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Here we report a developed high performance and simplified version of the code denominated RIO,
which can be easily extended, for the generalized BSSN formulation. We implement a code which is
regular at the center of symmetry, without use a special procedure for regularization, as usual. We get
exponential convergence for constraints. The numerical algorithm is based on the Galerkin-Collocation
method developed successfully for diverse physical scenarios by the Numerical Relativity Group at UERJ.
For the sake of clarity in presentation, we consider here the most simple case to display the most salient
features of the procedure. Thus, we focus on the definite tests of the new numerical framework. The timing
and performance of the code show that we can reach a better accuracy close to the machine precision, for
the Hamiltonian and momentum constraints. RIO will be an open source code; currently it is under
continuous development to consider more general and realistic problems.
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I. INTRODUCTION

Numerical relativity (NR) [1] is nowadays one of the
most solid areas in the context of relativity, gravitation, and
astrophysics. Despite the lack of computational structure,
its birth took place in the first half of the 1960s with the
seminal work of Hahn and Lindquist [2] and continued
in the following decade with important articles by Smarr,
Eppley, and Piran [3–5], where the first numerical evolu-
tions and gravitational waves production were obtained.
After this first moment, in approximately three decades,
the computational capacity has increased significantly and
large projects increased the scientific production as well.
Among the main projects, we can highlight the Binary
Black Hole Grand Challenge Alliance [6] and the Lazarus
project [7,8]. Despite these great efforts, the formalisms
used for the construction of the algorithms had problems
related to the hyperbolicity of the system of equations,
which prevented their full integration. In 2005, Pretorius
[9], using harmonic coordinates, achieved a full integration
of a collision of black holes including all phases of the
coalescence. This work together with [10,11] are consid-
ered a breakthrough in gravitational waves research.
This caused a considerable increase in the production of
results using the various formalisms which take into
account the strong hyperbolicity of the general relativity
equations. Nowadays, it is even possible to find computa-
tional consortia totally dedicated to the numerical integra-
tion of Einstein’s equations [12].

From the point of view of the results, an entire effort to
catalog the waveforms produced in the collision of compact
objects was able to provide data to be compared with the
observational data that would be obtained by the LIGO/
Virgo consortium in the next years to come [13–23]. There is
a very large community that takes care of the data analysis of
these catalogs generated by the numerical relativity groups
and that injects such data into the detection systems of the
LIGO/Virgo consortium [24,25]. The detection of gravita-
tional waves [26–30] by astrophysical processes has further
boosted the study and development of numerical relativity as
a standard and powerful computational data source.
When considering the theoretical formalisms used,

we can highlight the generalized harmonic (GH) [31], the
Baumgarte, Shapiro, Shibata, and Nakamura (BSSN) [32],
and the Bona, Massó, Seidel and Stela (BMSS) [33]
formalisms. These frames, although hyperbolic, are not
covariant, which makes them impossible to use general
curvilinear coordinate systems that are interesting for certain
physical systems. In a very well-structured work, Brown [34]
builds the 3D covariance of the BSSN equations, allowing
several coordinate systems to be explored. Brown’s formal-
ism became known as generalized BSSN or G-BSSN in
short. After this work, several authors presented algorithms
for the solution of the G-BSSN equations in spherical
coordinates [35–37]. A fundamental point for the realization
of these codes is in the regularization of the system due to
the singularities in the origin and in the polar axis. In this
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context, we can consider two types of regularization: (i) with
a fixed gauge [38,39]; and (ii) with the introduction of new
variables in place of the usual BSSN ones [40]. In the case of
the regularization scheme (i), the fact of having a fixed gauge
makes the gauge freedom unfeasible, which is one of the
advantages of the BSSN formalism and which made, for
instance, the “maximal slice” and the “1þ log” gauges so
popular. In the case of (ii), the choice of variables,
apparently, is restricted to some type of symmetry such as
the spherically symmetric and axisymmetric cases. An
important work that circumvents these difficulties is that
of Baumgarte et al. [36], where no type of symmetry is
considered and no type of regularization is taken due to the
use of a time evolution via the so-called partially implicit
Runge-Kutta numerical method (PIRK) [41], in which two
stages of integration are considered. In addition, the dis-
tribution of the points of the numerical grid avoids points on
the origin and on the polar axis. Several tests with well-
known systems were carried out and the convergence of the
method proved to be quite satisfactory.
In this context, this work focuses on the construction of a

