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Spinning black holes create electromagnetic storms when immersed in ambient magnetic fields,
illuminating the otherwise epically dark terrain. In an electromagnetic extension of the Penrose process,
tremendous energy can be extracted, boosting the energy of radiating particles far more efficiently than the
mechanical Penrose process. We locate the regions from which energy can be mined and demonstrate
explicitly that they are no longer restricted to the ergosphere. We also show that there can be toroidal
regions that trap negative energy particles in orbit around the black hole. We find that the effective charge
coupling between the black hole and the superradiant particles decreases as energy is extracted, much like
the spin of a black hole decreases in the mechanical analogue. While the effective coupling decreases, the
actual charge of the black hole increases in magnitude reaching the energetically-favored Wald value, at
which point energy extraction is impeded. We demonstrate the array of orbits for products from the
electromagnetic Penrose process.
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I. INTRODUCTION

The 21st century has been remarkable for black hole
discoveries, from LIGO’s first recording of the collision of
two black holes [1] to the EHT image of the shadow cast by
a black hole event horizon [2]. Loud black hole mergers
seem to occur in total darkness while the Event Horizon
Telescope has the potential to capture silent movies. In the
composite story that emerges, black holes have asserted
themselves as plentiful—there are many more across a vast
range of masses than previously predicted—and as influ-
ential—the supermassive black holes are the sculptors of
their galaxies.
Although intrinsically the darkest phenomena conceiv-

able in the universe, black holes are famously also the
single most powerful luminous engines conceivable, creat-
ing electromagnetic storms in the surrounding environment
and driving jets powerful enough to blow holes in neigh-
boring galaxies.
Black hole engines occur when these otherwise empty

locales are immersed in external magnetic fields, which are
transported by neutron stars, for instance, or threaded
through orbiting debris. Whenever a spinning black hole
churns up an ambient magnetic field, there is an oppor-
tunity for ultra-powerful boosts in energy through an
electromagnetic Penrose process, sometimes called the

magnetic Penrose process [3–5]. A classic review of the
subject is [6]. An updated exposition covering the sub-
sequent decades of developments can be found in [7].
In the purely geometric mechanical Penrose process

[8,9], absent any electromagnetic fields, an outgoing
particle gets a boost in energy by cleverly exploiting the
relativity of space and time. The energy comes at the
expense of the spin of the black hole and occurs solely
within the ergosphere with a maximum efficiency of
roughly 20%.
By contrast, electromagnetic super-radiance leverages

the tremendous store of energy in the electromagnetic fields
and can lead to ultrahigh efficiencies [10], far greater than
those of the mechanical process. Consequently, the electro-
magnetic Penrose process is a compelling explanation for
high-energy astrophysical phenomena such as ultrahigh-
energy cosmic rays (UHECRs), particles [11–13] observed
with energy of about 1018 eV [14,15], or relativistic jets
[16,17]. To be explicit about terminology, we are envi-
sioning a process typified by (but not restricted to) the
decay of a particle near a black hole that results in a
negative-energy daughter and a positive-energy daughter
that is radiated with more energy than the parent. We will
use the terminology that the positive-energy daughter is
superradiant. We can also call the process an electromag-
netic Penrose process even though the mechanism may be
exploiting electromagnetic interactions and may not
depend solely on the relativity of spacetime. Perhaps none
of the terminologies are ideal, but we rely on them for
brevity.
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Interestingly, the electromagnetic Penrose process is
related to the Wald charge [18], which is the natural charge
favored for a black hole when spinning in an ambient
magnetic field. While there is a presumption that charge
swiftly neutralizes in astrophysical settings, Wald [18]
proved that for a spinning black hole in a uniform magnetic
field, the opposite is true: Black holes are inclined to
charge up. The energetically favorable value of the charge
of a black hole is given by the Wald value, which in an
external field B for a black hole of mass M and spin a is
QW ¼ 2aMB [18].
We show that the magnitude of the energy boost that

can be delivered to an outgoing particle through the
electromagnetic Penrose process is set roughly by the
combination

χQ ¼ q̄

�
Q
2M

− aB

�
ð1:1Þ

where q̄ is the charge per unit mass of a particle around the
black hole. As we argue, the combination χQ summarizes
the effective charge coupling between black hole and
particle. If we restrict 0 ≤ jQj ≤ jQW j, then the energy
extraction is largest when the effective charge coupling, χQ,
is most negative, which is actually for an uncharged black
hole (χQ ¼ −q̄aB;Q ¼ 0), and decreases as the Penrose
process charges the black hole up to the Wald value
(χQ ¼ 0; Q ¼ QW). The decrease in the effective coupling
χQ through the electromagnetic Penrose process is analo-
gous to the slow down of the spin of a black hole through
the mechanical Penrose process.
We explicitly locate the regions from which energy can

be mined and show that the electromagnetic Penrose
process is not restricted to the ergosphere, first observed
in [19,20]. There can even be disconnected, toroidal
regions in which energy can be extracted, to our knowledge
the first demonstration of its kind. Within these toroidal
regions, negative energy particles are forever trapped,
unable to fall into the black hole or to escape.
As we discuss, natural values of the effective coupling

are enormous, χQ ∼ 1010–1021, leading to dramatic boosts
in power. The implications for black hole batteries [21–24]
as well as black hole powered jets [25] may be significant.
Black hole batteries form when a neutron star threads a

companion black hole with its substantial dipole field. By
whipping around the neutron star magnet in the final stages
before swallowing the star whole, the black hole powers a
battery that can light up the system for a luminous
complement to a gravitational-wave detection [21–24]. If
the black hole acquires charge through the Wald mecha-
nism, then a black hole pulsar can also form, if briefly and
erratically [26]. The electromagnetic process we investigate
here can lead to ultra-efficient power boosts to both of these
compelling signatures.

For supermassive black holes, the efficient boost in
power near the event horizon and even along the jets could
be observable to the Event Horizon Telescope project given
their detailed observations of M87*, the black hole
6.5 million times the mass of the sun in the neighboring
M87 galaxy, 55 million light-years away.
Whether a system will avail itself of these substantial

boosts in power depends on the detailed collisional
and decay processes fluxing around the black hole.
While it is beyond the scope of this work to investigate
those rates, we look forward to future assessments
of the importance of the generalized Penrose process
in a realistic numerical modelling of a black hole
environment.

