series. However, in many
cases, starting with some N0, where N0 is the order of the
Taylor expansion of the potential, the Padé transforms start
to stabilize and taking into account additional terms leads to
the improvement of the result. Unfortunately, there are
cases in which N0 is either too big to calculate the
quasinormal modes in a reasonable time or it does not
exist at all. Here we shall adopt a pragmatic point of view:
If N0 > 4k, where k is the maximal order of the Padé
approximant (in this paper k ¼ 400), then we classify the
mode as the mode that cannot be calculated within the
WKB-Padé framework. It does not mean that taking larger
k would not improve the results. However, it should be
emphasized that increasing k may be impractical or even
(due to limited computational resources or the very nature
of the problem) impossible.
The frequencies of the fundamental quasinormal mode

l ¼ 2 and its few lowest overtones are tabulated in
Table IV. Both the continued fractions method and the
Hill determinant method agree to (at least) the quoted
accuracy. Unfortunately, the slow convergence of the
WKB-Padé approximants for n ¼ 0, and their apparent

TABLE III. The frequencies of the quasinormal modes of the scalar and gravitational tensor perturbations (l ¼ 2) of the five-
dimensional Schwarzschild-Tangherlini black hole calculated for n ¼ 0, 1, 2, 3, 4. The HD method, the CF method, both with the
convergence acceleration, and the WKB-Padé method yield identical results. The frequencies are defined as ω̃ ¼ ω=TH , where the
Hawking temperature TH ¼ 1=2π, and the last column gives the maximal order of the (diagonal) Padé approximants.

n ω̃CF=ω̃HD ω̃WKB Padé

0 9.49117521848 − 2.24647282923i 9.49117521848 − 2.24647282923i (100,100)
1 8.75072206831 − 6.94013514280i 8.75072206831 − 6.94013514280i (150,150)
2 7.50107062040 − 12.22543669696i 7.50107062040 − 12.22543669696i (200,200)
3 6.24820058005 − 18.21482743438i 6.24820058005 − 18.21482743438i (250,250)
4 5.31531126304 − 24.59655935942i 5.31531126304 − 24.59655935942i (300,300)
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lack of stabilization for higher overtones suggest that the
WKB-Padé method does not work in this case. Indeed,
for l ¼ 2, n ¼ 0 mode it yields ω̃ ¼ 7.15761193 −
2.11830698i and ΔRω ≈ 0.5% and ΔIω ≈ 2.7%, which
is a poor result.
To examine this discrepancy we introduce the Borel–Le

Roy summation [35]. Let S ¼ P
k fkε

k be the asymptotic
series expansion of some function fðεÞ. Now, define a new
series by dividing each term by a factor Γðkþ bþ 1Þ∶

LbðεÞ ¼
X∞
k¼0

fk
Γðkþ bþ 1Þ ε

k; ð32Þ

where b ðℜðbÞ > −1Þ is some adjustable parameter. Since

Γðkþ bþ 1Þ ¼
Z

∞

0

dt e−ttkþb; ð33Þ

one can use this equation to “reinsert” the Γ factor as
follows:

fðεÞ ¼
Z

∞

0

dt e−ttbLbðεtÞ: ð34Þ

Unfortunately, we do not know how to sum the series (32)
and if only a finite number of terms is known (and this is the
case here) then the integral gives the original series S.
The essence of the method is to apply the Padé summation
to the truncated series (32)

SBLRðεÞ ¼
Z

∞

0

dt e−ttbPM
N ðεtÞ; ð35Þ

where PM
N is the Padé transform, and to calculate the

integral numerically. Putting b ¼ 0 leads to the Borel
summation [32]. The Borel summation of the expansion
(27) has been introduced by Hatsuda in Ref. [33] (see also
[11,36]). It should be noted that the integration may be
time- consuming and numerically unstable.
Now, to minimize the danger of numerical instabilities,

we calculate the quasinormal frequency of the ðj ¼ 2;
l ¼ 2; n ¼ 0Þmode using the Borel–Le Roy summation for
b ¼ 0, 1, and 2. Quite interestingly, ω calculated using this
technique agrees with the frequency calculated using the
WKB-Padé method. Although both WKB-based methods
give the same frequency, we believe that its correct value is