solid code which deals with the regularization in a natural
way for the solution of the G-BSSN equations in spherical
coordinates. At first, we focus on a code that takes into
account a spherically symmetrical system. We also chose to
use a code based on the Galerkin-Collocation (GC) method,
one of the main spectral methods available [42]. Spectral
methods form a group of numerical methods as an alter-
native to finite difference and finite element methods.
Within the context of numerical relativity were the com-
monly used programs Langage Objet pour la Relativité
Numérique (LORENE) [43] and the Spectral Einstein Code
(SpEC) [44]. Both projects contributed with excellent work
(see for instance, [45,46]).
Over the years, the numerical relativity group at UERJ

used spectral methods to solve several problems, mainly in
the context of the characteristic formulation [47,48].
Currently, the UERJ group is developing work aimed at
building codes in the context of the 3þ 1 formalism for
obtaining numerical initial data [49] and, as can be seen in
this work, developing our first code on the G-BSSN
formalism via the Galerkin-Collocation method. Our pur-
pose is to gather all the infrastructure built for these
problems in a single repository with the name RIO code
[50]. This is a way of establishing a method for storing and
maintaining codes in a continuous and consistent way.
Our GC code deals naturally with the regularization of

the system by choosing a suitable and complete set of basis
functions belonging to the Hilbert space L2½0;∞�. Such
basis automatically satisfies all the necessary conditions
for a regular behavior both at the origin and at spatial
infinity. The major advantage of spectral methods is in the
exponential convergence of the solutions, as well as in
the simplicity of implementation, once the basis is deter-
mined. Depending on the boundary conditions, each

variable of the G-BSSN formalism has a minimally
modified basis, but with the same collocation points which
form the numerical grid.
As a first application we have in mind the natural

extension to consider gravitational collapse, with and
without cosmological constant. This includes a huge family
of interesting problems, including holographic ones. But
our main goal currently is the extension to cylindrical
coordinates to study 2D problems as Brill waves and
rotating sources.
That said, we have organized the content of the article as

follows. In Sec. II, we present the G-BSSN formalism with
spherical symmetry and the choice of the initial data, as
well as a discussion on the boundary conditions. In Sec. III
we introduce the Galerkin-Collocation method with a
suitable choice of the basis functions which deals naturally
with the regularization problem. The discretization of the
computational grid in the radial coordinate is given through
the collocation points associated with the chosen basis and,
thus, we are able to reduce the system of partial differential
equations in an autonomous dynamical system whose
variables are given by the spectral coefficients of the
approximate solution considered. Following this scheme,
we build a fourth-order Runge-Kutta integrator (with a
fixed step) for the system’s time evolution. In Sec. IV we
present the numerical results, mainly with the convergence
of the initial data as well as the Hamiltonian and momen-
tum constraints. Here we also discuss the earlier results
from the literature. Finally, in Sec. V, we summarize the
work as well as point out the future directions of our
research. In this work c ¼ G ¼ 1.

II. THE EQUATIONS

With the metric in the following form [35,51]

ds2 ¼ −α2dt2 þ ψ4ðAdr2 þ Br2dΩÞ; ð1Þ
where α, ψ , A, and B are functions of t and r, we use the
G-BSSN formalism [34,36]. Thus, the evolution equations
can be written as

∂tα ¼ −α2K; ð2Þ
∂tA ¼ −2αÃrr; ð3Þ
∂tB ¼ −2αÃθθ; ð4Þ

∂tψ ¼ −
1

6
αψK; ð5Þ

∂tΛ̃¼2α

A

�
6Ãθθ

A
∂rψ

ψ
−
2

3
∂rK

�

þα

A

�
Ãrr∂rA
A2

−
2Ãθθ∂rB

B2
þ4ÃθθðA−BÞ

rB2

�
−
2Ãrr∂rα

A2
;