II. THE BLACK HOLE AND THE
ELECTROMAGNETIC ENVIRONMENT

We will take the electromagnetic energy density to be
small enough that the Kerr vacuum solution is valid.
Although negligible in terms of modifying the metric,
the electromagnetic fields have a significant effect on the
dynamics of charged particles in the black hole spacetime,
in particular for our interests, on the Penrose process. The
metric is then

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ ðr2 þ a2Þ2 − Δa2 sin2 θ
Σ

sin2 θdϕ2

−
2að2MrÞ sin2 θ

Σ
dtdϕ ð2:1Þ

with

Σ ¼ r2 þ a2cos2θ;

Δ ¼ r2 þ a2 − 2Mr ¼ ðr − rþÞðr − r−Þ: ð2:2Þ

Here rþ and r− are the positions of the outer and inner
horizons respectively:

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
ð2:3Þ

which satisfy elementary relations like

rþ þ r− ¼ 2M; rþr− ¼ a2: ð2:4Þ

Other useful relations include:
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g2tϕ − gttgϕϕ ¼ Δsin2θ; grr ¼ g−1rr ; gθθ ¼ g−1θθ ;

gtt ¼ −gϕϕ=ðΔsin2θÞ; gtϕ ¼ gtϕ=ðΔsin2θÞ;
gϕϕ ¼ −gtt=ðΔsin2θÞ: ð2:5Þ

In a pure Kerr geometry without any external electro-
magnetic fields, the mechanical Penrose process occurs
inside the ergosphere, which is the region re > r > rþ
bounded by the stationary surface with gtt ¼ 0, which
occurs at

reðθÞ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 cos2 θ

p
ð2:6Þ

with 2M > re ≥ rþ.
The vector potential of a spinning, charged black

hole aligned with an asymptotically uniform magnetic field
is [18]

A ¼ −
Q
2M

ηþ B
2
ðψ þ 2aηÞ; ð2:7Þ

where η ¼ ∂t and ψ ¼ ∂ϕ correspond to the Killing vectors
associated with the time translation invariance and the axial
symmetry of the Kerr geometry respectively. The first term
is due to the charge of the black hole while the second term
is due to an asymptotically uniform magnetic field of
magnitude B. Notice that we take the charge Q ≪ M and
magnetic field B ≪ 1=M in order to consistently use the
Kerr metric, which is a vacuum solution, as is Eq. (2.7).
Physical energies should be expressed in terms of the

potential difference from infinity, which is equivalent to
making a gauge transformation A0

μ ¼ Aμ − ∂μα with

α ¼
�

Q
2M

− aB

�
t: ð2:8Þ

Explicitly in terms of metric quantities, the resulting vector
potential is

At ¼ −
�

Q
2M

− aB

�
gtt þ

B
2
gtϕ −

�
Q
2M

− aB

�

Aϕ ¼ −
�

Q
2M

− aB

�
gtϕ þ

B
2
gϕϕ

Ar ¼ Aθ ¼ 0 ð2:9Þ

where the constant from the gauge choice has been
explicitly subtracted in the final term of At. As r → ∞,
the vector potential approaches the asymptotic form

Aμ →
B
2
ð0; 0; 0; r2 sin2 θÞ; ð2:10Þ

which is the vector potential for a uniform magnetic field
parallel to the z-direction with field strength B. The

magnetic field is aligned (antialigned) with the spin of
the black hole if B > 0 (B < 0).
Wald observed that it is energetic favorable for the black

hole to acquire charge of value QW ¼ 2aMB, which we
will call the Wald charge [18]. A black hole given a
reservoir of charged particles will be in the lowest energy
state at the Wald charge if spinning in a magnetic field. The
black hole is not energetically driven to discharge, contrary
to the common assumption. A spinning charged black hole
has its own magnetic dipole field and imitates a pulsar as
discussed in [26].

A. Particle dynamics

We consider a free test particle of mass μ > 0 and charge
q living in this background, with Lagrangian1

L ¼ μ

2
gμν _xμ _xν þ qAμ _xμ ð2:11Þ

where the dot denotes the derivative with respect to the
proper time τ of the particle. Because of the time translation
and axial symmetry of the spacetime, we have two
constants of motion

∂L
∂_t ¼ pt þ qAt ¼ −μe

∂L
∂ _ϕ ¼ pϕ þ qAϕ ¼ μl ð2:12Þ

where pμ ¼ μ_xμ is the kinetic momentum of the particle.
The constants e and l are, respectively, the conserved
energy and the angular momentum in the z-direction per
unit mass. While it is customary to refer to μe and μl as
energy and angular momentum—and we will continue to
do so throughout—they are not necessarily the energy or
angular momentum as measured by any physical observer,
as will be relevant for the Penrose process.
Note that with the potential (2.9), a particle at rest at

infinity has e ¼ 1. The only contribution to the energy is its
rest mass. Another constant of motion for any timelike
geodesic is

−μ2 ¼ gμνpμpν; ð2:13Þ

The full equations of motion that will preserve these 3
constants are summarized by

ðu ·DÞu ¼ q̄F · u ð2:14Þ

with the usual Maxwell tensor Fμν ¼ ∂μAν − ∂νAμ and
charge-to-mass ratio q̄ ¼ q=μ.

1Here we assume the backreaction of the charge particle on the
electromagnetic field or the gravitational field is negligible.
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As is well known, all particles are dragged around with
the spinning spacetime. To find the bounds on the allowed
range of a particle’s angular velocity, consider a photon
emitted at some fixed radial distance r in the ϕ-direction. At
that instant, the angular velocity is

Ω� ¼
�
dϕ
dt

�
�
¼ −

gtϕ
gϕϕ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
gtϕ
gϕϕ

�
2

−
gtt
gϕϕ

s
ð2:15Þ

the � correspond to the directions against and along the
rotation of the black hole respectively. For any massive
particle, its angular velocity is then bounded by

Ω− ≤ Ω≡ dϕ
dt

≤ Ωþ: ð2:16Þ

Using the metric relationships, we have

Ω� ¼ −
gtϕ
gϕϕ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ sin2 θ
g2ϕϕ

s
ð2:17Þ

which makes clear that on the outer horizon rþ, the square
root in (2.17) becomes zero and we have

ΩH ¼ dϕ
dt

����
r¼rþ

¼ −
gtϕ
gϕϕ

����
r¼rþ

¼ a
r2þ þ a2

: ð2:18Þ

This is the minimum angular velocity of a particle at the
horizon due to the frame dragging effect.
An interesting special observer to consult is the ZAMO

(zero angular momentum observer), whose worldline has
uμZ and ψ · uZ ¼ l ¼ 0. Solving for the angular velocity
gives

ΩZðrÞ ¼
dϕ
dt

¼ −
gtϕ
gϕϕ

> 0; for r > rþ: ð2:19Þ

The 4-velocity of the ZAMO is then

uZ ¼ utZðηþ ΩZψÞ; ð2:20Þ

with utZ > 0 as set by u · u ¼ −1.
As r increases, ΩZ is monotonically decreasing. In

particular this means

ΩH ≥ ΩZ; r ≥ rþ ð2:21Þ

and the equality holds on the horizon.
The mechanical Penrose process cleverly exploits the

relativity of space and time to augment the energy of
outgoing particles. Consider a particle 1 that decays into
particle 2 and particle 3. Simply put, conservation of
4-momentum enforces

