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Perturbation theory of vacuum spherically symmetric spacetimes is a crucial tool for understanding the
dynamics of black hole perturbations. Spherical symmetry allows for an expansion of the perturbations in
scalar, vector, and tensor harmonics. The resulting perturbative equations are decoupled for modes with
different parity and different harmonic numbers. Moreover, for each harmonic and parity, the equations for
the perturbations can be decoupled in terms of (gauge-invariant) master functions that satisfy 1 + 1 wave
equations. By working in a completely general perturbative gauge, in this paper we study what is the most
general master function that is linear in the metric perturbations and their first-order derivatives and satisfies
a wave equation with a potential. The outcome of the study is that for each parity we have two branches of
solutions with similar features. One of the branches includes the known results: In the odd-parity case, the
most general master function is an arbitrary linear combination of the Regge-Wheeler and the Cunning-
ham-Price-Moncrief master functions whereas in the even-parity case it is an arbitrary linear combination
of the Zerilli master function and another master function that is new to our knowledge. The other branch is
very different since it includes an infinite collection of potentials which in turn lead to an independent
collection master of functions which depend on the potential. The allowed potentials satisfy a nonlinear
ordinary differential equation. Finally, all the allowed master functions are gauge invariant and can be

written in a fully covariant form.
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I. INTRODUCTION

Spacetime perturbation theory is one of the main tools in
general relativity to describe physical systems and make
reliable predictions about their characteristics and dynami-
cal behavior. It has been applied essentially to all the main
problems in the area of relativistic astrophysics and
cosmology: from the origin and growth of cosmological
structures and the cosmic microwave background [1-4] to
phenomena involving relativistic stars and black holes [5—
8], including gravitational wave generation and propaga-
tion [9—-12] (see [12-18] for applications of black hole
perturbation theory to gravitational wave astronomy).
There are also many applications of black hole perturbation
theory that have implications for fundamental physics (see
[19-21] for reviews).

The long experience in relativistic perturbation theory
tells us that it is a very powerful tool, in part because
starting from very simplified situations, encoded in what is
known as the background spacetime, it has shown to
provide results and predictions that many times go beyond
the range of applicability that one may expect from back-
of-the-envelope estimates. For example, this has happened
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when we have compared the outcome of full numerical
relativity simulations with post-Newtonian/Minkowskian
theories and relativistic perturbation theory.

In this work we focus on relativistic perturbation
theory of vacuum spherically symmetric spacetimes.
We allow for the presence of a cosmological constant
which, as we are going to see, does not make our
computations much more complicated since it can be
incorporated into our equations in a relatively simple
way. This means that our study includes the dynamics
of perturbations around Schwarzschild, Schwarzschild-de
Sitter, and Schwarzschild-anti—de Sitter spacetimes, includ-
ing also the associated maximally symmetric spacetimes:
Minkowski, de Sitter, and anti—de Sitter respectively. It is
well known that perturbations of spherically symmetric
spacetimes can be decomposed in spherical harmonics, in
such a way that the associated equations for the different
harmonic modes decouple. Moreover, the equations for
different parity harmonics also decouple, i.e., odd-parity
(axial) modes can be treated separately from even-parity
(polar) modes. Another crucial feature of the theory of
perturbations of spherically symmetric spacetimes is that,
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for each harmonic and parity, it is possible to construct
master functions, made out of linear combinations of the
metric perturbations and their first-order derivatives, that
satisfy 1 + 1 wave (master) equations decoupled from the
rest of metric perturbations. The characteristic curves of the
wave operator of the master equations are fully determined
by the background (Lorentzian) metric. In some perturba-
tive gauges, it is even possible to reconstruct all the metric
perturbations in terms of the solutions of the master
equations, something that is required in some problems,
like in the self-force program [22-24].

In the case of perturbations of the Schwarzschild metric,
the first steps [25] were already taken in the 1950s by
Regge and Wheeler [26] (see also [27,28]), who managed
to decouple the equations for odd-parity perturbations in
the gauge named after them (also the master function and
equation are named after them). However, it took a while
until the same was done for even-parity perturbations, when
Zerilli found the way to decouple the perturbative equations
[29,30] (see also [31]). Starting from these pioneering
works, there have been many interesting developments in
perturbation theory of spherically symmetric spacetimes:
gauge-invariant and/or explicitly covariant formalisms [32—
35] (see [36,37] for the case of D-dimensional maximally
symmetric spacetimes), quasinormal modes [5,6,38-40]
(for D dimensions see [41]), stability of dynamics of the
perturbations [42,43], stability of black holes in de Sitter
Space [44], etc. For reviews on nonrotating black hole
perturbation theory see [34,45-48] (for second-order per-
turbations see [49-51]). On the other hand, similar develop-
ments took place for perturbations of rotating black holes
[52,53]. For studies of the stability of black holes in
asymptotically flat spacetimes see [54,55].

In this paper, we further investigate the construction of
master functions and equations. In particular, we focus on
the following questions: What is the most general master
function that decouples the equations for the metric
perturbations of spherically symmetric vacuum space-
times? And, what are the possible potentials associated
with those master functions? To answer these questions we
assume that the master functions are linear combinations
(with coefficients that depend only on the radial areal
coordinate, r) of the metric perturbations and their first-
order derivatives. Our analysis turns out to be very similar
for the odd- and even-parity cases, also leading us to similar
conclusions. The result we find is that we can distinguish
two branches of solutions (for each parity and harmonic
mode). The first branch is mostly known: The master
functions are linear combinations of two different (linearly
independent) master functions. In the odd-parity case they
can be taken to be the Regge-Wheeler [26] and the
Cunningham-Price-Moncrief [56—58] master functions.
In the even-parity case, one of them can be taken to be
the well-known Zerilli-Moncrief master function [29-31],
while the second one, as far as we know, was previously

unknown. It turns out that, for both parities, the indepen-
dent master functions can be chosen so that one of them is
the time derivative of the other one. Regarding the master
equations themselves, which in our case are essentially
determined by the potential, in the first branch we find the
well-known potentials: the Regge-Wheeler potential for
odd-parity perturbations and the Zerilli potential for even-
parity perturbations. On the other side, the second branch
was essentially unknown. To begin with, there are infinite
possible potentials, different from the ones already known
in the first branch. Actually, the allowed potentials satisfy
a nonlinear ordinary differential equation. The master
functions are again a linear combination (again with
coefficients that depend only on r) of two independent
master functions. In the odd-parity case, they can be taken
to be the Cunningham-Price-Moncrief master function
and a new one that combines the Cunningham-Price-
Moncrief and another gauge-invariant function. The
even-parity case is analogous, the most general master
function is a linear combination of the Zerilli-Moncrief
master function and another new master function that
contains the Zerilli-Moncrief master function and a gauge-
invariant variable.

Some remarkable features and consequences coming
from this study are the following: (i) All the master
functions involved are automatically gauge invariant.
(i1) All the master functions and master equations admit
a fully covariant form with respect to the 1 + 1 Lorentzian
metric. (iii) In the same way that the Regge-Wheeler
and Zerilli potentials coincide for the case of a
maximally symmetric background, the equations for the
potentials in the second branch also coincide. (iv) Our
approach constitutes an original and systematic way of
searching for master functions and equations without
having to resort to look for ad hoc combinations of the
perturbative field equations that yield decoupled master
equations.

This paper is organized as follows: In Sec. II we
introduce all the necessary elements of relativistic pertur-
bation theory for (vacuum) spherically symmetric space-
times, including the elements associated with the
background spacetime, the decomposition of the perturba-
tions in spherical harmonics, gauge invariance, and the
known master functions in different forms. In Sec. III, we
describe how to obtain the most general master functions
and equations satisfying the hypothesis mentioned above.
Finally, in Sec. IV we summarize and discuss the results of
this paper. We also include two appendixes with key
formulas used in this work. We use geometric units in
which G = ¢ = 1.

II. RELATIVISTIC PERTURBATION THEORY OF
SPHERICALLY SYMMETRIC SPACETIMES

In this section we introduce all the ingredients and
machinery needed to derive the main results of this work.
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A. Basics of relativistic perturbation theory

Relativistic perturbation theory is usually formulated by
assuming the existence of a one-parameter family of
spacetimes, (M, g;), in such a way that the perturbations
are constructed as a Taylor expansion of this family around
the 1 = 0 spacetime (see, e.g., [59,60]), the background
spacetime, which usually represents an idealized gravita-
tional system, typically with a high degree of symmetry as
in our case. Here, we assume the background1 to be a
vacuum (including the cosmological constant) spherically
symmetric spacetime. Then, the background spacetime
metric, §,,, satisfies the vacuum Einstein’s field equations
including the cosmological constant term:

R A
G;w = R;w - Eg;wR + Ag;w =0, (1)

where Rw and Gm denote the Ricci and Einstein tensors of

the background metric respectively, R = g/wie,w is the
background scalar curvature, and A is the cosmological
constant.

