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We explore the potential of pulsar timing arrays (PTAs) such as NANOGrav, EPTA, and PPTA to detect
the stochastic gravitational wave background in theories of massive gravity. In general relativity, the
function describing the dependence of the correlation between the arrival times of signals from two pulsars
on the angle between them is known as the Hellings-Downs curve. We compute the analogous overlap
reduction function for massive gravity, including the additional polarization states and the correction due to
the mass of the graviton, and compare the result with the Hellings-Downs curve. The primary result is a
complete analytical form for the analog Hellings-Downs curve, providing a starting point for future
numerical studies aimed at a detailed comparison between PTA data and the predictions of massive gravity.
We study both the massless limit and the stationary limit as checks on our calculation, and discuss how our
formalism also allows us to study the impact of massive spin-2 dark matter candidates on data from PTAs.
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I. INTRODUCTION

One of the most exciting recent developments in astro-
physics and cosmology has been the direct detection of
gravitational waves, as well as the rapid use of this
technique to extend our cosmological observations beyond
those made using electromagnetic radiation or neutrinos.
Much attention has rightly been paid to the information we
can glean from observing the gravitational waves generated
by individual compact sources, such as black hole–black
hole and black hole–neutron star mergers. These observa-
tions are providing crucial insights into how these astro-
physical bodies behave and strict constraints on allowed
deviations of the theory of gravity from general relativ-
ity (GR).
Beyond observing individual systems, the totality of

gravitational waves produced within our Hubble volume
contributes to an overall stochastic background of gravi-
tational waves, with the potential to provide complemen-
tary information about astrophysical and cosmological
objects, and about the underlying theory that governs the
generation and propagation of gravitational waves. This
stochastic background is the scientific target of a number
of current and upcoming projects, such as the North
American NanoHertz Observatory for Gravitational
Waves (NANOGrav), the European Pulsar Timing Array
(EPTA), and the Parkes Pulsar Timing Array (PPTA).
These collaborations use correlations among the precision

timings of the arrivals of signals from tens of millisecond
pulsars as a way to discover minute perturbations in
spacetime as gravitational waves permeate the universe.
The signal-to-noise ratio of these observations increases
over time, and thus they provide a particularly interest-
ing probe.
With sensitivities in the tens to hundreds of microHertz, a

primary target of these pulsar timing arrays (PTAs) is
supermassive black hole binary systems. However, they can
also provide novel tests of proposed new physics. Some
proposed new sources arise in the matter sector of our
theories, including the background of gravitational waves
produced by decaying cosmic string loops, and that
generated during cosmological phase transitions. On the
other hand, new physics can also arise in the gravitational
sector of our theories, affecting how gravitational waves are
generated, affecting how they propagate through spacetime,
and opening up the possibility of the production of entirely
new polarization states. Indeed, work has already been
carried out exploring the impact of different polarization
modes in PTA gravitational wave searches [1,2].
In this paper, we consider the potential of PTAs to

constrain or potentially discover evidence for stochastic
gravitational wave background signals in theories of
massive gravity. In particular, we will be interested in
comparing the predictions of ghost-free massive gravity,
with five polarization modes, to that of GR.
In pure GR, PTA observations can be used to probe the

stochastic gravitational wave background (SGWB) in the
following way. When a gravitational wave passes, it
perturbs the spacetime around the pulsar, and thus changes
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the frequency of the signal in a way that can be described as
a (noncosmological) redshift. Using pulsar observations,
one can then measure the correlation function of the
integral of this redshift. Assuming an isotropic SGWB,
this correlator can be decomposed into two parts: the
energy density, and the overlap reduction function. The
energy density part encodes the power spectrum, describing
the amplitude as a function of frequency. The overlap
reduction function describes the spatial dependence of the
correlator as a function of the angle between two arbitrary
pulsars. In GR, this shape function was calculated in a
particular approximation by Hellings and Downs [3].
In massive gravity both the energy density and the

overlap reduction function receive corrections, partly due
to the nonzero mass, but also due to the presence of
additional polarization modes. Since the amplitude and
frequency dependence of the energy density largely depend
on the source of the gravitational wave, and we are
interested in the effects on the SGWB, in this paper we
focus on the correction to the overlap reduction function.
In this paper we first derive an analytical result, which

can be directly compared with the Hellings-Downs curve in
GR, for all polarization modes in massive gravity. In the
case of tensor modes, our general result agrees with that in
[4] up to a normalization factor. We also analyze the
corrections from vector and scalar modes in this theory.
These results involve a particular approximation, the
validity of which we numerically verify for each mode.
We then compute this analog Hellings-Downs curve in two
opposite regimes—the massless limit and the stationary
limit. One of the most model-independent and rigorous
constraints on the mass of graviton is that it must be less
than 10−23 eV [5,6],1 whereas the sensitivity of current
PTA measurements is in the 1–100 nHz frequency range
(∼10−24 − 10−22 eV). There are two qualitatively different
ways for a graviton with sufficient energy to be detected in
this range. The first is if the graviton mass is sufficiently
low (or even zero, as in GR) that the graviton is relativistic.
The massless limit of our analysis is relevant to this case.
The other possibility is that the graviton mass is in the range
10−24 − 10−23 eV, in which case the stationary limit of our
analysis is then appropriate. Beyond massive gravity, it is

possible that other spin-2 particles, such as ultralight dark
matter, whichmight comprise the galactic halos surrounding
pulsars, may also contribute to any measured PTA signal
(see [8] for a related idea). This is the second situation in
which the stationary limit of our calculations is relevant.
Compared with previous work [9–12], here we focus

particularly on the specific case of ghost-freemassivegravity,
we investigate more general settings in which such massive
spin-2 excitations might be relevant, such as in dark matter
applications, and we carry out a detailed analysis of the
validity of the Hellings-Downs approximation.
The structure of this paper is as follows. In Sec. II, we

review the polarization tensors in the theory of ghost-free
linearized massive gravity. In Sec. III, we discuss the
corrections arising from massive gravity to the signal
measured in PTA experiments. We calculate the change in
the frequency of the pulses, and obtain the overlap reduction
function for all five polarization modes. In Sec. IV, we then
numerically verify that an important approximation to the
overlap reduction function is valid within the frequency
range and for the distances of pulsars relevant to current PTA
experiments. We analytically calculate expressions for this
analogHellings-Downs curve, compare the resultwith that in
GR, anddiscuss how thegravitonmass and extra polarization
states affect the observed signals. Throughout the paper, we
will follow the þ−−− signature convention. We will write
p2 ¼ 0 for the electromagnetic signals received on earth
from the pulsars, and k2 ¼ m2 for the massive gravitational
wave momentum.