μ1e1 ¼ μ2e2 þ μ3e3: ð2:22Þ

Particle 3 can emerge with more energy than its parent if
e2 < 0. While a negative kinetic energy is impossible,
e2 < 0 is not necessarily the energy as measured by any
observer, despite its name. The observed energy of any
particle is relative and quantified by its momentum
through some observer’s time. Since all observers are
free to consider themselves to be at rest in their
own frames, their time direction is equivalent to their
4-velocity u. The requirement that the kinetic energy of a
particle with momentum p be positive as measured by our
local observer is −p · u ≥ 0. As long as this condition is
respected for all viable, local observers, no laws have been
broken. Within the ergosphere, there is no observer
who can naively interpret μe as kinetic energy. Indeed,
the t-component of momentum is interpreted as a spatial
momentum and e’s positivity is no longer enforced.
Consequently, an outgoing particle can have μ3e3 greater
than μ1e1 of the original parent if the other daughter
has a negative μ2e2, as we explicitly demonstrate
in Sec. IV.
The lesson for now is that we are in search of negative e

values for one daughter in order for the other to extract
energy. In the electromagnetic Penrose process, the neg-
ative e regions are no longer strictly set by the ergosphere.
We set out to find the negative energy states and the
extended Penrose regions in Sec. III.

B. Electromagnetic couplings

Before we identify negative energy states, we streamline
notation with the introduction of the following dimension-
less parameters

χQ ¼ q̄

�
Q
2M

− aB

�
; χB ¼ q̄

BM
2

ð2:23Þ

to reexpress the vector potential as

q̄At ¼ −χQðgtt þ 1Þ þ χB
M

gtϕ

q̄Aϕ ¼ −χQgtϕ þ
χB
M

gϕϕ; ð2:24Þ

which reveals that χQ and χB capture the electromagnetic
couplings between the black hole, the charged particle, and
the background magnetic field.
There are 4 possible sign combinations of χB and χQ,

which depend on (i) whether the magnetic field is aligned
or antialigned with the black hole spin, (ii) the charge of the
particle, and (iii) whether the black hole charge Q has
exceeded the Wald valueQW ¼ 2aMB. When the magnetic
field is aligned with the black hole spin, i.e., B > 0, we
have QW > 0 and
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χB > 0 χB < 0

χQ > 0 q̄ > 0 and Q > QW > 0 q̄ < 0 and Q < QW

χQ < 0 q̄ > 0 and Q < QW q̄ < 0 and Q > QW > 0

while when B < 0 we have QW < 0 and

χB > 0 χB < 0

χQ > 0 q̄ < 0 and Q < QW < 0 q̄ > 0 and Q > QW

χQ < 0 q̄ < 0 and Q > QW q̄ > 0 and Q < QW < 0

For subatomic particles, the charge-to-mass ratios are
typically very large, which makes χB typically large in
realistic situations:

χB ≈ 2 × 1015
�
q̄
q̄p

��
M

10 M⊙

��
B

1012 G

�
: ð2:25Þ

Here q̄p ≈ 108 C · kg−1 is the charge-to-mass ratio for a
proton. In a binary system where the uncharged black hole
with M ¼ 10 M⊙ is aligned with a uniform magnetic field
B ≈ 1012 to 1015 G created by a neutron star [27], a proton
has χB ≈ 1015 to 1018 while an electron has χB ≈ −1018 to
−1021. Another example is an uncharged supermassive
black hole like M87 withM ≈ 6.5 × 106 M⊙ immersed in a
magnetic field B ≈ 30 G [28], in which case a proton has
χB ≈ 1010 and an electron has χB ≈ −1013. Similarly, for an
uncharged black hole, we have

χQ ≈ −4 × 1015
�
q̄
q̄p

��
a
M

��
M

10 M⊙

��
B

1012 G

�
: ð2:26Þ

The Wald mechanism [18] energetically favors a spinning
black hole acquire charge in a magnetic field, so that the
magnitude of χQ decreases. Energetically, the black hole is
disinclined to charge beyond the Wald value QW ¼ 2aBM
(χQ ¼ 0). Assuming there are no other competing mech-
anisms that charge or discharge the black hole, we argue
that the realistic range of χQ is

−2
a
M

χB < χQ < 0 ð2:27Þ

if χB > 0 and

−2
a
M

χB > χQ > 0 ð2:28Þ

if χB < 0.
As we show in the next section, the electromagnetic

energy boost is more powerful for χQ < 0, so the optimum
range is (2.27), for which χB > 0 and χQ < 0. This is
equivalent to a range extending from uncharged black
holes, for which the superradiance will be largest, to black
holes that reach the Wald charge, for which the

superradiance will be smallest. Wewill continue to consider
general ranges as indicated.
Hereafter we work in natural units with M ¼ 1.

III. ENERGY CONDITIONS

A. Minimum energy

We can require of all particles that a ZAMO at a location
r > rþ sees a particle to have positive kinetic energy. In
other words,

p · uZ < 0: ð3:1Þ

This gives a condition on the energy of the particle,
e ≥ emin, with

emin ¼ ΩZðl − q̄AϕÞ − q̄At

¼ ΩZlþ
�
1 −

Δ sin2 θ
gϕϕ

�
χQ: ð3:2Þ

Notice this is true for all ðr; θÞ. The quantity emin can be
negative, even when l ≥ 0, and still have a physically
meaningful positive kinetic energy. While the ZAMO
requires e > emin, we can do better and find exactly how
much bigger e is than emin below in Eq. (3.8).
We could require that the observed particle with e < 0

crosses the event horizon, which for a stationary spacetime
is a Killing horizon. For the Kerr case, one can show that
the following linear combination of time-translation and
rotational Killing vectors

ξ ¼ ηþ ΩHψ ð3:3Þ

generates the horizon. On r ¼ rþ, ξ becomes null. The
condition that a particle crosses the event horizon moving
forward in time is

pμξμ < 0: ð3:4Þ

We then have the condition e > eminðrþÞ

eminðrþÞ ¼ ΩHðl − q̄AϕÞ − q̄At

¼ ΩHlþ χQ ð3:5Þ

where the last line is obtained using Eq. (2.9) and the metric
relations. Equation (3.5) matches Eq. (3.2) at the horizon,
as it must.
Unlike the Kerr case, when e becomes negative, l does

not have to be negative. The permitted parameter ranges for
e and l depend on the vector potential Aμ and the location
of the particle in a detailed way. Physically, this is sensible.
One can imagine extracting energy from the black hole
electromagnetically instead of mechanically extracting
rotational energy.
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B. Negative energy states