ð6Þ
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∂tÃrr¼
1

ψ4
½−DTF

rr þαRTF
rr �þα

�
ÃrrK−

2Ã2
rr

A

�
; ð7Þ

∂tÃθθ ¼
1

r2ψ4
½−DTF

θθ þ αRTF
θθ � þ α

�
ÃθθK −

2Ã2
θθ

B

�
; ð8Þ

∂tK ¼ α

�
1

3
K2 þ Ã2

rr

A2
þ 2Ã2

θθ

B2

�
−D; ð9Þ

where Λ̃ is the radial component of the conformal con-
nection Λ̃k,

Ãij ¼ diag½Ãrrðt; rÞ; r2Ãθθðt; rÞ; r2 sin2 θÃθθðt; rÞ�

is the conformally rescaled trace-free part of the extrinsic
curvature, and K is the trace of the extrinsic curvature
(see [35] for details). Also it follows that

D ¼ 1

ψ4

�
Drr

A
þ 2Dθθ

r2B

�
; ð10Þ

Drr ¼ ∂2
rα −

ð∂rαÞ
2

�∂rA
A

þ 4∂rψ

ψ

�
; ð11Þ

Dθθ ¼
rð∂rαÞ

A

�
Bþ r

2

�
∂rBþ 4B

∂rψ

ψ

��
; ð12Þ

Rrr ¼
3ð∂rAÞ2
4A2

−
ð∂rBÞ2
2B2

þ A∂rΛ̃þ 1

2
Λ̃∂rA

þ 1

r

�
−4

�∂rψ

ψ

�
−
1

B
ð∂rAþ 2∂rBÞ þ

2A∂rB
B2

�

− 4∂r

�∂rψ

ψ

�
þ 2

�∂rψ

ψ

��∂rA
A

−
∂rB
B

�

−
∂2
rA
2A

þ 2ðA − BÞ
r2B

; ð13Þ

Rθθ ¼
r2B
A

�∂rψ

ψ

∂rA
A

− 2∂r

�∂rψ

ψ

�
− 4

�∂rψ

ψ

�
2
�

þ r2

A

�ð∂rBÞ2
2B

− 3
∂rψ

ψ
∂rB −

1

2
∂2
rBþ 1

2
Λ̃A∂rB

�

þ r

�
Λ̃B −

∂rB
B

− 6
∂rψ

ψ

B
A

�
þ B

A
− 1: ð14Þ

DTF
rr , RTF

rr , DTF
θθ , and RTF

θθ are calculated using

XTF
rr ¼ 2

3

�
Xrr −

AXθθ

Br2

�
; ð15Þ

XTF
θθ ¼ 1

3

�
Xθθ −

BXθθ

A

�
: ð16Þ

X represents D or R, indistinctly.
And the Hamiltonian and the momentum constraints

read as

H≡ 2

3
K2 −

Ã2
rr

A2
−
2Ã2

θθ

B2

þ 1

ψ4

�
∂rΛ̃þ 1

2
Λ̃
∂rA
A

þ Λ̃
∂rB
B

þ 2Λ̃
r

�

−
8

Aψ5

�
∂2
rψ −

1

2

ð∂rAÞ∂rψ

A
þ ð∂rBÞ∂rψ

B
þ 2∂rψ

r

�

−
1

Aψ4

�
1

2

∂2
rA
A

−
3

4

ð∂rAÞ2
A2

þ ∂2
rB
B

−
1

2

ð∂rBÞ2
B2

þ 2∂rB
rB

þ ∂rA
rB

�
¼ 0; ð17Þ

Mr ≡ 2

3
∂rK −

∂rÃrr

A
− 6

Ãrr

A
∂rψ

ψ
þ Ãrr∂rA

A2

−
ð∂rBÞÃrr

AB
þ ð∂rBÞÃθθ

B2
−
2Ãrr

rA
þ 2Ãθθ

rB
¼ 0: ð18Þ

Observe that Eqs. (2)–(9) and (17)–(18) are equivalents to
the equations presented in [37] if we define

eχ ¼ψ ; Aa¼ Ãrr=A; Ab¼ Ãθθ=B; Δ̂¼ Λ̃; ð19Þ

stressing that Ãrr=Aþ 2Ãθθ=B ¼ 0 (Ãij is trace-free), and

Λ̃ ¼ 1

A

�∂rA
2A

−
∂rB
B

−
2

r

�
1 −

A
B

��
; ð20Þ

which has to be used as a constraint because Λ̃ is
considered in G-BSSN as an independent variable. Also
it is important to observe that we use the harmonic slicing
given by Eq. (2), with zero shift, instead the 1þ log
slicing ∂tα ¼ −2αK.