II. POLARIZATION TENSORS FOR MASSIVE
GRAVITATIONAL WAVES

The starting point of an analysis of massive gravitational
waves is to construct the polarization tensors describing the
different polarization states of the graviton. To do this, we
employ a technique that allows us to write down a form for
such tensors using the simpler and more familiar polari-
zation vectors for spin-1 fields.
It is well known that a massive spin-1 field contains three

modes—two transverse modes and one longitudinal mode.
Its polarization vectors can be expressed as [13,14]

ϵ�μ ðkÞ ¼
1ffiffiffi
2

p ð0; cos θ cosφ ∓ i sinφ; cos θ sinφ� i cosφ;− sin θÞ;

ϵ0μðkÞ ¼
1ffiffiffiffiffi
k2

p ðjkj; k0Ω̂Þ ¼
�jkj
m

;
k0
m
Ω̂
�
; Ω̂ ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ; ð1Þ

where

kμ ¼ ðk0; jkj sin θ cosφ; jkj sin θ sinφ; jkj cos θÞ ¼ k0

�
1;
jkj
k0

Ω̂
�
; ð2Þ

with Ω̂ the unit vector of the gravitational wave’s spatial direction.

1Note, however, that in other situations much tighter constraints may hold [7].
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Now, for massive spin-2 fields, the analogous action is the Fierz-Pauli action

S ¼
Z

d4x

�
1

2
∂λhμν∂λhμν − ∂μhνλ∂νhμλ þ ∂μhμν∂νh −

1

2
∂λh∂λhþ 1

2
m2ðhμνhμν − h2Þ

�
; ð3Þ

describing a total of five propagating polarization modes. Using the polarization vectors for a massive spin-1 field, given
above, we can construct the polarization tensors for a massive spin-2 field in the following way [13,14]:

ϵðiÞμν ¼ fϵðþ2Þ
μν ; ϵðþ1Þ

μν ; ϵð0Þμν ; ϵ
ð−1Þ
μν ; ϵð−2Þμν g

¼
�
ϵþμ ϵþν ;

1ffiffiffi
2

p ðϵþμ ϵ0ν þ ϵ0μϵ
þ
ν Þ;

1ffiffiffi
6

p ðϵþμ ϵ−ν þ ϵ−μ ϵ
þ
ν − 2ϵ0μϵ

0
νÞ;

1ffiffiffi
2

p ðϵ−μ ϵ0ν þ ϵ0μϵ
−
ν Þ; ϵ−μ ϵ−ν

�
: ð4Þ

These polarization tensors are transverse kμϵμν ¼ 0, traceless ϵμμ ¼ 0, and orthonormal ϵsμνϵs
0μν ¼ δss

0
. Since we are

working at the linearized level, we can write the spin-2 piece as a plane wave (see the discussion in [15] and references
therein),

hμνðxÞ ¼
1

2π

Z
d4k

2δðjkj2 − ðk20 −m2ÞÞ
jkj eikxhμνðkÞ ¼

Z
∞

−∞
df

Z
sky

d2Ω̂ei2πfðt−
jkj
k0
Ω̂·xÞhμν

�
f;
jkj
k0

Ω̂
�
; ð5Þ

where 2πf ¼ k0 is the frequency of the spin-2 particle.
Note that the δ function is introduced to impose the on-shell
condition □hμν þm2hμν ¼ 0 ⇔ k20 ¼ jkj2 þm2; therefore
in the second equality we have integrated over the magni-
tude of jkj. Note also that, compared with the conventions
often used in quantum field theory, we have defined the
transformed quantity with an extra factor of jkj in the
denominator, and have also distributed the factors of 2π in
the definitions of the Fourier transform and its inverse so as
to make the final equality as simple as possible.
Finally we can express hμνðkÞ in terms of the polarization

tensors,

hμνðkÞ ¼
X
i

hðiÞðkÞϵðiÞμν ; ð6Þ

with i ∈ f0;�1;�2g. We denote the helicity �2 polari-
zation modes as tensor modes, which are related to the
usual definitions of cross (×) and plus (þ) modes in GR by
a rotation. Helicity� 1 modes are vector modes and the
helicity 0 mode is a scalar mode. We reserve a comparison
with more standard polarization modes in the literature for
the Appendix A with a specific choice θ ¼ φ ¼ 0.

III. THE SIGNAL

Having discussed the metric perturbation and its polari-
zation modes, we now want to know how these quantities
affect the observed pulsar signal. Suppose a pulsar emits a
signal of frequency ν0 in flat spacetime. Then, if there is a
gravitational wave passing between the pulsar and our
telescopes (e.g., through the solar system), the measured
pulsar frequency νðtÞ will differ from ν0, leading to an
anomalous residual,

RðtÞ≡
Z

t

0

dt0
�
ν0 − νðt0Þ

ν0

�
ð7Þ

in the pulse arrival time. The mean square residual hR2ðtÞi,
defined as

hR2ðtÞi ¼ 1

T

Z
T

0

R2ðtÞdt; ð8Þ

where T is the time interval over which the observations are
made, is the crucial quantity that is measured by the PTA
system [16].
To calculate this observable, we first note that a pulse

follows the null geodesics of the perturbed spacetime, each
of which can be expressed as a null path described by an
affine parameter λ

σμðλÞ ¼ sμðλÞ − 1

2
ημνhνγðxðλÞÞsγðλÞ; ð9Þ

where sμ ≡ νð1;−p̂Þ≡ νp̂ is the corresponding light path
in Minkowski spacetime that points from the pulsar to
earth, with frequency ν. We will write hμν in place of
hμνðxðλÞÞ in the following discussion. The expression (9)
satisfies the geodesic equation,2

dσμ

dλ
¼ −Γμ

αβσ
ασβ

¼ −
1

2
ημνðhνα;β þ hνβ;α − hαβ;νÞsαsβ þOðh2μνÞ; ð10Þ

2Note that the definition of the Christoffel symbol used here
has a minus sign compared to that adopted in Ref. [17].
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where it is useful to note that, in the ðþ−−−Þ signature,
h0α ¼ h0α and hαβ ;0 ¼ hαβ;0 ≡ _hαβ. Now, since sμ is a flat
space null vector, we have sμ ¼ dxμ=dλ, and thus the time
component of Eq. (10) is

dσ0

dλ
¼ −h0α;βsαsβ þ

1

2
_hαβsαsβ

¼ −
dh0α
dλ

sα þ 1

2
_hαβsαsβ; ð11Þ

where we have used dh
dλ ¼ ∂h

∂xβ
dxβ
dλ ¼ ∂h

∂xβ s
β.

