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Numerics and extremal limit

Bruno Carneiro da Cunha * and João Paulo Cavalcante †

Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife, Brazil

(Received 16 July 2021; accepted 13 September 2021; published 13 October 2021)

We conduct an analysis of the quasinormal modes for generic spin perturbations of the Kerr black hole
using the isomonodromic method. The strategy consists of solving the Riemann-Hilbert map relating the
accessory parameters of the differential equations involved to monodromy properties of the solutions, using
the τ-function for the Painlevé V transcendent. We show excellent accordance of the method with the
literature for generic rotation parameter a < M. In the extremal limit, we determined the dependence of the
modes with the black hole temperature and establish that the extremal values of the modes are obtainable
from the Painlevé V and III transcendents.
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I. INTRODUCTION

The Teukolsky master equation [1] governs linear
perturbations of the Kerr metric. For vacuum perturbations,
its solutions can be written as combinations of products of
solutions of two ordinary differential equations
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Δ ¼ r2 − 2Mrþ a2 ¼ ðr − rþÞðr − r−Þ: ð3Þ

M and a ¼ J=M are the mass and angular momentum
parameter of the black hole, whereas ω, m, and s are the

frequency, azimuthal angular momentum parameter, and
spin of the perturbation.
The Teukolsky master equation has a long history of

study [2]. From its discovery, it has been crucial in the
study of linear stability of black hole backgrounds. It has
also been a driving force behind early numerical studies of
differential equations. Analogues of the equations (1) and
(2) for other black hole backgrounds, when they can be
derived, are an invaluable tool to classical studies of general
relativity, supergravity and string theory [3]. After the
discovery of gravitational waves [4], the theory of linear
perturbations of Kerr black holes became a fundamental
tool to analysis of the ringdown phase post black hole
collision. Scattering coefficients, on the other hand, have a
fundamental role in the study of “black hole engines” of
extreme astrophysical phenomena—see [5] for a review.
Fast algorithms exist for the calculations of solutions of

(1) and (2) for real frequencies [6], as well as a very fast
method to compute eigenvalues for the angular equation [7].
Implementations of the functions involved—the confluent
Heun functions—exist in the major computer algebra
systems and tables of quasinormal modes frequencies have
been compiled [8]. On the analytical part of the studies, the
study of scattering and normal modes is heavily dependent
of the expansion of solutions in terms of hypergeometric and
confluent hypergeometric functions [9–11], as well as
asymptotic series that permit expansions for the angular
eigenvalues and quasinormal modes [12,13].
The asymptotic nature of these expansions, however,

brings up technical problems, both in the expansions and in
the numerical analysis. Quasinormal modes present such a
challenge: the non-local boundary conditions involved
requires consideration of general complex frequencies.
As soon as one leaves the real values, the Stokes’
phenomenon [14,15] presents challenges for the estimation
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of frequencies. The situation is aggravated in the near-
extremal limit [16,17], where the analytical structure of the
solutions is complicated.
In [18,19], an alternative scheme was put forward that

allowed for calculation of both the eigenvalue problem as
well as scattering coefficients, building in previous work
[20,21]. The method related these physical properties of the
solutions of Fuchsian equations, and confluent limits, like
(1) and (2), to the monodromy properties associated to the
equation, relying on the Riemann-Hilbert map between the
parameters of the equation and the monodromy data. In
[22,23], the map was cast in terms of some of the Painlevé
(isomonodromic) τ-functions, whose generic expansion
was proposed in [24], using methods from equivariant
localization and conformal field theory. Later developments
[25,26] provided with a comparatively fast method to
compute those τ-functions involved.
The isomonodromic method for computing greybody

factors has since been successfully used in a variety of black
hole backgrounds [22,27,28]. In [23], the authors studied the
eigenvalue problem of (1) and (2), giving explicit repre-
sentations of the Riemann-Hilbert map in terms of the
Painlevé V τ-function. The expansions of the angular
eigenvalue at small rotation parameter a were recovered,
and a procedure for the calculation of quasinormal modes’
frequencies was derived. As the analytical structure of the τ-
function is well understood, imparting a lot of structure of
the confluent conformal blocks they are derived from [29],
the problems alluded to above are evaded. We also cite an
alternative but similar approach based on the semiclassical
analysis of the conformal blocks developed in [30,31].
In this paper, we carry on the study of [23], analyzing

numerically the solution provided, comparing it with the
literature for generic a < M before focussing in the near-
extremal limit. In Sec. II, we review the generic Riemann-
Hilbert map and the relation between the boundary con-
ditions in the eigenvalue problem and monodromy data. In
Sec. II A, we outline the method used for numerical solution
of the transcendental equations involved in the eigenvalue
problem. In Sec. III, we compute the relevant quantities for
the equations of interest (1) and (2). In Sec. IV, we present
the numeric solution for generic rotation parameter a < M,
and in Sec. V we discuss the extremal a → M limit. We
found from the studies that some modes display a finite
behavior, analyzed in Sec. VA, while the rest display a
double confluent limit, studied in Sec. V B, being given in
the extremal case a ¼ M by the Painlevé III τ-function. We
close in Sec. VI by discussing the results and prospects.
Finally, we include in the Appendix the frequencies and
eigenvalues found for some modes in the extremal case.

II. MONODROMY PROPERTIES AND
BOUNDARY CONDITIONS

The angular (1) and radial (2) equations are stances of the
confluent Heun differential equation
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which is characterized by its 3 singular points, two of them
regular at z ¼ 0 and z ¼ t0 and an irregular point of
Poincaré rank 1 at z ¼ ∞. Following the treatment of
linear differential systems in isomonodromic deformations,
we call θ⃗ ¼ fθ0; θt; θ⋆g the single trace monodromy
parameters, ct0 the accessory parameter and t0 the con-
formal modulus of the Eq. (4).
In previous work, the authors have described a map

from ct0 and t0 to the monodromy data fσ; ηg associated
with the solutions of (4). The Riemann-Hilbert map
from ct0 and t0 to fσ; ηg is defined implicitly from the
equations

τVðθ⃗; σ; η; t0Þ ¼ 0;

t0
d
dt

log τVðθ⃗−; σ − 1; η; t0Þ −
θ0ðθt − 1Þ

2
¼ t0ct0 ; ð5Þ

where θ⃗− ¼ fθ0; θt − 1; θ⋆ þ 1g. The τ-function τV is
defined in the theory of the isomonodromic deformations,
through the embedding of the Eq. (4) into the matricial
system
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2
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∂Φ
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−1ðzÞ ¼ −
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ð6Þ

where t is not necessarily equal to t0. The function
τV is defined, up to a multiplicative constant, by the
equation

∂
∂t log τV ¼ 1

2
Tr σ3At þ

1

t
TrA0At: ð7Þ

The function τV is associated to the fifth Painlevé tran-
scendent [32].
In order to make practical use of the map (5) we need a

procedure to evaluate the τ-function τV . The small t
expansion for the generic fifth Painlevé transcendent was
proposed in [24], using c ¼ 1 conformal blocks. One can
find the parallel discussion for the Nekrasov-Shatashvilii
(semiclassical) limit of the conformal blocks in [31]. In
[26], the authors made use of Riemann-Hilbert problems
methods in the theory of integrable systems and gave an
expression for τV based on Fredholm determinants (see also
[33]). The Fredholm determinant expression allows for
efficient computation of τV , and it is given by
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with C a circle of radius R < 1 and kernels given explicitly
for jtj < R, by