In this framework, the perturbations are defined as the
derivative terms of the Taylor series expansion, evaluated
on the background. The parameter A controls the strength of
the perturbations and in most applications it is a formal
parameter without a specific physical meaning, except in
some cases in which it is identified with some relevant
physical parameter of the system (see, e.g., [59,61,62] for
more details on the formulation of relativistic perturbation
theory). Since in our case 4 is a formal parameter, we are
going to ignore it from now on for the sake of simplicity.
The physical (perturbed) spacetime, a member of the one-
parameter family of spacetimes (M}, g;), is endowed with
a metric g, which, once a correspondence between the
background spacetime is established, can be constructed to
linear order from the background solution g, and the
metric perturbations 7, (|h,,| < |g,,|) via the relation

9 = g/w + h;w' (2)

For any quantity Q, we denote the deviations between the
perturbative and background expressions with a § in front
of the original quantity, i.e., 6Q = Q — Q, where Q is the
expression from the perturbed/physical spacetime. In this
way, h,, =69, = gu — gu- When we expand such a
quantity in the different perturbative orders we are actually
performing Taylor expansions in the parameter A. In this
sense, at first order, the perturbed Christoffel symbols can
be written in terms of the metric perturbations 4, and their
covariant derivatives with respect to the background metric
(denoted here by a semicolon), as follows:

'We use a hat to denote quantities associated with the back-
ground spacetime, like Q.

1 ~00
8y = Eg/ (Myow + Mooy = My ) (3)

From the expression of these quantities we deduce that they
are tensors with respect to coordinate changes in the
background spacetime. Then, we can write the perturba-
tions of the Riemann tensor in terms of the perturbed
Christoffel symbols (which are tensors from the point of
view of the background spacetime) as follows:

éRﬂupa = 5F}ljﬁ;p - 5F¢fp;g = 25F’:[a;p]' (4)

In the same way, the perturbations of the Ricci tensor can be
written in terms of the covariant derivatives of the perturbed
Christoffel symbols:

6R,, = 6L — 67y (5)

The Einstein tensor can be decomposed as G,, = CA}W—F
0G,, = 6G,,, where the second equality holds by virtue of
the Einstein field equations satisfied by the background
metric [Eq. (1)]. The perturbation in the Einstein tensor in

terms of the metric perturbations 4, are

[’1/) _%gﬂy(v/)ﬁp)’ (6)
where Rf’ﬂ”y is the background Riemann tensor and we
have used again the background Einstein’s field equations
[Eq. (D]: G,, =0=R,, = Aj,, and R = #*R,, = 4A.
Moreover, we have introduced several definitions in
Eq. (6). First, we have introduced the trace-reversed metric
perturbations:

- 1

h/w = h;w - Eg/wh’ (7)

with & being the trace of &, with respect to the background
metric

h=g"h,,. (8)

Second, we have introduced the d’ Alambertian associated
with the background:

Uhy,, = hy,., "

wwip”

Ok = h,,. (9)
And finally, we have introduced the quantity
L, =9V, hg,. (10)

When we impose £, = 0 we are in the so-called Lorenz
gauge. But in this paper we are not going to impose any
particular gauge, i.e., the developments we present are
completely general.
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B. Background solution: Vacuum spherically
symmetric spacetimes

We consider background spacetimes, or regions of space-
times, that are solutions of the Einstein vacuum equations
including a cosmological constant [see Eq. (1)]. These
solutions come from a generalization of Birkhoff’s local
uniqueness theorem [63] (published before by Jebsen
[64,65]; see also [66,67]) to the case of a nonvanishing
cosmological constant [68] (see [69] for details). It turns out
that the only locally spherically symmetric solutions to
Egs. (1) (see [69]) are locally isometric either to one of the
Schwarzschild-de Sitter (SchdS [70]) and Schwarzschild-
anti—de Sitter (SchAdS) solutions or to the Nariai spacetime
[71,72], which can be seen as the limit of SchdS when
the cosmological and event horizons coincide® (see [73]).
This family of metrics includes very important solutions as
the maximally symmetric solutions of Einstein equations:
Minkowski flat spacetime (M; A = 0), de Sitter (dS; A > 0),
and anti—de Sitter (AdS; A < 0). Locally, the background
metric can be written in the so-called Schwarzschild
form,

;l(—rrz) +r2dQ?, (1)

where dQ? = d#? + sin? Odg? is the line element of the
2-sphere and f(r) is a function parametrizing time trans-
lations (related to the redshift).

The solutions described by the metric (11) satisfy
Einstein’s equations (1), which become ordinary differ-
ential equations (ODEs) for f(r):

ds* = Gudxtdx’ = —f(r)dt* +

rf'+f+ AP —-1=0, (12)
r(f" +2A) +2f = 0. (13)

There are two combinations of f(r) and its derivatives that
are constants and correspond to the cosmological constant
A and the spacetime mass M respectively:

1
A== (. (14)

Mz%(l—f—%ﬂ) =2 [1—f+é(r2f’)/]- (15)

In the case of Schwarzschild spacetime [25] (also found
independently by Droste [74]) we have

rY
Fsn =1—--" (16)

*We will not consider here the particular case of the Nariai
metric as it may require a particular treatment.

where r; is the Schwarzschild radius, r, = 2GM/c* = 2M.
In the case of de Sitter and anti—de Sitter spacetimes we
have

2 2

r r
fAdS:1+F (17)

fas =1- 72
where L is the (anti—)de Sitter length scale, which deter-
mines the cosmological constant as follows:

3

A=+ 7 (18)
where the plus sign corresponds to de Sitter and the minus
sign to anti—de Sitter. Apart from these two cases, we have
the case of the Schwarzschild—de Sitter (SchdS) spacetime,
which contains the previous two cases in the limits M — 0
(dS) and L — oo (Sch). This last limit is equivalent to
A — 0. The function f(r) for Schwarzschild—de Sitter and
Schwarzschild-anti—de Sitter is

XM A

fschds/schadas (1) = 1 = -3 (19)

where A is given in Eq. (18).

C. Multipolar expansion of the perturbations of vacuum
spherically symmetric spacetimes

The background metric can be written as the warped
product of two manifolds: M? x, S?, where M? is a two-
dimensional Lorentzian manifold, r is the radial area
coordinate, and S? denotes the 2-sphere. Therefore, the
background metric is given by the semidirect product of a
Lorentzian metric on M2, g,,, and the unit curvature metric

on S2, Qup:
~A Yab 0
I = ( 0 "ZQAB>' 20)

Coordinates on M? are going to be denoted with lowercase
Latin indices, (x*) = (t, r). Coordinates on S? are denoted
with uppercase Latin indices as (%) = (0, ¢). Then, in
connection with Eq. (11) we can write

Gapdx®dx? = —f(r)dt* + d_r2 (21)
¢ f(r)
QO dOF = de® + sin’0dg>. (22)

We use a vertical bar to denotes covariant differentiation on
the two-sphere S? (then Qypjc = 0). Similarly, we use a
colon to denote covariant differentiation with respect to the
metric of the Lorentzian two-dimensional manifold M2,
i.e., gup:e = 0. On the other hand, the antisymmetric
covariant unit tensor associated with the volume form
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(Levi-Civita tensor) in S? is denoted by e,z and the
corresponding one on the Lorentzian manifold M? is
denoted by €,

The particular geometric structure of the background
implies that for certain quantities (e.g., solutions of the wave
equation in the background) we can separate the dependence
on the coordinates of M? from the angular dependence,
which, in turn, can be expanded in spherical harmonics. The
different harmonics can be divided into even- and odd-parity
harmonics depending on how they transform under a parity
transformation, (0,¢) —» (z —0,¢ + ). If a given har-
monic object O™ transforms as O — (—=1)°O"™ it is
said to be of the even-parity type; while if it transforms as
O'm — (=1)7H1 O™ it is said to be of the odd-parity type.
With this in mind, the scalar, vector, and tensor spherical
harmonics are as follows:

(i) The scalar harmonics Y“™ are eigenfunctions

of the Laplace operator on the two sphere (see
Appendix A):

QABY@”; =—£(¢+ 1)y, (23)

(i1) The vector spherical harmonics, which are defined
for £ > 1, are given by

‘m — yfm
Yo =y

even (polar) parity, (24)
Xim = —e,BY4m  odd (axial) parity.  (25)

(iii) The basis of symmetric second-rank tensor spherical
harmonics, which are defined for £ > 2, are given by

Ti" =Y'"Q,p even parity, (26)

(¢ +1
Yirg = Yﬁé +%yfmgm even parity, (27)
X4m = X’{ X|lB) odd parity. (28)

Differential properties of these spherical harmonics

that are necessary to manipulate the perturbative

Einstein equations are given in Appendix A.
The metric perturbations can be written as a multipole
expansion using scalar (Y?™), vector (Y4, X{™), and tensor
spherical harmonics (T4%, Y4", X4™). The main reason for
expanding the metric perturbations in this way is that the
underlying spherical symmetry prevents different harmon-
ics and different parity modes from mixing, and the
perturbation equations can be obtained for each (¢,m)
and parity mode separately (see, e.g., [32,33]):

hﬂu _ Zhlflr/n,odd + hi;n,even’ (29)
£.m

where

(30)

hfm,odd _ <0 hgmxim)
nv - P

‘mytm
* hy" Xy

and

‘myfm ‘myfm
hfm,even _ huh Y Ja YA
Hv =

NE
x rA(KmTom +Gfmyg'g)> G

Here the asterisk denotes the symmetry on the tensor
components, K?™ and S™ denote the scalar perturbations,
h5™ and h™ the vector perturbations, and i’/ the tensorial
ones. All of them depend only on the coordinates {x“}
of M?.