On the other hand, using the definition of σα in terms of
sα we can eliminate dσ0=dλ to yield

ds0

dλ
¼ −

1

2

dh0α
dλ

sα þ 1

2
_hαβsαsβ þOðh2Þ; ð12Þ

where we have used that the geodesic equation (10) implies
that dsμ=dλ ¼ OðhÞ to neglect a term proportional to
1
2
h0α dsα

dλ .
As can be seen from (5), a plane wave metric perturba-

tion propagating in a specific direction Ω̂ is given by

hμν

�
t −

jkj
k0

Ω̂ · x

�
¼

Z
∞

−∞
df ei2πfðt−

jkj
k0
Ω̂·xÞhμν

�
f;
jkj
k0

Ω̂
�
:

ð13Þ

We can express dhμν=dλ as

dhμνðt − jkj
k0
Ω̂ · xÞ

dλ
¼ ∂hμν

∂x0
dx0

dλ
þ ∂hμν
∂Ω̂ · x

dΩ̂ · x
dλ

¼ ∂hμν
∂x0

�
dx0

dλ
−
jkj
k0

Ω̂ ·
dx
dλ

�

¼ _hμνν

�
1þ jkj

k0
Ω̂ · p̂

�
; ð14Þ

where dx=dλ ¼ −νp̂ is the spatial momentum of the pulsar
signal.
Substituting this expression into Eq. (12), and using that

s0 ¼ ν we then obtain

ds0

dλ
¼ dν
dλ

¼−
1

2

dh0α
dλ

sαþ 1

2νð1þjkj
k0
Ω̂ · p̂Þ

dhαβ
dλ

sαsβ

¼ ν

�
−
1

2

dh0α
dλ

p̂αþ 1

2ð1þjkj
k0
Ω̂ · p̂Þ

dhαβ
dλ

p̂αp̂β

�
: ð15Þ

Thus we have

dν
ν

¼ −
1

2
dh0αp̂α þ 1

2ð1þ jkj
k0
Ω̂ · p̂Þ

dhαβp̂αp̂β; ð16Þ

and integrating this yields

log

�
νðtÞ
ν0

�
¼ −

p̂α

2
Δh0α þ

p̂αp̂β

2ð1þ jkj
k0
Ω̂ · p̂Þ

Δhαβ; ð17Þ

where

Δhαβ ≡ hαβ

�
tp;

jkj
k0

Ω̂
�
− hαβ

�
te;

jkj
k0

Ω̂
�

ð18Þ

is the difference between the metric perturbation at the
pulsar, and that received at the Earth after traveling along
the direction Ω̂.
Exponentiating both sides and expanding at OðhÞ, we

can then define the redshift as the fractional change in
frequency via

−z≡νðtÞ−ν0
ν0

¼−
p̂α

2
Δh0αþ

p̂αp̂β

2ð1þjkj
k0
Ω̂ · p̂Þ

Δhαβ: ð19Þ

It is convenient to choose a coordinate system in which the
distance between a pulsar and the Earth is denoted by L,
and we write [17] (note, the photon is massless and travels
at the speed of light)

xe ¼ 0; xp ¼ Lp̂; tp ¼ te − L≡ t − L: ð20Þ
It is also convenient to work in Fourier space, and so we

focus on the quantity hðiÞðf; jkjk0 Ω̂Þ, defined in Eq. (13), and
use this to express the difference in metric perturbations
Eq. (18) as

Δhμν ¼
Z

∞

−∞
dfei2πftðe−i2πfLð1þjkj

k0
Ω̂·p̂Þ − 1Þ

×
X
i

hðiÞ
�
f;
jkj
k0

Ω̂
�
ϵðiÞμν ðΩ̂Þ: ð21Þ

The redshift can then be written as a function of fre-
quency as

zðt; Ω̂Þ ¼
Z

∞

−∞
dfei2πftðe−i2πfLð1þ

jkj
k0
Ω̂·p̂Þ − 1Þ

×
X
i

hðiÞ
�
f;
jkj
k0

Ω̂
�
FðiÞðΩ̂Þ; ð22Þ

where we have defined the so-called receiving function
FðiÞðΩ̂Þ as

FðiÞðΩ̂Þ≡ −
p̂μp̂ν

2ð1þ jkj
k0
Ω̂ · p̂Þ

ϵðiÞμν þ p̂μ

2
ϵðiÞ0μ ; ð23Þ

which describes how the variation in the frequency depends
on the metric perturbation. These expressions allow us to
isolate the Fourier transform of the redshift as
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zðf; Ω̂Þ ¼ ðe−i2πfLð1þ
jkj
k0
Ω̂·p̂Þ − 1Þ

X
i

hðiÞ
�
f;
jkj
k0

Ω̂
�
FðiÞðΩ̂Þ:

ð24Þ

Since the effect of the stochastic gravitational wave
background on the measured redshift of a given pulsar
consists of contributions from gravitational waves arriving
from all directions, a relevant quantity to calculate is the
total redshift

z̃ðfÞ≡
Z
S2
d2Ω̂zðf; Ω̂Þ: ð25Þ

Finally, the observable that is relevant to PTA data is the
two-point correlation function of this quantity, hz̃ðfÞz̃ðf0Þi.
We will assume (see, for example, the NANOGrav 12.5-
year results [18] or the most recent results from PPTA [19])
that the frequency dependence of this power spectrum is
independent of any spatial correlations. Using this so-called
common-process model, we can separate the observable
into two distinct important pieces. The first of these is
hhðiÞ2i, which is related to the fractional energy density of
gravitational waves at a given frequency, ΩgwðjfjÞ≡
ð3M2

PH
2
0Þ−1dρgw=d ln f via [17]

hhðiÞ�ðf; Ω̂Þhði0Þðf0; Ω̂0Þi

¼ 3H2
0

32π3
δ2ðΩ̂; Ω̂0Þδii0δðf − f0Þ × jfj−3ΩgwðjfjÞ: ð26Þ

The second piece describes the shape of the signal and is
referred to as the overlap reduction function,

ΓðjfjÞ ¼ β
X
i

Z
S2
d2Ω̂ðei2πfL1ð1þjkj

k0
Ω̂·p̂1Þ − 1Þ

× ðe−i2πfL2ð1þjkj
k0
Ω̂·p̂2Þ − 1ÞFðiÞ

1 ðΩ̂ÞFðiÞ
2 ðΩ̂Þ; ð27Þ

where β is a normalization factor introduced to impose
ΓðjfjÞ ¼ 1 for coincident, coaligned detectors. Together,
these yield

hz̃ðfÞz̃ðf0Þi ¼ 3H2
0

32βπ3
δ2ðΩ̂; Ω̂0Þδii0δðf − f0Þ

× jfj−3ΩgwðjfjÞΓðjfjÞ: ð28Þ

In the remainder of this paper, we will almost entirely focus
on the overlap reduction function.
The above analysis is quite general. When the underlying

theory is general relativity, then the only propagating
perturbation of the metric corresponds to the spin-2
graviton. However, in more general theories, more excita-
tions, of various spins, may also contribute. In the particular
example of massive gravity, scalar, vector, and tensor

contributions decouple from one another, since their kinetic
terms can be diagonalized [20], and so we may define an
overlap reduction function for each type of perturbation

