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Perturbation theory of vacuum spherically symmetric spacetimes is a crucial tool for understanding the
dynamics of black hole perturbations. Spherical symmetry allows for an expansion of the perturbations in
scalar, vector, and tensor harmonics. The resulting perturbative equations are decoupled for modes with
different parity and different harmonic numbers. Moreover, for each harmonic and parity, the equations for
the perturbations can be decoupled in terms of (gauge-invariant) master functions that satisfy 1þ 1 wave
equations. By working in a completely general perturbative gauge, in this paper we study what is the most
general master function that is linear in the metric perturbations and their first-order derivatives and satisfies
a wave equation with a potential. The outcome of the study is that for each parity we have two branches of
solutions with similar features. One of the branches includes the known results: In the odd-parity case, the
most general master function is an arbitrary linear combination of the Regge-Wheeler and the Cunning-
ham-Price-Moncrief master functions whereas in the even-parity case it is an arbitrary linear combination
of the Zerilli master function and another master function that is new to our knowledge. The other branch is
very different since it includes an infinite collection of potentials which in turn lead to an independent
collection master of functions which depend on the potential. The allowed potentials satisfy a nonlinear
ordinary differential equation. Finally, all the allowed master functions are gauge invariant and can be
written in a fully covariant form.

DOI: 10.1103/PhysRevD.104.084053

I. INTRODUCTION

Spacetime perturbation theory is one of the main tools in
general relativity to describe physical systems and make
reliable predictions about their characteristics and dynami-
cal behavior. It has been applied essentially to all the main
problems in the area of relativistic astrophysics and
cosmology: from the origin and growth of cosmological
structures and the cosmic microwave background [1–4] to
phenomena involving relativistic stars and black holes [5–
8], including gravitational wave generation and propaga-
tion [9–12] (see [12–18] for applications of black hole
perturbation theory to gravitational wave astronomy).
There are also many applications of black hole perturbation
theory that have implications for fundamental physics (see
[19–21] for reviews).
The long experience in relativistic perturbation theory

tells us that it is a very powerful tool, in part because
starting from very simplified situations, encoded in what is
known as the background spacetime, it has shown to
provide results and predictions that many times go beyond
the range of applicability that one may expect from back-
of-the-envelope estimates. For example, this has happened

when we have compared the outcome of full numerical
relativity simulations with post-Newtonian/Minkowskian
theories and relativistic perturbation theory.
In this work we focus on relativistic perturbation

theory of vacuum spherically symmetric spacetimes.
We allow for the presence of a cosmological constant
which, as we are going to see, does not make our
computations much more complicated since it can be
incorporated into our equations in a relatively simple
way. This means that our study includes the dynamics
of perturbations around Schwarzschild, Schwarzschild-de
Sitter, and Schwarzschild-anti–de Sitter spacetimes, includ-
ing also the associated maximally symmetric spacetimes:
Minkowski, de Sitter, and anti–de Sitter respectively. It is
well known that perturbations of spherically symmetric
spacetimes can be decomposed in spherical harmonics, in
such a way that the associated equations for the different
harmonic modes decouple. Moreover, the equations for
different parity harmonics also decouple, i.e., odd-parity
(axial) modes can be treated separately from even-parity
(polar) modes. Another crucial feature of the theory of
perturbations of spherically symmetric spacetimes is that,
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for each harmonic and parity, it is possible to construct
master functions, made out of linear combinations of the
metric perturbations and their first-order derivatives, that
satisfy 1þ 1 wave (master) equations decoupled from the
rest of metric perturbations. The characteristic curves of the
wave operator of the master equations are fully determined
by the background (Lorentzian) metric. In some perturba-
tive gauges, it is even possible to reconstruct all the metric
perturbations in terms of the solutions of the master
equations, something that is required in some problems,
like in the self-force program [22–24].
In the case of perturbations of the Schwarzschild metric,

the first steps [25] were already taken in the 1950s by
Regge and Wheeler [26] (see also [27,28]), who managed
to decouple the equations for odd-parity perturbations in
the gauge named after them (also the master function and
equation are named after them). However, it took a while
until the samewas done for even-parity perturbations, when
Zerilli found the way to decouple the perturbative equations
[29,30] (see also [31]). Starting from these pioneering
works, there have been many interesting developments in
perturbation theory of spherically symmetric spacetimes:
gauge-invariant and/or explicitly covariant formalisms [32–
35] (see [36,37] for the case of D-dimensional maximally
symmetric spacetimes), quasinormal modes [5,6,38–40]
(for D dimensions see [41]), stability of dynamics of the
perturbations [42,43], stability of black holes in de Sitter
Space [44], etc. For reviews on nonrotating black hole
perturbation theory see [34,45–48] (for second-order per-
turbations see [49–51]). On the other hand, similar develop-
ments took place for perturbations of rotating black holes
[52,53]. For studies of the stability of black holes in
asymptotically flat spacetimes see [54,55].
In this paper, we further investigate the construction of

master functions and equations. In particular, we focus on
the following questions: What is the most general master
function that decouples the equations for the metric
perturbations of spherically symmetric vacuum space-
times? And, what are the possible potentials associated
with those master functions? To answer these questions we
assume that the master functions are linear combinations
(with coefficients that depend only on the radial areal
coordinate, r) of the metric perturbations and their first-
order derivatives. Our analysis turns out to be very similar
for the odd- and even-parity cases, also leading us to similar
conclusions. The result we find is that we can distinguish
two branches of solutions (for each parity and harmonic
mode). The first branch is mostly known: The master
functions are linear combinations of two different (linearly
independent) master functions. In the odd-parity case they
can be taken to be the Regge-Wheeler [26] and the
Cunningham-Price-Moncrief [56–58] master functions.
In the even-parity case, one of them can be taken to be
the well-known Zerilli-Moncrief master function [29–31],
while the second one, as far as we know, was previously

unknown. It turns out that, for both parities, the indepen-
dent master functions can be chosen so that one of them is
the time derivative of the other one. Regarding the master
equations themselves, which in our case are essentially
determined by the potential, in the first branch we find the
well-known potentials: the Regge-Wheeler potential for
odd-parity perturbations and the Zerilli potential for even-
parity perturbations. On the other side, the second branch
was essentially unknown. To begin with, there are infinite
possible potentials, different from the ones already known
in the first branch. Actually, the allowed potentials satisfy
a nonlinear ordinary differential equation. The master
functions are again a linear combination (again with
coefficients that depend only on r) of two independent
master functions. In the odd-parity case, they can be taken
to be the Cunningham-Price-Moncrief master function
and a new one that combines the Cunningham-Price-
Moncrief and another gauge-invariant function. The
even-parity case is analogous, the most general master
function is a linear combination of the Zerilli-Moncrief
master function and another new master function that
contains the Zerilli-Moncrief master function and a gauge-
invariant variable.
Some remarkable features and consequences coming

from this study are the following: (i) All the master
functions involved are automatically gauge invariant.
(ii) All the master functions and master equations admit
a fully covariant form with respect to the 1þ 1 Lorentzian
metric. (iii) In the same way that the Regge-Wheeler
and Zerilli potentials coincide for the case of a
maximally symmetric background, the equations for the
potentials in the second branch also coincide. (iv) Our
approach constitutes an original and systematic way of
searching for master functions and equations without
having to resort to look for ad hoc combinations of the
perturbative field equations that yield decoupled master
equations.
This paper is organized as follows: In Sec. II we

introduce all the necessary elements of relativistic pertur-
bation theory for (vacuum) spherically symmetric space-
times, including the elements associated with the
background spacetime, the decomposition of the perturba-
tions in spherical harmonics, gauge invariance, and the
known master functions in different forms. In Sec. III, we
describe how to obtain the most general master functions
and equations satisfying the hypothesis mentioned above.
Finally, in Sec. IV we summarize and discuss the results of
this paper. We also include two appendixes with key
formulas used in this work. We use geometric units in
which G ¼ c ¼ 1.

II. RELATIVISTIC PERTURBATION THEORY OF
SPHERICALLY SYMMETRIC SPACETIMES

In this section we introduce all the ingredients and
machinery needed to derive the main results of this work.
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A. Basics of relativistic perturbation theory

Relativistic perturbation theory is usually formulated by
assuming the existence of a one-parameter family of
spacetimes, ðMλ; gλÞ, in such a way that the perturbations
are constructed as a Taylor expansion of this family around
the λ ¼ 0 spacetime (see, e.g., [59,60]), the background
spacetime, which usually represents an idealized gravita-
tional system, typically with a high degree of symmetry as
in our case. Here, we assume the background1 to be a
vacuum (including the cosmological constant) spherically
symmetric spacetime. Then, the background spacetime
metric, ĝμν, satisfies the vacuum Einstein’s field equations
including the cosmological constant term:

Ĝμν ¼ R̂μν −
1

2
ĝμνR̂þ Λĝμν ¼ 0; ð1Þ

where R̂μν and Ĝμν denote the Ricci and Einstein tensors of
the background metric respectively, R̂ ¼ ĝμνR̂μν is the
background scalar curvature, and Λ is the cosmological
constant.
In this framework, the perturbations are defined as the

derivative terms of the Taylor series expansion, evaluated
on the background. The parameter λ controls the strength of
the perturbations and in most applications it is a formal
parameter without a specific physical meaning, except in
some cases in which it is identified with some relevant
physical parameter of the system (see, e.g., [59,61,62] for
more details on the formulation of relativistic perturbation
theory). Since in our case λ is a formal parameter, we are
going to ignore it from now on for the sake of simplicity.
The physical (perturbed) spacetime, a member of the one-
parameter family of spacetimes ðMλ; gλÞ, is endowed with
a metric gμν which, once a correspondence between the
background spacetime is established, can be constructed to
linear order from the background solution ĝμν and the
metric perturbations hμν (jhμνj ≪ jĝμνj) via the relation

gμν ¼ ĝμν þ hμν: ð2Þ

For any quantity Q, we denote the deviations between the
perturbative and background expressions with a δ in front
of the original quantity, i.e., δQ ¼ Q − Q̂, where Q is the
expression from the perturbed/physical spacetime. In this
way, hμν ¼ δgμν ¼ gμν − ĝμν. When we expand such a
quantity in the different perturbative orders we are actually
performing Taylor expansions in the parameter λ. In this
sense, at first order, the perturbed Christoffel symbols can
be written in terms of the metric perturbations hμν and their
covariant derivatives with respect to the background metric
(denoted here by a semicolon), as follows:

δΓρ
μν ¼ 1

2
ĝρσðhμσ;ν þ hνσ;μ − hμν;σÞ: ð3Þ

From the expression of these quantities we deduce that they
are tensors with respect to coordinate changes in the
background spacetime. Then, we can write the perturba-
tions of the Riemann tensor in terms of the perturbed
Christoffel symbols (which are tensors from the point of
view of the background spacetime) as follows:

δRμ
νρσ ¼ δΓμ

νσ;ρ − δΓμ
νρ;σ ¼ 2δΓμ

ν½σ;ρ�: ð4Þ

In the sameway, the perturbations of the Ricci tensor can be
written in terms of the covariant derivatives of the perturbed
Christoffel symbols:

δRμν ¼ δΓρ
μν;ρ − δΓρ

ρμ;ν: ð5Þ

The Einstein tensor can be decomposed as Gμν ¼ Ĝμνþ
δGμν ¼ δGμν, where the second equality holds by virtue of
the Einstein field equations satisfied by the background
metric [Eq. (1)]. The perturbation in the Einstein tensor in
terms of the metric perturbations hμν are

δGμν ¼−
1

2
□̂h̄μν− R̂ρ

μ
σ
νh̄ρσþ ∇̂ðμLνÞ−

1

2
ĝμνð∇̂ρLρÞ; ð6Þ

where R̂ρ
μ
σ
ν is the background Riemann tensor and we

have used again the background Einstein’s field equations
[Eq. (1)]: Ĝμν ¼ 0 ⇒ R̂μν ¼ Λĝμν and R̂ ¼ ĝμνR̂μν ¼ 4Λ.
Moreover, we have introduced several definitions in
Eq. (6). First, we have introduced the trace-reversed metric
perturbations:

h̄μν ¼ hμν −
1

2
ĝμνh; ð7Þ

with h being the trace of hμν with respect to the background
metric

h ¼ ĝμνhμν: ð8Þ

Second, we have introduced the d’Alambertian associated
with the background:

□̂h̄μν ¼ h̄μν;ρ;ρ; □̂h ¼ h;ρ;ρ: ð9Þ

And finally, we have introduced the quantity

Lμ ¼ ĝρσ∇̂ρh̄σμ: ð10Þ

When we impose Lμ ¼ 0 we are in the so-called Lorenz
gauge. But in this paper we are not going to impose any
particular gauge, i.e., the developments we present are
completely general.