We are now at the crux, which is to remap the ergosphere
to a new negative energy region. Above we found the
minimum values for e that lead to a positive energy as
measured by a ZAMO in Eq. (3.2), with the special
condition that the observed particle crosses the horizon
in Eq. (3.5). These are rock bottom values of e for physical
plausibility. But we actually know e in terms of other
variables and can explore if e ever probes the range
emin < e < 0.
Using the constants of the motion from the previous

section, we solve for e. From the timelike constraint (2.13),
we can express e in terms of other quantities. Eliminating
pt and pϕ gives

e2 − 2βeþ γ ¼ 0 ð3:6Þ

where

β ¼ −q̄At þΩZðl − q̄AϕÞ
γ ¼ q̄Atðq̄At − 2ΩZðl − q̄AϕÞÞ þ

gtt
gϕϕ

ðl − q̄AϕÞ2

−
Δ sin2 θ
gϕϕ

�
grrp2

r þ gθθp2
θ

μ2
þ 1

�
: ð3:7Þ

giving

e ¼ β þ
ffiffiffiffiffiffiffiffiffiffiffiffi
β2 − γ

q

¼ emin þ
�
Δsin2θ
gϕϕ

�ðl − q̄ B
2
gϕϕÞ2

gϕϕ

þ grrp2
r þ gθθp2

θ

μ2
þ 1

��
1=2

ð3:8Þ

where emin is defined in Eq. (3.2). We can express the
energy e per unit mass when pr ¼ pθ ¼ 0 as

e� ¼ emin þ
�
Δsin2θ
gϕϕ

�ðl − q̄AϕÞ2
gϕϕ

þ 1

��
1=2

: ð3:9Þ

As l → −∞, e� approaches its value for the purely
mechanical Penrose process. The sign of the radical is
chosen so that it corresponds to a particle moving forward
in time with respect to a ZAMO. The fact that e can be
negative is what allows extraction of energy. The mechani-
cal Penrose process corresponds to At ¼ Aϕ ¼ 0, for which
e < 0 is possible only within the ergosphere. The presence
of a nonzero vector potential enables a magnetic Penrose
process that allows for electromagnetic energy extraction.
Note that the −q̄At term in (3.9) potentially extends the
region of negative energy orbits all the way to infinity
[19,20]. In other words, if we do not restrict the charge of
the black hole, we can always mine electromagnetic energy

from anywhere. However, if we restrict the charge to the
energetically favored range, 0 ≤ jQj ≤ jQW j, then the
regions from which electromagnetic energy can be mined
are restricted.
For particles that cross the event horizon,

e ¼ eminðrþÞ þ
r2þ þ a2 cos2 θ

2Mrþ
j_rjr¼rþ

¼ ΩHlþ χQ þ r2þ þ a2 cos2 θ
2Mrþ

j_rjr¼rþ ð3:10Þ

where the final term is always greater than or equal to zero.
If e < eminðrþÞ, then that particle cannot fall in to the black
hole. It will either orbit or escape.
From (3.10), we can see that the scale of the negative

electromagnetic energies that can be attained can be
estimated by eminðrþ;l ¼ 0; _r ¼ 0Þ ¼ χQ. Therefore,
χQ > 0 suppresses energy extraction, and the energy states
with largest negative values correspond to χQ ≪ 0. In a
decay process, for instance, the positive-energy particle will
then get a boost of energy above the parent on order
−χQ > 0. The natural magnitude of χQ therefore sets the
magnitude of the energy output expected. As shown in
Eq. (2.26), jχQj ≫ 1 and therefore the energy from the
electromagnetic Penrose process can be very large, much
larger than the ∼20% boost of the mechanical process.
Notice that if a and B are aligned, χQ is only negative

below the Wald charge for positive charges and is only
negative above the Wald charge for negative charges. In
other words, the black hole tends to charge up in the
Penrose process until it reaches the Wald charge and tends
to discharge above the Wald charge.
Hereafter, we work with moderate values of χB and χQ

for ease of computation and discuss the qualitative effects
of increasing their magnitudes where appropriate.

C. The zero-energy surfaces

The ergosphere is defined as the region bounded by the
surface with gtt ¼ 0 given by reðθÞ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2 cos2 θ

p
.

In the mechanical Penrose process, all negative energy
states occur within the ergosphere. The stationary surface
bounding the ergosphere coincides with the largest zero-
energy surface defined by e�ðrÞ ¼ 0, in the absence of
electromagnetic fields.
For the electromagnetic Penrose process, the largest

zero-energy surfaces are given by the rðθÞ for which e� ¼ 0
in Eq. (3.9). The boundary of the ergosphere and the zero-
energy surface will always coincide when l → −∞. In the
mechanical Penrose process with less negative l, the zero-
energy surfaces are smaller than the ergosphere as in Fig. 1.
In the following figures, we project in spatial coordinates,
which correspond to the oblate spheroidal coordinates
when we take the M → 0 limit of the Kerr background,
using the transformation
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x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ cosϕ; y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ sinϕ;

z ¼ r cos θ: ð3:11Þ

To proceed, we separate two cases according to the sign
of the product χBχQ.

1. χBχQ < 0

As discussed in at the end of the last section, this sign
combination is of realistic interest. For the enhanced case
with χB > 0 and χQ < 0, the zero-energy surface can be
larger than the ergosphere when the black hole is uncharged
as in the upper right image in Fig. 2, as opposed to the
suppressed case. The larger χB, the zero-energy surface
elongates near the poles, scaling roughly as z ∝ χB. By
contrast, if we restrict to −2χB ≤ χQ < 0, the zero energy
surface cannot extend too far from the horizon in the
equatorial plane. In fact, it is not difficult to show that for
χQ ¼ −2χB (chargeless black hole), one can estimate the
location on the equatorial plane where e�ðrÞ ¼ 0 to be (for
large χB)

r ≈
1

3

 
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
44 − 3

ffiffiffiffiffiffiffiffi
177

p3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
44þ 3

ffiffiffiffiffiffiffiffi
177

p3

q !
≈ 2.65897;

ð3:12Þ

compared to the location of the stationary surface at r ¼ 2.
As l gets very negative for fixed χQ, χB, the zero-energy
surfaces approach the ergosphere, as in the lower left image.
At the same l ¼ −100, we show the suppressed case in the
lower right image.
When the black hole has attained the Wald charge

(χQ ¼ 0), the zero-energy surface is smaller than the
ergosphere as in the upper left image in Fig. 2. The larger
χB, the smaller the zero-energy surface.

2. χBχQ > 0

As discussed in at the end of the last section, this case is
unlikely occurring in nature, but we will give some brief
comments for theoretical interest.
We first comment on the case with χB < 0 and χQ < 0,

where we have a suppression of the Penrose process. The
upper left image of Fig. 3, shows the zero-energy surface at
theWald charge.When the black hole charges up beyond the
Wald charge, the zero-energy surface will expand and
elongate near the poles, as shown in the upper right and
lower left images. Finally, an example for suppression with
χB > 0 and χQ > 0 is shown in the lower right image, which
should be compared with the lower left image in Fig. 2.