A. Initialization

To evolve numerically the most simple case, pure
gauge, we initialize the Minkowski spacetime by setting
the conformal metric to Að0; rÞ ¼ Bð0; rÞ ¼ ψ ¼ 1. The
extrinsic curvature functions and the conformal connection
are initialized to K ¼ Ãrr ¼ Ãθθ ¼ Λ̃ ¼ 0. The lapse func-
tion is set to

αð0; rÞ ¼ 1þ αιr2

1þ r2
½e−ðr−r0Þ2=σ2 þ e−ðr−r0Þ2=σ2 �; ð21Þ

in order to compare our method and results with [37].
Clearly αι represents an initial amplitude, r0 the center of
the Gaussian, and σ its width.
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B. Boundary conditions

The metric has to be conformally flat [35] at the origin,
that is,

Aðt; 0Þ ¼ Bðt; 0Þ: ð22Þ

Because we are using the Lagrangian choice we have

AB2 ¼ 1; ð23Þ

which leads to

Aðt; 0Þ ¼ Bðt; 0Þ ¼ 1: ð24Þ

Also we can see that [35]

Ãrrðt; 0Þ ¼ Ãθθðt; 0Þ ¼ 0; ð25Þ

∂rAðt; rÞjr¼0 ¼ ∂rBðt; rÞjr¼0 ¼ 0; ð26Þ

∂rÃrrðt; rÞjr¼0 ¼ ∂rÃθθðt; rÞjr¼0 ¼ 0; ð27Þ

Λ̃ðt; 0Þ ¼ 0; ð28Þ

∂rKðt; rÞjr¼0 ¼ ∂rψðt; rÞjr¼0 ¼ 0: ð29Þ

Issues of parity are considered in the next section. At the
outer boundary we set

A ¼ B ¼ ψ ¼ α ¼ 1; at∶ ðt;∞Þ ð30Þ

and

Ãrr ¼ Ãθθ ¼ K ¼ Λ̃ ¼ 0; at∶ ðt;∞Þ: ð31Þ

According to definitions given by Eq. (19) from now on
we use Ab ¼ −Aa=2, Aa, Δ̂, and χ, stressing that the
evolution equations are reduced to the number of seven
without loss of generality.

III. NUMERICAL METHOD

The use of any spectral method requires the correct
choice of basis functions. In particular, for the Galerkin-
Collocation method, we seek basis functions that auto-
matically satisfy the boundary conditions. By dealing with
the G-BSSN equations in spherical coordinates, there is
another feature some functions must fulfill, namely, a
definite parity with respect to expansion in r as r → 0.
After inspecting the evolution equations (2)–(9), the func-
tions α, K, χ, A, B, and Aa have even parity, while Δ̂ has
odd parity. For completeness, we have

αðt; rÞ ¼ α0ðtÞ þ α2ðtÞr2 þOðr4Þ; ð32Þ

Kðt; rÞ ¼ K0ðtÞ þ K2ðtÞr2 þOðr4Þ; ð33Þ

χðt; rÞ ¼ χ0ðtÞ þ χ2ðtÞr2 þOðr4Þ; ð34Þ

Aðt; rÞ ¼ 1þOðr2Þ; ð35Þ

Bðt; rÞ ¼ 1þOðr2Þ; ð36Þ

Aaðt; rÞ ¼ Oðr2Þ: ð37Þ

The above expressions satisfy the conditions (24)–(29). For
the odd parity function Δ̂, we have

Δ̂ðt; rÞ ¼ Δ̂1ðtÞrþOðr3Þ: ð38Þ

According to Boyd [42] there is just one class of basis
functions derived from the standard Chebyshev polyno-
mials with explicit parity for expansion of r near the origin
and approach to zero as r → ∞. These basis functions are
the even and odd sines, SB2nðrÞ and SB2nþ1ðrÞ, respec-
tively. We can obtain these functions by defining