ΓIðjfjÞ ¼ βI
X
i

Z
S2
d2Ω̂ðei2πfL1ð1þjkj

k0
Ω̂·p̂1Þ − 1Þ

× ðe−i2πfL2ð1þjkj
k0
Ω̂·p̂2Þ − 1ÞFðiÞ

1 ðΩ̂ÞFðiÞ
2 ðΩ̂Þ; ð29Þ

where i ∈ Modes of type and I I ¼ T, V, S represents
tensor, vector, or scalar modes, respectively. The full two-
point function is a sum over all contributions and takes the
schematic form

hz̃2i ∝
�
ΩT

βT
ΓT þΩV

βV
ΓV þΩS

βS
ΓS

�

¼ ΩT

βT
ΓT

�
1þ ΓV

ΓT

ΩV

ΩT

βT
βV

þ ΓS

ΓT

ΩS

ΩT

βT
βS

�
: ð30Þ

If we are unable to discriminate among different polariza-
tion modes, then any signal detected by PTA would be
interpreted as a tensor contribution. With this in mind, it is
convenient to define an “effective” overlap reduction
function as

Γ̃T ¼ ΓT þ ΓV
ΩV

ΩT

βT
βV

þ ΓS
ΩS

ΩT

βT
βS

: ð31Þ

Note, however, that the different polarization modes
have different frequency dependencies, and thus ΩV=ΩT is
in general a function of frequency. However, this frequency
dependence is limited over the sensitivity range of current
PTA observations, and we will therefore approximate
ΩV=ΩT as a frequency-independent quantity.

IV. THE OVERLAP REDUCTION FUNCTION
IN MASSIVE GRAVITY

In this section, we explore the effective overlap reduction
function Eq. (31) in massive gravity. We will separately
discuss the behaviors of tensor, vector, and scalar modes,
before combining their effects to obtain the total signal.
Our primary goal is to obtain an approximate analytic

expression. In the case of GR this can be done by dropping
the exponential terms in the analogous expression to (29),
leading to the Hellings-Downs curve. We seek to make the
same approximation here, neglecting the exponential fac-
tors in Eq. (29), and referring to the simplified quantity as
the analog Hellings-Downs curve. This is appealing, since
the exponential factors remove any hope of an analytical
expression for the overlap reduction function, and also
make numerical evaluations of this quantity significantly
more challenging. Our strategy will be to demonstrate
numerically that it is safe to neglect the exponential terms
for each polarization mode, and then to pursue an analytic
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expression for the simplified quantity. Once we have
separately shown that the analog Hellings-Downs curves
for each mode are reasonable approximations, we will then
drop the exponential factor in Eq. (31) to yield the effective
analog Hellings-Downs curve

Γ̃0;T ¼ Γ0;T þ Γ0;V
ΩV

ΩT

βT
βV

þ Γ0;S
ΩS

ΩT

βT
βS

: ð32Þ

In the massless theory, the primary impact of the
exponential factor is to introduce a damped oscillatory
behavior. In the massive theory, the situation is complicated
by the appearance of jkjk0 , which allows for a new scale in the
theory. Therefore, as we will see, there are two different
oscillation modes in the overlap reduction function. One is

a slow oscillation with frequency 2π jkj
k0
, and the other is a

fast oscillation with frequency 2π. When we integrate over
the direction vector Ω̂, it is the slow oscillation that exhibits
the damping behavior seen in GR. As we approach the

massless limit, where jkj
k0
→ 1, the two frequencies coincide,

and the overlap reduction function damps rapidly for fL >
10 (which is the minimum value relevant for PTA obser-
vations), rapidly agreeing with the value of the analog
Hellings-Downs curve. Therefore we will see that we can
safely drop the exponential factors in this case. In the
stationary limit, the slow oscillation mode vanishes, since
jkj
k0
¼ 0, while the fast oscillation mode is independent of the

momentum, and thus independent of the angle between
any two pulsars. Thus this does not contribute to the
angular dependence of the overlap reduction function, and
the analog Hellings-Downs curve is again a reasonable
approximation.

We now demonstrate the above claims numerically, and
then compute the analog Hellings-Downs curve for each
polarization mode. After dropping the exponential factor,
the integration over sphere in Eq. (27) yields an analytical
expression, which is our main result of the paper. We then
show how each mode contributes to the effective analog
Hellings-Downs curve in Eq. (32), in order to compare with
the original Hellings-Downs curve in GR. We discuss both
the massless limit and the stationary limit for tensor modes
and vector modes, and mainly focus on the stationary limit
for scalar modes. Finally, we combine all the polarization
modes together to give an effective analog Hellings-Downs
curve and compare this to the observed data.

A. The tensor modes

We first evaluate the overlap reduction function for
tensor modes and compare it with the original Hellings-
Downs curve. To do this we will ignore the exponential
terms in (29) and define the resulting simplified quantity as
the analog Hellings-Downs curve for tensor modes

Γ0;T ¼ βT
X
i¼�2

Z
S2
dΩ̂FðiÞ

1 ðΩ̂ÞFðiÞ
2 ðΩ̂Þ; ð33Þ

where FðiÞðΩ̂Þ is the receiving function defined in Eq. (23).
This is the most direct analog to the Hellings-Downs curve
in massive gravity. In Fig. 1 we choose a representative
value of ξ—the angle between the two pulsars—of ξ ¼ π=8
and compare a numerical evaluation of ΓT to the simplified
quantity (33), for two values of jkjk0 . As discussed in [17], the
smallest frequency relevant for PTAs is fmin ∼ 0.1 yr−1,
and the closest pulsars used in the observations are at
distances around Lmin ∼ 100 ly, so that fL≳ 10. One can
see in Fig. 1 that when fL > 10 the deviation of the full
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FIG. 1. Overlap reduction with the exponential factors (solid lines) and without (dashed lines) for tensor modes. The solid lines are the
complete expression [Eq. (29)] as a function of fL, and the dashed lines are results of Eq. (33) for ξ ¼ π=8. The numbers next to the

dashed lines in the legend are the values of Eq. (33) for different jkjk0 and ξ ¼ π=8. Blue lines are those for the massless case, in which
jkj
k0
¼ 1, and red lines represent jkjk0 ¼ 0.9, as an example of tensor modes in massive theories. One can see that for fL > 10, the deviation

between the solid lines and the dashed lines is less than ∼5%.
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solution (solid curves) from the simplified one (dashed
curves) is less than ∼5%, and so Γ0;T is a reasonable
approximation to the full overlap reduction function. We
have also numerically verified that this conclusion also
holds for other values of ξ. Thus, for massive tensor modes,
and for jkj=k0 close to 1, dropping the exponential factors
in (29) and instead using (33) is a valid approximation.
An advantage of adopting the simplified form (33) of the

overlap reduction function is that we can derive an analytic
form, for general values of ξ. To compute this analog
Hellings-Downs curve, we adopt the same coordinate
system as that used in [17], in which we take the spatial
part of p̂1 to be parallel to the z axis and the spatial part of
p̂2 to lie in the x–z plane, so that we have

p̂μ
1 ¼ ð1; 0; 0; 1Þ; p̂μ

2 ¼ ð1; sin ξ; 0; cos ξÞ: ð34Þ

The relevant polarization tensors for these tensor modes are

then ϵðþ2Þ
μν ¼ ϵþμ ϵþν and ϵð−2Þμν ¼ ϵ−μ ϵ

−
ν where ϵ�μ are the spin-

1 polarization vectors defined in Eq. (1). In fact, these are
the exact same polarization tensors as are found in the usual
massless case. Substituting these polarization tensors into
the receiving function (23), we see that the second term,

proportional to ϵðiÞ0μ p̂
μ, vanishes for tensor modes, and so the

numerator in the case of massive tensor modes does not
change in comparison with the massless case. The expres-
sion (33) then becomes