D. Toroidal zero-energy surfaces

An intriguing feature of the black hole immersed in a
magnetic field is that there can be toroidal zero-energy
surfaces that are not coincident with the ergosphere. To our
knowledge, this is the first demonstration of toroidal
negative-energy regions, which furthermore do not contain
the event horizon.
Notice that if we restrict to initial values with pr ¼ pθ ¼

0 so that e ¼ e�, the zero-energy surfaces tell us about
the stability of the orbits. In all cases, negative energy
particles with e ¼ e� < 0 are trapped in the zero-energy
surfaces and therefore never escape to infinity. If they live
within a surface that includes the event horizon, they will
presumably fall into the black hole. If they are within a
toroidal region, they can only be on stable orbits that never
reach the event horizon.
To search for multiple negative-energy regions, we

search for multiple zeroes of e�ðrÞ. Keeping a ¼ 1 for
simplicity, we recall the definition (3.9) in terms of (3.7).
As in the analysis in [5], finding the zeros of e�ðrÞ is
equivalent to finding the locations where

γ ¼ 0 and β < 0: ð3:13Þ

The β < 0 constraint reads simply

lþ χQð1þ ð1þ RÞ2Þ < 0: ð3:14Þ

To proceed, we focus on the γ ¼ 0 condition. Restricting
ourselves on the equatorial plane θ ¼ π

2
and plugging in the

explicit expressions for the vector potentials, this is
equivalent to

½χQðΔ − gϕϕÞ þ gtϕl�2
− Δ½ðχQgtϕ − χBgϕϕ þ lÞ2 − gϕϕ� ¼ 0: ð3:15Þ

We want to examine the solution to this equation outside
the horizon, i.e., r > rþ ¼ 1. To that end, we change the
variable R ¼ r − 1 > 0 and expand the left-hand side. This
is then equivalent to the 5-order polynomial

FIG. 1. Mechanical zero-energy surface for l ¼ −1
(χQ ¼ χB ¼ 0) for y ¼ 0. As l gets more negative, the zero-
energy surface approaches the boundary of the ergosphere.
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0 ¼ R5 þ 3R4 þ c3R3 þ c2R2 þ c1Rþ c0 ð3:16Þ

where

c3 ¼ −
2l
χB

þ 1

χ2B
þ 4; c2 ¼

4χQ − 2l
χB

þ 1

χ2B
þ 4;

c1 ¼
l2 − 4χ2Q

χ2B
; c0 ¼ −

ðlþ 2χQÞ2
χ2B

: ð3:17Þ

The positive zeros to the Eq. (3.16) obeying β < 0
correspond to zero-energy surfaces. If there is only one
such root, there is only one such surface which together
with the outer horizon bounds a region where e�ðrÞ is
negative. If there are multiple such solutions to (3.16), then
there can be multiple surfaces with zero energy. To examine

this problem, we employ Descartes’ rule of signs.2 What we
are aiming for is as many sign changes in the sequence fcig
as possible. Since c0 < 0, there are only 4 possibilities with
more than 1 sign change:

ðiÞ c3 > 0; c2 < 0; c1 > 0

ðiiÞ c3 < 0; c2 > 0; c1 > 0

ðiiiÞ c3 < 0; c2 > 0; c1 < 0

ðivÞ c3 < 0; c2 < 0; c1 > 0 ð3:18Þ

FIG. 2. In all images, the solid line is the event horizon, the dot-dashed line is the boundary of the ergosphere, and the thick dashed
line is the zero-energy surface. In all cases, as l gets more negative, the zero-energy surface approaches the ergosphere.In all images,
the black line is the event horizon, the orange line is the boundary of the ergosphere, and the green line is the zero-energy surface.
Upper left: a black hole at the Wald charge (χQ ¼ 0; χB ¼ 10;l ¼ −1). The larger B, the smaller the zero-energy surface. Upper right:
an uncharged black hole (χQ ¼ −2aχB; χB ¼ 10;l ¼ −1). Notice that as compared with the other figures at the same l, the
zero-energy surface exceeds the ergosphere. Lower left: same as Upper Right but with l ¼ −100. Lower right: same as lower left, but
with χB ¼ −10.

2Descartes’ rule of signs says that the number of sign changes
in the sequence of a polynomial’s coefficients (omitting the zero
coefficients) is greater than or equal to the number of positive
roots. The difference between the number of sign changes and the
number of positive roots is always even.
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To continue the analysis we separate two cases according to
the sign of the product χBχQ.

1. χBχQ < 0

In this case, we must have c2 < c3 and thus the possibil-
ities (ii) and (iii) are immediately ruled out. Therefore we
must have c1 > 0 and c2 < 0. The former implies χBl >
−2χBχQ > 0 or χBl < 2χBχQ < 0. However, if
χBl < 2χBχQ < 0, we will have c3 > c2 > 0, which is
not one of the 4 possibilities (3.18). We are then left with

χBl > −2χBχQ > 0: ð3:19Þ

The c2 < 0 condition is equivalent to

2χ2B þ 1

2
< χBðl − 2χQÞ: ð3:20Þ

According to Descartes’ rule of signs, if inequalities (3.19)
and (3.20) are satisfied, the Eq. (3.16) can have 1 or 3
positive roots. However, even if (3.16) has 3 positive roots, it
does not mean that there are 3 surfaces of zero energy,
because we still have the condition (3.14). Only the
satisfaction of all (3.19), (3.20) and (3.14) can possibly
lead to multiple zero-energy surfaces.
An example with χB > 0 and χQ < 0 is shown in Fig. 4.

In this case we have a single zero-energy surface bounding
a negative-energy region that is completely detached from
the horizon. This allows the possibility that the particle
attains a negative energy while getting trapped in this
region. A particle with negative energy, perhaps formed by

FIG. 3. Upper Left: (χQ ¼ 0; χB ¼ −10;l ¼ −1). Upper Right: (χQ ¼ −5; χB ¼ −10;l ¼ −1). Lower Left: (χQ ¼ −2;
χB ¼ −10;l ¼ −1). Lower Right: (χQ ¼ 5; χB ¼ 10;l ¼ −100).
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the decay of another particle, will neither fall in or escape.
The orbit will be bound in this toroidal region around the
black hole.
Numerical investigation shows that in order for e�ðrÞ

to have 3 zeros outside the horizon, a must be close to
but not strictly equal to one. An example is shown
in Fig. 5.
As χQ becomes less negative, the allowed range of l > 0

shrinks (and totally disappears as the black hole attains the
Wald charge) due to the condition (3.14). The detached
negative-energy region will reduce in size and move toward
the horizon as shown in Fig. 6.
Another scenario where we have χBχQ < 0 is for χB < 0

and χQ > 0. Numerical investigations show that when the
black hole is totally uncharged (Q ¼ 0), it is not possible
for e�ðrÞ to have more than 1 zero; in fact, the black hole
has to have at least half the Wald charge. Additionally, it is
observed that χB < 0 and l < 0 has to be sufficiently
negative. An example is shown in Fig. 7.
As opposed to the previous case, as χQ > 0 becomes

smaller there are always some values of l < 0 that allow
multiple zeros of e�ðrÞ (for sufficiently large χB < 0). An
example is shown in Fig. 8.
As l < 0 gets smaller, the two disconnected zero-energy

surfaces will approach each other until they merge even-
tually. See Fig. 9.