Aðz; z0Þ ¼ Ψ−1ðσ; θt; θ0; z0ÞΨðσ; θt; θ0; zÞ − 1
z − z0

;

Dcðz; z0Þ ¼
1 −Ψ−1

c ð−σ; θ⋆; t=z0ÞΨcð−σ; θ⋆; t=zÞ
z − z0

; ð10Þ

where the parametrices Ψ and Ψc are matrices whose
entries are given by

Ψðσ;θt;θ0;zÞ¼
�
ϕðσ;θt;θ0;zÞ χð−σ;θt;θ0;zÞ
χðσ;θt;θ0;zÞ ϕð−σ;θt;θ0;zÞ

�
; ð11Þ

with ϕ and χ in terms of Gauss’ hypergeometric series
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where 1F1 the confluent (Kummer’s) hypergeometric
series. Finally,

κV ¼ eiπηΠV ¼ eiπη
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Γð1þ σÞ2

Γð1þ 1
2
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2
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From the definition (8), one can expand the determinant
and work out the small-t expansion of the τ-function for
Painlevé V, recovering the results found in the literature
[23,26,34,35]

τVðθ⃗; σ; η; tÞ ¼ CVðθ⃗; σÞt14ðσ2−θ20−θ2t Þe1
2
θttτ̂Vðθ⃗; σ; η; tÞ; ð16Þ

where τ̂V comprises the expansion of the Fredholm
determinant in (8). When interpreted in terms of two
variables μ ¼ κVtσ and t, the series obtained from the
small t expansion is analytic in t and meromorphic in μ:

τ̂Vðθ⃗; σ; η; tÞ ¼ 1 −
�
θt
2
−
θ⋆
4
þ θ⋆ðθ20 − θ2t Þ

4σ2

�
t

−
ðθ⋆ þ σÞððσ þ θtÞ2 − θ20Þ

8σ2ðσ − 1Þ2 κ−1V t1−σ

−
ðθ⋆ − σÞððσ − θtÞ2 − θ20Þ

8σ2ðσ þ 1Þ2 κVt1þσ

þOðt2; jtj2�2ℜσÞ: ð17Þ

The structure of the expansion (17) imports a great deal of
structure from the conformal block expansion it is derived
from [24]. Although it is not clear from (8), the τV is almost
periodic in σ,

τðθ⃗; σ þ 2n; η; tÞ ¼ fðθ⃗; σ; ηÞτðθ⃗; σ; η; tÞ; ð18Þ

where the extra factor f is a function of the monodromy
variables but not of t. This feature is more clearly stated in
the Nekrasov expansion of the τ-functions associated to the
Painlevé VI, V, and III transcendents [24]. Assuming σ in
the fundamental domain ℜσ ∈ ð0; 2Þ, the terms displayed
in (17) are actually the most relevant ones.
Each coefficient in the expansion of τ̂V is a rational

function on the monodromy parameters where θ⃗ enters in
the numerator only and only σ enters in the denominator.
The term of order μmtn has single or double poles at integer
values of −n < σ < n.
The σ parameter in τV has an interpretation in terms of

solutions of the associated differential equation (4). As seen
in [36], σ parametrizes the Floquet solutions of (4),
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which converges in an annulus t0 < jzj < R < ∞.
Substituting this solution into the equation, the 3-term
recurrence relation is

Ancn−1 − ðBn þ t0CnÞcn þ t0Dncnþ1 ¼ 0; ð20Þ

where

An ¼ 2ðσ þ θ⋆ þ 2n − 2Þ; ð21Þ

Bn ¼ ðσ þ θ0 þ θt þ 2n − 2Þðσ − θ0 − θt þ 2nÞ; ð22Þ

Cn ¼ 2ðσ þ θt þ θ⋆ þ 2n − 1Þ − 4ct0 ; ð23Þ

Dn ¼ ðσ þ θt þ θ0 þ 2nÞðσ þ θt − θ0 þ 2nÞ: ð24Þ

The recurrence equation can be solved using continued
fractions. The result can be written as

tA0D−1
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A−1D−2
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B−3þ…

− t0C0 þ
tD0A1
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D1A2

B2þt0C2−t0
D2A3
B3þ…

¼ B0 ð25Þ

which, when truncated by the convergents of order N, and using Euler’s formula for continued fractions, gives an expansion
for the accessory parameter

t0ct0 ¼
ðσ − 1Þ2 − ðθt þ θ0 − 1Þ2

4
þ θ⋆ðσðσ − 2Þ þ θ2t − θ20Þ

4σðσ − 2Þ t0 þ
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32
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32σðσ − 2Þ −

ð1 − θ2⋆Þððθ0 − 1Þ2 − θ2t Þððθ0 þ 1Þ2 − θ2t Þ
32ðσ þ 1Þðσ − 3Þ

�
t20 þOðt30Þ; ð26Þ

which agrees to order tN0 with the logarithm derivative of τV
expansion of ct0 one derives from (5). The 3-term recurrence
equation (20) and its solution in terms of continued fractions
(25) are the basis for the so-called continued fraction, or
Leaver’s method [7] to compute angular eigenvalues and
quasinormal modes for the Teukolsky master equation. This
method allows for fast convergence, but suffers near the
extremal regime a → M, and the analytic structure of the
accessory parameter ct0 defined implicitly by (25) is unclear.
Finally, the symmetry σ → 2 − σ, which is clear from the
term-by-term expansion of ct0 , and a direct consequence of
the reflection property of semiclassical conformal blocks, is
completely missing from (25).
The relevance of the Riemann-Hilbert map ft0; ct0g →

fσ; ηg given by (5) relies on the fact that connection and
eigenvalues problems for the Eq. (4) can be stated in terms
of the monodromy data. For instance, one can show that the
existence of Frobenius solutions with prescribed asymp-
totic behavior near z ¼ 0 and z ¼ t0:

yðzÞ ¼
�
z0ð1þOðzÞÞ; z → 0;

ðz − t0Þ0ð1þOðz − t0ÞÞ; z → t0;

ð27Þ

which do not exist for generic ft0; ct0g, can be cast as
simpler condition on the monodromy parameter σ:

cos πσ ¼ cos πðθ0 þ θtÞ; ð28Þ

which will be relevant to the angular eigenvalue problem.
By the same structure, the conditions involved in the radial
problem can also be phrased in terms of monodromy data.
Consider the set of local solutions of (4)

yt0;þðzÞ ¼ ðz − t0Þθtð1þOðz − t0ÞÞ;
yt0;−ðzÞ ¼ ðz − t0Þ0ð1þOðz − t0ÞÞ; ð29Þ

y∞;þðzÞ ¼ ezz−θ⋆=2ð1þOð1=zÞÞ;
y∞;−ðzÞ ¼ e−zzθ⋆=2ð1þOð1=zÞÞ: ð30Þ

We can see that yt;� consist of a basis of solutions near
z ¼ t0 and y∞;� are a basis near z ¼ ∞. By algebraic
manipulation of the monodromy matrices, one can show
that the connection matrix Ct between these local solution
has the form
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where

ζ∞ ¼ e−
iπ
2
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π

2
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iπ
2
σ sin

π
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2
ðθt − θ0 − σÞ; ζ0t0 ¼ sin