1We use a hat to denote quantities associated with the back-
ground spacetime, like Q̂.
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B. Background solution: Vacuum spherically
symmetric spacetimes

We consider background spacetimes, or regions of space-
times, that are solutions of the Einstein vacuum equations
including a cosmological constant [see Eq. (1)]. These
solutions come from a generalization of Birkhoff’s local
uniqueness theorem [63] (published before by Jebsen
[64,65]; see also [66,67]) to the case of a nonvanishing
cosmological constant [68] (see [69] for details). It turns out
that the only locally spherically symmetric solutions to
Eqs. (1) (see [69]) are locally isometric either to one of the
Schwarzschild-de Sitter (SchdS [70]) and Schwarzschild-
anti–de Sitter (SchAdS) solutions or to the Nariai spacetime
[71,72], which can be seen as the limit of SchdS when
the cosmological and event horizons coincide2 (see [73]).
This family of metrics includes very important solutions as
the maximally symmetric solutions of Einstein equations:
Minkowski flat spacetime (M;Λ ¼ 0), de Sitter (dS;Λ > 0),
and anti–de Sitter (AdS; Λ < 0). Locally, the background
metric can be written in the so-called Schwarzschild
form,

ds2 ¼ ĝμνdxμdxν ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð11Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2 is the line element of the
2-sphere and fðrÞ is a function parametrizing time trans-
lations (related to the redshift).
The solutions described by the metric (11) satisfy

Einstein’s equations (1), which become ordinary differ-
ential equations (ODEs) for fðrÞ:

rf0 þ f þ Λr2 − 1 ¼ 0; ð12Þ

rðf00 þ 2ΛÞ þ 2f0 ¼ 0: ð13Þ

There are two combinations of fðrÞ and its derivatives that
are constants and correspond to the cosmological constant
Λ and the spacetime mass M respectively:

Λ ¼ −
1

2r2
ðr2f0Þ0; ð14Þ

M ¼ r
2

�
1 − f −

Λ
3
r2
�

¼ r
2

�
1 − f þ 1

6
ðr2f0Þ0

�
: ð15Þ

In the case of Schwarzschild spacetime [25] (also found
independently by Droste [74]) we have

fSch ¼ 1 −
rs
r
; ð16Þ

where rs is the Schwarzschild radius, rs ¼ 2GM=c2 ¼ 2M.
In the case of de Sitter and anti–de Sitter spacetimes we
have

fdS ¼ 1 −
r2

L2
; fAdS ¼ 1þ r2

L2
ð17Þ

where L is the (anti–)de Sitter length scale, which deter-
mines the cosmological constant as follows:

Λ ¼ � 3

L2
; ð18Þ

where the plus sign corresponds to de Sitter and the minus
sign to anti–de Sitter. Apart from these two cases, we have
the case of the Schwarzschild–de Sitter (SchdS) spacetime,
which contains the previous two cases in the limits M → 0
(dS) and L → ∞ (Sch). This last limit is equivalent to
Λ → 0. The function fðrÞ for Schwarzschild–de Sitter and
Schwarzschild-anti–de Sitter is

fSchdS=SchAdSðrÞ ¼ 1 −
2M
r

−
Λ
3
r2; ð19Þ

where Λ is given in Eq. (18).

C.Multipolar expansion of the perturbations of vacuum
spherically symmetric spacetimes

The background metric can be written as the warped
product of two manifolds: M2 ×r S2, where M2 is a two-
dimensional Lorentzian manifold, r is the radial area
coordinate, and S2 denotes the 2-sphere. Therefore, the
background metric is given by the semidirect product of a
Lorentzian metric onM2, gab, and the unit curvature metric
on S2, ΩAB:

ĝμν ¼
�
gab 0

0 r2ΩAB

�
: ð20Þ

Coordinates on M2 are going to be denoted with lowercase
Latin indices, ðxaÞ ¼ ðt; rÞ. Coordinates on S2 are denoted
with uppercase Latin indices as ðΘAÞ ¼ ðθ;φÞ. Then, in
connection with Eq. (11) we can write

gabdxadxb ¼ −fðrÞdt2 þ dr2

fðrÞ ; ð21Þ

ΩABdΘAdΘB ¼ dθ2 þ sin2θdφ2: ð22Þ

We use a vertical bar to denotes covariant differentiation on
the two-sphere S2 (then ΩABjC ¼ 0). Similarly, we use a
colon to denote covariant differentiation with respect to the
metric of the Lorentzian two-dimensional manifold M2,
i.e., gab∶c ¼ 0. On the other hand, the antisymmetric
covariant unit tensor associated with the volume form

2We will not consider here the particular case of the Nariai
metric as it may require a particular treatment.
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(Levi-Civita tensor) in S2 is denoted by ϵAB, and the
corresponding one on the Lorentzian manifold M2 is
denoted by εab.
The particular geometric structure of the background

implies that for certain quantities (e.g., solutions of thewave
equation in the background)we can separate the dependence
on the coordinates of M2 from the angular dependence,
which, in turn, can be expanded in spherical harmonics. The
different harmonics can be divided into even- and odd-parity
harmonics depending on how they transform under a parity
transformation, ðθ;ϕÞ → ðπ − θ;ϕþ πÞ. If a given har-
monic object Olm transforms as Olm → ð−1ÞlOlm it is
said to be of the even-parity type; while if it transforms as
Olm → ð−1Þlþ1Olm it is said to be of the odd-parity type.
With this in mind, the scalar, vector, and tensor spherical
harmonics are as follows:

(i) The scalar harmonics Ylm are eigenfunctions
of the Laplace operator on the two sphere (see
Appendix A):

ΩABYlm
jAB ¼ −lðlþ 1ÞYlm: ð23Þ

(ii) The vector spherical harmonics, which are defined
for l ≥ 1, are given by

Ylm
A ≡ Ylm

jA even ðpolarÞ parity; ð24Þ

Xlm
A ≡ −ϵABYlm

B odd ðaxialÞ parity: ð25Þ

(iii) The basis of symmetric second-rank tensor spherical
harmonics, which are defined for l ≥ 2, are given by

Tlm
AB ≡ YlmΩAB even parity; ð26Þ

Ylm
AB ≡Ylm

jABþ
lðlþ1Þ

2
YlmΩAB even parity; ð27Þ

Xlm
AB ≡ Xlm

ðAjBÞ odd parity: ð28Þ

Differential properties of these spherical harmonics
that are necessary to manipulate the perturbative
Einstein equations are given in Appendix A.

The metric perturbations can be written as a multipole
expansion using scalar (Ylm), vector (Ylm

A , Xlm
A ), and tensor

spherical harmonics (Tlm
AB , Y

lm
AB , X

lm
AB). The main reason for

expanding the metric perturbations in this way is that the
underlying spherical symmetry prevents different harmon-
ics and different parity modes from mixing, and the
perturbation equations can be obtained for each ðl; mÞ
and parity mode separately (see, e.g., [32,33]):

hμν ¼
X
l;m

hlm;odd
μν þ hlm;even

μν ; ð29Þ

where

hlm;odd
μν ¼

�
0 hlma Xlm

A

� hlm2 Xlm
AB

�
; ð30Þ

and

hlm;even
μν ¼

�
hlmab Y

lm Jlma Ylm
A

� r2ðKlmTlm
AB þ GlmYlm

ABÞ

�
: ð31Þ

Here the asterisk denotes the symmetry on the tensor
components, Klm and Slm denote the scalar perturbations,
hlm2 and hlmA the vector perturbations, and hlmab the tensorial
ones. All of them depend only on the coordinates fxag
of M2.

D. Gauge invariance

In relativistic perturbation theory [59,61] there is a gauge
freedom associated with the infinite possible ways of
choosing the correspondence between the background
and physical spacetimes (see Sec. II A). In practical terms,
this freedom can be associated with the different ways in
which we can identify points of the two spacetimes. Taking
into account that we can pull back the physical metric into
the background tensorial structure [as described by Eq. (2)],
different choices of correspondence between the back-
ground and physical spacetimes can be used (from the point
of view of the background spacetime) and a coordinate
change of the type

xμ → x0μ ¼ xμ þ ξμ; ð32Þ

where xμ and x0μ are the coordinates of two points of the
physical spacetime, say p and p0, that have been identified
with a single point of the background spacetime, say p̄, by
two mappings between the two spacetimes. The mapping
between the two points p and p0 constitutes what we call a
gauge transformation in perturbation theory, and Eq. (32) is
the coordinate version of such a gauge transformation. The
difference between the coordinates of the two points p and
p0 (as seen from the background spacetime) is described by
a vector field, ξμ, which is the local generator of the gauge
transformation, and which is assumed to be small in the
same way as we assume that the perturbations are
small (jξμj ≪ jĝμνj).
The gauge transformation in Eq. (32) generates the

following transformation of the metric perturbations:

hμν → h0μν ¼ hμν − 2ξðμ;νÞ: ð33Þ

It is important to understand how a general gauge
transformation changes the harmonic components of the
metric perturbations. To that end, in the same way we have
decomposed the metric perturbations in spherical harmon-
ics we have to do the same with the generator of the gauge
transformation ξμ. For even-parity perturbations, the ðl; mÞ
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harmonic of the gauge generator can be written in
the form