D. Gauge invariance

In relativistic perturbation theory [59,61] there is a gauge
freedom associated with the infinite possible ways of
choosing the correspondence between the background
and physical spacetimes (see Sec. II A). In practical terms,
this freedom can be associated with the different ways in
which we can identify points of the two spacetimes. Taking
into account that we can pull back the physical metric into
the background tensorial structure [as described by Eq. (2)],
different choices of correspondence between the back-
ground and physical spacetimes can be used (from the point
of view of the background spacetime) and a coordinate
change of the type

xl‘ — x//‘ f— x” + éﬂ, (32)

where x* and x* are the coordinates of two points of the
physical spacetime, say p and p’, that have been identified
with a single point of the background spacetime, say p, by
two mappings between the two spacetimes. The mapping
between the two points p and p’ constitutes what we call a
gauge transformation in perturbation theory, and Eq. (32) is
the coordinate version of such a gauge transformation. The
difference between the coordinates of the two points p and
p’ (as seen from the background spacetime) is described by
a vector field, &, which is the local generator of the gauge
transformation, and which is assumed to be small in the
same way as we assume that the perturbations are
small (|&| <9, )-

The gauge transformation in Eq. (32) generates the
following transformation of the metric perturbations:

Ty = Wy = Ty = 2E - (33)

It is important to understand how a general gauge
transformation changes the harmonic components of the
metric perturbations. To that end, in the same way we have
decomposed the metric perturbations in spherical harmon-
ics we have to do the same with the generator of the gauge
transformation &. For even-parity perturbations, the (£, m)
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harmonic of the gauge generator can be written in
the form

Emeen dxt = i (xP)dx? + P2 (x) Y dOA,  (34)
and for odd-parity perturbations
N dxt = Pyt (x) XM AN, (35)

Note that there are three gauge functions for even-parity
perturbation and just one for the odd-parity ones.

Introducing the multipolar decomposition of the metric
perturbations and the gauge vector into Eq. (33), we find
that the even-parity metric perturbations transform as
follows:

W = = 2a(, (36)
Yo = X — (i + P, (37)

La

K/fm — Kfm + Lﬂ(f-‘r l)ﬁt’m _ 2Lafm’ (38)
r

G'im = Gém — 2ﬂfm. (39)

And the odd-parity metric perturbations transform accord-
ing to

hi™ = hg" = ry, (40)
R (41)

There are combinations of the metric perturbations and its
derivatives that are invariant under gauge transformations.
In the case of even-parity metric perturbations there are four
independent gauge-invariant quantities, which can be
written as

ilab = hab —Ka:p — Kp:as (42)
- (¢ +1 “
2 r
where
2
kK, =1, —=G., Fa="r.a= r"=g%r,. (44)

In the case of odd-parity metric perturbations there are two
independent gauge-invariant quantities:

~ 1 r
h,=h,——h,. 2 h,, 45
a a D) 2.a+r 2 ( )

E. Known master functions and equations

Before entering in the search for master functions and
equations, let us review the most important known master
functions and how they are expressed in covariant form
(with respect to the metric g,;, of M?; see Sec. I1C). For
odd-parity perturbations, the first master function was
introduced by Regge and Wheeler [26] in a pioneering
work on black hole perturbation theory. The covariant form
of this master function is (see, e.g., [48])

Yew = —h,. (46)
r

One can alternatively use the master function introduced by
Cunningham, Price, and Moncrief [56-58], which in
covariant form reads (see also [48,75])

2r ~ 2 .
b 4 =—— ey, —=r,hy ). 47
CPM (f—l)(f+2)€ (b.a rra b) (47)

A classification of odd-parity master functions can be
found in [47].

In the case of even-parity perturbations we have the
master function introduced by Zerilli [30] and later by
Moncrief [31] (see also [48,76]). It admits the following
covariant expression:

2r 0 {f(—i—%(r“rbizab - rr"f(:a)}, (48)

Yy=———

where
Mr)y=rf =2(f-1)+(+2)(¢-1)
:(f+2)(f—l)—Ar2—3(f—1), (49)
which in the Schwarzschild case reduces to

Ar) = (f—l)(f+2)+3rr“'. (50)

All these master functions satisfy wave-type equations in
1 + 1 dimensions, with respect to the metric g,, of the
Lorentzian manifold M?, with a potential term. The form of
these equations in the case of vacuum perturbation looks as
follows:

(DZ - Qeven/odd)lpeven/odd =0, (51)

where Weyen/o0aa(?, 7) is the even/odd master function of
choice; Qcyen/0aa(7) is the potential, which only depends on
the radial area coordinate r; and the action of the operator
L1, on any scalar field ¢ is given by

Lhe = gab¢:ab' (52)
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A slightly different way of introducing the potential comes
from the expression of the operator [, in Schwarzschild
coordinates

10% 0 )
h¢p=—-——-—+=—|f=]). 53
=55 T <f8r) (53)
At this point we can introduce the tortoise coordinate:
dr.(r) 1
dr  f(r)’ (54)

Combining this with Eq. (53) we can write the master
equation (51) in the following more familiar form:

? 0
(‘ﬁ oz
where the potential Vyenjoqa, 18 related to the one in
Eq. (51) by

chen/odd> lIleven/odd =0, (55)

Veven/odd = erven/odd- (56)

In most places the potential that is used i Veyen/oad> bt in
this work we will use both.

To finish this section, we just recall that in the case of the
Schwarzschild spacetime, the Regge-Wheeler potential is
given by

£ +1) 3r,

Qoaa(r) == (57)

while the Zerilli potential is

) = A [ET D ey 22)
+9rf§ ((f— (£ +2) +—)} (58)

where A(r) is defined in Eq. (49), and for Schwarzschild is
given in Eq. (50).

III. CONSTRUCTION OF MASTER FUNCTIONS
AND EQUATIONS

The main objective of this section, and also of this work,
is to look for the most general master function and equation
for both odd- and even-parity modes under the following
assumptions:

(1) The perturbative gauge is left completely arbitrary.
In this way we can check whether or not the master
functions have to be necessarily gauge invariant.

(2) The master function is assumed to be linear in the
metric perturbations and its first-order derivatives, as
it happens for almost all the known master functions.

The case of the Bardeen-Press master function [77] is
an exception since it has been derived along the lines
of the Teukolsky [52,53] procedure to decouple
perturbations around Kerr but applied to Schwarzs-
child. In this case, the decoupling follows from using
the Newman-Penrose [78] components of the Weyl
tensor as master functions. Since the Weyl tensor
contains second-order derivatives of the metric per-
turbations, we cannot recover them from our analysis.

(3) The coefficients in the master function are assumed
to be time independent. That is, they only depend on
the radial area coordinate r. This is expected as those
coefficients are built from the Lorentzian metric g,
of the 2D manifold M>.

(4) The master function satisfies a wave equation of the
form (51). The potential is left arbitrary, in the sense
that it will be determined only by the perturbative
Einstein equations.

In practical terms, the goal is to decouple the equations
for the metric perturbations, the perturbative Einstein field
equations [Eq. (6)]. The perturbation in the Einstein tensor,
0G,, =Gy, — (A;/w, can be expanded in scalar, vector, and
tensor spherical harmonics. For a single (£, m) harmonic
the structure of 6G,, is

SGL(x,0%) = EP(IY (@Y, (59)

563 (x.©%) = E{1 (x) V{1 (67) + 0L (x*)X{"(6"),

(60)

BG (x4, ) = E7m(x)T43(OF) + E" (x*)V{(6F)
+ 0" (x*) X5(6°). (61)
We can identify the harmonic components of

the perturbative field equations for the even-parity
modes, (E4m g4m E5m €M), and for the odd-parity
modes, ((’),fm, O,”}”’). Their expressions can be constructed
in a straightforward way from the expressions of the
perturbations of the Ricci tensor given in Appendix B.

A. Odd-parity (axial) harmonic modes

In the odd-parity case, we have three independent metric
functions, (h5™, h5™), and the only relevant components of
the field equations are 02" (9;;’" [see Egs. (60) and (61)].
The most general master function linear (with coefficients
depending only on r) in the odd-parity metric perturbations
and their derivatives is

W () = CF () () + C () (1) + CE (r) g™ (x)
o+ C ()™ () C ()R ™ () 4+ CE ()™ ()
FCE(H™ () 4 C ()™ (x) + CE ()R (),

(62)
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where we have used the following simplifying notation for
time and radial derivatives:

99

_ 09
¢_8t’ or

/
¢ = B (63)
Notice that the coefficients in Eq. (62) only depend on the
harmonic number #. Once we have extracted the different
harmonics from the Einstein equations, what is left is a set
of linear equations in the perturbations (h4™", h5™) whose
structure is (we drop the harmonic indices to simplify the

notation)

O,: h} —h} +LDTs =0, (64)

O,: hy—hy+LDTs =0, (65)
1.