2. χBχQ > 0

Again, this scenario might not be plausible but we
consider this for theoretical interest. In this case we have

c2 > c3 and the case (i) in (3.18) is ruled out. Then we must
have c3 < 0, leading to the condition

χBl > 2χ2B þ 1

2
> 0: ð3:21Þ

If χB > 0 and χQ > 0, this condition says l > 0, but then
the condition (3.14) cannot be satisfied. We conclude that
e�ðrÞ does not have multiple zeros in this case. Therefore
we only need to consider χB < 0 and χQ < 0. The inequal-
ity (3.21) becomes

l < 2χB þ 1

2χB
< 0: ð3:22Þ

Now, if we want to fall into any of (ii)-(iv) in (3.18), then
we cannot have simultaneously c1 < 0 and c2 < 0. That is,

l < 2χQ þ 2χB þ 1

2χB
< 0 and l2 − 4χ2Q < 0 ð3:23Þ

is not allowed. As it happens, this condition cannot be
satisfied for any value of l. Figure 10 shows a case for this
scenario.

IV. ORBITS OF PRODUCTS FROM THE
PENROSE PROCESS

Let us consider a massive particle of arbitrary
charge splitting into two charged massive particles. At
the point of split, the 4-momentum and the charge are
conserved:

FIG. 4. The case with a ¼ 1; χB ¼ 1; χQ ¼ −2;l ¼ 5. In this case e�ðrÞ has 2 zeros outside the horizon as shown in the left figure for
θ ¼ π=2. On the right, a toroidal zero-energy surface is shown for an uncharged black hole.
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pμ
1 ¼ pμ

2 þ pμ
3; q1 ¼ q2 þ q3: ð4:1Þ

The t and ϕ components of the conservation equations are
equivalent to

μ1e1 ¼ μ2e2 þ μ3e3; ð4:2Þ

μ1l1 ¼ μ2l2 þ μ3l3: ð4:3Þ

Also, each of the particles must obey

pi · pi ¼ −μ2i : ð4:4Þ

One can consider a more general collisional Penrose
process [29–32], in which the initial state consists of
multiple particles. We note however that this is not so
different qualitatively and amounts to simply replacing pμ

1

with the total 4-momentum.
If we have e�;2 < 0, then we can have super-radiance

wherein particle 3 has energy greater than that of the
incident particle 1 μ3e3 ¼ μ1e1 − μ2e2 > μ1e1. We write

FIG. 5. The case with a ¼ 0.97; χB ¼ 1; χQ ¼ −2;l ¼ 5. In this case e�ðrÞ has 3 zeros outside the horizon as shown in the left figure
for θ ¼ π=2. On the right, various surfaces are shown. Note that the surface that is closest to the horizon almost coincides with the
horizon.

FIG. 6. The case with a ¼ 1; χB ¼ 1; χQ ¼ −1;l ¼ 2.1. In this case e�ðrÞ has 2 zeros outside the horizon as shown in the left figure
for θ ¼ π=2. On the right, a toroidal zero-energy surface moves toward the horizon as the black hole charges up.
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uμi ¼ utið1; vi; 0;ΩiÞ ð4:5Þ

where

vi ¼
dri
dti

; Ωi ¼
dϕi

dti
: ð4:6Þ

From the definition (2.12) of the energy we have

uti ¼ −
ei þ qi

μi
At

gtt þ gtϕΩi
: ð4:7Þ

Then, using (4.1), it is easy to show that

e3 ¼ ζ
μ1
μ3

�
e1 þ

q1
μ1

At

�
−
q3
μ3

At;

ζ ¼
�
gtt þ gtϕΩ3

gtt þ gtϕΩ1

��
Ω1 −Ω2

Ω3 −Ω2

�
: ð4:8Þ

Note that this expression is general and only the con-
servation of momentum is used. In particular, the motion is
not assumed to be restricted to the equatorial plane.

FIG. 7. The case with a ¼ 1; χB ¼ −5; χQ ¼ 4;l ¼ −50. In this case e�ðrÞ has 3 zeros outside the horizon as shown in the left figure
for θ ¼ π=2. On the right, zero-energy surface for large, negative l.

FIG. 8. The case with a ¼ 1; χB ¼ −5; χQ ¼ 0;l ¼ −90. In this case e�ðrÞ has 3 zeros outside the horizon as shown in the left figure
for θ ¼ π=2. On the right, a disjoint zero-energy surface at the Wald charge.
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The efficiency for energy extraction is

ϵ ¼ μ3e3 − μ1e1
μ1e1

¼ −
μ2e2
μ1e1

: ð4:9Þ

This is positive when there is energy extraction. Plugging in
(4.8), we have

ϵ ¼ ζ − 1þ ζq1 − q3
μ1e1

At ¼ ζ − 1þ q3 − ζq1
μ1u1;t þ q1At

At

ð4:10Þ

where all quantities are evaluated at the point of split. The
first term ζ − 1 corresponds to the mechanical part of the
process and the second term proportional to the vector

potential At, corresponds to the electromagnetic extraction.
When At is small, it falls into the “low regime” described in
[7], where the Penrose process essentially reduces to the
mechanical one. In that case the efficiency is simply ϵ ≈
ζ − 1 with maximum value 20.7%. Otherwise, energy
extraction is greatly enhanced or suppressed electromag-
netically.3 Recalling the definition (2.9), the magnitude of
At depends strongly on the black hole charge Q and the
location where the splitting happens. On the symmetry
axis, we have

FIG. 9. The case with a ¼ 1; χB ¼ −5; χQ ¼ 0;l ¼ −79. On the left, we show e�ðrÞ for θ ¼ π=2. Compared to Fig. 8, the two
disconnected zero-energy surfaces are closer. If we further decrease l < 0, they will eventually merge as one.

FIG. 10. The case with a ¼ 1; χB ¼ −1; χQ ¼ −2;l ¼ −30. On the left, we show e�ðrÞ for θ ¼ π=2. On the right, the zero-energy
surfaces connect.