ξlm;even
μ dxμ ¼ αlma ðxbÞdxa þ r2βlmðxaÞYlm

A dΘA; ð34Þ

and for odd-parity perturbations

ξlm;odd
μ dxμ ¼ r2γlmðxaÞXlm

A dΘA: ð35Þ

Note that there are three gauge functions for even-parity
perturbation and just one for the odd-parity ones.
Introducing the multipolar decomposition of the metric

perturbations and the gauge vector into Eq. (33), we find
that the even-parity metric perturbations transform as
follows:

h0lmab ¼ hlmab − 2αlmða∶bÞ; ð36Þ

J0lmab ¼ Jlma − ðαlma þ r2βlm∶a Þ; ð37Þ

K0lm ¼ Klm þ lðlþ 1Þβlm − 2
r∶a

r
αlm; ð38Þ

G0lm ¼ Glm − 2βlm: ð39Þ

And the odd-parity metric perturbations transform accord-
ing to

h0lma ¼ hlma − r2γlm∶a ; ð40Þ

h0lm2 ¼ hlm2 − 2r2γlm: ð41Þ

There are combinations of the metric perturbations and its
derivatives that are invariant under gauge transformations.
In the case of even-parity metric perturbations there are four
independent gauge-invariant quantities, which can be
written as

h̃ab ¼ hab − κa∶b − κb∶a; ð42Þ

K̃ ¼ K þ lðlþ 1Þ
2

G − 2
ra

r
κa; ð43Þ

where

κa ¼ Ja −
r2

2
G∶a; ra ¼ r∶a ⇒ ra ¼ gabrb: ð44Þ

In the case of odd-parity metric perturbations there are two
independent gauge-invariant quantities:

h̃a ¼ ha −
1

2
h2∶a þ

ra
r
h2; ð45Þ

E. Known master functions and equations

Before entering in the search for master functions and
equations, let us review the most important known master
functions and how they are expressed in covariant form
(with respect to the metric gab of M2; see Sec. II C). For
odd-parity perturbations, the first master function was
introduced by Regge and Wheeler [26] in a pioneering
work on black hole perturbation theory. The covariant form
of this master function is (see, e.g., [48])

ΨRW ¼ ra

r
h̃a: ð46Þ

One can alternatively use the master function introduced by
Cunningham, Price, and Moncrief [56–58], which in
covariant form reads (see also [48,75])

ΨCPM ¼ 2r
ðl − 1Þðlþ 2Þ ε

ab

�
h̃b∶a −

2

r
rah̃b

�
: ð47Þ

A classification of odd-parity master functions can be
found in [47].
In the case of even-parity perturbations we have the

master function introduced by Zerilli [30] and later by
Moncrief [31] (see also [48,76]). It admits the following
covariant expression:

ΨZM ¼ 2r
lðlþ 1Þ

�
K̃ þ 2

λ
ðrarbh̃ab − rraK̃∶aÞ

�
; ð48Þ

where

λðrÞ ¼ rf0 − 2ðf − 1Þ þ ðlþ 2Þðl − 1Þ
¼ ðlþ 2Þðl − 1Þ − Λr2 − 3ðf − 1Þ; ð49Þ

which in the Schwarzschild case reduces to

λðrÞ ¼ ðl − 1Þðlþ 2Þ þ 3rs
r

: ð50Þ

All these master functions satisfy wave-type equations in
1þ 1 dimensions, with respect to the metric gab of the
Lorentzian manifoldM2, with a potential term. The form of
these equations in the case of vacuum perturbation looks as
follows:

ð□2 −Ωeven=oddÞΨeven=odd ¼ 0; ð51Þ

where Ψeven=oddðt; rÞ is the even/odd master function of
choice;Ωeven=oddðrÞ is the potential, which only depends on
the radial area coordinate r; and the action of the operator
□2 on any scalar field ϕ is given by

□2ϕ ¼ gabϕ∶ab: ð52Þ
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A slightly different way of introducing the potential comes
from the expression of the operator □2 in Schwarzschild
coordinates

□2ϕ ¼ −
1

f
∂2ϕ

∂t2 þ ∂
∂r

�
f
∂ϕ
∂r

�
: ð53Þ

At this point we can introduce the tortoise coordinate:

dr�ðrÞ
dr

¼ 1

fðrÞ : ð54Þ

Combining this with Eq. (53) we can write the master
equation (51) in the following more familiar form:

�
−

∂2

∂t2 þ
∂2

∂r2� − Veven=odd

�
Ψeven=odd ¼ 0; ð55Þ

where the potential Veven=odd, is related to the one in
Eq. (51) by

Veven=odd ¼ fΩeven=odd: ð56Þ

In most places the potential that is used is Veven=odd, but in
this work we will use both.
To finish this section, we just recall that in the case of the

Schwarzschild spacetime, the Regge-Wheeler potential is
given by

ΩoddðrÞ ¼
lðlþ 1Þ

r2
−
3rs
r3

; ð57Þ

while the Zerilli potential is

ΩevenðrÞ ¼
1

λ2

�ðl − 1Þ2ðlþ 2Þ2
r2

�
lðlþ 1Þ þ 3rs

r

�

þ 9r2s
r4

�
ðl − 1Þðlþ 2Þ þ rs

r

��
; ð58Þ

where λðrÞ is defined in Eq. (49), and for Schwarzschild is
given in Eq. (50).

III. CONSTRUCTION OF MASTER FUNCTIONS
AND EQUATIONS

The main objective of this section, and also of this work,
is to look for the most general master function and equation
for both odd- and even-parity modes under the following
assumptions:
(1) The perturbative gauge is left completely arbitrary.

In this way we can check whether or not the master
functions have to be necessarily gauge invariant.

(2) The master function is assumed to be linear in the
metric perturbations and its first-order derivatives, as
it happens for almost all the known master functions.

The case of the Bardeen-Press master function [77] is
an exception since it has been derived along the lines
of the Teukolsky [52,53] procedure to decouple
perturbations around Kerr but applied to Schwarzs-
child. In this case, the decoupling follows from using
the Newman-Penrose [78] components of the Weyl
tensor as master functions. Since the Weyl tensor
contains second-order derivatives of the metric per-
turbations, we cannot recover them fromour analysis.

(3) The coefficients in the master function are assumed
to be time independent. That is, they only depend on
the radial area coordinate r. This is expected as those
coefficients are built from the Lorentzian metric gab
of the 2D manifold M2.

(4) The master function satisfies a wave equation of the
form (51). The potential is left arbitrary, in the sense
that it will be determined only by the perturbative
Einstein equations.

In practical terms, the goal is to decouple the equations
for the metric perturbations, the perturbative Einstein field
equations [Eq. (6)]. The perturbation in the Einstein tensor,
δGμν ¼ Gμν − Ĝμν, can be expanded in scalar, vector, and
tensor spherical harmonics. For a single ðl; mÞ harmonic
the structure of δGμν is

δGlm
ab ðxc;ΘAÞ ¼ Elm

ab ðxcÞYlmðΘAÞ; ð59Þ

δGlm
aA ðxb;ΘBÞ¼ Elm

a ðxbÞYlm
A ðΘBÞþOlm

a ðxbÞXlm
A ðΘBÞ;

ð60Þ

δGlm
ABðxa;ΘCÞ ¼ Elm

T ðxaÞTlm
ABðΘCÞ þ Elm

Y ðxaÞYlm
ABðΘCÞ

þOlm
X ðxaÞXlm

ABðΘCÞ: ð61Þ

We can identify the harmonic components of
the perturbative field equations for the even-parity
modes, ðElm

ab ; E
lm
a ; Elm

T ; Elm
Y Þ, and for the odd-parity

modes, ðOlm
a ;Olm

X Þ. Their expressions can be constructed
in a straightforward way from the expressions of the
perturbations of the Ricci tensor given in Appendix B.

A. Odd-parity (axial) harmonic modes

In the odd-parity case, we have three independent metric
functions, ðhlma ; hlm2 Þ, and the only relevant components of
the field equations are Olm

a Olm
X [see Eqs. (60) and (61)].

The most general master function linear (with coefficients
depending only on r) in the odd-parity metric perturbations
and their derivatives is

Ψlm
oddðxaÞ¼Cl

0ðrÞhlm0 ðxaÞþCl
1ðrÞhlm1 ðxaÞþCl

2ðrÞhlm2 ðxaÞ
þCl

3ðrÞ _hlm0 ðxaÞþCl
4ðrÞh0lm0 ðxaÞþCl

5ðrÞ _hlm1 ðxaÞ
þCl

6ðrÞh0lm1 ðxaÞþCl
7ðrÞ _hlm2 ðxaÞþCl

8ðrÞh0lm2 ðxaÞ;
ð62Þ
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where we have used the following simplifying notation for
time and radial derivatives:

_ϕ ¼ ∂ϕ
∂t ; ϕ0 ¼ ∂ϕ

∂r : ð63Þ

Notice that the coefficients in Eq. (62) only depend on the
harmonic number l. Once we have extracted the different
harmonics from the Einstein equations, what is left is a set
of linear equations in the perturbations ðhlma ; hlm2 Þ whose
structure is (we drop the harmonic indices to simplify the
notation)

Ot∶ _h01 − h000 þ LDTs ¼ 0; ð64Þ

Or∶ ḧ1 − _h00 þ LDTs ¼ 0; ð65Þ

OX∶ −
1

f
ḧ2 þ fh002 þ LDTs ¼ 0; ð66Þ

where LDTs stands for lower derivative terms (with respect
to the other ones), that is, in this particular case they are terms
that are linear in the metric perturbations and their first-order
derivatives (no second- or higher-order derivatives appear).
The first step in the analysis of the general solution to
Eqs. (64)–(66) is to study the integrability of Eqs. (64) and
(65). Given that they contain ðh000; _h01Þ and ð _h00; ḧ1Þ respec-
tively, we can study their integrability by differentiating
Eq. (64) with respect to t and Eq. (65) with respect to r. It
turns out that the integrability condition is identically
satisfied by using the three equations [Eqs. (64)–(66)]. It
is important to mention that to arrive to this conclusion we
need to use the fact that the background is a solution of
Einstein’s field equations, which means to use Eqs. (12)
and (13).
The next step in the analysis is to impose that the

function in Eq. (62) satisfies the following wave equation
(assumption 4):

□2ΨoddðxaÞ ¼ ΩðrÞΨoddðxaÞ; ð67Þ

where ΩðrÞ is an arbitrary function of r (and l) that plays
the role of the potential [see Eq. (51)]. Given the structure
of ΨoddðxaÞ in Eq. (62), it is clear that the left-hand side of
Eq. (67) contains up to third-order derivatives of the metric
perturbations ðha; h2Þ. In this sense, it is important to
realize that Eqs. (64)–(66) tell us that from the nine possible
second-order derivatives of ðha; h2Þ, three of them can be
written in terms of other second-order derivatives and
LDTs. As a consequence, for the twelve possible third-
order derivatives of ðha; h2Þ we have five independent
relations between them.3 That is, we can write five of the

third-order derivatives of ðha; h2Þ in terms of the other ones
and LDTs, in an independent way. Therefore, the way to
proceed is to expand Eq. (67) and use the expressions for
the third-order derivatives that we have just mentioned,
together with the expressions that relate the second-order
derivatives. After we have used all this information, which
comes from the perturbative Einstein equations, we just
need to impose the vanishing of the coefficients of the
metric perturbations ðha; h2Þ and their derivatives. That is,
once all the possible information coming from Einstein’s
equations is used, the remainder has to vanish for Eq. (67)
to hold. Once we have completed this process, we should
have obtained the most general odd-parity master function,
together with the allowed potential(s).
In our study, the second-order derivatives of the metric

perturbations that we are going to eliminate are ḧ1, _h
0
1, and

ḧ2. In addition, we also eliminate the third-order derivatives
that can be computed from these second-order derivatives,

i.e., h
���
1, ḧ01 _h001 , h

���
2, and ḧ02. After eliminating all these

derivatives we arrive to an expression of the form

□2Ψodd ¼ τ0h
…

0 þ τ1ḧ
0
0 þ τ2 _h

00
0 þ τ3h0000 þ τ4h0001

þ τ5ḧ0 þ τ6 _h
0
0 þ τ7 _h

00
0 þ τ8 _h

00
1 þ τ9 _h

0
2 þ τ10h002

þ τ11 _h0 þ τ12h00 þ τ13 _h1 þ τ14h01 þ τ15 _h2

þ τ16h02 þ τ17h0 þ τ18h1 þ τ19h2: ð68Þ

Notice that there are no third-order derivatives of h2. The
explanation is that Eq. (66) can be rewritten as