π

2
ðθt þ θ0 þ σÞ sin π

2
ðθt − θ0 þ σÞ; ð32Þ

and ρt; ρ̃t; ρ∞; ρ̃∞ are normalization constants. These entries of Ct can be used to relate the scattering coefficients to fσ; ηg,
provided there is a symmetry connecting the solutions, relating ρi and ρ̃i—usually time reversal [19]. For quasinormal
modes, the condition is of no energy flux out of the black hole outer horizon—corresponding to z ¼ t0, and no energy flux
out of infinity requires Ct to be lower triangular. In turn, this requires η ¼ η0 with

eiπη0 ¼ ζ∞ζ
0
t0

ζ0∞ζt0
¼ e−iπσ

sin π
2
ðθ⋆ þ σÞ

sin π
2
ðθ⋆ − σÞ

sin π
2
ðθt þ θ0 þ σÞ sin π

2
ðθt − θ0 þ σÞ

sin π
2
ðθt þ θ0 − σÞ sin π

2
ðθt − θ0 − σÞ : ð33Þ

A fairly comprehensive formulation of the boundary problems involving the Teukolsky master equation in terms of
monodromy data can be found in [11].
Given these monodromy conditions, the system (5) will become overdetermined, and will only allow solutions for

particular discrete values of ft0; ct0g. In our application, t0 and ct0 are known once the quantum numbers s;l; m the black
hole parameters rþ and r− and the frequency ω is set. The transcendental equations (5) will then be used to determine the σ
variable in terms of these parameters through (26) and the condition that τV ¼ 0 will then allow for a solution only for
discrete values of ω, corresponding to the quasinormal modes’ frequencies. The solution thus obtained is not unique: given
the quasiperiodicity of τV (18), to any such value of σ there is a family σ þ 2n, n ∈ Z. Note that this periodicity is manifest
in the continuous fraction method, where the shift in σ by an even integer in (25) is compensated by an integer shift in n.
Given the meromorphic expansion (17), we can invert the expansion for the zero of the τ-function in (5) and derive an

equation for μ ¼ κVtσ, or eiπη as a series in t. Writing σ ¼ 2nþ σ̃, and supposing 0 < ℜσ̃ < 1, we have that τðθ⃗; σ; η; t0Þ ¼
0 implies

ΘVðθ⃗; σ̃Þeiπηtσ̃−10 ¼ χVðθ⃗; σ̃; t0Þ; ð34Þ

where

ΘVðθ⃗; σ̃Þ ¼
Γ2ð2 − σ̃Þ
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Γð1
2
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2
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2
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2
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Γð1þ 1
2
ðθt − θ0 − σ̃ÞÞ ; ð35Þ

and χVðθ⃗; σ̃; t0Þ is analytic near t0 ¼ 0:

χVðθ⃗; σ̃; t0Þ ¼ 1þ ðσ̃ − 1Þ θ⋆ðθ
2
t − θ20Þ

σ̃2ðσ̃ − 2Þ2 t0 þ
�
θ2⋆ðθ2t − θ20Þ2

64

�
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σ̃4
−

1

ðσ̃ − 2Þ4 −
2
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2
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�

−
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64

�
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σ̃2
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1

ðσ̃ − 2Þ2
�

þð1 − θ2⋆Þðθ2t − ðθ0 − 1Þ2Þðθ2t − ðθ0 þ 1Þ2Þ
128

�
1

ðσ̃ þ 1Þ2 −
1

ðσ̃ − 3Þ2
��

t20 þOðt30Þ: ð36Þ

For − 1 < ℜσ̃ < 0, one can obtain a similar expression

ΘVðθ⃗;−σ̃Þe−iπηt−σ̃−10 ¼ χVðθ⃗;−σ̃; t0Þ: ð37Þ

Either of the expressions (34) or (37) will hold in the fundamental branch of σ̃ ∈ ½0; 2�.
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Lastly, by making use of the identity ΓðzÞΓð1 − zÞ ¼
π= sin πz, we can show that, with the quantization condition
for η (33), we have

ΘVðθ⃗; σ̃Þeiπη0 ¼ −e−iπσΘVð−θ⃗; σ̃Þ: ð38Þ

Taking these relations into account, the equation for the
zero of τV turns into

−e−iπσ̃ΘVð−θ⃗; σ̃Þtσ̃−10 ¼ χVðθ⃗; σ̃; t0Þ; for ℜσ̃ > 0;

−eiπσ̃ΘVð−θ⃗;−σ̃Þt−σ̃−10 ¼ χVðθ⃗;−σ̃; t0Þ; for ℜσ̃ < 0:

ð39Þ

As a final remark, the successive terms in χV (36) can be
computed from the Fredholm expansion, but it is computa-
tionally more efficient to solve for τV ¼ 0 with (33)
directly.

A. Evaluating the τ-function

The Fredholm determinant formulation of the τ-function
(8) allows us with a method to compute it numerically up to
order tN, in polynomial time OðNαÞ. There is a variety of
methods to numerically compute Fredholm determinants
[37]. One such method is to truncate the kernels of the

operators A and Dc defined in (9) through simple Riemann
quadratures:

½A�kl ¼ AðzðkÞ; zðlÞÞ; ½Dc�kl ¼ DcðzðkÞ; zðlÞÞ;
zðkÞ ¼ Re2πik=N; zðlÞ ¼ Re2πil=N; ð40Þ

with the l’Hôpital’s rule for the diagonal terms. This
method allows for fast evaluation in cases where
jtj ≪ R, but relies on implementations of the hypergeo-
metric and confluent hypergeometric functions which may
not be compatible with arbitrary-precision arithmetic.
On the other hand, in order to recover the Nekrasov

expansion in [24], we must use a different basis for
truncation. First we expand the parametrices

Ψðσ; θt; θ0; zÞ ¼ 1þ
X∞
n¼1

Gnðσ; θt; θ0Þzn;

Ψcð−σ; θ⋆; t=zÞ ¼ 1þ
X∞
n¼1

Gc;nð−σ; θ⋆Þðt=zÞn ð41Þ

and compute the matrix elements associated to A and Dc in
the Fourier basis gðz0Þ ¼ P

n gnðz0Þn. The matrix-valued
coefficients Gnðσ; θt; θ0Þ and Gc;nð−σ; θ⋆Þ can be computed
from the expansion of the Gauss hypergeometric series:

Gnðσ; θt; θ0Þ ¼

0
BB@

ð1
2
ðσ−θtþθ0ÞÞnð12ðσ−θt−θ0ÞÞn

ðσÞnn!
ð1
2
ðσ−θtþθ0ÞÞnð12ðσ−θt−θ0ÞÞn

ð−σÞnþ1ðn−1Þ!

− ð1
2
ð−σ−θtþθ0ÞÞnð12ð−σ−θt−θ0ÞÞn

ðσÞnþ1ðn−1Þ!
ð1
2
ð−σ−θtþθ0ÞÞnð12ð−σ−θt−θ0ÞÞn

ð−σÞnn!

1
CCA; n ≥ 1; ð42Þ

and

Gc;nð−σ; θ⋆Þ ¼

0
BB@

ð1
2
ð−σ−θ⋆ÞÞn
ð−σÞnn!