3“Moderate” and “Ultra-high-efficient” regimes in the termi-
nology of [7]. The latter happens when the parent is neutral, i.e.,
q1 ¼ 0.
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Atðθ ¼ 0Þ ¼ −ðQ − 2aMBÞ r
r2 þ a2

; ð4:11Þ

while on the equatorial plane

At

�
θ ¼ π

2

�
¼ −

Q − aMB
r

: ð4:12Þ

Therefore, we expect the vector potential term to be
important everywhere when the black hole is uncharged
and become less important as the black hole charges up. At
half the Wald charge (Q ¼ aMB), At vanishes in the
equatorial plane but is still positive along the pole. Past
this value, the vector potential will more and more negative
near the equatorial plane, while it is still positive along the
pole until it vanishes at the Wald charge QW ¼ 2aMB.
Let us study more closely the allowed initial conditions

at the point of split. It will be helpful to introduce the
3-vector notation

pi ¼ ðpr; pθ; pϕÞ; ð4:13Þ

so that the spatial components of (4.1) are compactly
expressed as

pi
1 ¼ pi

2 þ pi
3: ð4:14Þ

Suppose we are given the 4-momentum pμ
1 of the parent

particle. Because of the conservation laws, we are not free
to choose all components of the daughters’ momenta. It is
clear that given the spatial momenta pi

1 of the parent and
one of the daughters’ pi

2, the other daughter’s spatial
momentum pi

3 is fixed, knocking the initial data that
can be chosen for the daughters down to 4. However,
the t-component pt

2 is determined by the mass shell
conditions (4.4). The t-component of (4.1) puts two extra
constraints on pt

2 and pt
3, and therefore pi

2 are not all
independent. Only two of them can be chosen freely. In
fact, it is not difficult to write down the general constraint
that must be satisfied by pi

2. Given charge and angular
momentum conservation, the energy conservation equa-
tion (4.2) becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 · p1 þ μ21

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 · p2 þ μ22

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3 · p3 þ μ23

q
:

ð4:15Þ

Using (4.14), the general constraint that must be satisfied
by p2 is

�
p1 · p2 þ

μ21 þ μ22 − μ23
2

�
2

¼ ðp1 · p1 þ μ21Þðp2 · p2 þ μ22Þ:

ð4:16Þ

In this notation the energies from (3.9) are simply

e ¼ −q̄At þ ΩZpϕ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ sin2 θ
gϕϕ

�
p · p
μ2

þ 1

�s

¼ χQ

�
1 −

Δ sin2 θ
gϕϕ

�
−

gtϕ
gϕϕ

lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ sin2 θ
gϕϕ

�
p · p
μ2

þ 1

�s

ð4:17Þ

giving

e2 ¼ χ2;Q

�
1−

Δ sin2 θ
gϕϕ

�
−
gtϕ
gϕϕ

l2

þ 1

μ2

�
p1 · p2 þ

μ21 þ μ22 − μ23
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ sin2 θ
gϕϕ

1

p1 · p1 þ μ21

s

e3 ¼ χ3;Q

�
1−

Δ sin2 θ
gϕϕ

�
−
gtϕ
gϕϕ

l3

þ 1

μ3

�
p1 · p3 þ

μ21 þ μ23 − μ22
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ sin2 θ
gϕϕ

1

p1 · p1 þ μ21

s

ð4:18Þ

where we have used the fact that

μ21 þ μ22 − μ23
2

þ p1 · p2 ¼ −p1;tpt
2 > 0;

μ21 þ μ23 − μ22
2

þ p1 · p3 ¼ −p1;tpt
3 > 0: ð4:19Þ

Even though these equations are written in term of p3, this
can be eliminated using (4.14). Therefore, these expres-
sions only depend on the location of the point of split and
the dot product p1 · p2.

A. Case study: Decay of uncharged parent
into particle/antiparticle pair

As a demonstration, consider an uncharged parent with
pr ¼ pθ ¼ 0 but l ≠ 0 that decays into a particle and
antiparticle: μ1 ¼ 2μ2 ¼ 2μ3 and q̄2 ¼ −q̄3 ¼ q̄. For the
preferred range χB > 0; χQ < 0, the positively charged
particle can have negative e, according to the chart in
Sec. II B, and the negatively charged particles (which
has opposite signs for χB, χQ) gets the kick in energy.

We can choose any values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; θ in the negative-

energy regions, which sets the orbits of the daughter
particles.
As a simplest example, consider a negative-energy orbit

from within the upper-right surface around an uncharged
black hole in Fig. 2 (χB ¼ 10; χQ ¼ −2χB; a ¼ 1;l ¼ −1).
We choose r ¼ 2.8; θ ¼ π=6. As shown in Fig. 11, the
negative-energy particle (red) and the positive-energy
particle (blue) both fall into the black hole.
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As another example, consider orbits in the equatorial
plane corresponding to Fig. 4 (a ¼ 1; χB ¼ 1; χQ ¼ −2;
l ¼ 5), we choose r ¼ 2.8; θ ¼ π=2 for the positively
charged particle. As shown in Fig. 12, the negative-
energy particle (red) is trapped in the toroidal region
and the positive-energy particle (blue) orbits the black
hole.
For a nonequatorial orbit corresponding to Fig. 5

(a ¼ 0.97; χB ¼ 1; χQ ¼ −2;l ¼ 5), we choose the initial
values to be r ¼ 3; θ ¼ π=5. The negatively charged
daughter in blue escapes. The positively charged daughter
has negative energy and is confined to the toroidal region
of Fig. 5.
For a nonequatorial orbit corresponding to Fig. 8

(a ¼ 1; χB ¼ −5; χQ ¼ 0;l ¼ −90), we choose the initial
values to be r ¼ 5.9; θ ¼ π=4. The positive-energy daugh-
ter in blue escapes. The negative-energy daughter is
confined to the toroidal region of Fig. 8.
The superradiant particles in Figs. 12 and 14 escape

along field lines that extend to infinity and so could be
particles contributing to the jets. Escaping particles are
easily generated. If the split of the parent occurs out of the
equator, the positive-energy particle tends to escape along
field lines while the negative-energy particle either falls in
or is forever within a toroidal zero-energy surface.

1. Uncharged stationary parent

Suppose the parent particle is stationary, p1 ¼ 0 so that

p1;t ¼ −μ1e1 − q1At ¼ −μ1
�

Δ
gϕϕ

�
1=2

sin θ ð4:20Þ

The parent particle is not stationary with respect to the obser-
ver at infinity, because pϕ

1 ¼ μ1 _ϕ1 ¼ gϕtp1;t þ gϕϕp1;ϕ ¼
−gϕtp1;t ≠ 0. Although this is a subset of the previous section,
the equations collapse helpfully. In this case, (4.16) simply
reads

p2 · p2 þ μ22 ¼
ðμ21 þ μ22 − μ23Þ

4μ21
: ð4:21Þ

FIG. 11. The uncharged parent decays at r ¼ 2.8; θ ¼ π=6 into
a negative-energy daughter (Daughter 1) that is trapped within the
zero-energy surface in the upper right of Fig. 2. Both the negative-
energy daughter (Daughter 1) and the positive-energy daughter
(Daughter 2) fall into the black hole.