TABLE V. The frequencies of the quasinormal modes of the gravitational vector perturbations (l ¼ 3) of the five-dimensional
Schwarzschild-Tangherlini black hole calculated for n ¼ 0, 1, 2, 3, 4. The HD method and the CF method, both with the convergence
acceleration, yield identical results. The WKB-Padé results are slightly less accurate. The frequencies are defined as ω̃ ¼ ω=TH , where
the Hawking temperature TH ¼ 1=2π, and the last column gives the maximal order of the (diagonal) Padé approximants.

n ω̃CF=ω̃HD ω̃WKB Padé

0 10.84077672458 − 2.09758650296i 10.84077672458 − 2.09758650296i (200,200)
1 10.16678579574 − 6.40845617817i 10.16678579574 − 6.40845617817i (200,200)
2 8.88194273632 − 11.0929034286i 8.88194273749 − 11.09290342781i (200,200)
3 7.21602042842 − 16.3979749156i 7.21602052137 − 16.39797479356i (250,250)
4 5.52780970687 − 22.3321576615i 5.52780916599 − 22.33214931620i (300,300)

TABLE IV. The frequencies of the quasinormal modes of the
gravitational vector perturbations (l ¼ 2) of the five-dimensional
Schwarzschild-Tangherlini black hole calculated for n ¼ 0, 1, 2,
3, 4. The HD method and the CF method both with the
convergence acceleration yield identical results. The frequencies
are defined as ω̃ ¼ ω=TH , where the Hawking temperature
TH ¼ 1=2π.

n ω̃CF=ω̃HD

0 7.12515163375 − 2.05788530886i
1 5.95278904708 − 6.42166605748i
2 3.41133340871 − 12.09301936730i
3 2.73756226817 − 19.60939205419i
4 2.51060685222 − 26.26273928972i

TABLE VI. The frequencies of the quasinormal modes of the gravitational vector perturbations (l ¼ 4) of the five-dimensional
Schwarzschild-Tangherlini black hole calculated for n ¼ 0, 1, 2, 3, 4. The HD method, the CF method, both with the convergence
acceleration, and the WKB-Padé method yield identical results. The frequencies are defined as ω̃ ¼ ω=TH , where the Hawking
temperature TH ¼ 1=2π, and the last column gives the maximal order of the (diagonal) Padé approximants.

n ω̃CF=ω̃HD ωWKB Padé

0 14.328729987193 − 2.136391879254i 14.328729987193 − 2.136391879254i (150,150)
1 13.825163344184 − 6.482259700362i 13.825163344184 − 6.482259700362i (200,200)
2 12.850614230172 − 11.057416573784i 12.850614230172 − 11.057416573784i (200,200)
3 11.506972273038 − 16.027390914015i 11.506972273038 − 16.027390914015i (200,200)
4 9.998966688866 − 21.500865800593i 9.998966688866 − 21.500865800593i (200,200)
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given by the Hill determinant method and the continued
fraction method. On the other hand, however, inspection of
Tables V and VI shows that for l ≥ 3 we have a very good
agreement of the results obtained within the frameworks of
all three methods. All this suggests that the WKB-Padé
summation is responsible for this discrepancy. It is unclear
if retaining more terms in Eq. (27) would improve the
WKB result. Maybe some radical modifications of the
method are needed.
Once again, each result presented in the second column

of Tables IV–VI has been calculated using four methods:
two independent calculations making use of the determi-
nant of the four-diagonal and the tridiagonal matrices and
two independent calculations of the continued fractions
making use of Eqs. (24) and (25), respectively. We believe
that this minimizes the danger of some accidental errors.
For the mode l ¼ 3 and its four first overtones the