Oy —?hz + fhY +LDTs = 0, (66)

where LDTs stands for lower derivative terms (with respect
to the other ones), that is, in this particular case they are terms
that are linear in the metric perturbations and their first-order
derivatives (no second- or higher-order derivatives appear).
The first step in the analysis of the general solution to
Eqgs. (64)—(66) is to study the integrability of Egs. (64) and
(65). Given that they contain (hf}, i}) and (h, /) respec-
tively, we can study their integrability by differentiating
Eq. (64) with respect to ¢ and Eq. (65) with respect to r. It
turns out that the integrability condition is identically
satisfied by using the three equations [Eqgs. (64)—(66)]. It
is important to mention that to arrive to this conclusion we
need to use the fact that the background is a solution of
Einstein’s field equations, which means to use Egs. (12)
and (13).

The next step in the analysis is to impose that the
function in Eq. (62) satisfies the following wave equation
(assumption 4):

0y Woaa(x) = Q(r)Woaa(x), (67)

where Q(r) is an arbitrary function of r (and ¢) that plays
the role of the potential [see Eq. (51)]. Given the structure
of Woqq(x?) in Eq. (62), it is clear that the left-hand side of
Eq. (67) contains up to third-order derivatives of the metric
perturbations (h,, h,). In this sense, it is important to
realize that Egs. (64)—(66) tell us that from the nine possible
second-order derivatives of (h,, h,), three of them can be
written in terms of other second-order derivatives and
LDTs. As a consequence, for the twelve possible third-
order derivatives of (h,, h,) we have five independent
relations between them.” That is, we can write five of the

In principle there should be six (two differentiations of three
equations), but the integrability condition between Egs. (64) and
(65) eliminates one of them.

third-order derivatives of (h,, h,) in terms of the other ones
and LDTs, in an independent way. Therefore, the way to
proceed is to expand Eq. (67) and use the expressions for
the third-order derivatives that we have just mentioned,
together with the expressions that relate the second-order
derivatives. After we have used all this information, which
comes from the perturbative Einstein equations, we just
need to impose the vanishing of the coefficients of the
metric perturbations (h,, h,) and their derivatives. That is,
once all the possible information coming from Einstein’s
equations is used, the remainder has to vanish for Eq. (67)
to hold. Once we have completed this process, we should
have obtained the most general odd-parity master function,
together with the allowed potential(s).

In our study, the second-order derivatives of the metric
perturbations that we are going to eliminate are /,, 4}, and
ﬁz. In addition, we also eliminate the third-order derivatives
that can be computed from these second-order derivatives,

ie., hy, h, i}, hy, and k). After eliminating all these
derivatives we arrive to an expression of the form
,Woaq = toho + T hy + o hl + w3hy + T4h!’

+ 5hy + T6hy + T7h 4 Tghl + Tohh + T10hY

+ 711hy + 7100, + T13hy + 7140 + 715hy

+ 116l + 1170 + T18hy + T19h,. (68)

Notice that there are no third-order derivatives of /,. The
explanation is that Eq. (66) can be rewritten as

1

That is, [, /1, only produces LDTs and this is why there are
no third-order derivatives of 4, in Eq. (68). Now that only
independent derivatives of the metric perturbations appear
[Eqg. (68)] we can proceed to analyze the consequences of
the vanishing of their coefficients. To begin with, the
vanishing of 7, implies

C; =0. (70)
The vanishing of z, leads to

Ce = 0. (71)
It turns out that Eq. (70) and Eq. (71) imply that 7, = 0, so
there are no extra conditions coming from this term. The
vanishing of 7; and 73 lead to the same condition

C5 = —C4 . (72)

This exhausts the information coming from the vanishing
of the coefficients of the third-order derivatives of the
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metric perturbations. Let us now look at the coefficients of
the second-order derivatives. We assume that Egs. (70)—
(72) hold. The vanishing of the coefficients 7, and zg yields
only one condition (they are equivalent):

1
Cy=—=C,. 73
s =—5C (73)

Introducing this into the equation coming from the vanish-
ing of the coefficient 7y, we obtain an equation for C,(r)

Ci+ C_];)Cl =0=C(r) = Klf(r)’ (74)

r

where K| is an arbitrary constant. Similarly, the vanishing
of the coefficient 74 implies the following equation for
C7(r ):

K
rCh4+C=0 = C7(r):77, (75)

where K5 is another arbitrary constant. The coefficients z5

and 7; contain the same information. Their vanishing
allows us to obtain an expression for Cy(r):

2K
c4:—§(co+2c7) = c4_—§<co+ 7). (76)

’
And this exhausts the information coming from the
vanishing of the coefficients of the second-order derivatives
of the metric perturbations. The analysis of the conse-
quences of the other terms involve the right-hand side of
Eq. (67), i.e., the potential. Then, let us analyze the
coefficients of the first-order derivatives. To begin with,
since C5(r) vanishes [Eq. (70)], the coefficient of /. 71,

does not involve Q(r). It actually provides an expression
for C,(r):

Cy(r) = = . (77)

The coefficient 714 vanishes if we introduce this expression
for C,(r). From the vanishing of the coefficient 7,5 we
obtain an expression for the derivative of Cy(r) (for £ # 1)

, 2K, f
- (er) o

where we have used Eq. (13) for the background, i.e., for
f(r). On the other hand, the information in the coefficients
71, and 73 is the same. It is a relationship between the
coefficient Cy(r) and its first- and second-order derivatives:

2 f Q-Q,
G- (=) 25 (6

&) _2K;f (79)

r rzf ’

where we have introduced the following definition:

0.(r) = A+ 5 [0+ 1)+ r(rfY +2(F = 1)

+2)¢—-1)+2f=rf

}"2

6+ 1)+3(f 1)
> ,

A+ (80)
where the different equalities appear as a consequence of
using the equations for f(r) [Egs. (12) and (13)]. By using
Eq. (78) we can eliminate Cj,(r) from Eq. (79) and obtain
the following alternative expression for Cj(r):

Q-Q,
Co(r) = 7 Co
2K7TQ*

+2)(-1)f

(Q _a, 12! _r;f/>. (81)

Actually, we can also rewrite the equation for Cj(r)
[Eq. (78)] as

. 2K
c, _Wé_l)(g—g* + 0p). (82)

where
o(r) = @.(r) -1, (®3)

We can integrate the equation for Cj,(r) to get

2K,
(Z+2)¢-1)

IO [avan), s

where K|, is an integration constant. After all this, the only
coefficient of the first-order derivatives of the metric
perturbations left to be analyzed is 7;4. If we introduce
the expression of C,(r) [Eq. (77)] into the coefficient 7,4
and impose its vanishing we arrive at the following relation:

Co(r) = K() +

K, [Q(r) = Q.(r)] =0, (85)

This equation constitutes a bifurcation point in our analysis.
Either K; = 0 = C,(r) = 0 or we have an expression for
the potential Q(r) in terms of » and £ [this expression is
given in Eq. (80)]. Therefore, there are two branches of
possible solutions to the problem we posed at the beginning
of this section.

At this point, we only have to focus on the coefficients of
the metric perturbations themselves, i.e., (717, 713, 719), and
the consistency between the expressions for the first- and
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second-order derivatives of Cy(r) [Egs. (82) and (81)
respectively]. The equation coming from 7;; does not
provide new information, in the sense that it becomes a
trivial identity 0 = O if we use the previous information.
The coefficients 7,3 and 7,9, after using the previous
information and the equations for the background, both
lead to Eq. (85). Therefore, the only thing left is to analyze
the compatibility between Eqs. (82) and (81). This can be
done by taking the derivative of C(r) by using Eq. (82)
and subtract Cjj(r) from it by using Eq. (81). In the case
they were compatible we should be able to reduce the
subtraction to an identity 0 = O by using all the previous
information. Otherwise, we should obtain new information/
conditions on our unknowns. This is indeed what happens
and the new information is encoded in the following
equation:

2K
[Q(r) = Q. (r)]Cy(r) T e=1
X [01(r)(Q(r) = Q.(r)) + 02(r)(Q(r) = Q.(r))
+o03(r)] =0, (86)
where
oy =—f, (87)
0, =1Q,, (88)
03 = 2(]—;—f’)§2* —f<sz; - 3f’; ! —%) (89)

At this point, we have to deal with Egs. (85) and (86),
taking into account that in this analysis r is arbitrary
and 7 is an integer number. Another important point to
consider is that o3(r) is in general not zero (it does not
vanish everywhere). Therefore, Q(r) = Q,(r) would
imply K; =0.

On the other hand, Eq. (86), in the case Q(r) # Q.(r),
can in principle provide an expression for the coefficient
Co(r). To that end, we must first make sure that this
equation is compatible with the equations for the deriva-
tives of Cy(r) [Egs. (82) and (81)]. Given that Eq. (86) is
the compatibility between Cj, and Cjj, we just need to check
the compatibility with C, [Eq. (82)]. To do so, we can
take the derivative of Eq. (86) and compare it with Eq. (82).
Actually, if we use Eq. (82) to eliminate C{, from the
derivative of Eq. (86) we obtain a new relation that has a
form very similar to Eq. (86):

[[r, Q|Cy(r) + K;A[r, Q] =0, (90)
where I'[r,Q] and A[r,Q] are functionals of Q(r).