Γ0;T ¼ βT
4

Z
d2Ω̂

sin2θ

2ð1þ jkj
k0
cos θÞ

cos ξ2 sin θ2 − 2 cos θ sin θ cos ξ sin ξ cosφþ sin ξ2ðcos θ2 cosφ2 − sinφ2Þ
1þ jkj

k0
ðcos θ cos ξþ cosφ sin θ sin ξÞ

: ð35Þ

Importantly, this differs from the massless case by the presence of the terms proportional to jkj=k0 in the denominator. Thus,
as expected, in the massless limit, in which jkj=k0 → 1, Γ0;T reverts to the original Hellings-Downs curve [3].
The details of performing this integration are not particularly illuminating, and so we relegate them to Appendix B. The

relevant result is

Γ0;T ¼ −π
6A5

βT
4

�
4Að−3þ ð−6þ 5A2Þ cos ξÞ þ 12ð1þ cos ξþ A2ð1 − 3 cos ξÞÞ log 1þ A

1 − A

þ 3ð1þ 2A2ð1 − 2 cos ξÞ − A4ð1 − 2 cos ξ2ÞÞ logL1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cos ξÞð2 − A2ð1þ cos ξÞÞ

p
�
; ð36Þ

where we have defined A ¼ jkj
k0

for notational convenience, and where

L1 ≡ ð1þ 2A2ð1 − 2 cos ξÞ − A4ð1 − 2 cos ξ2Þ − 2Að1 − A2 cos ξÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cos ξÞð2 − A2ð1þ cos ξÞÞ

p
Þ2

ð1 − A2Þ4 : ð37Þ

In its full generality, this is a rather complicated expression. However, two limits are of phenomenological interest. One
of these is the ultrarelativistic (massless) limit where A ¼ jkj=k0 ¼ 1 − ϵ, with ϵ ≪ 1. Expanding to first order in ϵ, we write

Γ0;T ¼ Γð0Þ
0;T þ Γð1Þ

0;T þOðϵ2Þ, with

Γð0Þ
0;T ¼ βT

4

2π

3

�
3þ cos ξþ 6ð1 − cos ξÞ log 1 − cos ξ

2

�
; ð38Þ

the usual Hellings-Downs result, as mentioned earlier, and the leading order correction given by

Γð1Þ
0;T ¼ βT

4

2πϵ

3

�
15þ 11 cos ξþ 12ð2 − cos ξÞ log ϵ

2
− 3ð2 − cos ξÞ logL1

�
: ð39Þ

While this correction may prove useful in future work, we will not focus on it in this paper, requiring only the leading order
result to make our main points.
A second interesting limit is the stationary one, in which jkj=k0 ≪ 1. This limit may be relevant for the proposal of

massive gravity in some allowed parameter regimes, but there are also other settings in which a massive spin-2 field might
contribute to the measurements made by PTAs. One example is the idea of ultralight spin-2 dark matter, in which the
relevant particles would comprise the dominant component of galactic halos. The dark matter mass in such models is such
that it may be relevant to the typical frequency range—∼10−9–10−7 Hz ¼ 10−24–10−22 eV—that PTAs are sensitive to.
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In this limit, 0≲ jkj=k0 ≪ 1, it is also possible to show
that it is a reasonable approximation to drop the exponential
factors in ΓT . In Fig. 2 we again choose a representative
value for the angle between the two pulsars of ξ ¼ π=8 and
compare a numerical evaluation of ΓT to the simplified
quantity (33), for two smaller values of jkj=k0. One can see
the two oscillation modes, and that as jkj=k0 → 0 the fast
oscillation becomes more prominent, while the period of
the slow oscillation increases. Since PTA observations take
place over an interval short compared to this period, the
slow oscillation can safely be neglected in our approxi-
mation. Indeed, when fL > 10 the deviation of the full
solution (solid curves) from the simplified one (dashed
curves) is noticeable, but less than a ∼25% effect. The fast
oscillation, on the other hand, is independent of the angle,
and therefore does not complicate the integral.
We conclude that Γ0;T is a reasonable, but by no means

perfect, approximation to the full overlap reduction

function, as long as jkj=k0 is not too small. We
will find this approximation useful for carrying out
a simplified comparison to data and for providing ana-
lytic insights into the behavior of the relevant quantities.
This is in large part because numerically integrating ΓT for
many values of ξ is computationally challenging.
However, it is clear that a full numerical evaluation will
be needed for precise predictions. We have also numeri-
cally verified that this conclusion also holds for other
values of ξ.
It is worth noting that when k=k0 ¼ 0, there is no

damping effect at all, since the exponential factors act as
pure oscillation terms 2 − 2 cosð2πfLÞ. In this paper, we
are particularly focused on the angular dependence, so we
focus on the expression (33), which we have referred to as
the analog Hellings-Downs curve. The analytical expres-
sion in the stationary limit is

Γ0;T ¼ βT
4

�
8π

15
ð−1þ 3 cos ξ2Þ þ 8π

105

jkj2
k20

ð−2 − 3 cos ξþ 6 cos ξ2 þ 5 cos ξ3Þ
�
þO

�jkj4
k40

�
: ð40Þ

To obtain more insight into how the graviton mass affects
the angular dependence of tensor modes, in Fig. 3 we plot
the analog Hellings-Downs curve Eq. (36) for different
values of jkj=k0.
One can see that even a small deviation from the

exact massless limit corresponding to GR leads to a
visible correction to the curve Γ0;T . Note that, in Fig. 3,
we have chosen the normalization factor βT ¼ 3

4π for all
the different selected values of jkj=k0. If we had chosen a
different normalization factor so as to fix Γ0;T ¼ 0.5 at
ξ ¼ 0, then we would have recovered the numerical
result of [9].