accuracy of the WKB-Padé-based calculations is better
than 9.8 × 10−6% and 3.7 × 10−5% for the real and the
imaginary part of the frequencies, respectively. For l ¼ 4
we have a perfect agreement of all three methods.
It is of some interest to analyze how the roots of the

polynomials pi (see Secs. II A and II B) identified as the
consecutive approximations of the quasinormal frequencies
migrate on the complex plane. For the perturbations
considered in this paper it depends on the number of the
overtone as follows. Frequency of the fundamental modes
and its first overtone (n ¼ 1) rapidly approach their limiting
values. On the other hand, starting with n ¼ 2 the approxi-
mate frequencies lie on the spiral curve, with the exact
value at its center. This behavior is clearly visible in
Figs. 1–3 and the red dot at the center represents the result
of the application of the ϵ acceleration to the series of
approximate roots. This suggests that the final result is
encoded in relatively small number of approximants.

Moreover, increasing n while keeping N fixed places the
approximants on the complex plane farther from the exact
value and to sustain accuracy one has to increase N. This
remark concerns more the Hill determinant method than the
method of continued fraction as in the latter case there is a
simple way to estimate the contribution of the remaining
part of the continued fractions.
Putting j ¼ 2=3 in Eq. (6) results in the equation

considered previously by Crispino, Higuchi, and Matsas
(see Eqs. 2.42 and 2.48 in Ref. [37]). Inspection of
Tables VII–IX shows that the results constructed using

FIG. 1. The gravitational vector perturbations (j ¼ 2). Migra-
tion of the approximants of the complex frequency of the l ¼ 2,
n ¼ 2 mode on the complex plane. The red dot represents the
limiting value calculated using the Wynn acceleration.

FIG. 2. The gravitational vector perturbations (j ¼ 2). Migra-
tion of the approximants of the complex frequency of the l ¼ 2,
n ¼ 3 mode on the complex plane. The red dot represents the
limiting value calculated using the Wynn acceleration.

FIG. 3. The gravitational vector perturbations (j ¼ 2). Migra-
tion of the approximants of the complex frequency of the l ¼ 2,
n ¼ 4 mode on the complex plane. The red dot represents the
limiting value calculated using the Wynn acceleration.
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all three methods are in perfect agreement. The frequencies
given by the WKB-Padé method are either exactly the same
as the ones calculated using the continued fraction method
and the Hill determinant method or slightly less accurate.
For example, for l ¼ 1 and n ¼ 4 (which is the hardest
case considered in this paper for the electromagnetic
vector perturbations) one has ΔRω ≈ 0.57 × 10−5% and
ΔIω ≈ 0; 11 × 10−5%. And, this is still an amazingly
accurate result. The WKB-Padé results can be made even
more accurate simply by retaining additional terms in the
expansion (27).

IV. DISCUSSION AND FINAL REMARKS

All perturbations considered so far are described (in a
linear regime) by Eq. (5), and, consequently, the

coefficients ak of the series expansion (10) satisfy the
four-term recurrence relation (11). As the continued frac-
tion method requires a three-term recurrence, the relations
(11) should be transformed to the required form by the
Gauss elimination. Since we are interested in the low-lying
fundamental modes and their overtones satisfying (n ≤ 4)
we employed the series acceleration technique. On the
other hand, in the Hill determinant method one can use both
the four-term or the three-term recurrence. The determinant
of ðkþ 1 × kþ 1Þ matrix constructed from the infinite
sparse band matrix of width 4 can be calculated efficiently
with the aid our formula (16). Similarly, one can calculate
the determinant of the tridiagonal matrix. A typical migra-
tion of the roots that approximate quasinormal frequency
on the complex plane is shown in Figs. 1–3. For the low-
lying overtones, the roots approach their limiting value