From these two relations [Egs. (86) and (90)] we can
eliminate either Cy(r) or K. In any case, and assuming that

Q(r) # Q,(r), we obtain an equation for Q”(r) that has the
following form:

N A A R A X
k| (00 5) + () + 0o+ 240 a0
=0, (1)
where we have introduced the following definitions:

8Q(r) = Q(r) = Q.(r), (92)

01(r) = —oy(r)(1 = 0-3). (93)

In this way, 0, (r) = f(r). From Eq. (91), it is clear that if
K5 # 0, we have an equation for Q”(r) which is nonlinear
in Q(r).

In principle, we can differentiate Eq. (90) and we would
get an expression of the same form by using again Eq. (82)
for C((r). Combining the new equation with Eq. (86) we
can again eliminate either Cy(r) or K5. This would provide
us with a new equation where the only unknown is the
potential Q(r). It turns out that using the equation for Q" (r)
provided by Eq. (91), we get an identity 0 = 0, and this
ends the chain of possible equations of the form in Eq. (90).

In summary, we end up with two different branches. The
first branch is determined by the following relation:

Q(r)=Q,(r) = 68Q(r)=0. (94)
Then, the potential for odd-parity perturbations, Q. (r), is
given by Eq. (80). In the case of a Schwarzschild back-
ground, this potential has been shown in Eq. (57), while for
the case of a de Sitter background, it is simply the
centrifugal barrier (the same one as in a Minkowski, and
also anti—de Sitter, background):

£(C+1)

Qis(r) =2, (55)

In this first branch, Eq. (85) is automatically satisfied. On
the other hand, Eq. (86) implies:

K; =0. (96)

Therefore, according to Eq. (82), the coefficient Cy(r) is
constant:

Co(r) =Co(r) =0 = Co(r) =Ko, (97
where K|, is a constant. This is also compatible with the

equation for C{j(r) [Eq. (81)]. Then, the most general odd-
parity master function in this branch is
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Wt r) = 52 (1,7) = By (1.)) + Koho(t.1)
1)

+ %(r) G ha(e.r) = 3400 r)>. (98)

+ K, hi(t.r)

Using the definitions introduced in Sec. IIE we
can rewrite this master function in a completely covariant
way:

(£ +2)(£-1)

Woaa(t. ) = K Prw (2, 1) — Ko®Pcpm(t, r).

(99)

That is, the most general master function in the first
branch is a linear combination of the Regge-Wheeler
and Cunningham-Price-Moncrief master functions [see
Eqgs. (46) and (47) respectively]. Therefore, it is covariant
and gauge invariant by construction. It is important here to
note that the Regge-Wheeler master function turns out to be
the time derivative of the Cunningham-Price-Moncrief
master function [48]:
1“Yepy:o = 2%Rw- (100)

Finally, the potential corresponds to the already known
potential, namely the Regge-Wheeler one. This ends the
analysis of the first branch.

Let us now consider the second branch. It is charac-
terized by Q(r) # Q.(r) (i.e., 8Q(r) # 0) and hence, we
must necessarily have

(101)

and 6Q(r) has to satisfy Eq. (91). In this case, the only
nonzero coefficients of W,qq are Co(r) [Eq. (84)], C4(r)
[Eq. (76)], Cs(r) [=—=Cy(r)l, and Cy(r) [Eq. (75)].
Introducing these expressions we can write the most
general master function in the second branch as

Poulr.r) = =D (k4R () Wep(r.7)
+ K7®ox (1. 7). (102)
where
. 2K,
Y-y 1o
E(r) = f(r)_z—lr_“z + / drQ(r).  (104)

and ®q (¢, r) is a new odd-parity function that can be given
in a completely covariant form as

Don(1,7) = €Phyzp. (105)
One can check that ®gy(2,7) is also a gauge-invariant
quantity although it is not by itself a master function.
However, the combination with Wcpy (7, r) that appears in
Eq. (102), whose coefficient is K5, is an odd-parity master
function. Then, the most general odd-parity master function
in the second branch, Eq. (102), is fully covariant and
gauge invariant. The potential in this second branch is any
function satisfying the nonlinear ODE of Eq. (91).
Regarding this equation, it is worth noting that if we write
it in terms of 6V = f6Q [see Eq. (56)], use the expressions
for 0, and 0,, which satisfy

0,+0,—f"=0, (106)

and exchange derivatives with respect to r with derivatives
with respect to the tortoise coordinate we arrive at the
following simpler equation:

SV Vodd
X 2 X SV = 0,
(57). 2050,

where Vo4 = fQ_is the Regge-Wheeler potential. Finally,
it is important to remark that changing the potential we are
changing at the same time the master function. This ends
the analysis of the odd-parity case.

(107)

B. Even-parity (polar) harmonic modes

In the even-parity case (polar perturbations) we have
seven independent metric functions, (A2, J5™, K7™, G'™),
and this time we have seven relevant field equations,
coming from the components (é'j:Z’, gom, 5’3’?’”, 55”’) of the
perturbative field equations. Taking into account the
assumptions we imposed on the master function before,
the most general ansatz to start with is*

Wiien = CohGy + CRGT + CER{T + CEIE™
+ CLIM + CEKO™ 4+ CLGP™ + CHhig + CE b
+ OG-+ Cluhtn+ ChP + L+ €L
+ CIEM 4 Ol + Ol I+ Cf K™ + CK™
+C4Gm 4 C5, G (108)
For the sake of simplicity we have hidden the depend-

ence of the different functions since it is clear that the
coefficients Cf (I =0,...,20) only depend on the radial

“As in the odd-parity case, we use coefficients named C? but
no confusion should arise since they are purely auxiliary
quantities and there are no cross references.
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coordinate r, and the metric perturbations (A7, J5™, K™,
G’™) depend on the coordinates of M2, ie., {x%}.
Following the procedure of the odd-parity case, let us
analyze the structure of the perturbative field equations for
the metric perturbations (A2, J5™ K™, G™) This essen-
tially means to analyze the structure of the terms containing
second-order derivatives. Dropping again the harmonic
indices, we find that the equations of interest have the
following form:

Es: K" +LDTs = 0, (109)
£, K'+LDTs = 0, (110)
&, K+LDTs =0, (111)
Ey: 1) =18+ LDTs =0, (112)
gry:jl_j/]_'_LDTS:Ov (113)
1, Lo
Er: =K+ fK"—hiy+ 2k ~hy +LDTs =0, (114)
1.
E: ——G+ fG" +LDTs =0. (115)

f

Given that Egs. (112) and (113) contain (J{/, J}) and (J§,J})
respectively, we can study their integrability by differ-
entiating Eq. (112) with respect to ¢ and Eq. (113) with
respect to 7. The result is that this integrability condition is
identically satisfied by using the following equations:
(109), (111), (113), (114), and (115). Like in the odd-
parity case, in order to arrive to this conclusion we have
used the equations for the background metric function f(r).
Similarly, Eqs. (109)—(111) contain all the second-order
derivatives of K, i.e., (K, K. K" ). One can show that their
|

integrability conditions are satisfied by using the other
equations and that the background is a solution of
Einstein’s equations. The fact that the integrability con-
ditions are satisfied, both for odd- and even-parity pertur-
bations, is intimately related with the metric perturbations
satisfying a linearized version of the (contracted) second
Bianchi identities: @"”vpéGﬂy = 0. On the other hand, we
can substitute the expressions for the second-order deriva-
tives of K [Egs. (109)—-(111)] into Eq. (114) so that it
becomes a relation between second-order derivatives of /,.

Like in the odd-parity case, we impose our master
function candidate in Eq. (108) to satisfy a wave equation
of the type

DZ‘Peven(xa) = ‘Q(r)\Peven(xa)’ (1 16)

where Q(r) is a function of r (and £) to be determined and
that will play the role of the potential for the dynamics
of even-parity perturbations. When we insert the general
even-parity master function of Eq. (108) we will get
again a linear combination of the metric perturbations
(hZm, Jom K™, G™) and their derivatives up to third order.
However, not all these derivatives are independent since
Egs. (109)-(115) already determine a subset of second-
order derivatives (seven of them), and hence a subset of the
third-order derivatives too. To be more specific, let us make
a choice. From the perturbative Einstein equations we
determine the following second-order derivatives: 4,,, J;,
j’l, K, K', K, and G. We can then substitute these
derivatives into Eq. (116). In addition, we can also
substitute the third-order derivatives that can be estimated

from them, namely, &y, i},, T, 7,30, K, K", K", K", G,

and G'. Once this is done we arrive to an expression of
the form’

[ Weven = To.h'oo +71 g ‘1'72%0 + 73k +T4h01 + 75, +Téilgl +77hg +78il/1,1 +79hl] +710d 0+ 7 b + 71,08

+71305 +714dY +715h00 +716h60 +717il,0/0 + 718h101 +T19h61 +720h6’1 +Tz1il/11 +722h/1/1 + 79300 + 72430
+ 75530 + 72631 + 727Gl + 128Gl + Taohoo + Taohy + 731 Figy + Taahly, + T3zl ) + T3y + Tasho + 7364

+ T37j1 + T3Sj/1 + T39k+ T40K/ + T41G + T42Gl + T43h00 +T44h01 + T45h11 +T46J0 + T47J1 + T48K+ T49G.