B. The vector modes

We now turn to vector modes. As in the tensor case, to
simplify our numerical calculations, we first seek to
understand whether we can neglect the exponential factors
in computing the overlap reduction function.
We first note that Eq. (4) implies that the polarization

modes for vector modes are ϵð�1Þ
μν ¼ 1ffiffi

2
p ðϵ�μ ϵ0ν þ ϵ�ν ϵ0μÞ. For

simplicity, we denote ϵ0μ ¼ k0
m ðjkjk0 ; Ω̂Þ in the following con-

text. We then use these polarization tensors and the receiving
function Eq. (23) to obtain the analog Hellings-Downs curve
for vector modes as
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FIG. 2. Overlap reduction with the exponential factors (solid lines) and without (dashed lines) for massive tensor modes for various
values of 0≲ jkj=k0 ≪ 1. The solid lines are the complete expression [Eq. (29)] as a function of fL, and the dashed lines are results of
Eq. (33) for ξ ¼ π=8. Oscillations are again damped, as in the jkj=k0 ∼ 1 case, but here the damping effect is significantly less effective
as jkj=k0 decreases. The fast oscillation can be seen as wiggles upon the slow oscillation, which will dominate when taking smaller
jkj=k0. For fL > 10, the deviation between the solid lines and the dashed lines is less than ∼25%.
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Γ0;V ¼ βV
4

k20
2m2

Z
d2Ω̂

1

ð1þ A cos θÞð1þ Aðcos θ cos ξþ cosφ sin θ sin ξÞÞ
× fðAþ ð2 − AÞ cos θÞðAþ ð2 − AÞ cos θ cos ξÞ cos ξsin2θ
− ð2 − A2ÞðAþ ð2 − AÞ cos θÞ cos θsin2θsin2ξcos2φ
−ððAþ ð2 − AÞ cos θÞðA cos θ þ ð2 − A2Þ cos 2θ cos ξÞ sin θ sin ξþ 1Þ cosφg: ð41Þ

Finally, we evaluate this using the same method as we used for the tensor modes to yield

Γ0;V ¼ βV
8

k20
m2

8π

A5

�
A
3
ðA6 cos ξ − 2A4ð5 cos ξþ 3Þ þ 2A2ð11 cos ξþ 6Þ − 6ð2 cos ξþ 1ÞÞ

þ ðA2 − 1Þ2ððA2 − 2Þ cos ξ − 2Þ log
�
1 − A
1þ A

�
þ ðA2 − 1Þ2ð1 − A2 cos ξÞ logL1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − cos ξÞð2 − A2ð1þ cos ξÞÞ

p
�
; ð42Þ

where L1 is defined in Eq. (37).

In Fig. 4, we plot both the full expression Eq. (29) and
the approximate expression Eq. (41) for two different
representative values of the angle ξ between the pulsars.
We do this separately for jkj=k0 ¼ 0.9 and jkj=k0 ¼ 0.2. In
both cases, the overlap reduction function is well approxi-
mated by the analog Hellings-Downs curve in the region
fL > 10 relevant for PTA measurements, and we shall
therefore adopt this approximation below.
To understand what happens in the massless (GR) limit,

we note that the leading order contribution as jkj=k0 → 1 is

Γ0;V ¼ βV
4

k20
2m2

8π

3
cos ξ: ð43Þ

As one can see, there seems to be a divergence when taking
the massless limit, since m2=k20 ¼ 1 − jkj2=k20 → 0 when
jkj=k0 → 1. However, it is easy to see that this is an artifact
of the decomposition we have chosen. Recall that the actual

observable is the time residue of the two point correlation
function of the redshift, which we have separated into an
energy density piece, and the effective overlap reduction
function. Once we drop the exponential factor, we obtain
the effective analog Hellings-Downs curve. Note that
observers do not measure Γ0;V independently; rather it is
the combination Γ0;V

ΩV
ΩT

βT
βV

that contributes. In the massless
limit, the energy density of the vector mode vanishes faster
than k20=m

2. Thus the combination of these two pieces
results in no contribution to the signal from vector modes,
as we would expect. Another way to see this is to use
different definitions of the polarization tensor and hð�1Þ in
Eq. (6), for example, following the convention used in [15],
where the divergence does not then appear in what we are
calling the analog Hellings-Downs curve, Γ0;V .
The other interesting limit is the stationary one, where

jkj=k0 → 0. In this case the leading order result is
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FIG. 3. Analog Hellings-Downs curve for tensor modes in massive gravity. The normalization factor βT has been chosen to fix
Γ0;T ¼ 0.5 at ξ ¼ 0 in agreement with the massless case. The blue curve is the massless original Hellings-Downs curve, while the other

lines are the analog Hellings-Downs curves for different values of jkj
k0
. The red line is the stationary limit where k

k0
¼ 0. One can see that

the analog Hellings-Downs curve for tensor modes has a suppression at ξ ¼ 0 and at ξ ¼ π.
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Γ0;V ¼ βV
4

8π

15
ð−1þ 3 cos2 ξÞ: ð44Þ

Note therefore that, in contrast with the massless limit, we
expect a nonzero contribution from vector modes in the
stationary limit.
To obtain a sense of how the vector mode contributes to

the analog Hellings-Downs curve, we choose ΩV
ΩT

βT
βV

¼ 1 in
Eq. (31), and we plot the comparison between Γ0;V and the
original Hellings-Downs curve in GR. We show in Fig. 5

that for large jkj=k0, the vector modes enhance the curve at
ξ ¼ 0 and suppress it at ξ ¼ π, whereas for small jkj=k0, the
vector modes enhance the analog Hellings-Downs curve at
both ends.

C. The scalar mode

The story for scalar modes is very similar to that for
vector modes. Again, we define a simplified overlap
reduction function, which we refer to as the analog
Hellings-Downs curve for the scalar polarization, via

Γ0;S ¼
βS
4

1

12

Z
d2Ω̂

ð1þ 4A cos θ þ 3 cos 2θÞ
ð1þ jkj

k0
cos θÞð1þ jkj

k0
ðcos θ cos ξþ cosφ sin θ sin ξÞÞ

×

�
1

8
ð−2þ 6 cos 2θ þ 6 cos 2ξþ 6 cos 2θ cos 2ξþ 16A cos θ cos ξÞ

þ 2ðAþ 3 cos θ cos ξÞ sin θ sin ξ cosφþ 3sin2θsin2ξcos2φ

�
: ð45Þ
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FIG. 4. The overlap reduction function and the analog Hellings-Downs curve for vector modes. The solid lines are the full expression,
including exponential factors, as a function of fL, and the dashed lines are the results of Eq. (42). The top panel is for a relatively large
value of jkj=k0 and the bottom panel is for a smaller one. In both panels, we plot two examples: ξ ¼ π=8 (red lines) and
ξ ¼ 2π=3 (green lines).
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In Fig. 6 we plot the full scalar overlap reduction function
and the analog Hellings-Downs curve for selected values of
the angle ξ between the pulsars and the value of jkj=k0.
Similar to both tensor and vector modes, we observe fast

and slow oscillations and conclude that the analog Hel-
lings-Downs curve is a reasonable approximation to the full
result for values of fL of interest in PTA observations. We
therefore use this approximation from now on.
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FIG. 6. The overlap reduction function and the analog Hellings-Downs curve for scalar mode. The solid lines are the full expression,
including the exponential factors, as a function of fL, and the dashed lines are results of Eq. (46). One can see that for fL > 10, it is safe
to neglect the exponential factors.
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FIG. 5. Analog Hellings-Downs curve for vector modes in massive gravity. The blue solid curve is the original Hellings-Downs curve
in GR, and the other curves are Γ0;V