TABLE VII. The frequencies of the quasinormal modes of the electromagnetic vector perturbations (l ¼ 1) of the five-dimensional
Schwarzschild-Tangherlini black hole calculated for n ¼ 0, 1, 2, 3, 4. The HD method and the CF method, both with the convergence
acceleration, yield identical results. The WKB-Padé results are slightly less accurate. The frequencies are defined as ω̃ ¼ ω=TH , where
the Hawking temperature TH ¼ 1=2π, and the last column gives the maximal order of the (diagonal) Padé approximants.

n ω̃CF=ω̃HD ω̃WKB Padé

0 5.98616712253 − 2.20376124623i 5.98616712253 − 2.20376124623i (100,100)
1 4.93596110359 − 7.06760374979i 4.93596110359 − 7.06760374979i (100,100)
2 3.65875874531 − 12.95807158591i 3.65875874456 − 12.95807158556i (150,150)
3 2.83614654139 − 19.34223930964i 2.83614640894 − 19.34223920621i (200,200)
4 2.33220463436 − 25.78606028998i 2.33220330869 − 25.78606310021i (250,250)

TABLE VIII. The frequencies of the quasinormal modes of the gravitational vector perturbations (l ¼ 2) of the five-dimensional
Schwarzschild-Tangherlini black hole calculated for n ¼ 0, 1, 2, 3, 4. The HD method and the CF method, both with the convergence
acceleration, yield identical results. The WKB-Padé results are almost as accurate as the previous two. The frequencies are defined as
ω̃ ¼ ω=TH , where the Hawking temperature TH ¼ 1=2π, and the last column gives the maximal order of the (diagonal) Padé
approximants.

n ω̃CF=ω̃HD ω̃WKB Padé

0 9.2271133280308 − 2.2143549304187i 9.2271133280308 − 2.2143549304187i (100,100)
1 8.4728284656951 − 6.8458616593904i 8.4728284656951 − 6.8458616593904i (100,100)
2 7.1966403739904 − 12.0804073774333i 7.1966403739904 − 12.0804073774333i (150,150)
3 5.9189890960475 − 18.0342846521014i 5.9189890960475 − 18.0342846521015i (150,150)
4 4.9682509345537 − 24.3832179197589i 4.9682509345535 − 24.3832179197585i (250,250)

TABLE IX. The frequencies of the quasinormal modes of the electromagnetic vector perturbations (l ¼ 3) of the five-dimensional
Schwarzschild-Tangherlini black hole calculated for n ¼ 0, 1, 2, 3, 4. The HD method, the CF method, both with the convergence
acceleration, and the WKB-Padé method yield identical results. The frequencies are defined as ω̃ ¼ ω=TH , where the Hawking
temperature TH ¼ 1=2π, and the last column gives the maximal order of the (diagonal) Padé approximants.

n ω̃CF=ω̃HD ω̃WKB Padé

0 12.4184186551775 − 2.2177094497067i 12.4184186551775 − 2.2177094497067i (100,100)
1 11.8412014398195 − 6.7660501645214i 11.8412014398195 − 6.7660501645214i (150,150)
2 10.7694063181563 − 11.6625811156602i 10.7694063181563 − 11.6625811156602i (150,150)
3 9.4315982617932 − 17.1019392490840i 9.4315982617932 − 17.1019392490840i (200,200)
4 8.1520905535350 − 23.0769667314609i 8.1520905535350 − 23.0769667314609i (200,200)
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quite fast, whereas the general trend for higher overtones
suggests that the convergence becomes slower and slower.
To secure great accuracy of the quasinormal frequencies for
the higher overtone numbers, the dimension of the matrices
should be unreasonably big and to accelerate convergence
we have used, once again, the Wynn ϵ method. On the
other hand, the gravitational scalar perturbations
described by the potential (7) lead to the eight-term
recurrence. Since (7) does not belong to the class of
potentials considered in this paper, here we report only our
preliminary results obtained within the framework of the
WKB-Padé approximation. The tables of the quasinormal
frequencies (to four decimal places) calculated using the
method of continued fractions are given in Ref. [7]. Our
results for l ¼ 2 (when transformed to the normaliza-
tion adopted in [7]) are 0.94774− 0.25609i;0.85123−
0.82116i;0.67274− 1.54307i, and 0.50889−2.43311i for
n ¼ 0, 1, 2, and 3, respectively, and when rounded to four
decimal places they are exactly the same as those
presented in Ref. [7]. This shows the power of the
WKB-Padé method and simultaneously confirms correct-
ness of the results obtained by Cardoso, Lemos, and
Yoshida. It should be noted that because of a complicated
form of the gravitational scalar potential, the calculations
are much more involved.
Let us return to the Hill determinant method applied to