As it already happened in the odd-parity case with the
metric perturbation h,, here there are no third-order
derivatives of G, and it is due to the same reason. If we
look at Eq. (115), it turns out it can be rewritten, up to a

>As in the odd-parity case, we use coefficients named z; but no
confusion should arise since they are purely auxiliary quantities
and there are no cross references.

(117)

I
numerical factor, as [0,G +LDTs =0. And since the
operator [, only produces LDTs, no third derivatives of
G appear in Eq. (117).

Let us now analyze the implications of the vanishing of
the coefficients 7; (I = 0, ..., 49) for the general form of the
even-parity master function. To begin with, the vanishing of
the coefficients 7, ...,75 implies the vanishing of the
following coefficients of the master function [see Eq. (108)]:
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C;=C=Co=Cip=C;;=C;,=0. (118)
We have arrived at this result by using the information from
one coefficient into the next one. Notice that this implies that
the master function cannot contain any first-order deriva-
tives of the metric perturbations 4,;,. Using this information,
the vanishing of the coefficients 7, ..., 79 does not provide
any additional information. The vanishing of 7;;, and 7|,
implies

Cl3 :C]f) :O (119)
Taking this into account, the coefficient 7,4 does not provide
any additional information. The coefficients z;; and 73
contain the same information:

C14 + C15 - 0 (120)
The vanishing of the coefficient 75 tells us that
Cy=0. (121)

The coefficient 7,4, together with the previous information,
leads to

Ciy = ]—’;cm. (122)
Similarly, from the coefficient 7,7 we have
Cis = ——C,. (123)
!
From 7,3 we get
Ciy =—Ci. (124)

Using all the information obtained up to now, we can see that
the coefficients 79, ..., 7y, do not provide new information.
Instead, from 7,3 we get an expression for Cyq in terms of C,
and Cj:

2f =¢(Z+ 1 r?
Clgz%rcl _ECB' (125)
From 7,, we obtain a similar expression for Cs
2+ 1 r?
Cz():—(zf)rcz—2c4. (126)

With this, the conditions coming from 7,5 and 7,4 are
automatically satisfied. The coefficient 7,7 leads to a simple
ODE:

rC/lg—Clg =0. (127)

Taking into account Eq. (125) we can solve the equation
for Cs,

K 2f—¢(£+1)

C, =
3 r rf

Ci, (128)

where K5 is an integration constant. After substitution in
Eq. (125), the coefficient C,g takes the following simple
form [compatible with Egs. (125) and (127)]:

K13r

Ciolr) = =% (129)

Similarly, from 7,3 we can obtain an ODE from which we
find an expression for C,

f 2 +1)

C4=K24;— f Gy, (130)

where K,, is another integration constant. And thanks to
this, the coefficient C,, takes the following simple form:

Koy
,

Coo(r) =5 f(r). (131)

Using the previous expression, the condition coming from
7,9 determines the coefficient C;:

C, = K13f
YA+ ) rf =2f

(132)

and the coefficient 73, determines the coefficient Cs:

@Jr (€ +2)(€=1)+3rf +2Ar?

=73 272

C,.  (133)

With all this information the relations coming from the
coefficients 3y, ...,734 are satisfied. The coefficient 735
provides an expression for Cg:

Cs

_L(£+1) ((f+2)(f—1)+3rf’+21\r2

(134)

To sum up the situation until now: All the nonzero
coefficients are ultimately found either in terms of C; or
C,. The coefficient C has already been determined in terms
of r, f, and an integration constant, K ;3 [see Eq. (132)]. Only
C, and the potential Q have to be determined from the
equations imposed by the rest of coefficients z;. In what
follows we use all the information found until now.

The coefficient 733 brings no new information. The
equation coming from the coefficient 735 can be written
as follows:
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Ki3[Q(r) = Q.(r)] = 0, (135)
where Q. (r) is a given function of r, f (and its deriva-
tives), Z, and A. As in the odd-parity case [see Eq. (85)],

|

Q.(r) =

A(r) =207°0(r) = (£ 4+ 2)(€ - DP +2(£ + 2 - 1)) (P + £ + 1)

this equation is also a branch point in the analysis.
By doing some algebra (and using the field equations
of the background spacetime) we can write Q.(r) as
follows:

where A(r) was defined in Eq. (49). The relations coming
from the vanishing of the coefficients 737, 739, 741, 744, and
746 also reduce to the bifurcation point represented by
Eq. (135). To get there we have used sometimes the
equations for the background metric [Eqgs. (12) and
(13)]. On the other hand, from the vanishing of the
coefficient 74, we arrive at an expression for the second-
order derivative of the coefficient Cj:

C/2/231C/2+62C2+K24£7 (137)

where the coefficients e,(r) and e,(r), using the field
equations of the background [Eqgs. (12) and (13)], are

6+1)=3(AP 1) = f
e = rf s

(138)

P4+ (1=5AP)f+2(rPA=1)(£* + £ +2 = 2Ar?)
= 72 f2

€

Q
+—. (139)
f
As we can see, the function e,(r) contains the potential
Q(r). On the other hand, from the coefficient 74, we arrive

at an expression for the first derivative of the coefficient C,
of the form

C/2 =e4C) + Kyye3, (140)
where the coefficients e3(r) and e,(r) are
PQ+A-(+2)(¢-1)
=—f2 141
==/ 26+ )i - (14D
2\ /
ey = <1n’”§> : (142)

Here, the function e;(r) is the one that contains the
potential Q(r). It turns our that Eq. (140) can be integrated
to obtain the following expression for C,(r):

3r222(r) '

(136)

Cy(r)

_rf(r) Ky [AMr)=(£+2)(€—1)
=30 {K2+f(f+1)[ >

- / dﬂQ(r’)] }

where K, is another integration constant.

Going back to the analysis of the 7; coefficients, using
previous information [including the equations for CJ,
Eq. (140), and Cj, Eq. (137)] and some algebra, it is
possible to see that the equations coming from the vanish-
ing of the coefficients 743, 745, 747, Tsg, and 749 are
identically satisfied. This exhausts all the information
coming from the coefficients 7; (I =0, ...,49). Now we
only have to determine in an independent way the potential
Q(r) and the coefficient C,(r), and we have two integration
constants: K3 and K,4. The vanishing of the coefficient
C,(r) and the constants K3 and K,4 implies the trivial
solution W, = 0.

The only thing left to analyze is the integrability of C,, or
in other words, the compatibility of the equations for C’, and
C75 [Egs. (140) and (137) respectively]. Another possibility
would be to introduce Eq. (143) into Eq. (137), but in that
way we would obtain an integro-differential equation for
Q(r). We follow here the first option. To that end, we
compare the derivative of Eq. (140) with Eq. (137):

(143)

(62 + €14 — 62 - ei)CQ
+K24<€1€3 +§—€3€4—€g> =0. (144)
This can be written in a more convenient way as follows:

[Q(r) = Q(r)]Co(r) + Kaa{es(r)[Q(r) — Q.(r)]

+ e(r)[Q(r) — Q.(r)] + e7(r)} = 0. (145)

where Q, (r) is givenin Eq. (136) and e5(r), e¢(r), and e;(r)
are known functions given by

AL
() = 2 D) (146)
20 f(r) (f(r) 1Y
eé(r)_f(f—i—l)(/l(r)r E) (147)
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) =Lk e (.00 20
4 eo(r) (g,m _”(’))

r

(148)

Equation (145) can in principle provide an expression for the
coefficient C, [different from the one obtained in Eq. (143)].
But it is not guaranteed that such an expression would be
compatible with the expressions that we have for its
derivatives [Egs. (140) and (137)]. Given that this equation
is the compatibility between C, and C4, we just need to
check the compatibility with C}, [Eq. (140)]. To that end, we
can take the derivative of Eq. (145) and compare with
Eq. (140). Actually, if we use Eq. (140) to eliminate C’ from
the derivative of Eq. (145) we obtain a new relation that has
the same form as Eq. (145). In principle, one can repeat this
process an arbitrary number of times to get a chain of
relations of the form

Hn[r’ Q]CQ(F) + K24E,1[7”, Q] = O’ (149)
where I1,, and 5, are coefficients that depend on the radial
coordinate and on the potential function Q(r). Using
Eq. (140), itis easy to find arecurrence for these coefficients:

I,[r, Q = 1T, [r. Q] + e4(r)IL,,[r. Q] (150)

5, [r.Q) = 2, [ + e (NI, [ Q). (151)
The case n = 0 corresponds to Eq. (145) and n = 1 to its
first-order derivative after using Eq. (140) to eliminate Cy.
Considering the n = 0 and n = 1 equations, there are two
possibilities: (i) C,(r) = K,4 = 0; (ii) the resultant of the
system for (C,(r), K,4) vanishes, that is