ð1
2
ð−σ−θ⋆ÞÞn

ðσÞnþ1ðn−1Þ!
ð1
2
ðσ−θ⋆ÞÞn

ð−σÞnþ1ðn−1Þ!
ð1
2
ðσ−θ⋆ÞÞn
ðσÞnn!

1
CCA; n ≥ 1;

ð43Þ

where ðzÞn ¼ Γðzþ nÞ=ΓðzÞ is the Pochhammer symbol.
The kernels Aðz; z0Þ and Dcðz; z0Þ can be suitably ex-
panded:

Aðz; z0Þ ¼ G1 þ G2zþ ðG2 − G2
1Þz0 þ…;

Dcðz; z0Þ ¼ tGc;1
1

zz0
þ t2Gc;2

1

z2z0

þ t2ðGc;2 − ðGc;1Þ2Þ
1

zðz0Þ2 þ… ð44Þ

The resulting matrices are semi-infinite, and truncation
to order N gives an approximation to the Painlevé V

τ-function of order OðtN; jtjð1�ℜσ̃ÞNÞ. We refer to [25]
for the corresponding calculation for the Painlevé VI
τ-function.1 From the computational point of view, this
expansion is costlier, but has the bonus of not requiring
preexisting implementations of special functions, except
the gamma function.

III. ANGULAR AND RADIAL SYSTEMS

We are now ready to present the solution of the problem
as a series. The angular equation (1) can be brought to the
standard confluent Heun form (4)—θ in (1) being the
independent angular variable—by the change of variables

yAngðzAngÞ ¼ ð1þ cos θÞθAng;t=2ð1 − cos θÞθAng;0=2SðθÞ;
zAng ¼ −2aωð1 − cos θÞ; ð45Þ

1An arbitrary-precision implementation of the Painlevé VI and
V τ-functions in Julia programming language can be obtained in
https://github.com/strings-ufpe/painleve.
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where one can read the monodromy parameters

θAng;0 ¼ −m − s; θAng;t ¼ m − s; θAng;⋆ ¼ −2s;

ð46Þ

and the modulus and accessory parameter can be obtained
directly after some manipulations

tAng ¼ −4aω; tAngcAng;t ¼ λþ 2aωsþ a2ω2: ð47Þ

As derived previously [23], the τ-function expansion of
the accessory parameter (5) can be used, along with the
quantization condition (28) can be used to derive an
expression of the angular eigenvalue sλl;m

sλl;mðaωÞ ¼ ðl − sÞðlþ sþ 1Þ − 2ms2

lðlþ 1Þ aωþ
�
2ððlþ 1Þ2 −m2Þððlþ 1Þ2 − s2Þ2

ð2lþ 1Þðlþ 1Þ3ð2lþ 3Þ

−
2ðl2 −m2Þðl2 − s2Þ2
ð2l − 1Þl3ð2lþ 1Þ − 1

�
a2ω2 þOða3ω3Þ; ð48Þ

which agrees with the value found in the literature [12].
Along the same lines, the radial equation can be brought

to the canonical form by changing variables

RðrÞ ¼ ðr − r−Þ−ðθ−þsÞ=2ðr − rþÞ−ðθþþsÞ=2yRadðzRadÞ;
zRad ¼ 2iωðr − r−Þ; ð49Þ

where

θRad;0 ¼ θ− ¼ s − i
ω −mΩ−

2πT−
;

θRad;t ¼ θþ ¼ sþ i
ω −mΩþ
2πTþ

;

θRad;⋆ ¼ θ� ¼ −2sþ 4iMω; ð50Þ

2πT� ¼ rþ − r−
4Mr�

; Ω� ¼ a
2Mr�

: ð51Þ

We can now define the modulus and accessory parameter
for the radial equation

tRad ¼ z0 ¼ 2iðrþ − r−Þω;
tRadcRad;t ¼ z0c0 ¼ sλl;m þ 2sþ 2ið1 − 2sÞMω

− isðrþ − r−Þωþ ðM2a2 − 4MrþÞω2: ð52Þ

For the subsequent analysis, let us define

sin ν ¼ rþ − r−
rþ þ r−

¼ rþ − r−
2M

; a ¼ ffiffiffiffiffiffiffiffiffiffi
rþr−

p ¼ M cos ν;

ν ∈ ½0; π=2�; ð53Þ

in terms of which the parameters (51) and (52) are given by

θ−¼ s− i
2ð1−sin νÞMω−mcosν

sin ν
;

θþ¼ sþ i
2ð1þsin νÞMω−mcos ν

sin ν
; θ� ¼−2sþ4iMω;

ð54Þ

and

z0 ¼ 4iMω sin ν;

z0c0 ¼ sλl;m þ 2sþ 2ið1 − ð2þ sin νÞsÞMω

− ð3þ 4 sin νþ sin2νÞðMωÞ2: ð55Þ

We remark that θþ þ θ− ¼ 2sþ 4iMω has no explicit
dependence on ν.
This ν parameter defined by (53) correlates with the

black hole temperature as ν → 0:

2πTþ ¼ rþ − r−
4Mrþ

¼ sin ν
2Mð1þ sin νÞ : ð56Þ

Finally, for real ω, the imaginary part of the monodromy
parameter associated to the outer horizon θRad;t

ℑθRad;t ¼
ω −mΩþ
2πTþ

¼ δS
2π

ð57Þ

where δS has the interpretation, given by the first law of
black hole thermodynamics, as the entropy increase of the
black hole when it absorbs a quantum of field with energy
ω and angular momentum m. In [23] the authors expanded
in this relation and the implications to any putative under-
lying quantum theory. We can now proceed to the study of
the Eqs. (58).

IV. RESULTS FOR GENERIC a

The solution of the eigenvalue problem for the radial
equation is written as (5)
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τVðθ⃗Rad; σ; η0; tRadÞ ¼ 0;

tRad
d
dt

log τVðθ⃗Rad;−; σ − 1; η0; tRadÞ

−
θRad;0ðθRad;t − 1Þ

2
¼ tRadcRad;t; ð58Þ

where the value η0 is given in terms of θ⃗Rad and σ by the
quantization condition (33). By substituting the expansion
of the angular eigenvalue (48), the system (58) can be seen
as transcendental equations determining Mω and σ. By the

procedure outlined in Sec. II A, these equations can be
solved numerically. We are going to restrict ourselves to the
fundamental mode throughout.
The implementation of the τ-function was done in Julia

language using ArbNumerics, a port of the Arb C language
library for arbitrary-precision ball arithmetic, with 192-
digit accuracy. The determinant in (8) was truncated at
Nf ¼ 36, and the angular eigenvalue was computed the
continuous fraction method (25), capped at Nc ¼ 64
convergents. The roots of the transcendental equations (58)
were found using a simple Newton method. In Fig. 1, we

FIG. 1. Real (left) and imaginary (right) parts of the fundamental quasinormal frequency for s ¼ −2, l ¼ 2 and m ¼ 2 (top), m ¼ 1
(middle) and m ¼ 0 (bottom). The continuous line shows the numerical results from (58) and the dashed refers to the results obtained
with the continuous fraction method.
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compare the results with those using the continued fraction
method [8,38] for s ¼ −2 and l ¼ 2. In all light modes
studied, there was excellent agreement with the modes
studied and the literature.
The theorem on the Painlevé property of the isomono-

dromic τ-functions, of which τV is an example, assures that
the roots sought for in (58) are isolated [39] away from the
essential singularity at t0 ¼ 0. Near that point, there is an
accumulation of roots, which complicates the numerical
analysis in the extremal limit. In addition, the equations (58)
are satisfied by any mode, be it fundamental, excited or
even non-normalizable. In order to make sure we are
following the right root, an initial guess based on the
results in the literature is made at reasonable values of a=M
and then the root is followed by small variations of the a=M
factor. The difference between the roots found in the
literature are shown in Fig. 2, with excellent agreement
throughout, and the discrepancies increasing as one
approaches the extremal limit, where one expects the
method based solely on the continued fraction expansion
of the accessory parameter to fail. We will see below in
more detail the dependence of frequencies as r− → rþ,
where the continuous fraction method of the literature is
not valid.