ΩV
ΩT

βT
βV
, for different values of jkj=k0, describing the contribution of the vector modes. The plots are

made with the parameter ΩV
ΩT

βT
βV

¼ 1 to manifestly demonstrate the angular dependence of the vector modes.
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Evaluating Eq. (45) in the same way yields

Γ0;S ¼
βS
4

π

6A5

�
4Að9þ 4A4 þ 18 cos ξ − 3A2ð4þ 5 cos ξÞÞ

− 12ð1 − A2Þð2A2 − 3 − 3 cos ξÞ log 1 − A
1þ A

−
9ð1 − A2Þ2 logL1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − cos ξÞð2 − A2ð1þ cos ξÞÞ
p

�
; ð46Þ

where L1 is defined in Eq. (37).
We plot the scalar contribution to the effective analog

Hellings-Downs curve in Fig. 7, choosing the parameter
ΩS
ΩT

βT
βS
¼ 1. It is well-known in linearized massive gravity

that great care is needed when taking the massless limit in
order to treat the scalar mode correctly. This issue is
sometimes referred to as the van Dam-Veltman-Zakharov
(vDVZ) discontinuity. Since we do not wish to deviate from
the linearized limit, we will not attempt to analyze the
massless limit for the scalar mode in this paper.
The interesting limit we will explore is the stationary

limit, where the analog Hellings-Downs curve for the scalar
mode is

Γ0;S ¼
βS
4

4π

15
ð−1þ 3 cos2 ξÞ: ð47Þ

These results display a similar angular dependence to
that of Γ0;V . Thus, both vector modes and scalar modes
contribute in the stationary limit in any theory with massive
spin-2 excitations.

D. The combined effective analog
Hellings-Downs curve

Having separately discussed how each polarization mode
contributes to the effective analog Hellings-Downs curve,
we now consider the combined effect.
Recall that in Eq. (30) we separated the correlation

function into two pieces—the power spectrum, which
encodes its frequency dependence, and the overlap reduc-
tion function, describing the spatial angular dependence.
Recently, two collaborations—the NANOGrav 12.5-year
result [18] and the most recent PPTA result [19]—have
claimed strong evidence for a characteristic power spec-
trum, but have also claimed that spatial correlations are not
well-described by the Hellings-Downs curve. Fitting the
power spectrum to a power-law model f−γ , the PPTA
collaboration finds γ ∈ ð1.5; 5.5Þ and the NANOGrav
collaboration finds γ ∈ ð3.76; 6.78Þ. There exists a number
of different suggestions for physics that might yield a
contribution to the SGWB with a frequency dependence in
this range. Examples areas follows: supermassive black
hole binary systems (γ ∼ 13=3) [21]; primordial gravita-
tional waves (γ ∼ 5) [22]; and networks of cosmic strings
(γ ∼ 16=3) [23]. It is natural to wonder, therefore, whether
modifications of gravity, such as massive gravity, might
maintain these successful predictions of the frequency
dependence while modifying the shape of the spatial
correlation function, perhaps leading to an improved
agreement with current and upcoming data.
In the massive gravity theory that we have studied here,

the vector and scalar modes can certainly modify the shape
of the spatial correlation function. Furthermore, if we
ensure that their energy densities are somewhat subdomi-
nant to the tensor one (ΩV;ΩS ≲ ΩT), but not so negligible
that they do not contribute to the effective analog Hellings-
Downs curve, then the frequency dependence should not be
strongly modified. In Fig. 8, we have demonstrated the
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FIG. 7. Analog Hellings-Downs curve for the scalar mode in massive gravity. The blue solid curve is the original Hellings-Downs
curve in GR, and the other curves are Γ0;S

ΩS
ΩT

βT
βS
, for different values of jkj=k0, describing the contribution of the scalar modes. The plots

are made choosing the parameter ΩS
ΩT

βT
βS
¼ 1 to show the angular dependence of the scalar mode.
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largest this effect could be by choosing the parameters
ΩT ¼ ΩV ¼ ΩS in the given frequency band of current PTA
observations. One can clearly see that the shape of the
spatial correlation function can deviate from the Hellings-
Downs curve. For some allowed values of the parameters in
massive gravity, this deviation can be large enough to be
detected as data are accumulated from the current gen-
eration of PTA observing programs. It would be interesting
to understand more comprehensively the extent to which
upcoming measurements can probe more general modifi-
cations of gravity, and massive gravity in particular, using
this technique.

V. CONCLUSIONS

In this paper, we have studied the potential of PTA
observations to constrain or discover new features of
gravity, focusing particularly on the case of massive
gravity. PTAs measure the correlation function of arrival
times of pulses from pairs of pulsars as a function of the
angle between them. Taking the sky-averaged and polari-
zation-averaged product of the response of a pair of Earth-
pulsar baselines to a plane wave propagating in a particular
direction, the relevant quantity in GR is the famous
Hellings-Downs curve, which is an approximation to the
overlap reduction function part of the signal’s redshift
correlation function. Starting with the Fierz-Pauli action
that describes linearized massive gravity, we have defined
the five polarization tensors of the relevant metric pertur-
bation around flat spacetime and have derived how these
affect the propagation of signals from the pulsars to our
detectors. We have traced how these changes affect the
overlap reduction function and have then defined the
analog Hellings-Downs curve for massive gravity.
After numerically justifying the approximations that we

make, the main result of this paper is a full analytical
expression for this analog Hellings-Downs curve for the
tensor, vector, and scalar modes. We have analyzed the
massless limit and the stationary limit of these expressions
and have combined the effects of all the five polarization

states together to yield an effective Hellings-Downs
curve. These results indicate that it may be possible to
distinguish massive gravity from GR as future PTA data are
accumulated.
Our hope is that the analytic expressions we have derived

will be of use to observers in making detailed comparisons
of current and future PTA data with the predictions of
theories with massive spin-2 excitations. Should evidence
for such massive modes be discovered, a natural question is
how such a stochastic gravitational wave background might
be generated. In future work we will explore how such
signals might arise in theories with massive spin-2 par-
ticles, such as massive gravity and spin-2 dark matter
models. For example, it would be interesting to study how
the interactions of spin-2 dark matter halos can change the
effective metric around pulsars, and to understand how
massive gravity might give rise to significant gravitational
waves through supermassive black hole binary systems or
phase transitions in the early universe.
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APPENDIX A: POLARIZATION TENSOR