H()E] - H]EO - 0 (152)
Given that I1; = Q(r) — Q,(r) and that [from Eq. (150)]
I, = Q' (r) = QL(r) + e4(r)(Q(r) — Q,(r)), it is clear that
Q(r) = Q,(r) is always a solution. In any case, Eq. (152),
becomes an ODE for the potential function Q(r). In this
case, n = 0, itis a nonlinear second-order equation for Q(r).
In principle this equation determines the form of Q(r),
which in general will be different from Q, (r) although Q. (r)
is a particular solution. It turns out that the form of this ODE
for Q(r) is quite similar to the analogous equation that we
have obtained in the odd-parity case [see Eq. (91)]. We find
that this ODE for 6Q(r) = Q(r) — Q,(r) is given by

sl (55 + ()

+eg(r) + é3(r) — 59(}’)} =0,

(153)

where we have introduced several definitions for the
coefficients that appear in this equation. First, we have
taken advantage that the coefficient e, () can be written as a
total derivative [see Eq. (142)] to introduce the new
coefficient f,(r) as follows:

es(r) = (nfo(r) = falr) ="

(154)

Then, the coefficients that appear in Eq. (153) are defined
using f,4(r) in the following way:

N _ es(r) — £(r
és(r)=¢(¢+ 1)f4(r) = f(r), (155)
~ . 66(”)_ Ar f(r) i !
2q(r) = (0 +1) 2 15 =2400) (/l(r)r+2 ) . (156)
N _ es(r)
6‘7(1") - l’ﬂ(f—’_ 1)f4(r)
=70+ 1)'1r—3r)
rosn (2.0 -2
ran(20-20) asy)
N _ e3(r)|a—q,
es(r) =2(¢ + 1)7f4(r)
:_[g*(r)ﬂ(r)_('“ﬂ;z)(f_1)}. (158)

At this point, it is important to remark that the equation for
5Q(r) in the even-parity case, Eq. (153), has exactly the
same structure as the corresponding equation for the odd-
parity case [Eq. (91)]. The only differences are the expres-
sions for the functions of r that appear in them.

If we now consider the next relation in Egs. (150) and
(151), namely n = 2, it can be seen that by combining it
with the other two (n =0 and n = 1) we obtain more
ODE:s for the potential function (r); this time these ODEs
are nonlinear third-order ones. By using the second-order
ODE for Q(r) that comes from the analysis of the cases
n =0 and n = 1, the (two) third-order equations for Q(r)
are identically satisfied, which ends the analysis.

As in the odd-parity case, we have to study the two
branches that appear. The first branch is characterized by:

Q(r) = 2.(r), (159)
where Q, (r) is now given by Eq. (136). Then, Eq. (135) is
automatically satisfied. Moreover, if we introduce this
expression for Q(r) into Eq. (145), we must have that
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K>4e7(r) = 0. Taking into account that this has to be valid
for any r, and that in general e;(r) # 0, we must have

Then, from Eq. (143), we find an expression for the
coefficient C,:

e
=570

This finishes the developments for the first branch. The
potential for the even-parity perturbations in this case is
given in Eq. (136). It turns out that in the case of a
Schwarzschild background, this potential is the well-known
Zerilli potential of Eq. (58). And in the case of a maximally
symmetric background it is the centrifugal barrier potential
in Eq. (95). Finally, the most general master function is

Cy(r) (161)

lI}even(t’ I’) :KZ{

_f) r+r?K'(t,r
Hete+ o)+ PR )]

+f(1r3){r<i<(z, r) +£;)G(L r) —ff,r)%)

+f<r><hm<r,r>—Js<r,r>+il<r,r>>}. (162)

rfz(r)h +r [f(f—l—l)

20 nts 5 G(t,r)JrK(t,r)]

Using the definitions introduced in Sec. IIE we can
rewrite the master function as follows:

£(0+1)

Weven(t,7) = KyWonm(t,r) —K3Pen(tr),  (163)

where W,y (z,r) is the Zerilli-Moncrief master function
given in Eq. (48) and Wgy(z, r) is another master function
(not known as far as we can say) given by

Wen(t. 1) = ﬁ {@ 0t r) = hoy (2, 7) = I, (2, 7)]
+f’£r) Jo—K(t.r) - @G(z, r)} (164)

which can be rewritten in a completely covariant form as
follows:

1 - -
lPEN(tv r) = —ta(rK:a - habrb)’

A(r)

where 7, and K are the gauge-invariant quantities intro-
duced in Egs. (42) and (43) respectively. Hence, Wy (7, r)
is also a gauge-invariant master function that can be written
in a covariant way. By using the perturbative field equations

(165)

it is possible to show that the master function Wy (7, r)
turns out to be proportional to the time derivative of the
Zerilli-Moncrief master function:
1“Wzm: o = 2%pN- (166)

This ends the analysis of the first branch.

In the second branch, when Q(r) # Q,(r), by virtue of
Eq. (135) we must have
In this case, Eq. (145) provides a second expression for
C,(r) that has to be compared with the other expression,
Eq. (143). The outcome of this comparison is the second-
order nonlinear ODE for Q(r) that is given in Eq. (153).
Moreover, in this branch, the only nonzero coefficients of
Weven are Co(r) [Eq. (143) with Q(r) satisfying the non-
linear ODE of Eq. (153)], C4(r) [Eq. (130)], Cs(r)
[Eq. (133)], Co(r) [Eq. (134)], Cys(r) [Eq. (123)], and
Cyo [Eq. (131)]. Introducing these expressions into W,
we can write the result in the following form:

Ky, -
‘Peven(tv r) = (KZ + K242(r))lPZM(t1 I”) - %K(lv r)v

(168)
where

1 [A=(e+2)(¢—-1)

Z:
£(6+1) 2r

- / dr’Q(r’)}, (169)

and K(t,r) is the gauge-invariant combination of metric
perturbations introduced in Eq. (43). Therefore, the even-
parity master function in this second branch is also gauge
invariant. Actually, it is a linear combination of the Zerilli
master function and another master function that is a
combination of the Zerilli master function and K(z, r),
which depends on the potential Q(r). The potential, in turn,
satisfies the nonlinear ODE in Eq. (153). As in the odd-
parity case, this equation can be simplified [see Eq. (107)].
To that end, we have to write it in terms of the potential
difference 6V = foQ [see Eq. (56)], use the expressions for
é3 and &4, which satisfy
e3+eg—f" =0, (170)
and finally, we have to exchange derivatives with respect to
r with derivatives with respect to the tortoise coordinate.
After doing all this, we arrive at a simplified equation that
looks exactly like the one for the odd-parity case [see

Eq. (107)]
5‘/ VCVBH
X 2(22-) —sv =0,
(). (%),

(171)
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where V" = fQ,_ is the Zerilli potential. This ends the
analysis of the even-parity case.

IV. CONCLUSIONS AND FUTURE PROSPECTS

In this paper, we have carried out a study of all of the
possible master functions and equations for the perturba-
tions of vacuum spherically symmetric spacetimes. The
only assumptions made in this study are the following:
(1) The master functions are linear combinations of the
metric perturbations and their first-order derivatives.
(i) The coefficients of those linear combinations only
depend on the radial areal coordinate. (iii) The master
functions satisfy a wave-type equation associated with the
two-dimensional metric of the Lorentzian manifold tangent
to the spheres of symmetry, and with a potential that is
determined by the perturbative Einstein equations.

The outcome of this study produces two branches of
solutions: (a) The first branch corresponds to the already
known results, with the exception of the even-parity case,
for which we have found a new master function indepen-
dent of the Zerilli-Moncrief one, W), and which we have
denoted by Wgn. For both parities, the most general
master function is a linear combination (with constant
coefficients) of two independent master functions. These
master functions can be taken to be the Regge-Wheeler
and the Cunningham-Prince-Moncrief master functions,
(Prw, Pcpm ), in the odd-parity case and (W, Pey) in the
even-parity case. On the other hand, the potentials are
the known ones: the Regge-Wheeler (odd-parity) and the
Zerilli (even-parity) potentials. (b) The second branch was
essentially unknown and, in contrast with the first branch,
there are infinite possible potentials, different from the ones
already known (first branch). The set of possible potentials
corresponds to the solutions of a nonlinear differential
equation which has the same form for both parities [see
Egs. (107) and (171)]. The master functions are again a
linear combination (with coefficients depending only on the
radial area coordinate) of two independent master func-
tions. In the odd-parity case, they can be taken to be the
Cunningham-Price-Moncrief master function and a new
one that is a combination of Wcpy and @y that includes
the potential function [see Eqgs. (102) and (105)]. The even-
parity case follows the same pattern, and the most general
master function can be taken to be a linear combination of
the Zerilli-Moncrief master function and another new
master function made out of a combination of Wy,
®py, and the potential function [see Egs. (163) and (165)].