V. THE a → M LIMIT

The extremal, or r− → rþ, limit can be studied using the
τ-function by taking the appropriate limit of the conditions
(5). The limit evades somewhat the numerical hurdles
alluded to in the last section, as well as provides analytic
tools to study the extremal case.
Let us first note that the angular equation has a smooth

limit of the parameters (46), (47), and then the eigenvalue
expansion will essentially be the same as above (48). We
will assume that one can in principle compute sλl;m as a
function of the frequency near the extremal value. We will
argue that this is in principle an amenable task.

The radial equation, on the other hand, will have a more
complex limit depending on the particular mode. Given the
ν parameter defined above (53), we now define in terms of ν
the confluence parameter

Λ ¼ θþ − θ−
2

¼ i
2Mω −m cos ν

sin ν
; ð59Þ

and the new isomonodromic variable

u0 ¼ Λz0 ¼ 4Mωðm − 2MωÞ − 4mMω

�
1 −

a
M

�

¼ 4Mωðm − 2MωÞ − 4mMωð1 − cos νÞ: ð60Þ

We observed two distinct behaviors forMω as we approach
the extremal limit ν → 0:
(A) Mω converges to m=2 with ν or higher order as

ν → 0. In this case the confluence parameter has a
finite limit, and the system is actually well described
by (58);

(B) Mω does not go to m=2 as ν → 0. In this case, the
confluence parameter Λ will diverge and one has to
consider the confluent limit of the equations for the
radial system (58).

We now proceed to analyze each case separately.

A. The finite Λ limit

We observed numerically that for the modes l ¼ m, with
m ≠ 0, the eigenfrequencies tend to m=ð2MÞ in the
extremal limit with ν or higher. To describe the behavior
of the solutions of (58) in this limit we propose the
expansion

Mω ¼ m
2
þ β1νþ β2ν

2 þ…; σ ¼ 1þ α;

α ¼ α0 þ α1νþ α2ν
2 þ…; ð61Þ

FIG. 2. The real (left) and imaginary (right) parts of the relative difference between the isomonodromic method based and the
continued fraction method for the s ¼ −2, l ¼ 2 and m ¼ 2. We note that the agreement worsens as a → M, where the expansion
parameter t of τV is smaller.
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where the coefficients βi and αi can be computed recur-
sively from the Eqs. (26) and (39). The consideration of the
series is simplified from the fact that the expansion
parameter z0 of the expressions for the accessory parameter
(26) and (36) is small

z0 ¼ 4iMω sin ν ¼ 2imνþOðν2Þ; ð62Þ

and Λ defined through (59) is finite. We then have that each
term of the expansions (26) and (36) is finite and the term of
order tn0 is of order νn.
In terms of ν, the accessory parameter for the radial

equation is

z0c0 ¼ sλl;m þ 2sþ 2ið1 − 2sÞMω − 3M2ω2

− 2ðisMωþ 2M2ω2Þν −M2ω2ν2 þOðν3Þ: ð63Þ

Finally, we will also expand the angular eigenvalue (48)

sλl;m ¼ λ0 þ λ1νþ λ2ν
2 þ…: ð64Þ

where we note that, despite being an expansion in
aω ¼ Mω cos ν, it can have odd terms in ν through its
dependence with Mω. We also remark that λ0 ¼
sλl;mðm=2Þ is the extremal value of the angular variable.
Substituting the series for Mω and σ into the expansion

for the accessory parameter (26), we can relate the
coefficients αi with βi and λi, and compute them recur-
sively. The first terms are

α0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ0 þ 4sðsþ 1Þ − 7m2

q
;

α1 ¼
2mð28λ0 þ 36s2 þ 28s − 41m2Þ

α0ð1 − α20Þ
β1 þ

2λ1
α0

: ð65Þ

The sign of α0 chosen will actually depend on the mode.
We can now substitute the expansions into (39) and find a
transcendental equation for the βi. Supposing σ̃ ¼ 1þ α̃,
with −1 < ℜα̃0 < 1, the first nontrivial term from (34) is

e−
3π
2
iα̃ Γð1 − α̃Þ2
Γð1þ α̃Þ2

Γð1
2
ð1þ α̃Þ − 2iβ1Þ

Γð1
2
ð1 − α̃Þ − 2iβ1Þ

Γð1
2
ð1þ α̃Þ − s − imÞ

Γð1
2
ð1 − α̃Þ − s − imÞ

Γð1
2
ð1þ α̃Þ − sþ imÞ

Γð1
2
ð1 − α̃Þ − sþ imÞ ð2mνÞα̃ ¼ 1þOðν; ν log νÞ: ð66Þ

The expansion of χV in (34) is analytic in ν, whereas the expansion of the tσ̃−1 and ΘV will include nonanalytic terms like
ν log ν. As one takes ν to zero, the term να̃ above will go to zero ifℜα̃ > 0, and the only way to satisfy the equation will be if
one of the gamma functions’ arguments in the numerator becomes very close to zero. Then

β1 ¼ −
i
4
ð1þ α̃0Þ þ

i
2

e
−3π
2
iα̃0

Γð−α̃0Þ
Γð1 − α̃0Þ2
Γð1þ α̃0Þ2

Γð1
2
ð1þ α̃0Þ − s − imÞ

Γð1
2
ð1 − α̃0Þ − s − imÞ

Γð1
2
ð1þ α̃0Þ − sþ imÞ

Γð1
2
ð1 − α̃0Þ − sþ imÞ ð2mνÞα̃0 þ… ð67Þ

So, if α0 is real, which should be expected if m is small,
then one picks the sign so that ℜα0 > 0. This behavior
seems to be restricted to the mode s ¼ 0, l ¼ m ¼ 1 and it
is shown in the top part of Fig. 3. Note that in this case the
correction to the real part of the frequency is of higher order
in ν. When m is large enough, one expects α0 to be purely
imaginary, and then the ν-dependent term in (67) will
oscillate logarithmically. This correction term will still be
small if ℑα̃0 < 0, which selects the negative root in (65).
The behavior is much more common and it is represented in
the bottom part of Fig. 3, where both real and imaginary
parts of the frequency display the linear behavior with ν.
Furthermore, in the case where α̃0 is purely imaginary, the
imaginary slope is approximately −ν=4. These modes are
perturbatively stable, but their decay time diverges as one
approaches the extremal limit.
Finally, we note that the Eq. (66) admits infinite roots of

the sort β1 → β1 − in=2, corresponding to the poles of the
gamma function at negative integral values of the argument.
This facts leads to the accumulation of zeros of the

τ-function alluded to in Sec. II. Similar remarks in the
same context were made from the continuous fraction
expansion in the excellent papers [16,17], albeit the last one
with a slightly different value for α0. Some of the results in
this section were anticipated by [40].