−
1

2
□2h2 þ LDTs ¼ 0: ð69Þ

That is,□2h2 only produces LDTs and this is why there are
no third-order derivatives of h2 in Eq. (68). Now that only
independent derivatives of the metric perturbations appear
[Eq. (68)] we can proceed to analyze the consequences of
the vanishing of their coefficients. To begin with, the
vanishing of τ0 implies

C3 ¼ 0: ð70Þ

The vanishing of τ4 leads to

C6 ¼ 0: ð71Þ

It turns out that Eq. (70) and Eq. (71) imply that τ2 ¼ 0, so
there are no extra conditions coming from this term. The
vanishing of τ1 and τ3 lead to the same condition

C5 ¼ −C4: ð72Þ

This exhausts the information coming from the vanishing
of the coefficients of the third-order derivatives of the

3In principle there should be six (two differentiations of three
equations), but the integrability condition between Eqs. (64) and
(65) eliminates one of them.
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metric perturbations. Let us now look at the coefficients of
the second-order derivatives. We assume that Eqs. (70)–
(72) hold. The vanishing of the coefficients τ6 and τ8 yields
only one condition (they are equivalent):

C8 ¼ −
1

2
C1: ð73Þ

Introducing this into the equation coming from the vanish-
ing of the coefficient τ10, we obtain an equation for C1ðrÞ

C0
1 þ

�
1

r
−
f0

f

�
C1 ¼ 0 ⇒ C1ðrÞ ¼

K1fðrÞ
r

; ð74Þ

where K1 is an arbitrary constant. Similarly, the vanishing
of the coefficient τ9 implies the following equation for
C7ðrÞ:

rC0
7 þ C7 ¼ 0 ⇒ C7ðrÞ ¼

K7

r
; ð75Þ

where K7 is another arbitrary constant. The coefficients τ5
and τ7 contain the same information. Their vanishing
allows us to obtain an expression for C4ðrÞ:

C4¼−
r
2
ðC0þ2C7Þ ⇒ C4¼−

r
2

�
C0þ

2K7

r

�
: ð76Þ

And this exhausts the information coming from the
vanishing of the coefficients of the second-order derivatives
of the metric perturbations. The analysis of the conse-
quences of the other terms involve the right-hand side of
Eq. (67), i.e., the potential. Then, let us analyze the
coefficients of the first-order derivatives. To begin with,
since C3ðrÞ vanishes [Eq. (70)], the coefficient of _h0, τ11
does not involve ΩðrÞ. It actually provides an expression
for C2ðrÞ:

C2ðrÞ ¼
C1ðrÞ
r

¼ K1fðrÞ
r2

: ð77Þ

The coefficient τ14 vanishes if we introduce this expression
for C2ðrÞ. From the vanishing of the coefficient τ15 we
obtain an expression for the derivative of C0ðrÞ (for l ≠ 1)

C0
0 ¼

2K7

ðlþ 2Þðl − 1Þ
�
Ω −

f0

r

�
; ð78Þ

where we have used Eq. (13) for the background, i.e., for
fðrÞ. On the other hand, the information in the coefficients
τ12 and τ13 is the same. It is a relationship between the
coefficient C0ðrÞ and its first- and second-order derivatives:

C00
0 ¼

�
2

r
−
f0

f

�
C0
0þ

Ω−Ω�
f

�
C0þ

2K7

r

�
−
2K7f0

r2f
; ð79Þ

where we have introduced the following definition:

Ω�ðrÞ ¼ Λþ 1

r2
½lðlþ 1Þ þ rðrf0Þ0 þ 2ðf − 1Þ�

¼ ðlþ 2Þðl − 1Þ þ 2f − rf0

r2

¼ Λþ lðlþ 1Þ þ 3ðf − 1Þ
r2

; ð80Þ

where the different equalities appear as a consequence of
using the equations for fðrÞ [Eqs. (12) and (13)]. By using
Eq. (78) we can eliminate C0

0ðrÞ from Eq. (79) and obtain
the following alternative expression for C00

0ðrÞ:

C00
0ðrÞ ¼

Ω −Ω�
f

C0

þ 2K7rΩ�
ðlþ 2Þðl − 1Þf

�
Ω −Ω� þ 2

f − rf0

r2

�
: ð81Þ

Actually, we can also rewrite the equation for C0
0ðrÞ

[Eq. (78)] as

C0
0 ¼

2K7

ðlþ 2Þðl − 1Þ ðΩ −Ω� þ o0Þ; ð82Þ

where

o0ðrÞ ¼ Ω�ðrÞ −
f0ðrÞ
r

: ð83Þ

We can integrate the equation for C0
0ðrÞ to get

C0ðrÞ ¼ K0 þ
2K7

ðlþ 2Þðl − 1Þ

×

�
fðrÞ − 1 − Λr2

2r
þ
Z
r
dr0Ωðr0Þ

�
; ð84Þ

where K0 is an integration constant. After all this, the only
coefficient of the first-order derivatives of the metric
perturbations left to be analyzed is τ16. If we introduce
the expression of C2ðrÞ [Eq. (77)] into the coefficient τ16
and impose its vanishing we arrive at the following relation:

K1½ΩðrÞ − Ω�ðrÞ� ¼ 0; ð85Þ

This equation constitutes a bifurcation point in our analysis.
Either K1 ¼ 0 ⇒ C1ðrÞ ¼ 0 or we have an expression for
the potential ΩðrÞ in terms of r and l [this expression is
given in Eq. (80)]. Therefore, there are two branches of
possible solutions to the problem we posed at the beginning
of this section.
At this point, we only have to focus on the coefficients of

the metric perturbations themselves, i.e., ðτ17; τ18; τ19Þ, and
the consistency between the expressions for the first- and
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second-order derivatives of C0ðrÞ [Eqs. (82) and (81)
respectively]. The equation coming from τ17 does not
provide new information, in the sense that it becomes a
trivial identity 0 ¼ 0 if we use the previous information.
The coefficients τ18 and τ19, after using the previous
information and the equations for the background, both
lead to Eq. (85). Therefore, the only thing left is to analyze
the compatibility between Eqs. (82) and (81). This can be
done by taking the derivative of C0

0ðrÞ by using Eq. (82)
and subtract C00

0ðrÞ from it by using Eq. (81). In the case
they were compatible we should be able to reduce the
subtraction to an identity 0 ¼ 0 by using all the previous
information. Otherwise, we should obtain new information/
conditions on our unknowns. This is indeed what happens
and the new information is encoded in the following
equation:

½ΩðrÞ−Ω�ðrÞ�C0ðrÞþ
2K7

ðlþ2Þðl−1Þ
× ½o1ðrÞðΩðrÞ−Ω�ðrÞÞ0 þo2ðrÞðΩðrÞ−Ω�ðrÞÞ
þo3ðrÞ� ¼ 0; ð86Þ

where

o1 ¼ −f; ð87Þ

o2 ¼ rΩ�; ð88Þ

o3 ¼ 2

�
f
r
− f0

�
Ω� − f

�
Ω0� − 3

f − 1

r3
−
Λ
r

�
: ð89Þ

At this point, we have to deal with Eqs. (85) and (86),
taking into account that in this analysis r is arbitrary
and l is an integer number. Another important point to
consider is that o3ðrÞ is in general not zero (it does not
vanish everywhere). Therefore, ΩðrÞ ¼ Ω�ðrÞ would
imply K7 ¼ 0.
On the other hand, Eq. (86), in the case ΩðrÞ ≠ Ω�ðrÞ,

can in principle provide an expression for the coefficient
C0ðrÞ. To that end, we must first make sure that this
equation is compatible with the equations for the deriva-
tives of C0ðrÞ [Eqs. (82) and (81)]. Given that Eq. (86) is
the compatibility between C0

0 and C
00
0, we just need to check

the compatibility with C0
0 [Eq. (82)]. To do so, we can

take the derivative of Eq. (86) and compare it with Eq. (82).
Actually, if we use Eq. (82) to eliminate C0

0 from the
derivative of Eq. (86) we obtain a new relation that has a
form very similar to Eq. (86):

Γ½r;Ω�C0ðrÞ þ K7Δ½r;Ω� ¼ 0; ð90Þ

where Γ½r;Ω� and Δ½r;Ω� are functionals of ΩðrÞ.
From these two relations [Eqs. (86) and (90)] we can
eliminate either C0ðrÞ or K7. In any case, and assuming that

ΩðrÞ ≠ Ω�ðrÞ, we obtain an equation for Ω00ðrÞ that has the
following form:

K7

��
ô1ðrÞ

δΩ0ðrÞ
δΩðrÞ

�0
þ
�
ô3ðrÞ
δΩðrÞ

�0
þ ôoðrÞþ ô02ðrÞ−δΩðrÞ

�

¼ 0; ð91Þ

where we have introduced the following definitions:

δΩðrÞ ¼ ΩðrÞ −Ω�ðrÞ; ð92Þ

ôIðrÞ ¼ −oIðrÞðI ¼ 0 − 3Þ: ð93Þ

In this way, ô1ðrÞ ¼ fðrÞ. From Eq. (91), it is clear that if
K7 ≠ 0, we have an equation for Ω00ðrÞ which is nonlinear
in ΩðrÞ.
In principle, we can differentiate Eq. (90) and we would

get an expression of the same form by using again Eq. (82)
for C0

0ðrÞ. Combining the new equation with Eq. (86) we
can again eliminate either C0ðrÞ or K7. This would provide
us with a new equation where the only unknown is the
potentialΩðrÞ. It turns out that using the equation forΩ00ðrÞ
provided by Eq. (91), we get an identity 0 ¼ 0, and this
ends the chain of possible equations of the form in Eq. (90).
In summary, we end up with two different branches. The

first branch is determined by the following relation:

ΩðrÞ ¼ Ω�ðrÞ ⇒ δΩðrÞ ¼ 0: ð94Þ

Then, the potential for odd-parity perturbations, Ω�ðrÞ, is
given by Eq. (80). In the case of a Schwarzschild back-
ground, this potential has been shown in Eq. (57), while for
the case of a de Sitter background, it is simply the
centrifugal barrier (the same one as in a Minkowski, and
also anti–de Sitter, background):