In this Appendix, we compare the polarization tensors in
Eq. (4) to the more standard definition of polarization
tensors in massive gravity theory as has been discussed
in [15].
To gain a better understanding of the full five modes in

the massive spin-2 theory, we set θ ¼ φ ¼ 0, so that the
polarization vector of a massive spin-1 particle becomes

ϵ�μ ¼ 1ffiffiffi
2

p ð0; 1;∓i; 0Þ; ϵ0μ ¼
1

m
ðjkj; 0; 0; k0Þ: ðA1Þ
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FIG. 8. Comparison between the original Hellings-Downs curve and the effective analog Hellings-Downs curve as defined in Eq. (32).
The orange dashed line describes the monopole signal. The parameters are chosen to be the following: jkj

k0
¼ 0.71; βT ¼ βV ¼ βS ¼

3=4π;ΩT ¼ ΩV ¼ ΩS for the solid red line, and βT ¼ βV ¼ βS ¼ 3=4π;ΩV=ΩT ¼ 0.8;ΩS=ΩT ¼ 0.8 for the dashed red line.
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Combining these to obtain the polarization tensor basis yields

ϵðþ2Þ
μν ¼ 1

2

0
BBB@

0 0 0 0

0 1 −i 0

0 −i −1 0

0 0 0 0

1
CCCA; ϵð−2Þμν ¼ 1

2

0
BBB@

0 0 0 0

0 1 i 0

0 i −1 0

0 0 0 0

1
CCCA;

ϵðþ1Þ
μν ¼ 1

2m

0
BBB@

0 jkj −ijkj 0

jkj 0 0 k0
−ijkj 0 0 −ik0
0 k0 −ik0 0

1
CCCA; ϵð−1Þμν ¼ 1

2m

0
BBB@

0 jkj ijkj 0

jkj 0 0 k0
ijkj 0 0 ik0
0 k0 ik0 0

1
CCCA;

ϵð0Þμν ¼ 1ffiffiffi
6

p

0
BBB@

0
BBB@

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1
CCCA −

2

m2

0
BBB@

jkj2 0 0 k0jkj
0 0 0 0

0 0 0 0

jkjk0 0 0 k20

1
CCCA

1
CCCA: ðA2Þ

Thus, the metric perturbation around flat spacetime can be expressed in matrix form as

hμν ¼

0
BBBBBBBB@

− 2ffiffi
6

p jkj2
m2 hð0Þ

jkj
2m ðhð1Þ þ hð−1ÞÞ −i jkj

2m ðhð1Þ − hð−1ÞÞ − 2ffiffi
6

p jkjk0
m2 hð0Þ

jkj
2m ðhð1Þ þ hð−1ÞÞ ðhð2Þ þ hð−2ÞÞ þ 1ffiffi

6
p hð0Þ −iðhð2Þ − hð−2ÞÞ k0

2m ðhð1Þ þ hð−1ÞÞ
−i jkj

2m ðhð1Þ − hð−1ÞÞ −iðhð2Þ − hð−2ÞÞ −ðhð2Þ þ hð−2ÞÞ þ 1ffiffi
6

p hð0Þ −i k0
2m ðhð1Þ − hð−1ÞÞ

− 2ffiffi
6

p jkjk0
m2 hð0Þ k0

2m ðhð1Þ þ hð−1ÞÞ −i k0
2m ðhð1Þ − hð−1ÞÞ − 2ffiffi

6
p k2

0

m2 hð0Þ

1
CCCCCCCCA
: ðA3Þ

In the massless limit, where only two polarization states remain, one can see that hþ ¼ hð2Þ þ hð−2Þ and h× ¼
−iðhð2Þ − hð−2ÞÞ are the normal definitions of the cross mode and the plus mode, respectively, in GR.
Following the conventions of [15], where β ¼ jkj

k0
and α≡ m

k0
, the metric perturbation is

hμν ¼

0
BBB@

−β2hl βhx βhy −βhl
βhx hþ þ 1

2
α2hl h× hx

βhy h× −hþ þ 1
2
α2hl hy

−βhl hx hy −hl

1
CCCA; ðA4Þ

where 2ffiffi
6

p hð0Þ=α2 ¼ hl, ðhð1Þ þ hð−1ÞÞ=2α ¼ hx, −iðhð1Þ − hð−1ÞÞ=2α ¼ hy, ðhð2Þ þ hð−2ÞÞ ¼ hþ, and −iðhð1Þ − hð−1ÞÞ ¼ h×.

It is straightforward to show that, up to an overall factor, the five polarization modes we have defined in (4) are equivalent to
those defined in [15].

APPENDIX B: COMPUTATION OF THE HELLINGS-DOWNS CURVE

In this Appendix, for the convenience of the reader, we describe in detail the integration of Eq. (35). For simplicity, we
denote jkj

k0
¼ A in the following equations. Writing x≡ cos θ, we have

Γ0;T ¼ βT
4

Z
1

−1
dx

1 − x2

2ð1þ AxÞ ×
Z

2π

0

dφ
cos ξ2ð1 − x2Þ − sin ξ2 − 2x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
cos ξ sin ξ cosφþ sin ξ2ð1þ x2Þ cosφ2

1þ Ax cos ξþ A
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sin ξ cosφ

¼ βT
4

Z
1

−1
dx

1 − x2

2ð1þ AxÞ ×
Z

2π

0

dφ

�
C1

1

aþ b cosφ
þ C2

cosφ
aþ b cosφ

þ C3

cosφ2

aþ b cosφ

�
; ðB1Þ
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where Ci are independent of φ and sin θ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
, since sin θ is always positive for 0 < θ < π. We can simplify the

denominator by defining a≡ 1þ Ax cos ξ; b≡ A
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sin ξ, and noting that a2 − b2 ¼ 1 − A2 þ A2ðcos ξþ xÞ2. We

can then use standard results (see, e.g., [24]) to carry out the integration over φ, yielding

Γ0;T ¼ βT
4

Z
1

−1
dx

1 − x2

2ð1þ AxÞ
�
2πðcos ξ2ð1 − x2Þ − sin ξ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2 þ A2ðcos ξþ xÞ2

p − 2x cos ξ
2π

A

�
1 −

1þ Ax cos ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2 þ A2ðcos ξþ xÞ2

p
�

þ sin ξ2ð1þ x2Þ2π
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2 þ A2ðcos ξþ xÞ2

p −
1þ Ax cos ξ

ðA
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sin ξÞ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2 þ A2ðcos ξþ xÞ2

p
ðA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
sin ξÞ2

��
: ðB2Þ

The integration over x from−1 to 1 is trivial yet tedious. After some simplification, one recovers the result expressed as in
Eq. (36). The procedures for computing the analogous results for the vector modes, Eq. (41), and the scalar mode, Eq. (45),
are very similar to the above.
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