SB0ðrÞ ¼
�
1þ r2

L2
0

�−1
2

; ð39Þ

SB1ðrÞ ¼
2r
L0

�
1þ r2

L2
0

�−1
; ð40Þ

where L0 is the map parameter, and the recurrence formula

SBnþ1ðrÞ ¼
2r
L0

�
1þ r2

L2
0

�−1
2

SBnðrÞ − SBn−1ðrÞ; ð41Þ

for all n ¼ 1; 2;…. Therefore, the functions SB2nðrÞ have
even parity with respect to r ¼ 0 and SB2nþ1ðrÞ odd parity
(see Fig. 5 in the Appendix).
At this point, we can establish the spectral approxima-

tions for each of the evolution variables:

αNðt; rÞ ¼ 1þ
XN
j¼0

α̂jðtÞSB2jðrÞ; ð42Þ

χNðt; rÞ ¼
XN
j¼0

χ̂jðtÞSB2jðrÞ; ð43Þ

KNðt; rÞ ¼
XN
j¼0

K̂jðtÞSB2jðrÞ; ð44Þ

ANðt; rÞ ¼ 1þ 1

2

XN−1

j¼0

ÂjðtÞðSB2jþ2ðrÞ − SB2jðrÞÞ; ð45Þ
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BNðt; rÞ ¼ 1þ 1

2

XN−1

j¼0

B̂jðtÞðSB2jþ2ðrÞ − SB2jðrÞÞ; ð46Þ

AaNðt; rÞ ¼
1

2

XN−1

j¼0

ÂajðtÞðSB2jþ2ðrÞ − SB2jðrÞÞ; ð47Þ

ΔNðt; rÞ ¼
XN−1

j¼0

Δ̂jðtÞSB2jþ1ðrÞ: ð48Þ

In the above expressions, α̂jðtÞ, χ̂jðtÞ, K̂jðtÞ, ÂjðtÞ, B̂jðtÞ,
ÂajðtÞ, Δ̂jðtÞ are the modes or unknown coefficients and N
is the truncation order that limits the number of the modes.
Notice the basis functions of Aðt; rÞ, Bðt; rÞ, and Aaðt; rÞ
are a combination of the even sines that behaves as Oðr2Þ
near the origin providing the fulfilment of the conditions
(24)–(29). We remark that the combination of the
Chebyshev-like basis to satisfy the boundary conditions
is one of the features of the Galerkin method.
We describe now the numerical algorithm based on the

Galerkin-Collocation method [47–50]. We first establish
a convenient set of collocation points in the physical
domain connected with the basis functions defined by
Eqs. (39)–(41). We use the following mapping [42]:

rk ¼
L0xkffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2k

q ; ð49Þ

where

xk ¼ cos

�
πk

2N þ 2

�
; k ¼ 0; 1;…; 2N þ 2

are the Chebyshev-Gauss-Lobatto points (see Fig. 5 in the
Appendix). The computational domain −1 ≤ x ≤ 1 corre-
sponds to r ∈ ð−∞;∞Þ, but we are going to consider those
points located in the region 0 ≤ r < ∞. In this case, we
have the points rk for k ¼ 1; 2;…; N þ 1, where r0 ¼ ∞ is
excluded.
For the sake of illustration, we consider the evolution

equation (2) for the lapse function. The values of αðt; rÞ at
the collocation points given by Eq. (49), αkðtÞ ¼ αNðt; rkÞ,
are related to the modes α̂jðtÞ through

αkðtÞ ¼ 1þ
XN
j¼0

α̂jðtÞSB2jðrkÞ; ð50Þ

where k ¼ 1; 2;…; N þ 1. In the code we write the above
equation in the matrix form

0
BBBBB@

α1

α2

..

.

αNþ1

1
CCCCCA

¼

0
BBBBB@

1

1

..

.

1

1
CCCCCA

þ AL

0
BBBBB@

α̂1

α̂2

..

.