ΩdS� ðrÞ ¼ lðlþ 1Þ
r2

: ð95Þ

In this first branch, Eq. (85) is automatically satisfied. On
the other hand, Eq. (86) implies:

K7 ¼ 0: ð96Þ

Therefore, according to Eq. (82), the coefficient C0ðrÞ is
constant:

C00
0ðrÞ ¼ C0

0ðrÞ ¼ 0 ⇒ C0ðrÞ ¼ K0; ð97Þ

where K0 is a constant. This is also compatible with the
equation for C00

0ðrÞ [Eq. (81)]. Then, the most general odd-
parity master function in this branch is
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Ψoddðt; rÞ ¼
rK0

2
ð _h1ðt; rÞ − h00ðt; rÞÞ þ K0h0ðt; rÞ

þ K1

fðrÞ
r

h1ðt; rÞ

þ K1fðrÞ
r

�
1

r
h2ðt; rÞ −

1

2
h02ðt; rÞ

�
: ð98Þ

Using the definitions introduced in Sec. II E we
can rewrite this master function in a completely covariant
way:

Ψoddðt; rÞ ¼ K1ΨRWðt; rÞ −
ðlþ 2Þðl − 1Þ

4
K0ΨCPMðt; rÞ:

ð99Þ

That is, the most general master function in the first
branch is a linear combination of the Regge-Wheeler
and Cunningham-Price-Moncrief master functions [see
Eqs. (46) and (47) respectively]. Therefore, it is covariant
and gauge invariant by construction. It is important here to
note that the Regge-Wheeler master function turns out to be
the time derivative of the Cunningham-Price-Moncrief
master function [48]:

taΨCPM∶a ¼ 2ΨRW: ð100Þ

Finally, the potential corresponds to the already known
potential, namely the Regge-Wheeler one. This ends the
analysis of the first branch.
Let us now consider the second branch. It is charac-

terized by ΩðrÞ ≠ Ω�ðrÞ (i.e., δΩðrÞ ≠ 0) and hence, we
must necessarily have

K1 ¼ 0; ð101Þ

and δΩðrÞ has to satisfy Eq. (91). In this case, the only
nonzero coefficients of Ψodd are C0ðrÞ [Eq. (84)], C4ðrÞ
[Eq. (76)], C5ðrÞ [¼ −C4ðrÞ], and C7ðrÞ [Eq. (75)].
Introducing these expressions we can write the most
general master function in the second branch as

Ψoddðt; rÞ ¼ −
ðlþ 2Þðl − 1Þ

4
ðK0 þ K̂7ΞðrÞÞΨCPMðt; rÞ

þ K7ΦONðt; rÞ; ð102Þ

where

K̂7 ¼
2K7

ðlþ 2Þðl − 1Þ ; ð103Þ

ΞðrÞ ¼ fðrÞ − 1 − Λr2

2r
þ
Z
r
dr0Ωðr0Þ; ð104Þ

andΦONðt; rÞ is a new odd-parity function that can be given
in a completely covariant form as

ΦONðt; rÞ ¼ εabh̃a∶b: ð105Þ

One can check that ΦONðt; rÞ is also a gauge-invariant
quantity although it is not by itself a master function.
However, the combination with ΨCPMðt; rÞ that appears in
Eq. (102), whose coefficient is K7, is an odd-parity master
function. Then, the most general odd-parity master function
in the second branch, Eq. (102), is fully covariant and
gauge invariant. The potential in this second branch is any
function satisfying the nonlinear ODE of Eq. (91).
Regarding this equation, it is worth noting that if we write
it in terms of δV ¼ fδΩ [see Eq. (56)], use the expressions
for ôo and ô2, which satisfy

ôo þ ô02 − f00 ¼ 0; ð106Þ

and exchange derivatives with respect to r with derivatives
with respect to the tortoise coordinate we arrive at the
following simpler equation:

�
δV;x

δV

�
;x
þ 2

�
Vodd
;x

δV

�
;x
− δV ¼ 0; ð107Þ

where Vodd ¼ fΩ� is the Regge-Wheeler potential. Finally,
it is important to remark that changing the potential we are
changing at the same time the master function. This ends
the analysis of the odd-parity case.

B. Even-parity (polar) harmonic modes

In the even-parity case (polar perturbations) we have
seven independent metric functions, ðhlmab ; Jlma ; Klm;GlmÞ,
and this time we have seven relevant field equations,
coming from the components ðElm

ab ; E
lm
a ; Elm

T ; Elm
Y Þ of the

perturbative field equations. Taking into account the
assumptions we imposed on the master function before,
the most general ansatz to start with is4

Ψlm
even ¼Cl

0h
lm
00 þCl

1h
lm
01 þCl

2h
lm
11 þCl

3J
lm
0

þCl
4J

lm
1 þCl

5K
lmþCl

6G
lmþCl

7
_hlm00 þCl

8h
0lm
00

þCl
9
_hlm01 þCl

10h
0lm
01 þCl

11
_hlm11 þCl

12h
0lm
11 þCl

13
_Jlm0

þCl
14J

0lm
0 þCl

15
_Jlm1 þCl

16J
0lm
1 þCl

17
_KlmþCl

18K
0lm

þCl
19
_GlmþCl

20G
0lm: ð108Þ

For the sake of simplicity we have hidden the depend-
ence of the different functions since it is clear that the
coefficients Cl

I (I ¼ 0;…; 20) only depend on the radial

4As in the odd-parity case, we use coefficients named Cl
I but

no confusion should arise since they are purely auxiliary
quantities and there are no cross references.
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coordinate r, and the metric perturbations ðhlmab ; Jlma ; Klm;
GlmÞ depend on the coordinates of M2, i.e., fxag.
Following the procedure of the odd-parity case, let us
analyze the structure of the perturbative field equations for
the metric perturbations ðhlmab ; Jlma ; Klm;GlmÞ This essen-
tially means to analyze the structure of the terms containing
second-order derivatives. Dropping again the harmonic
indices, we find that the equations of interest have the
following form:

Ett∶ K00 þ LDTs ¼ 0; ð109Þ

Etr∶ _K0 þ LDTs ¼ 0; ð110Þ

Err∶ K̈ þ LDTs ¼ 0; ð111Þ

EtY∶ _J01 − _J000 þ LDTs ¼ 0; ð112Þ

ErY∶ ̈J1 − _J01 þ LDTs ¼ 0; ð113Þ

ET∶ −
1

f
K̈þfK00−h0000þ2_h001− ḧ11þLDTs¼ 0; ð114Þ

EY∶ −
1

f
G̈þ fG00 þ LDTs ¼ 0: ð115Þ

Given that Eqs. (112) and (113) contain ðJ000; _J01Þ and ð_J00; ̈J1Þ
respectively, we can study their integrability by differ-
entiating Eq. (112) with respect to t and Eq. (113) with
respect to r. The result is that this integrability condition is
identically satisfied by using the following equations:
(109), (111), (113), (114), and (115). Like in the odd-
parity case, in order to arrive to this conclusion we have
used the equations for the background metric function fðrÞ.
Similarly, Eqs. (109)–(111) contain all the second-order
derivatives of K, i.e., ðK̈; _K0; K00Þ. One can show that their

integrability conditions are satisfied by using the other
equations and that the background is a solution of
Einstein’s equations. The fact that the integrability con-
ditions are satisfied, both for odd- and even-parity pertur-
bations, is intimately related with the metric perturbations
satisfying a linearized version of the (contracted) second
Bianchi identities: ḡρμ∇̄ρδGμν ¼ 0. On the other hand, we
can substitute the expressions for the second-order deriva-
tives of K [Eqs. (109)–(111)] into Eq. (114) so that it
becomes a relation between second-order derivatives of hab.
Like in the odd-parity case, we impose our master

function candidate in Eq. (108) to satisfy a wave equation
of the type

□2ΨevenðxaÞ ¼ ΩðrÞΨevenðxaÞ; ð116Þ

where ΩðrÞ is a function of r (and l) to be determined and
that will play the role of the potential for the dynamics
of even-parity perturbations. When we insert the general
even-parity master function of Eq. (108) we will get
again a linear combination of the metric perturbations
ðhlmab ; Jlma ; Klm;GlmÞ and their derivatives up to third order.
However, not all these derivatives are independent since
Eqs. (109)–(115) already determine a subset of second-
order derivatives (seven of them), and hence a subset of the
third-order derivatives too. To be more specific, let us make
a choice. From the perturbative Einstein equations we
determine the following second-order derivatives: ḧ11, ̈J1,
_J01, K̈, _K0, K00, and G̈. We can then substitute these
derivatives into Eq. (116). In addition, we can also
substitute the third-order derivatives that can be estimated

from them, namely, h
…

11, ḧ
0
11, J

…

1, ̈J01, _J
00
1 , K

…
, K̈0, _K00, K000, G

…
,

and G̈0. Once this is done we arrive to an expression of
the form5

□2Ψeven¼ τ0h
…

00þ τ1ḧ
0
00þ τ2 _h

00
00þ τ3h00000þ τ4h

…

01þ τ5ḧ
0
01þ τ6 _h

00
01þ τ7h00001þ τ8 _h

00
11þ τ9h00011þ τ10 J

…

0þ τ11J̈00þ τ12_J
00
0

þ τ13J0000 þ τ14J0001 þ τ15ḧ00þ τ16 _h
0
00þ τ17 _h

00
00þ τ18ḧ01þ τ19 _h

0
01þ τ20 _h

00
01þ τ21 _h

0
11þ τ22 _h

00
11þ τ23J̈0þ τ24_J

0
0

þ τ25_J
00
0þ τ26_J

00
1þ τ27 _G

0
0þ τ28G00

0þ τ29 _h00þ τ30h000þ τ31 _h01þ τ32h001þ τ33 _h11þ τ34h011þ τ35_J0þ τ36_J
0
0

þ τ37_J1þ τ38_J
0
1þ τ39 _Kþ τ40K0 þ τ41 _Gþ τ42G0 þ τ43h00þ τ44h01þ τ45h11þ τ46J0þ τ47J1þ τ48Kþ τ49G: ð117Þ

As it already happened in the odd-parity case with the
metric perturbation h2, here there are no third-order
derivatives of G, and it is due to the same reason. If we
look at Eq. (115), it turns out it can be rewritten, up to a

numerical factor, as □2Gþ LDTs ¼ 0. And since the
operator □2 only produces LDTs, no third derivatives of
G appear in Eq. (117).
Let us now analyze the implications of the vanishing of

the coefficients τI (I ¼ 0;…; 49) for the general form of the
even-parity master function. To begin with, the vanishing of
the coefficients τ0;…; τ5 implies the vanishing of the
following coefficients of themaster function [see Eq. (108)]:

5As in the odd-parity case, we use coefficients named τI but no
confusion should arise since they are purely auxiliary quantities
and there are no cross references.
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C7 ¼ C8 ¼ C9 ¼ C10 ¼ C11 ¼ C12 ¼ 0: ð118Þ