FIG. 13. The uncharged parent decays into a positively charged,
negative-energy daughter (Daughter 1) that is trapped within the
zero-energy surface of Fig. 5. The negatively charged, positive-
energy daughter (Daughter 2) escapes.

FIG. 12. The uncharged parent decays into a positively charged,
negative-energy daughter (Daughter 1) that is trapped within the
zero-energy surface of Fig. 4 and lies in the equatorial plane. The
negatively charged, positive-energy daughter (Daughter 2) orbits
the black hole.
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Using this constraint, the energies e�;2 and e�;3 simplify to

e2 ¼ χ2;Q

�
1 −

Δsin2θ
gϕϕ

�
−
gtϕ
gϕϕ

l2

þ μ21 þ μ22 − μ23
2μ1μ2

�
Δsin2θ
gϕϕ

�
1=2

e3 ¼ χ3;Q

�
1 −

Δsin2θ
gϕϕ

�
−
gtϕ
gϕϕ

l3

þ μ21 þ μ23 − μ22
2μ1μ3

�
Δsin2θ
gϕϕ

�
1=2

: ð4:22Þ

Note that the results (4.22) are independent of the components
p2 and p3 and depend only on the location of the point of split.
One of the daughters will have negative energy if the split
occurs within a zero-energy surface for a given l.
If a neutral parent decays into a particle and antiparticle,

then μ1 ¼ 2μ2 ¼ 2μ3 ¼ 2μ, q̄2 ¼ −q̄3 ¼ q̄, l2 ¼ −l3 ¼ l,
and thus

e2 ¼ χQ

�
1 −

Δsin2θ
gϕϕ

�
−

gtϕ
gϕϕ

lþ
�
Δsin2θ
gϕϕ

�
1=2

e3 ¼ −χQ
�
1 −

Δsin2θ
gϕϕ

�
þ gtϕ
gϕϕ

lþ
�
Δsin2θ
gϕϕ

�
1=2

ð4:23Þ

A comparison of (4.23) and (3.8) shows that initially pr ¼
pθ ¼ 0 and pϕ ¼ 0 ∝ l − q̄Aϕ, fixing l ¼ q̄Aϕ, evaluated
at the location of the split. The energies then simplify to:

e2 ¼ χQðgtt þ 1Þ − χB
M

gtϕ þ
�
Δsin2θ
gϕϕ

�
1=2

e3 ¼ −χQðgtt þ 1Þ þ χB
M

gtϕ þ
�
Δsin2θ
gϕϕ

�
1=2

ð4:24Þ

We show an equatorial example in Fig. 15.
Considering a maximally spinning black hole, for the

preferred range χB > 0; χQ < 0, it is e2 (for the positive
charge) that can be negative, according to the chart in
Sec. II B and e3 (for the negative charge) gets the kick in
energy, as shown in the example of Fig. 16.
Figure 17 is particularly interesting as it demonstrates the

consequence of increasing χB and χQ in magnitude. Both
the negative-energy daughter and the positive-energy
daughter are trapped in orbit. The energy of the super-
radiant daughter is 73 times larger than the parent. As the
magnitude of χQ approaches values of 1010–1021, the
efficiency will get correspondingly larger.
Our expressions will lend themselves to any of the

obvious case studies, such as beta decay, particle-antipar-
ticle collisions, photon emission etc. Any boost in energy a

FIG. 14. The uncharged parent decays into a positively charged,
negative-energy daughter (Daughter 1) that is trapped within the
zero-energy surface of Fig. 8. The negatively charged, positive-
energy daughter (Daughter 2) escapes.

FIG. 15. Left: the zero-energy surface for χB ¼ −2; χQ ¼ −1;l ¼ −22. Right: the uncharged parent decays at r ¼ 3; θ ¼ π=2 into a
negative-energy daughter (Daughter 1) and a positive-energy daughter (Daughter 2). Daughter 1 is able to fall into the black hole since it
lives within the zero-energy surface shown on the left while Daughter 2 is not able to fall into the black hole.
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nearby particle experiences can be reflected in the light it
emits through any radiative process. The particle itself need
not escape to infinity. This raises the interesting prospect
that the daughter with negative e may radiate light at
enhanced energies too when trapped within a disjoint
negative-energy surface, even though the particle itself
never escapes to infinity. To address the prospect of light
emission would require the full synchrotron radiation-
reaction problem as done for instance in [33,34] or more
recently in [35–37]. We leave this for future work.

V. IN CLOSING

We have shown the enhanced power of the electromag-
netic Penrose process with regions extended beyond the
ergosphere, including novel toroidal surfaces that trap
negative-energy particles in orbit around the black hole.
From these regions, tremendous energy can be extracted
and delivered to outgoing superradiant particles.
While we can estimate the efficiency of these process

from the effective coupling χQ between the black hole and
charged particles, we make no attempt to quantify the

FIG. 17. Left: the zero-energy surface for χB ¼ 100; χQ ¼ −200;l ¼ 598.1. The peak of the surface reaches z ∼ 400 near the poles.
Right: the uncharged parent decays at r ¼ 2.8; θ ¼ π=3 into a negative-energy daughter (Daughter 1) and a positive-energy daughter
(Daughter 2).

FIG. 16. Left: the zero-energy surface for χB ¼ 3; χQ ¼ −5;l ¼ 18.9. Right: the uncharged parent decays at r ¼ 3.5; θ ¼ π=4 into a
negative-energy daughter (Daughter 1) who lives in the zero-energy surface on the left and a positive- energy daughter (Daughter 2) who
falls in.
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probability of energy extraction. Just because a particle can
decay into a trapped negative-energy daughter and a
significantly boosted positive-energy radiator, does not
mean it will do so, often or ever. A sophisticated predictive
model for the enhanced power of any observable
emission—whether from an accretion disk, a magneto-
sphere, a black hole battery, or a jet—would entail detailed
numerical modeling as opposed to the clean vacuum
solutions exploited here. Perhaps more fruitful would be
to scan observations for anomalous augmented power and
extrapolate from there.
We are encouraged by this era of precision black hole

astrophysics. In the range of stellar to intermediate mass
black holes, a network of observatories promises multi-
messenger counterparts to gravitational-waves. In the

supermassive range, the Event Horizon Telescope project
captures detailed observations of emission mechanisms in
real time. With such meticulous detections emerging,
electromagnetic Penrose processes could leave observable
imprints on black holes and their luminous environments. It
would be intriguing to consider, for instance, implications
of the generalized Penrose process on polarization of light
emitted near the event horizon of M87*[28].
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