α̂Nþ1

1
CCCCCA
; ð51Þ

where AL is the ðN þ 1Þ × ðN þ 1Þ matrix formed by
the components ALkj ¼ SB2jðrkÞ for j ¼ 0; 1;…; N and
k ¼ 1; 2;…; N þ 1. The lapse function can either be
represented by their values at the physical space, αkðtÞ,
or the spectral modes α̂jðtÞ.
We can obtain the residual equation associated with the

evolution equation (2). Taking into account the spectral
approximations (42) and (44), we have

Resαðt; rÞ ¼ ∂tαN þ α2NKN: ð52Þ
The residual equation does not vanish due to the approx-
imations for the lapse function and the extrinsic curvature.
Following the prescription of the Collocation method, we
assume that the residual equation vanishes at the colloca-
tion points.1 As a consequence, we obtain

ð∂tαÞk ¼ −α2kKk; k ¼ 1; 2;…; N þ 1; ð53Þ
where KkðtÞ are the values of the extrinsic curvature at the
collocation points. There is a matrix equation that connects
the values KkðtÞ and the modes K̂jðtÞ similarly to Eq. (51).
The above set of N þ 1 first-order ordinary differential
equations dictates the evolution of the values αkðtÞ.
We repeat the same procedure for each evolution

equation with the caveat that Eqs. (3)–(9) are automatically
satisfied at the origin after taking into account the spectral
approximations (42)–(48). Notice that from these approx-
imations, the functions Aðt; rÞ, Bðt; rÞ, Aaðt; rÞ, and Δ̂ðt; rÞ
are fixed at the origin, more specifically ANðt; 0Þ ¼
BNðt; 0Þ ¼ 1 and AaNðt; 0Þ ¼ Δ̂Nðt; 0Þ ¼ 0. Therefore,
we have obtained the first-order sets with a total of
7N þ 3 differential equations.
There is a relevant remark. In the evolution equations for

K;Aa, and Δ̂, we found several terms containing deriva-
tives with respect to r. In order to calculate the values of
these derivatives at the collocation, we use the correspond-
ing modes. For instance, we express the values of ∂rα in the
following matrix form:

0
BBBBB@

ð∂rαÞ1
ð∂rαÞ2

..

.

ð∂rαÞNþ1

1
CCCCCA

¼ DAL

0
BBBBB@

α̂1

α̂2

..

.

α̂Nþ1

1
CCCCCA
; ð54Þ

1In the context of method of weighted residuals [52], it means
that the test functions are the Dirac delta functions, δðr − rkÞ.
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where

DALkj ¼
�∂SB2j

∂r
�

rk

;

with k ¼ 1; 2;…; N þ 1 and j ¼ 0; 1;…; N. We have used
the same procedure to calculate the values of all derivative
terms such as ∂rχ, ∂rA, ∂rB, ∂rrα, and so on.
The evolution scheme proceeds as follows:
(i) First, we have to provide the initial data

α0 ¼ αð0; rÞ; A0 ¼ Að0; rÞ;

B0 ¼ Bð0; rÞ; Aa0 ¼ Aað0; rÞ:
The values Kð0Þk and χð0Þk, k ¼ 1; 2;…; N þ 1

are obtained after solving the momentum and
Hamiltonian constraints, respectively. The initial
values of Δ̂kð0Þ, k ¼ 1; 2;…; N arise from Eq. (20).

(ii) Next, from all values given at t ¼ 0, we can obtain
all modes associated with the spectral approxima-
tions. In the sequence, we determine all values at the
collocation points of the derivative terms present in
the right-hand side of Eqs. (2)–(9).

(iii) With the evolution equations (2)–(9), we calculate
the initial values of

ð∂tαÞk; ð∂tKÞk; ð∂tχÞk;

for k ¼ 1; 2;…; N þ 1, and

ð∂tAÞk; ð∂tBÞk; ð∂tAaÞk; ð∂tΔ̂Þk;

for k ¼ 1; 2;…; N.
(iv) Then, we determine the values αk; Kk;… at the next

time step, and the whole process repeats.
We have used a standard explicit fourth-order Runge-Kutta
integrator to evolve the equations (2)–(9).