We have arrived at this result by using the information from
one coefficient into the next one. Notice that this implies that
the master function cannot contain any first-order deriva-
tives of the metric perturbations hab. Using this information,
the vanishing of the coefficients τ6;…; τ9 does not provide
any additional information. The vanishing of τ10 and τ12
implies

C13 ¼ C16 ¼ 0: ð119Þ

Taking this into account, the coefficient τ14 does not provide
any additional information. The coefficients τ11 and τ13
contain the same information:

C14 þ C15 ¼ 0: ð120Þ

The vanishing of the coefficient τ15 tells us that

C0 ¼ 0: ð121Þ

The coefficient τ16, together with the previous information,
leads to

C17 ¼
r
f
C14: ð122Þ

Similarly, from the coefficient τ17 we have

C18 ¼ −
r
f
C2: ð123Þ

From τ18 we get

C14 ¼ −C1: ð124Þ

Using all the information obtained up to now,we can see that
the coefficients τ19;…; τ22 do not provide new information.
Instead, from τ23 we get an expression forC19 in terms ofC1

and C3:

C19 ¼
2f − lðlþ 1Þ

2f
rC1 −

r2

2
C3: ð125Þ

From τ24 we obtain a similar expression for C20

C20 ¼ −
lðlþ 1Þ

2f
rC2 −

r2

2
C4: ð126Þ

With this, the conditions coming from τ25 and τ26 are
automatically satisfied. The coefficient τ27 leads to a simple
ODE:

rC0
19 − C19 ¼ 0: ð127Þ

Taking into account Eq. (125) we can solve the equation
for C3,

C3 ¼
K13

r
þ 2f − lðlþ 1Þ

rf
C1; ð128Þ

where K13 is an integration constant. After substitution in
Eq. (125), the coefficient C19 takes the following simple
form [compatible with Eqs. (125) and (127)]:

C19ðrÞ ¼ −
K13r
2

: ð129Þ

Similarly, from τ28 we can obtain an ODE from which we
find an expression for C4

C4 ¼ K24

f
r
−
lðlþ 1Þ

rf
C2; ð130Þ

where K24 is another integration constant. And thanks to
this, the coefficient C20 takes the following simple form:

C20ðrÞ ¼ −
K24

2
rfðrÞ: ð131Þ

Using the previous expression, the condition coming from
τ29 determines the coefficient C1:

C1 ¼
K13f

lðlþ 1Þ þ rf0 − 2f
; ð132Þ

and the coefficient τ30 determines the coefficient C5:

C5 ¼ −
K24

2
þ ðlþ 2Þðl − 1Þ þ 3rf0 þ 2Λr2

2f2
C2: ð133Þ

With all this information the relations coming from the
coefficients τ31;…; τ34 are satisfied. The coefficient τ35
provides an expression for C6:

C6¼
lðlþ1Þ

4

�ðlþ2Þðl−1Þþ3rf0 þ2Λr2

f2
C2−K24

�
:

ð134Þ

To sum up the situation until now: All the nonzero
coefficients are ultimately found either in terms of C1 or
C2. The coefficientC1 has already been determined in terms
of r,f, and an integration constant,K13 [see Eq. (132)]. Only
C2 and the potential Ω have to be determined from the
equations imposed by the rest of coefficients τI. In what
follows we use all the information found until now.
The coefficient τ38 brings no new information. The

equation coming from the coefficient τ36 can be written
as follows:
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K13½ΩðrÞ −Ω�ðrÞ� ¼ 0; ð135Þ

where Ω�ðrÞ is a given function of r, f (and its deriva-
tives), l, and Λ. As in the odd-parity case [see Eq. (85)],

this equation is also a branch point in the analysis.
By doing some algebra (and using the field equations
of the background spacetime) we can write Ω�ðrÞ as
follows:

Ω�ðrÞ ¼
λ3ðrÞ − 2Λr2½λðrÞ − ðlþ 2Þðl − 1Þ�2 þ 2ðlþ 2Þ2ðl − 1Þ2ðl2 þ lþ 1Þ

3r2λ2ðrÞ ; ð136Þ

where λðrÞ was defined in Eq. (49). The relations coming
from the vanishing of the coefficients τ37, τ39, τ41, τ44, and
τ46 also reduce to the bifurcation point represented by
Eq. (135). To get there we have used sometimes the
equations for the background metric [Eqs. (12) and
(13)]. On the other hand, from the vanishing of the
coefficient τ40 we arrive at an expression for the second-
order derivative of the coefficient C2:

C00
2 ¼ e1C0

2 þ e2C2 þ K24

f
r2
; ð137Þ

where the coefficients e1ðrÞ and e2ðrÞ, using the field
equations of the background [Eqs. (12) and (13)], are

e1 ¼
lðlþ 1Þ − 3ðΛr2 − 1Þ − f

rf
; ð138Þ

e2 ¼
f2 þ ð1 − 5Λr2Þf þ 2ðr2Λ − 1Þðl2 þ lþ 2 − 2Λr2Þ

r2f2

þ Ω
f
: ð139Þ

As we can see, the function e2ðrÞ contains the potential
ΩðrÞ. On the other hand, from the coefficient τ42 we arrive
at an expression for the first derivative of the coefficient C2

of the form

C0
2 ¼ e4C2 þ K24e3; ð140Þ

where the coefficients e3ðrÞ and e4ðrÞ are

e3 ¼ −f2
r2Ωþ λ − ðlþ 2Þðl − 1Þ

lðlþ 1Þrλ ; ð141Þ

e4 ¼
�
ln
rf2

λ

�0
: ð142Þ

Here, the function e3ðrÞ is the one that contains the
potential ΩðrÞ. It turns our that Eq. (140) can be integrated
to obtain the following expression for C2ðrÞ:

C2ðrÞ ¼
rf2ðrÞ
λðrÞ

�
K2 þ

K24

lðlþ 1Þ
�
λðrÞ − ðlþ 2Þðl − 1Þ

2r

−
Z
r
dr0Ωðr0Þ

��
: ð143Þ

where K2 is another integration constant.
Going back to the analysis of the τI coefficients, using

previous information [including the equations for C0
2,

Eq. (140), and C00
2, Eq. (137)] and some algebra, it is

possible to see that the equations coming from the vanish-
ing of the coefficients τ43, τ45, τ47, τ48, and τ49 are
identically satisfied. This exhausts all the information
coming from the coefficients τI (I ¼ 0;…; 49). Now we
only have to determine in an independent way the potential
ΩðrÞ and the coefficient C2ðrÞ, and we have two integration
constants: K13 and K24. The vanishing of the coefficient
C2ðrÞ and the constants K13 and K24 implies the trivial
solution Ψeven ¼ 0.
The only thing left to analyze is the integrability ofC2, or

in other words, the compatibility of the equations forC0
2 and

C00
2 [Eqs. (140) and (137) respectively]. Another possibility

would be to introduce Eq. (143) into Eq. (137), but in that
way we would obtain an integro-differential equation for
ΩðrÞ. We follow here the first option. To that end, we
compare the derivative of Eq. (140) with Eq. (137):

ðe2 þ e1e4 − e04 − e24ÞC2

þ K24

�
e1e3 þ

f
r2

− e3e4 − e03

�
¼ 0: ð144Þ

This can be written in a more convenient way as follows:

½ΩðrÞ −Ω�ðrÞ�C2ðrÞ þ K24fe5ðrÞ½ΩðrÞ −Ω�ðrÞ�0
þ e6ðrÞ½ΩðrÞ −Ω�ðrÞ� þ e7ðrÞg ¼ 0; ð145Þ

whereΩ�ðrÞ is given in Eq. (136) and e5ðrÞ, e6ðrÞ, and e7ðrÞ
are known functions given by

e5ðrÞ ¼
rf3ðrÞ

lðlþ 1ÞλðrÞ ; ð146Þ

e6ðrÞ ¼
2r2f2ðrÞ
lðlþ 1Þ

�
fðrÞ
λðrÞrþ

1

2r

�0
; ð147Þ
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e7ðrÞ ¼
f2ðrÞ
r2

þ e5ðrÞ
�
Ω�ðrÞ −

λ0ðrÞ
r

�0

þ e6ðrÞ
�
Ω�ðrÞ −

λ0ðrÞ
r

�
: ð148Þ

Equation (145) can in principle provide an expression for the
coefficientC2 [different from the one obtained in Eq. (143)].
But it is not guaranteed that such an expression would be
compatible with the expressions that we have for its
derivatives [Eqs. (140) and (137)]. Given that this equation
is the compatibility between C0

2 and C00
2 , we just need to

check the compatibility withC0
2 [Eq. (140)]. To that end, we

can take the derivative of Eq. (145) and compare with
Eq. (140). Actually, if we use Eq. (140) to eliminateC0

2 from
the derivative of Eq. (145) we obtain a new relation that has
the same form as Eq. (145). In principle, one can repeat this
process an arbitrary number of times to get a chain of
relations of the form

Πn½r;Ω�C2ðrÞ þ K24Ξn½r;Ω� ¼ 0; ð149Þ

where Πn and Ξn are coefficients that depend on the radial
coordinate and on the potential function ΩðrÞ. Using
Eq. (140), it is easy to find a recurrence for these coefficients:

Πn½r;Ω� ¼ Π0
n−1½r;Ω� þ e4ðrÞΠn−1½r;Ω�; ð150Þ

Ξn½r;Ω� ¼ Ξ0
n−1½r;Ω� þ e3ðrÞΠn−1½r;Ω�: ð151Þ

The case n ¼ 0 corresponds to Eq. (145) and n ¼ 1 to its
first-order derivative after using Eq. (140) to eliminate C0

2.
Considering the n ¼ 0 and n ¼ 1 equations, there are two
possibilities: (i) C2ðrÞ ¼ K24 ¼ 0; (ii) the resultant of the
system for ðC2ðrÞ; K24Þ vanishes, that is

Π0Ξ1 − Π1Ξ0 ¼ 0: ð152Þ

Given that Π0 ¼ ΩðrÞ −Ω�ðrÞ and that [from Eq. (150)]
Π1 ¼ Ω0ðrÞ − Ω0�ðrÞ þ e4ðrÞðΩðrÞ −Ω�ðrÞÞ, it is clear that
ΩðrÞ ¼ Ω�ðrÞ is always a solution. In any case, Eq. (152),
becomes an ODE for the potential function ΩðrÞ. In this
case, n ¼ 0, it is a nonlinear second-order equation forΩðrÞ.
In principle this equation determines the form of ΩðrÞ,
which in generalwill be different fromΩ�ðrÞ althoughΩ�ðrÞ
is a particular solution. It turns out that the form of this ODE
for ΩðrÞ is quite similar to the analogous equation that we
have obtained in the odd-parity case [see Eq. (91)]. We find
that this ODE for δΩðrÞ ¼ ΩðrÞ − Ω�ðrÞ is given by

K24

��
ê5ðrÞ

δΩ0ðrÞ
δΩðrÞ

�0
þ
�
ê7ðrÞ
δΩðrÞ

�0

þ ê06ðrÞ þ ê3ðrÞ − δΩðrÞ
�
¼ 0; ð153Þ

where we have introduced several definitions for the
coefficients that appear in this equation. First, we have
taken advantage that the coefficient e4ðrÞ can bewritten as a
total derivative [see Eq. (142)] to introduce the new
coefficient f4ðrÞ as follows:

e4ðrÞ ¼ ðln f4ðrÞÞ0 ⇒ f4ðrÞ ¼
rf2ðrÞ
λðrÞ : ð154Þ

Then, the coefficients that appear in Eq. (153) are defined
using f4ðrÞ in the following way:

ê5ðrÞ ¼ lðlþ 1Þ e5ðrÞ
f4ðrÞ

¼ fðrÞ; ð155Þ

ê6ðrÞ ¼ lðlþ 1Þ e6ðrÞ
f4ðrÞ

¼ 2λðrÞr
�
fðrÞ
λðrÞrþ

1

2r

�0
; ð156Þ

ê7ðrÞ ¼ lðlþ 1Þ e7ðrÞ
f4ðrÞ

¼ lðlþ 1Þ λðrÞ
r3

þ ê5ðrÞ
�
Ω�ðrÞ −

λ0ðrÞ
r

�0

þ ê6ðrÞ
�
Ω�ðrÞ −

λ0ðrÞ
r

�
; ð157Þ

ê3ðrÞ ¼ lðlþ 1Þ e3ðrÞjΩ¼Ω�
f4ðrÞ

¼ −
�
Ω�ðrÞ þ

λðrÞ − ðlþ 2Þðl − 1Þ
r2

�
: ð158Þ

At this point, it is important to remark that the equation for
δΩðrÞ in the even-parity case, Eq. (153), has exactly the
same structure as the corresponding equation for the odd-
parity case [Eq. (91)]. The only differences are the expres-
sions for the functions of r that appear in them.
If we now consider the next relation in Eqs. (150) and

(151), namely n ¼ 2, it can be seen that by combining it
with the other two (n ¼ 0 and n ¼ 1) we obtain more
ODEs for the potential functionΩðrÞ; this time these ODEs
are nonlinear third-order ones. By using the second-order
ODE for ΩðrÞ that comes from the analysis of the cases
n ¼ 0 and n ¼ 1, the (two) third-order equations for ΩðrÞ
are identically satisfied, which ends the analysis.
As in the odd-parity case, we have to study the two

branches that appear. The first branch is characterized by:

ΩðrÞ ¼ Ω�ðrÞ; ð159Þ

where Ω�ðrÞ is now given by Eq. (136). Then, Eq. (135) is
automatically satisfied. Moreover, if we introduce this
expression for ΩðrÞ into Eq. (145), we must have that
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K24e7ðrÞ ¼ 0. Taking into account that this has to be valid
for any r, and that in general e7ðrÞ ≠ 0, we must have

K24 ¼ 0: ð160Þ

Then, from Eq. (143), we find an expression for the
coefficient C2:

C2ðrÞ ¼ K2

rf2ðrÞ
λðrÞ : ð161Þ

This finishes the developments for the first branch. The
potential for the even-parity perturbations in this case is
given in Eq. (136). It turns out that in the case of a
Schwarzschild background, this potential is the well-known
Zerilli potential of Eq. (58). And in the case of a maximally
symmetric background it is the centrifugal barrier potential
in Eq. (95). Finally, the most general master function is

Ψevenðt;rÞ¼K2

�
rf2ðrÞ
λðrÞ h11þ

r
2

�
lðlþ1Þ

2
Gðt;rÞþKðt;rÞ

�

−
fðrÞ
λðrÞ ½lðlþ1ÞJ1ðt;rÞþr2K0ðt;rÞ�

�

þK13

λðrÞ
�
r

�
_Kðt;rÞþλðrÞ

2
_Gðt;rÞ−f0ðrÞ

r
J0

�

þfðrÞðh01ðt;rÞ−J00ðt;rÞþ _J1ðt;rÞÞ
�
: ð162Þ

Using the definitions introduced in Sec. II E we can
rewrite the master function as follows:

Ψevenðt;rÞ¼
lðlþ1Þ

4
K2ΨZMðt;rÞ−K13ΨENðt;rÞ; ð163Þ

where ΨZMðt; rÞ is the Zerilli-Moncrief master function
given in Eq. (48) and ΨENðt; rÞ is another master function
(not known as far as we can say) given by

ΨENðt; rÞ ¼
r

λðrÞ
�
fðrÞ
r

½J00ðt; rÞ − h01ðt; rÞ − _J1ðt; rÞ�

þ f0ðrÞ
r

J0 − _Kðt; rÞ − λðrÞ
2

_Gðt; rÞ
�

ð164Þ

which can be rewritten in a completely covariant form as
follows:

ΨENðt; rÞ ¼
1

λðrÞ t
aðrK̃∶a − h̃abrbÞ; ð165Þ

where h̃ab and K̃ are the gauge-invariant quantities intro-
duced in Eqs. (42) and (43) respectively. Hence, ΨENðt; rÞ
is also a gauge-invariant master function that can be written
in a covariant way. By using the perturbative field equations

it is possible to show that the master function ΨENðt; rÞ
turns out to be proportional to the time derivative of the
Zerilli-Moncrief master function:

taΨZM∶a ¼ 2ΨEN: ð166Þ

This ends the analysis of the first branch.
In the second branch, when ΩðrÞ ≠ Ω�ðrÞ, by virtue of

Eq. (135) we must have

K13 ¼ 0: ð167Þ

In this case, Eq. (145) provides a second expression for
C2ðrÞ that has to be compared with the other expression,
Eq. (143). The outcome of this comparison is the second-
order nonlinear ODE for ΩðrÞ that is given in Eq. (153).
Moreover, in this branch, the only nonzero coefficients of
Ψeven are C2ðrÞ [Eq. (143) with ΩðrÞ satisfying the non-
linear ODE of Eq. (153)], C4ðrÞ [Eq. (130)], C5ðrÞ
[Eq. (133)], C6ðrÞ [Eq. (134)], C18ðrÞ [Eq. (123)], and
C20 [Eq. (131)]. Introducing these expressions into Ψeven
we can write the result in the following form:

Ψevenðt; rÞ ¼ ðK2 þ K24ΣðrÞÞΨZMðt; rÞ −
K24

2
K̃ðt; rÞ;

ð168Þ

where

Σ¼ 1

lðlþ1Þ
�
λ− ðlþ2Þðl−1Þ

2r
−
Z
r
dr0Ωðr0Þ

�
; ð169Þ

and K̃ðt; rÞ is the gauge-invariant combination of metric
perturbations introduced in Eq. (43). Therefore, the even-
parity master function in this second branch is also gauge
invariant. Actually, it is a linear combination of the Zerilli
master function and another master function that is a
combination of the Zerilli master function and K̃ðt; rÞ,
which depends on the potentialΩðrÞ. The potential, in turn,
satisfies the nonlinear ODE in Eq. (153). As in the odd-
parity case, this equation can be simplified [see Eq. (107)].
To that end, we have to write it in terms of the potential
difference δV ¼ fδΩ [see Eq. (56)], use the expressions for
ê3 and ê6, which satisfy

ê3 þ ê06 − f00 ¼ 0; ð170Þ

and finally, we have to exchange derivatives with respect to
r with derivatives with respect to the tortoise coordinate.
After doing all this, we arrive at a simplified equation that
looks exactly like the one for the odd-parity case [see
Eq. (107)]

�
δV;x

δV

�
;x
þ 2

�
Veven
;x

δV

�
;x
− δV ¼ 0; ð171Þ
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where Veven ¼ fΩ� is the Zerilli potential. This ends the
analysis of the even-parity case.

IV. CONCLUSIONS AND FUTURE PROSPECTS

In this paper, we have carried out a study of all of the
possible master functions and equations for the perturba-
tions of vacuum spherically symmetric spacetimes. The
only assumptions made in this study are the following:
(i) The master functions are linear combinations of the
metric perturbations and their first-order derivatives.
(ii) The coefficients of those linear combinations only
depend on the radial areal coordinate. (iii) The master
functions satisfy a wave-type equation associated with the
two-dimensional metric of the Lorentzian manifold tangent
to the spheres of symmetry, and with a potential that is
determined by the perturbative Einstein equations.
The outcome of this study produces two branches of

solutions: (a) The first branch corresponds to the already
known results, with the exception of the even-parity case,
for which we have found a new master function indepen-
dent of the Zerilli-Moncrief one, ΨZM, and which we have
denoted by ΨEN. For both parities, the most general
master function is a linear combination (with constant
coefficients) of two independent master functions. These
master functions can be taken to be the Regge-Wheeler
and the Cunningham-Prince-Moncrief master functions,
ðΨRW;ΨCPMÞ, in the odd-parity case and ðΨZM;ΨENÞ in the
even-parity case. On the other hand, the potentials are
the known ones: the Regge-Wheeler (odd-parity) and the
Zerilli (even-parity) potentials. (b) The second branch was
essentially unknown and, in contrast with the first branch,
there are infinite possible potentials, different from the ones
already known (first branch). The set of possible potentials
corresponds to the solutions of a nonlinear differential
equation which has the same form for both parities [see
Eqs. (107) and (171)]. The master functions are again a
linear combination (with coefficients depending only on the
radial area coordinate) of two independent master func-
tions. In the odd-parity case, they can be taken to be the
Cunningham-Price-Moncrief master function and a new
one that is a combination of ΨCPM and ΦON that includes
the potential function [see Eqs. (102) and (105)]. The even-
parity case follows the same pattern, and the most general
master function can be taken to be a linear combination of
the Zerilli-Moncrief master function and another new
master function made out of a combination of ΨZM,
ΦEN, and the potential function [see Eqs. (163) and (165)].
Apart from the construction of the master functions and

equations (potentials), it is important to remark other
findings that came out from our developments: (i) The
flow of the argument is the same for the two parities despite
the different number of variables and equations that
describe the metric perturbations in the two cases.
(ii) Gauge invariance: all the master functions and equa-
tions turn out to be gauge invariant, which is something that

we did not impose. In this sense, it is important to remark
that we have always worked on a general gauge. The
emerging gauge invariance is then due to the physical/
geometric character of the (master) wave equations. This
shows the important role played by the master functions,
which in some sense encode the true degrees of freedom of
the (perturbative) gravitational field. (iii) Despite the fact
that in many places we have carried out the calculations
using a specific class of coordinate systems, we have been
able always to restore full covariance with respect to the
1þ 1 Lorentzian metric gab [see Eq. (20)]. (iv) For both
parities, in the first branch, one of the independent master
functions can be taken to be the time derivative of the other
one [see Eqs. (100) and (166)]. (v) In the case when the
background is maximally symmetric, the odd-parity
and even-parity potentials of the first branch are identical.
In the case of the second branch, the set of possible
potentials are the same for the two parities. This means
that the maximal symmetry has a strong impact on the
possible set of master equations and functions. There are
still two branches, but they are identical for both parities.
(vi) We have always worked in the time domain. This has
the advantage that at any moment we can obtain results in
the frequency domain by introducing the standard sub-
stitution: Ψðt; rÞ → eiωtϕðrÞ.
Our analysis is quite general, in the sense that it is based