Apart from the construction of the master functions and
equations (potentials), it is important to remark other
findings that came out from our developments: (i) The
flow of the argument is the same for the two parities despite
the different number of variables and equations that
describe the metric perturbations in the two cases.
(i1) Gauge invariance: all the master functions and equa-
tions turn out to be gauge invariant, which is something that

we did not impose. In this sense, it is important to remark
that we have always worked on a general gauge. The
emerging gauge invariance is then due to the physical/
geometric character of the (master) wave equations. This
shows the important role played by the master functions,
which in some sense encode the true degrees of freedom of
the (perturbative) gravitational field. (iii) Despite the fact
that in many places we have carried out the calculations
using a specific class of coordinate systems, we have been
able always to restore full covariance with respect to the
1 4+ 1 Lorentzian metric g, [see Eq. (20)]. (iv) For both
parities, in the first branch, one of the independent master
functions can be taken to be the time derivative of the other
one [see Egs. (100) and (166)]. (v) In the case when the
background is maximally symmetric, the odd-parity
and even-parity potentials of the first branch are identical.
In the case of the second branch, the set of possible
potentials are the same for the two parities. This means
that the maximal symmetry has a strong impact on the
possible set of master equations and functions. There are
still two branches, but they are identical for both parities.
(vi) We have always worked in the time domain. This has
the advantage that at any moment we can obtain results in
the frequency domain by introducing the standard sub-
stitution: W(z, r) — e™'¢p(r).

Our analysis is quite general, in the sense that it is based
on a few assumptions (see Sec. III), and complete, in the
sense that it unveils the full content of the (first-order)
perturbative approach to vacuum spherically symmetric
spacetimes. Within our knowledge, no similar analysis has
been carried out before. The systematic construction of
master functions and equations we have followed can be
applied directly to other different scenarios in spherical
symmetry, in particular to systems involving matter fields
(see [32,33] for a general approach): point particle [13],
electromagnetic fields (see, e.g., [79-84]), perfect fluids
[85,86], etc. Within general relativity it can also be applied
to spacetimes with a different number of dimensions, in
particular it would be interesting to study the case of three
spacetime dimensions, where we have the Bafados-
Teitelboim-Zanelli (BTZ) black hole [87] (which is asymp-
totically AdS?), and for which there are analytic solutions
for the quasinormal frequencies and wave functions [88].
Again within general relativity, one can try to follow the
procedure for second- and higher-order perturbations
[49,50,89] of spherically symmetric spacetimes. This is
particularly interesting taking into account that the equa-
tions for higher-order perturbations usually contain the
same differential operators of the background as the ones
for the first-order perturbations. Finally, this procedure can
also be applied to perturbations of spherically symmetric
spacetimes in other theories of gravity (see, e.g., [90-94]).

Another interesting question is whether we can apply a
similar procedure in the case of the Kerr metric [53] and
other axially symmetric spacetimes. That would make
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contact with the Bardeen-Press master function [77] for the
Schwarzschild spacetime, which is not included in our
analysis since it contains second-order derivatives of the
metric perturbations. In any case, it is clear that for Kerr
perturbations we should allow for the presence of second-
order derivatives.

On the other hand, the results of our study lead to a
number of questions. In particular, what is the meaning of
the infinite set of possible master functions and equations
that appear in the second branch of solutions. We clarify
this question in a forthcoming paper [95], where we analyze
in detail the connection between this plethora of master
equations and master functions and show that all of them
are related by Darboux transformations. Nevertheless, the
Darboux transformation that connects them has to be
interpreted in a more general context than the classical
Darboux transformation which is normally introduced in
the context of Sturm-Liouville problems, with self-adjoint
operators. In this sense, in [95] we show the crucial role
played by the equations for the potentials of the second
branch, Egs. (107) and (171).
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APPENDIX A: DIFFERENTIAL PROPERTIES OF
SPHERICAL HARMONICS

All the spherical harmonics (scalar, vector, and tensor)
we use in this paper are determined once we prescribe the
scalar spherical harmonics (see, e.g., [97,98]). The vector
and tensor spherical harmonics used in this paper can then
be obtained via Egs. (25)-(28). To recover the equations
and results of this paper, we only need to use some
differential identities that they satisfy. The even-parity
vector harmonics Y4" satisfy the following differential
identities:

QPYLn = —£(6+ 1)y, (A1)
QFCYy, = —£(¢ + )Y}, (A2)
QY. = [1-£(¢ + DYy (A3)

The odd-parity vector harmonics X4™ satisfy similar differ-
ential identities:

QX =0, (A4)
QFX e = [1 = £(2 + D]Xg™, (AS)
QFCXE - = X4 (A6)

On the other hand, the (symmetric) even-parity tensor
harmonics 74" and Y4 satisfy the following differential
identities:

QTR = 2Y5", (A7)
QT = Y5, (A8)
QLT oy = =€+ 1)TSE, (A9)
QPTE = Yag —¢(£+ DTG5, (AL0)
QFcygr, =0, (Al1)
areygy = Iy (an)
QCDYngICD =[4-2(+1)Yqn. (A13)

Finally, the (symmetric) odd-parity tensor harmonics Xﬁ’g
satisfy the following differential identities:

QBCx{;ng =0, (A14)

m +2)¢-1)
QBCXjBlc = —fxg , (A15)
QCij'glw =[4-2(¢+1))X9m. (A16)

APPENDIX B: MULTIPOLAR COMPONENTS OF
GEOMETRIC PERTURBATIVE QUANTITIES

We give expressions of the main quantities that we need
to analyze the perturbative vacuum (with cosmological
constant) Einstein equations (see [48] for complementary
expressions). The components of the perturbation of the
Christoffel symbols (these are tensors from the point of
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view of the background spacetime), introducing the spheri-

cal harmonic decomposition of the metric perturbations a boa £ +1) a 1 2\ ta
into Eq. (3) are ol ap = <rr Py 3 J 2(’ K)** | Tap
1 d + Ju_l(rZG):a Y + ha_lh ‘a X
o e :Eg“ (hea:p = Mpeza + hpa:c)Y, (B1) 2 AB 27 AB

5Ty = (L p, 4 gl — 23 ) ¥
bA 2Pb 9 Je:b) . A

1 1

n <gach[czh] _ %h“)XA, (B2) oMy = > (Ja:b _Epab> YA + %ha:bXAv (B4)
|
g, :%((ﬁl{):a—2rraK)TAB+§((r2G):a —2rraG)YAB+§ (hzza —2r—:h2>XAB+%haYeAB. (B5)
oM pe = %K(‘QABYC + QA Yp —QpeY?) +%GQAD<YCD\B —Yseip + Yapic)
+ %QAD(XCDB — Xpeip + Xppjc) + é (T YA+ hX*)Qpc. (B6)

Now, in the same way that we have the harmonic decomposition of the perturbed Christoffel symbols in terms of the
metric perturbation harmonics, we can write the harmonic decomposition of the Riemann tensor in terms of the harmonic
decomposition of the perturbations of the Christoffel symbols. Then, from Eq. (4) we obtain

OR pea = 01 pg:c = 01 ety (B7)

SR s = 01 p.c = 6T i + 1rr0QpoT " . + %5FaAc, (B8)

OR pap = 01 ppja — 61 ppja — rr (QucdTC g = QpcdT ), (B9)

SR ppe = 8T cp:p = 8Ty = 26T+ -1 . (B10)

OR“ ppp = 61 g — 5FabA\B - r_:5FaAB + rraQBC5FCAb —rreél®, Ly, (Bll)

SR ypc = T yc1p — 0T a0 — rr(QppdTP sc — QepdIP ag) + rr” (QupdT e — Qucolbp). (B12)
SR e = BT = 8T s + 8T = 6T (B13)

SR = 0T g, = O g+~ 8Ty + 26T, = “C6T 5. (B14)

SR ipc = 6T ycip = T g + L (6T o8y = 6T c). (B15)

SR pap = ST gy:a = 1 i, (B16)

SR pac = T pe.q — 5FABa\c - %5Fba35Ac — rrP6I , Qpc, (B17)

SR ey = 6 ppic = ST i+~ (8T = 8T 58 p) + 11 (QpcdTp = QT ). (B18)
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From here we can find the harmonic decomposition of the perturbations of the Ricci tensor by introducing the
perturbations of the Christoffel symbols in terms of the metric perturbation harmonics [Eqs (B1)-(B6)]. The result is

| o1 re 2 £(C+1
5Rab:[hc(a:b)’c__hab:c'c__h:ab+_(hac:b+hbc:a_hab:c)_K:ab__r(aK:b)+(—2)(hab_2Ja:b)]Y’ (B19)
2 2 r r 2r
1 1 r 1 1 T rb R r. r,r 1
SRup = |=hapt ==l + =2 h 4 =3 = =1 C =210+ 1T, Gy — L Pk,
aA [2 ab 2 .a+2r +2 ica D) a:c r .b+ r b.a+ <4 Yab r rz 2 ta
(Z+2)(¢-1) 1 1 o rb R Feab  Talb £(¢€+1)
LA T ) G a Sy = b =y oy [ gy — e el ) h
4 la A+ 2 lca D) a:.c r .b+ - b.a+ 4 Yab B r2 =+ 21’2 a
+2)(7 -1 2
- % (h2:a - ﬁhz)}XA, (B20)
r r

(0 +1)

ORup = [rrh®.., —%r“h;a + (r*rb + rriab)hg, + )

2+ 1 C+2)(+ D) -1
LAY (22 DAC )
2 4
1 . ré (1=2rr,)
+ |ha—shyy  t—hy Sy | X5
2 r r

2

1 a 1
AER) (J“;a +2r_Ja> LK),
r
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