IV. RESULTS

In order to analyze our results we define an error measure
by means of a root mean square norm jj…jj2,

jj…jj2 ¼
�
1

2

Z
∞

0

ð…Þ2dr
�

1=2
; ð55Þ

where (...) is an expected computational zero. We take the
initial condition given by Eq. (21) and we calculate the
spectral modes to numerically reconstruct the initial data
αNð0; rÞ; thus ð…Þ ¼ α0ðrÞ − αNð0; rÞ in this case. We
perform the numerical integration using a Legendre-Gauss-
Lobatto quadrature off the collocation points. Figure 1
shows the expected exponential convergence for this
initial data. Note that the convergence depends on the

parameter L0, but in any case the convergence can be
exponential. If we observe the mapping of the collocation
points (Fig. 5 in the Appendix), it is clear that the Gaussian
pulse at t ¼ 0 with peak at r0 ¼ 5 is better resolved if
we use L0 ¼ 10, instead L0 ¼ 20 or L0 ¼ 30. This fact is
clearly displayed in Fig. 1 in terms of the rate of
convergence. We have to resolve traveling pulses with
the best choice of the map parameter. A bad choice of L0

may lead to evolutions with an exponential increasing (until
saturation) of the error in the constraints. We have a caveat
for this behavior. When the pulses inevitably enter a region
with wide spacing between the collocation points, the error
associated with both constraints increases. With the present
code, this problem is solved simply by increasing the
truncation order and the map parameter L0. We stress that
for a fixed truncation order we can still increase L0. For
instance, considering an integration until t ¼ 20, after tests
and calibration the selection L0 ¼ 30 and p ¼ 320 for the
initial condition (21) leads to a clear exponential conver-
gence. On the other hand, if we select L0 ¼ 10 and
p ¼ 320, we observe an increase that could be exponential
(until saturation) of the Hamiltonian and momentum
constraints. For a long time evolution, even with the
appropriate choice of L0 and p, spurious oscillations or
artifacts may arise. In that case the multidomain decom-
position and dissipation techniques could be useful to
ameliorate these issues. We evolve the system of equations
for the G-BSSN, using a standard fourth-order Runge-
Kutta method, with a fixed time step of Δt ¼ 10−4.
Particularly we display in Fig. 2 the evolution of the lapse
function α. The evolution goes as expected.
The initial data contains two components; one begins

to travel to the left and the other to the right. The left
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FIG. 1. Exponential convergence of jjα0ðrÞ − αNð0; rÞjj2 for the
initial data given by Eq. (21) for different choices of L0, with
αι ¼ 0.01, r0 ¼ 5, and σ ¼ 1.
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component hits the center and is reflected (freely at r ¼ 0)
to travel then inverted to the right. Meanwhile the other
initial component travels to the right. The maximum peak is
separated from the minimum of the reflected part (traveling
to the right) in ten spatial units, to keep this separation
while the trend goes away. Clearly the peaks (maximum
and minimum) travel with speed one, as expected, to
the left and to the right, in any stage of the evolution.
Observe that the advance in time corresponds to the same

displacement in space. We stress here that we do not
impose any special condition at the origin, or a special
numerical treatment. We could deal with nonlinear evolu-
tions, which we hope the RIO code is able to solve as well.
We focus here on the definite tests of a new numerical

framework, using the Galerkin-Collocation method.
Figure 3 shows the evolution of the constraints (17) and
(18) for the same evolution displayed in Fig. 2. Initially the
constraints are satisfied exactly, but it is clear that the
constraints lose accuracy with evolution for any choice
of parameters. For our choice after calibration the error in
both constraints is under control for the considered interval
of time, being maximum at r ¼ 0 of order ∼10−11 and
decreasing to ∼10−14–10−16 in the displayed region of
evolution. To analyze this behavior carefully we study the
convergence in time for the constraints. Now (…) in (55) is
represented by the constraint equations (17) and (18),
respectively. Thus, Fig. 4 displays the exponential con-
vergence of the constraints. Clearly the accuracy shown in
Fig. 3 is consistent with the accuracy observed in Fig. 4 for
p ¼ 320, at the monitored times. What it is most important,
the convergence of the constraints improves exponentially
with the truncation order. For the evolved initial data in
this work (up to t ¼ 20) with p ¼ 320, the accuracy of the
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FIG. 2. Evolution of α − 1 for the initial condition given by
Eq. (21) and parameters as given in Fig. 1 with p ¼ 320,
L0 ¼ 30, and Δt ¼ 10−4.
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FIG. 3. Evolution of the Hamiltonian (upper panel) and
momentum (lower panel) constraints for the initial condition
given by Eq. (21) and parameters as given in Fig. 1 with
p ¼ 320, L0 ¼ 30, and Δt ¼ 10−4. The constraints are satisfied
exactly at t ¼ 0.
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Hamiltonian constraint is between 10−11 and 10−12, and for
the momentum constraint between 10−11 and 10−14. Our
results are in complete accord with Ref. [37], but our
accuracy is largely better without any additional cost for
regularization at r ¼ 0. As a matter of fact, still we can
evolve for a larger p to reach saturation (∼10−16) in the
constraint errors.
At this point we briefly consider some development,