on a few assumptions (see Sec. III), and complete, in the
sense that it unveils the full content of the (first-order)
perturbative approach to vacuum spherically symmetric
spacetimes. Within our knowledge, no similar analysis has
been carried out before. The systematic construction of
master functions and equations we have followed can be
applied directly to other different scenarios in spherical
symmetry, in particular to systems involving matter fields
(see [32,33] for a general approach): point particle [13],
electromagnetic fields (see, e.g., [79–84]), perfect fluids
[85,86], etc. Within general relativity it can also be applied
to spacetimes with a different number of dimensions, in
particular it would be interesting to study the case of three
spacetime dimensions, where we have the Bañados-
Teitelboim-Zanelli (BTZ) black hole [87] (which is asymp-
totically AdS3), and for which there are analytic solutions
for the quasinormal frequencies and wave functions [88].
Again within general relativity, one can try to follow the
procedure for second- and higher-order perturbations
[49,50,89] of spherically symmetric spacetimes. This is
particularly interesting taking into account that the equa-
tions for higher-order perturbations usually contain the
same differential operators of the background as the ones
for the first-order perturbations. Finally, this procedure can
also be applied to perturbations of spherically symmetric
spacetimes in other theories of gravity (see, e.g., [90–94]).
Another interesting question is whether we can apply a

similar procedure in the case of the Kerr metric [53] and
other axially symmetric spacetimes. That would make
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contact with the Bardeen-Press master function [77] for the
Schwarzschild spacetime, which is not included in our
analysis since it contains second-order derivatives of the
metric perturbations. In any case, it is clear that for Kerr
perturbations we should allow for the presence of second-
order derivatives.
On the other hand, the results of our study lead to a

number of questions. In particular, what is the meaning of
the infinite set of possible master functions and equations
that appear in the second branch of solutions. We clarify
this question in a forthcoming paper [95], where we analyze
in detail the connection between this plethora of master
equations and master functions and show that all of them
are related by Darboux transformations. Nevertheless, the
Darboux transformation that connects them has to be
interpreted in a more general context than the classical
Darboux transformation which is normally introduced in
the context of Sturm-Liouville problems, with self-adjoint
operators. In this sense, in [95] we show the crucial role
played by the equations for the potentials of the second
branch, Eqs. (107) and (171).
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APPENDIX A: DIFFERENTIAL PROPERTIES OF
SPHERICAL HARMONICS

All the spherical harmonics (scalar, vector, and tensor)
we use in this paper are determined once we prescribe the
scalar spherical harmonics (see, e.g., [97,98]). The vector
and tensor spherical harmonics used in this paper can then
be obtained via Eqs. (25)–(28). To recover the equations
and results of this paper, we only need to use some
differential identities that they satisfy. The even-parity
vector harmonics Ylm

A satisfy the following differential
identities:

ΩABYlm
AjB ¼ −lðlþ 1ÞYlm; ðA1Þ

ΩBCYlm
BjCA ¼ −lðlþ 1ÞYlm

A ; ðA2Þ

ΩBCYlm
AjBC ¼ ½1 − lðlþ 1Þ�Ylm

A : ðA3Þ

The odd-parity vector harmonics Xlm
A satisfy similar differ-

ential identities:

ΩABXlm
AjB ¼ 0; ðA4Þ

ΩBCXlm
AjBC ¼ ½1 − lðlþ 1Þ�Xlm

A ; ðA5Þ

ΩBCXlm
BjAC ¼ Xlm

A : ðA6Þ

On the other hand, the (symmetric) even-parity tensor
harmonics Tlm

AB and Ylm
AB satisfy the following differential

identities:

ΩBCTlm
BCjA ¼ 2Ylm

A ; ðA7Þ

ΩBCTlm
ABjC ¼ Ylm

A ; ðA8Þ

ΩCDTlm
ABjCD ¼ −lðlþ 1ÞTlm

AB; ðA9Þ

ΩCDTlm
CDjAB ¼ Ylm

AB − lðlþ 1ÞTlm
AB; ðA10Þ

ΩBCYlm
BCjA ¼ 0; ðA11Þ

ΩBCYlm
ABjC ¼ −

ðlþ 2Þðl − 1Þ
2

Ylm
A ; ðA12Þ

ΩCDYlm
ABjCD ¼ ½4 − lðlþ 1Þ�Ylm

AB: ðA13Þ

Finally, the (symmetric) odd-parity tensor harmonics Xlm
AB

satisfy the following differential identities:

ΩBCXlm
BCjA ¼ 0; ðA14Þ

ΩBCXlm
ABjC ¼ −

ðlþ 2Þðl − 1Þ
2

Xlm
A ; ðA15Þ

ΩCDXlm
ABjCD ¼ ½4 − lðlþ 1Þ�Xlm

AB: ðA16Þ

APPENDIX B: MULTIPOLAR COMPONENTS OF
GEOMETRIC PERTURBATIVE QUANTITIES

We give expressions of the main quantities that we need
to analyze the perturbative vacuum (with cosmological
constant) Einstein equations (see [48] for complementary
expressions). The components of the perturbation of the
Christoffel symbols (these are tensors from the point of
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view of the background spacetime), introducing the spheri-
cal harmonic decomposition of the metric perturbations
into Eq. (3) are

δΓa
bc ¼

1

2
gadðhcd∶b − hbc∶d þ hbd∶cÞY; ðB1Þ

δΓa
bA ¼

�
1

2
pa

b þ gacJ½c∶b� −
rb
r
Ja
�
YA

þ
�
gach½c∶b� −

rb
r
ha
�
XA; ðB2Þ

δΓa
AB ¼

�
rrbpa

b −
lðlþ 1Þ

2
Ja −

1

2
ðr2KÞ∶a

�
TAB

þ
�
Ja −

1

2
ðr2GÞ∶a

�
YAB þ

�
ha −

1

2
h2∶a

�
XAB;

ðB3Þ

δΓA
ab ¼

1

r2

�
Ja∶b −

1

2
pab

�
YA þ 1

r2
ha∶bXA; ðB4Þ

δΓA
Ba¼

1

2r2
ððr2KÞ∶a−2rraKÞTA

Bþ
1

2r2
ððr2GÞ∶a−2rraGÞYA

Bþ
1

2r2

�
h2∶a−2

ra
r
h2

�
XA

Bþ
lðlþ1Þ

2r2
haYϵAB: ðB5Þ

δΓA
BC ¼ 1

2
KðΩA

BYC þΩA
CYB −ΩBCYAÞ þ 1

2
GΩADðYCDjB − YBCjD þ YBDjCÞ

þ h2
2r2

ΩADðXCDjB − XBCjD þ XBDjCÞ þ
ra

r
ðJaYA þ haXAÞΩBC: ðB6Þ

Now, in the same way that we have the harmonic decomposition of the perturbed Christoffel symbols in terms of the
metric perturbation harmonics, we can write the harmonic decomposition of the Riemann tensor in terms of the harmonic
decomposition of the perturbations of the Christoffel symbols. Then, from Eq. (4) we obtain

δRa
bcd ¼ δΓa

bd∶c − δΓa
bc∶d; ðB7Þ

δRa
bcA ¼ δΓa

bA∶c − δΓa
bcjA þ rraΩABδΓB

bc þ
rb
r
δΓa

Ac; ðB8Þ

δRa
bAB ¼ δΓa

bBjA − δΓa
bBjA − rraðΩACδΓC

bB −ΩBCδΓC
bAÞ; ðB9Þ

δRa
Abc ¼ δΓa

cA∶b − δΓa
bA∶c −

rb
r
δΓa

cA þ
rc
r
δΓa

bA; ðB10Þ

δRa
AbB ¼ δΓa

AB∶b − δΓa
bAjB −

rb
r
δΓa

AB þ rraΩBCδΓC
Ab − rrcδΓa

bcΩAB; ðB11Þ

δRa
ABC ¼ δΓa

ACjB − δΓa
ABjC − rraðΩBDδΓD

AC −ΩCDδΓD
ABÞ þ rrbðΩABδΓa

bC − ΩACδΓa
bBÞ; ðB12Þ

δRA
abc ¼ δΓA

ac∶b − δΓA
ab∶c þ

rb
r
δΓA

ac −
rc
r
δΓA

ab; ðB13Þ

δRA
abB ¼ δΓA

aB∶b − δΓA
abjB þ ra

r
δΓA

Bb þ
rb
r
δΓA

Ba −
rc
r
δΓc

abδ
A
B; ðB14Þ

δRA
aBC ¼ δΓA

aCjB − δΓA
aBjC þ rb

r
ðδΓb

aCδ
A
B − δΓb

aBδ
A
CÞ; ðB15Þ

δRA
Bab ¼ δΓA

Bb∶a − δΓA
Ba∶b; ðB16Þ

δRA
BaC ¼ δΓA

BC∶a − δΓA
BajC −

rb
r
δΓb

aBδ
A
C − rrbδΓA

abΩBC; ðB17Þ

δRA
BCD ¼ δΓA

BDjC − δΓA
BCjD þ ra

r
ðδΓa

BDδ
A
C − δΓa

BCδ
A
DÞ þ rraðΩBCδΓA

aD −ΩBDδΓA
aCÞ: ðB18Þ
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From here we can find the harmonic decomposition of the perturbations of the Ricci tensor by introducing the
perturbations of the Christoffel symbols in terms of the metric perturbation harmonics [Eqs (B1)–(B6)]. The result is

δRab¼ ½hcða∶bÞ∶c−
1

2
hab∶c∶c−

1

2
h∶abþ

rc

r
ðhac∶bþhbc∶a−hab∶cÞ−K∶ab−

2

r
rðaK∶bÞ þ

lðlþ1Þ
2r2

ðhab−2Ja∶bÞ�Y; ðB19Þ

δRaA ¼
�
1

2
hab∶b −

1

2
h∶a þ

ra
2r

hþ 1

2
Jc∶ca −

1

2
Ja∶cc −

ra
r
Jb∶b þ

rb

r
Jb∶a þ

�
2R
4
gab −

r∶ab
r

−
rarb
r2

�
Jb −

1

2
K∶a

−
ðlþ 2Þðl − 1Þ

4
G∶a

�
YA þ

�
1

2
hc∶ca −

1

2
ha∶cc −

ra
r
hb∶b þ

rb

r
hb∶a þ

�
2R
4
gab −

r∶ab
r

−
rarb
r2

�
hb þ lðlþ 1Þ

2r2
ha

−
ðlþ 2Þðl − 1Þ

4r2

�
h2∶a −

2ra
r

h2

��
XA; ðB20Þ

δRAB ¼ ½rrchac∶a −
r
2
rah∶a þ ðrarb þ rr∶abÞhab þ

lðlþ 1Þ
4

h −
lðlþ 1Þ

2

�
Ja∶a þ 2

ra

r
Ja

�
−
1

2
ðr2KÞ∶a∶a

þ lðlþ 1Þ
2

K þ ðlþ 2Þðlþ 1Þlðl − 1Þ
4

G

�
TAB þ

�
Ja∶a −

1

2
r2G∶a

∶a − rraG∶a − ðrr∶a∶a þ rara − 1ÞG −
h
2

�
YAB

þ
�
ha∶a −

1

2
h2∶a∶a þ

ra

r
h2∶a þ

ð1 − 2raraÞ
r2

h2

�
XAB: ðB21Þ
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