perturbations leading to k-term recurrences (k > 3).
As has been explained earlier, one can use either the
Gauss elimination to obtain the tridiagonal matrix or work
with the original recurrence. To calculate determinants in
the latter case efficiently, one should generalize Eq. (16).
In real calculations the computational complexity of
each method should be estimated, i.e., the following
question should be asked. What is more time-consuming:
Calculations of determinants of banded matrices of width k
with relatively simple matrix elements, or performing
(k − 3) consecutive Gauss eliminations and calculating
determinants of tridiagonal matrices with quite complicated
elements?
It should be emphasized that the perfect agreement

between the results obtained using the Hill determinant
method and the method of continued fractions, although
expected, is quite impressive and the role of the conver-
gence acceleration should not be underestimated in this
regard. On the other hand, the performance of the WKB-
Padé method (within domain of its applicability) is really
amazing. In most cases it is better than any competing
WKB-based technique. Of course, such a comparison is

somewhat unfair given the much greater complexity of our
method.
The techniques presented in this paper can easily be

adapted to other dimensions. However, there are a few
bottlenecks that may pose a challenge to the calculations of
the quasinormal modes. For the method of continued
fractions and the Hill determinant method it would be a
complexity of the equations which have to be solved. At
any order one has to identify all solutions and this may be a
time-consuming process. On the other hand, the real
problem of the WKB-Padé method is the necessity to
calculate the consecutive derivatives of the potential at its
maximum. Since the calculations are carried out analyti-
cally it places severe demand on the computer resources,
especially for more complex potentials. Moreover, it turns
out that the time spent on construction of the Padé trans-
forms is only a small fraction of the total time of
computations and for a given N, the calculation time of
the WKB series is practically insensitive to the type of the
black hole perturbation.
Finally, let us briefly discuss the strength and limitations

of each method employed in this paper. Of course, their
great positive aspect is the ability to construct the highly
accurate values of ω. However, they lose accuracy with
increasing the overtone number, n, even though we use the
convergence acceleration algorithms. For the continued
fraction method and the method of the Hill determinant the
deterioration of the results is slow, and to secure assumed
accuracy it is sufficient to increase the number of terms
retained in the expansion (10). For highly damped modes
this may be impractical or insufficient. In such a case it
would be reasonable to construct the asymptotic approxi-
mation of the remainder of the continued fraction and to
modify the root- searching algorithm. On the other hand,
the WKB-Padé method has limited applicability for over-
tones of the low lying modes, which is reflected in slow
stabilization (if any) of the series of approximants. This can
be deduced form the trend clearly visible in Tables I, II, VI,
VIII, and IX. It is not clear if increasing the number of
terms in (27) would cure the problem. Moreover, for certain
perturbations the potential may not be positive definite,
which may lead to the loss of the accuracy of the WKB-
Pade method. Once again, it is unclear if increasing the
number of the functions Λk in the series (27) would lead to
the substantial improvements. Such calculations are both
demanding and time-consuming and we intend to return to
this group of problems elsewhere.
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