B. The confluent limit and the third Painlevé
transcendent

All modes with m ≠ l, including those with negative m,
will not tend to Mωext ¼ m=2 in the extremal limit. In this
case, the parameter Λ (59) goes off to infinity, and the
Eqs. (5) will undergo a confluent limit, where Λ → ∞ with
u ¼ Λt finite. In order to write the extremal version of (58),
we first have to take the confluent limit of the τ-function (8).
As the calculation is relatively short and to our knowl-

edge not present in the literature we include it here. We start
by considering (8) and deform the circle C multiplying its
radius by t. This has the effect of shifting the t dependence
in the argument from the kernel of D to A, so that
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Ãðz; z0Þ ¼ Ψ−1ðσ; θt; θ0; tz0ÞΨðσ; θt; θ0; tzÞ − 1
z − z0

;

D̃ðz; z0Þ ¼ 1 −Ψ−1
c ð−σ; θ⋆; 1=z0ÞΨcð−σ; θ⋆; 1=zÞ

z − z0
: ð68Þ

With this provision, we can now implement the confluent
limit on the parametrix Ψ

lim
Λ→∞

Ψ
�
σ;Λþ 1

2
θ°;−Λþ 1

2
θ°; uz=Λ

�

¼ Ψcðσ; θ°; uzÞ þ
uz
Λ

Ψð1Þ
c ðσ; θ°; uzÞ þ…; ð69Þ

where θ° ¼ θt þ θ0 is fixed and Ψcðσ; θ°; uzÞ is the same
confluent parametrix as above (14) and the first Λ−1

correction

Ψð1Þ
c ðσ;θ°;uzÞ¼

0
@ϕð1Þ

c ðσ;θ°;uzÞ χð1Þc ð−σ;θ°;uzÞ
χð1Þc ðσ;θ°;uzÞ ϕð1Þ

c ð−σ;θ°;uzÞ

1
A; ð70Þ

is also given in terms of confluent hypergeometric
functions

ϕð1Þ
c ð�σ;θ°;uzÞ¼

�σ−θ°
2 1F1

�
1

2
ð�σ−θ°Þ;�σ;−uz

�
;

χð1Þc ð�σ;θ°;uzÞ¼−
�σ−θ°
2ð1�σÞ

�
1F1

�
1þð�σ−θ°Þ

2
;2�σ;−uz

�
∓uz

σ

�
1þ�σ−θ°

2

�
1F1

�
2þð�σ−θ°Þ

2
;2�σ;−uz

��
:

ð71Þ

FIG. 3. The near-extremal behavior for the fundamental quasinormal frequency for s ¼ 0, l ¼ m ¼ 1 (top) and s ¼ −2, l ¼ m ¼ 2
(bottom). Both refer to the extremal behavior described in Sec. VA. In the top case, the α0 parameter is real, and near-horizon corrections
to the real part of the frequency are of higher order in ν. In the bottom, α0 is imaginary and corrections to both real and imaginary parts
are linear.
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Given the expansion of the parametrix, the expansion of the
kernel Ãðz; z0Þ then follows

Ãðz; z0Þ ¼ Ãcðz; z0Þ þ
u
Λ
Ãð1Þ
c ðz; z0Þ þOðΛ−2Þ; ð72Þ

where

Ãcðz; z0Þ ¼
Ψ−1

c ðσ; θ°;uz0ÞΨcðσ; θ°;uzÞ − 1
z − z0

; ð73Þ

Ãð1Þ
c ðz; z0Þ ¼ zΨcðσ; θ°; uz0ÞΨð1Þ

c ðσ; θ°;uzÞ − z0Ψ−1
c Ψð1Þ

c Ψ−1
c ðσ; θ°; uz0ÞΨcðσ; θ°; uzÞ

z − z0
: ð74Þ

We now turn into the confluent limit of the monodromy parameters. We will assume that η has a well-defined limit, which is
certainly the case in our application. The parameter κ has a well-defined function in terms of Λ, provided Λ is not close to
the negative real axis. Expanding the gamma functions in (15), we find

κtσ ¼ eiπηuσΠIII

�
1þ σ

2Λ
þOðΛ−2Þ

�
; where ΠIII ¼

Γð1 − σÞ2
Γð1þ σÞ2

Γð1þ 1
2
ðθ⋆ þ σÞÞ

Γð1þ 1
2
ðθ⋆ − σÞÞ

Γð1þ 1
2
ðθ° þ σÞÞ

Γð1þ 1
2
ðθ° − σÞÞ : ð75Þ

For convenience, we will refer to κIII ¼ ΠIIIeiπη and μ ¼
κIIIuσ in the following expressions.
The first term in the A kernel expansion (72) gives the

Painlevé III τ-function

τIIIðθ⋆; θ°; σ; η; uÞ
¼ u

1
4
σ2−1

8
θ2° e

1
2
u detð1 − Acκ

1
2
σ3
III u

1
2
σσ3DcðuÞκ−

1
2
σ3

III u−
1
2
σσ3Þ: ð76Þ

This definition can be compared to the expansion
given in [24] by comparing the first terms, see (80)
below.
It will be interesting to consider the first order term in

Λ−1 of the expansion of (8). Using well-known properties
of the determinant, we have

detð1 − Aκ
1
2
σ3
V t

1
2
σσ3DcðtÞκ−

1
2
σ3

V t−
1
2
σσ3Þ ¼ detð1 − Acκ

1
2
σ3
III u

1
2
σσ3DcðuÞκ−

1
2
σ3

III u−
1
2
σσ3Þ

×

�
1 −

1

Λ
Trðð1 − Acμ

1
2
σ3DcðuÞμ−1

2
σ3Þ−1

��
Að1Þ
c μ

1
2
σ3DcðuÞμ−1

2
σ3 þ 1

4
σAcμ

1
2
σ3 ½σ3;DcðuÞ�μ−1

2
σ3

��
þOðΛ−2Þ

�
; ð77Þ

where, again, μ ¼ eiπηΠIIIuσ . We note that the correction is
well-defined even when the determinant vanishes. Generi-
cally, for finite-dimensional matrices,

ðdet MÞM−1 ¼ adjðMÞ; ð78Þ

is the adjugate to M, which is the transpose of the cofactor
matrix.
The calculation of the τIII from (76) follows the same

strategy of Sec. II A, expanding the parametrices

Ψcðσ; θ°; zÞ ¼
X∞
n¼0

Gc;nðσ; θ°Þzn;

Ψcð−σ; θ⋆; u=zÞ ¼
X∞
n¼0

Gc;nð−σ; θ⋆Þðu=zÞn; ð79Þ

where the coefficients Gc;n are the same as (43). The
expansion of the confluent kernels Acðz; z0Þ andDcðz; z0Þ is
analogous to (44), and the expansion of the Painlevé III τ-
function (76) gives

τIIIðθ⋆;θ°;σ;η;uÞ¼u
1
4
σ2−1

8
θ2° e

1
2
u×

�
1−

σ−θ°θ⋆
2σ2

u−
ðσþθ°Þðσþθ⋆Þ
4σ2ðσ−1Þ2 κ−1IIIu

1−σ−
ðσ−θ°Þðσ−θ⋆Þ
4σ2ðσþ1Þ2 κIIIu1þσþOðu2;u2�2σÞ

�
:

ð80Þ
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For small u, the first correction in order Λ−1 is surprisingly simple

τV

�
Λ −

1

2
θ°;Λþ 1

2
θ°; θ⋆; σ; η;

1

Λ
u

�
¼

�
1þ θ⋆ − 2θ°

4Λ
u

�
τIIIðθ°; θ⋆; σ; η; uÞ þOðΛ−2; u2; u2�2σÞ; ð81Þ

so, to first order in Λ−1, the zero of the τ-function does not change from the extremal value.
The confluent limit of (5) can now be written explicitly

τIIIðθ⃗; σ; η; u0Þ ¼ 0; u0
d
du

log τIIIðθ⃗−; σ − 1; η; t0Þ −
ðθ° − 1Þ2

8
−
1

2
¼ u0k0; ð82Þ

where u0k0 is the confluent limit of t0ct0 . We solve these
conditions by using the same procedure as the one used
with τV . Inverting the series to find the value of η
corresponding to the zero of τIII , we find an expression
analogous to (34),

ΘIIIðθ⃗; σ̃Þeiπηuσ̃−10 ¼ χIIIðθ⃗; σ̃; u0Þ þOðΛ−2Þ; ð83Þ

where, as before,

ΘIIIðθ⃗; σ̃Þ ¼
Γð2 − σ̃Þ2
Γðσ̃Þ2

Γð1
2
ðθ⋆ þ σ̃ÞÞ

Γð1þ 1
2
ðθ⋆ − σ̃ÞÞ

Γð1
2
ðθ° þ σ̃ÞÞ

Γð1þ 1
2
ðθ° − σ̃ÞÞ ;

ð84Þ

and

χIIIðθ⃗; σ̃;u0Þ¼1þðσ̃−1Þ 2θ°θ⋆
σ̃2ðσ̃−2Þ2u0þðσ̃−1Þ

� ðθ2° −1Þðθ2⋆−1Þ
4ðσ̃þ1Þ2ðσ̃−3Þ2þ

θ2° þθ2⋆
4σ̃2ðσ̃−2Þ2−

ðσ̃4−4σ̃3þ10σ̃2−20σ̃þ20Þθ2° θ2⋆
4σ̃4ðσ̃−2Þ4

�
u20

þOðu30Þ: ð85Þ

As the quasiperiodicity in σ is inherited from τV , we have the same remarks about the fundamental domain of σ as before. In
the expansion of (83), we assumed 0 < ℜσ̃ < 1. Analogous expansions for ℜσ̃ < 0 can be derived following the same
procedure that led to (37).
The expansion of the accessory parameter k0 also follow the same lines, and has a structure parallel to (26):

u0k0¼
ðσ−1Þ2−ðθ°−1Þ2

4
þ θ°θ⋆
2σðσ−2Þu0−

�
θ2° θ

2⋆
2σ3ðσ−2Þ3þ

3θ2° θ
2⋆

8σ2ðσ−2Þ3−
θ2° þθ2⋆−θ2° θ

2⋆
8σðσ−2Þ −

ðθ2° −1Þðθ2⋆−1Þ
8ðσþ1Þðσ−3Þ

�
u20þOðu30Þ:

ð86Þ

Finally, the quantization condition (33) also has a well-
defined confluent limit. If Λ goes to ∞ in a ray with
argument sufficiently close to π=2, we have

eiπη0 ¼ e−2πiσ
sin π

2
ðθ⋆ þ σÞ

sin π
2
ðθ⋆ − σÞ

sin π
2
ðθ° þ σÞ

sin π
2
ðθ° − σÞ þOðe2iΛÞ: ð87Þ

For our application, this limit should hold if
ℜMω > m=2 in the extremal limit. If ℜMω < m=2, then
the argument of the exponential factor should be replaced
by þ2πiσ.
With the quantization condition, we can use the gamma

function reflection formula to simplify (85) into

e−2πiσ̃
Γð2 − σ̃Þ2
Γðσ̃Þ2

Γð1
2
ðσ̃ − θ⋆ÞÞ

Γð1
2
ð2 − σ̃ − θ⋆ÞÞ

Γð1
2
ðσ̃ − θ°ÞÞ

Γð1
2
ð2 − σ̃ − θ°ÞÞ

uσ̃−10

¼ χIIIðθ⃗; σ̃; u0Þ þOðu3;Λ−2Þ: ð88Þ

We are now ready to consider the extremal ν ¼ 0 case.
Let us define the extremal variables

θ⋆ ¼ −2sþ 4iMω; θ° ¼ 2sþ 4iMω;

u0 ¼ 4Mωðm − 2MωÞ;
u0k0 ¼ sλl;m þ 2s − 2ið1þ 2sÞMω − 3M2ω2; ð89Þ
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and the results for low-lying modes are shown in Tables I, II
and III. As can be checked, none haveMω close enough to
m=2 to warrant a meaningful truncation of the expansions
(88) and (86) at small order in u0. Based on the analysis
above, however, we can remark that, given the Λ−1

corrections to (86) and (88) only appear at order ν2, we
have that the near-extremal corrections to the frequencies
below are all of order OðT2þÞ, as illustrated in Fig. 4.

VI. DISCUSSION

In this paper, we applied the isomonodromic method
outlined in [19,23], and revised in Sec. II to study
quasinormal modes of the generic rotating Kerr black
holes. The procedure outlined in Sec. II A provides us
with a numerical procedure which is an alternative to the
continuous fraction method which, despite having a slower
convergence, has a more controlled behavior at the
extremal limit r− → rþ. In the method, the eigenvalue
problem is reduced to solving two transcendental equa-
tions (5), which is numerically amenable given the ana-
lytical properties of the functions involved. In Sec. III we
translated the conditions satisfied by the angular and radial
equations, and in Sec. IV we showed the excellent
accordance between the isomonodromic and the continued
fraction method for generic rotating parameter.
In Sec. V we turned to the extremal limit a → M limit.

Based on the results of the previous section, we found two
distinct behaviors as r− → rþ. In the l ¼ m modes, we
observed in Sec. VA that the eigenfrequencies approached
ωext ¼ m=ð2MÞ, in a manner generically linear with the
temperature. In the rest of the modes, the limit was seen in
Sec. V B to be generically described by a confluent version
of (5), involving the third Painlevé transcendent, whose
Fredholm determinant formulation for the τ-function

derived. By keeping the first near-extremal correction,
we could assert that the extremal value for the frequencies
approached the extremal value in a manner quadratic with
the temperature.
As was anticipated in [23], the method does not converge

faster than the standard continuous fraction method, but on
the other hand has its analytical properties more trans-
parent. Specifically, one can derive asymptotic formulas
and estimate the error terms in expressions like (67).
Although we restricted our study to the fundamental mode,
the method can be used to study higher modes, as they also
satisfy (5). We hope these initial results contained in this
text show the promise of the application of isomonodromy
to study problems related to accessory parameters of
Fuchsian differential equations and their confluent limits.
This is a very generic problem in the field of mathematics,
which include scattering and eigenvalue problems as
particular subcases.
We have found that in general the numerical results fall

in excellent accordance with the results in the literature,
with 7-8 digit accuracy. While one has, for the numerical
methods of choice, that the Stokes phenomenon displayed
in the solutions of (4) complicates the enforcement of
boundary conditions as soon as one considers nonreal
frequencies, it may be the case that, in principle, non-
analytical (in t) terms contribute to the expansion (8). Either
option is fully deserving of separate study. In a less
technical matter, it is still not clear which mechanism
selects a priori the different behaviors seen at the
extremal limit.
We hope that the method proves to be useful in other

black hole backgrounds whose perturbations are governed
by solutions of the confluent Heun equation (4), specifi-
cally the Reissner-Nordström and the Kerr-Newman