platform, timing, and performance issues. We develop our
prototype code with MAPLE (version 18), and we also
prepare partial versions for OCTAVE and PYTHON. But the
main complete and structured development used to obtain
the results presented here was in FORTRAN (from scratch,
with open source libraries and compiler). A serial FORTRAN
RIO code (modular and remarkably simple) was calibrated
with the MAPLE prototype, up to some point. The final
FORTRAN code is not dependent on the MAPLE prototype,
running ab initio specifying only a set of parameters for the

G-BSSN problem. We ran the FORTRAN code on an Intel
core i7-9700k@8x4.9 GHz with 64 Gb of memory, under
Ubuntu 18.04 bionic. For a fixed p the FORTRAN code
scales linearly with the maximal time of the evolution. For
example, for tmax ¼ 15 used for Figs. 2 and 3 the timing
was ≈10 min. For p ¼ 320, the maximum truncation used
here, the code runs overnight (eight hours); the required
memory is negligible even for the largest used truncation.
By far we can run the code to improve the accuracy, but in
the present case it is not necessary. The RIO code is under
continuous development to deal with more general rela-
tivistic problems; it will be an open source code.

V. CONCLUSIONS

In this paper we developed a RIO code [50] version for
the G-BSSN.We used spherical coordinates and considered
the most simple case, evolving the pure gauge. The
remarkable simplified code is exponentially convergent,
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FIG. 4. Exponential convergence of the Hamiltonian (upper
panel) and momentum (lower panel) constraints with time, for the
initial condition given by Eq. (21) and parameters as given in
Fig. 1 for L0 ¼ 30 and Δt ¼ 10−4.
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as expected. The regularization at the origin is not a
computational problem; using the Galerkin-Collocation
method we avoid any complication or special treatment
there. As a matter of fact, the basic choice for each field
guarantees a regular behavior close to and at the bounda-
ries. We will apply our code to problems in which the
constraint errors do not run away owing to the lack of
spatial resolution within the evolved time. The calibration
for each specific problem will be necessary. We will extend
the treatment to include matter fields and/or other spatial
dimensions. We have in mind gravitational collapse,
cosmological scenarios like postinflationary preheating
models, and holographic simulations for heavy ions colli-
sions. The critical collapse is an excellent problem to test
any code, even under spherical symmetry, with a black hole
formation near r ¼ 0, requiring a map parameter L0 ≤ 1,
typically. In this respect, the evolution time to study the
critical phenomena is very short in comparison with the
evolution time considered in the present work.
We have implemented the BSSN formulation using

spherical coordinates, which are suitable for the study of
gravitational collapse in 1D/2D/3D. As have been studied
by other authors (see Ref. [36]), the extension to higher
dimensions is natural and straightforward within the
G-BSSN. In this sense we are currently considering the
implementation of the G-BSSN as proposed by Brown

(Ref. [34]) for the particular choice of cylindrical coordi-
nates. As far as we know there is no such implementation
reported in the literature. We expect to apply this last version
of the RIO code to the implosion of Brill waves [53,54].
Here we only display the most salient features of a new

and simple tool to deal with more complex problems
elsewhere, particularly with nonlinear evolutions. Some
work is in progress considering cylindrical coordinates.
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APPENDIX: BASIS AND MAPPING

For the sake of completeness we show in Fig. 5 the first
four basis functions given by Eqs. (39)–(41) and how the
collocation points are distributed by the parameter L0,
using Eq. (49).
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