FIG. 4. The near-extremal behavior for the fundamental quasinormal frequency for s ¼ −1, l ¼ 2 and m ¼ 1. We note the roughly
quadratic dependence for small ν, which is consequence of the first near-confluent correction to the τIII-function involved.
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backgrounds. The more technical relations to conformal
field theories and integrable systems outlined in [23] are
also a very promising prospect, whose understanding may
shed light on a quantum description of the degrees of
freedom involved in the perturbation, and the finite, non-
linear perturbations. We hope to be able to return to these
points in future work.
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APPENDIX: TABLES OF QUASINORMAL
FREQUENCIES FOR EXTREMAL KERR

Wepresent below the values obtained for the fundamental
quasinormal modes’ frequencies for low values of l andm.
The resultswere obtained by solving equations (82) using an
Nf ¼ 36 expansion of the third Painlevé τ-function
Fredholm determinant (76), implemented using the Julia
language port of the Arb C library for arbitrary precision
arithmetic, set at 192-digit accuracy. The roots were found
using a simple Newton method, and are displayed here with
10-digit accuracy for presentation purposes.

TABLE II. The fundamental mode for vector s ¼ −1 perturbations of the extremal black hole obtained from (86) and (88). Again, the
l ¼ m ¼ 1, l ¼ m ¼ 2 and l ¼ m ¼ 3 modes don’t involve confluent limits.

l; m Mω −1λl;m
l ¼ 1, m ¼ 0 0.2748281298 − 0.0752324478i 1.9719892377þ 0.0166548111i
l ¼ 1; m ¼ −1 0.2043492138 − 0.0913479776i 2.1862313294 − 0.0715890886i
l ¼ 2, m ¼ 1 0.6421742977 − 0.0517543959i 5.6473843696þ 0.0388039369i
l ¼ 2, m ¼ 0 0.5010131351 − 0.0793652981i 5.9073835684þ 0.0298519612i
l ¼ 2; m ¼ −1 0.4175669677 − 0.0890692358i 6.0754297445 − 0.0004305330i
l ¼ 2; m ¼ −2 0.3604214984 − 0.0924215081i 6.2024454710 − 0.0413134591i
l ¼ 3, m ¼ 2 1.0594453891 − 0.0288707600i 11.2889266226þ 0.0284814980i
l ¼ 3, m ¼ 1 0.8454254991 − 0.0643820591i 11.5786857314þ 0.0527811581i
l ¼ 3, m ¼ 0 0.7169356912 − 0.0801969267i 11.7804802031þ 0.0496300959i
l ¼ 3; m ¼ −1 0.6277439795 − 0.0877125609i 11.9429953032þ 0.0319152006i
l ¼ 3; m ¼ −2 0.5609879632 − 0.0912326502i 12.0811096271þ 0.0053853626i
l ¼ 3; m ¼ −3 0.5085923435 − 0.0926316762i 12.2016953171 − 0.0269126158i

TABLE I. The fundamental mode for scalar s ¼ 0 perturbations of the extremal black hole obtained from solving (86) and (88). The
l ¼ m ¼ 1, l ¼ m ¼ 2 and l ¼ m ¼ 3 modes fall into the analysis outlined in Sec. VA.

l; m Mω 0λl;m

l ¼ 0, m ¼ 0 0.1102454759 − 0.0894331855i −0.0013797497þ 0.0065754944i
l ¼ 1, m ¼ 0 0.3149861271 − 0.0817137749i 1.9444359816þ 0.0309517044i
l ¼ 1; m ¼ −1 0.2394237989 − 0.0938214466i 1.9902942278þ 0.0090051928i
l ¼ 2, m ¼ 1 0.6643114515 − 0.0560535566i 5.8114879904þ 0.0321717438i
l ¼ 2, m ¼ 0 0.5241220471 − 0.0813229203i 5.8602337552þ 0.0441805059i
l ¼ 2; m ¼ −1 0.4391457612 − 0.0902770953i 5.9207350548þ 0.0340952252i
l ¼ 2; m ¼ −2 0.3803109539 − 0.0932780508i 5.9805544767þ 0.0101732386i
l ¼ 3, m ¼ 2 1.0715947258 − 0.0322379809i 11.6146118676þ 0.0233900184i
l ¼ 3, m ¼ 1 0.8617579225 − 0.0660049906i 11.6562448960þ 0.0528368609i
l ¼ 3, m ¼ 0 0.7333028611 − 0.0811680413i 11.7294008968þ 0.0604329503i
l ¼ 3; m ¼ −1 0.6433808795 − 0.0883909414i 11.8106880688þ 0.0529451496i
l ¼ 3; m ¼ −2 0.5757561619 − 0.0917564731i 11.8920985029þ 0.0353732242i
l ¼ 3; m ¼ −3 0.5225142116 − 0.0930632653i 11.9705661993þ 0.0108575306i
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[39] T. Miwa, Painlevé property of monodromy preserving
deformation equations and the analyticity of τ functions,
Publ. RIMS 17, 703 (1981).

[40] S. Hod, Slow relaxation of rapidly rotating black holes,
Phys. Rev. D 78, 084035 (2008).

TEUKOLSKY MASTER EQUATION AND PAINLEVÉ … PHYS. REV. D 104, 084051 (2021)

084051-17

https://doi.org/10.1007/JHEP07(2014)132
https://doi.org/10.1007/JHEP11(2015)144
https://doi.org/10.1007/JHEP11(2015)144
https://arXiv.org/abs/hep-th/0304080
https://doi.org/10.1088/0264-9381/30/16/165005
https://doi.org/10.1088/0264-9381/30/16/165005
https://doi.org/10.1103/PhysRevD.99.105006
https://doi.org/10.1103/PhysRevD.99.105006
https://doi.org/10.1103/PhysRevD.102.105013
https://doi.org/10.1103/PhysRevD.102.105013
https://doi.org/10.1088/1751-8113/46/33/335203
https://doi.org/10.1088/1751-8113/46/33/335203
https://doi.org/10.1007/s00220-018-3224-7
https://doi.org/10.1063/1.5031841
https://doi.org/10.1007/JHEP05(2019)033
https://doi.org/10.1007/JHEP04(2020)155
https://doi.org/10.1063/1.4937760
https://doi.org/10.1063/1.4937760
https://arXiv.org/abs/2006.06111
https://arXiv.org/abs/2105.00985
https://doi.org/10.1016/0167-2789(81)90013-0
https://doi.org/10.1016/0167-2789(81)90013-0
https://doi.org/10.1007/s00220-018-3230-9
https://doi.org/10.2977/prims/1195183300
https://doi.org/10.1088/0951-7715/13/5/319
https://arXiv.org/abs/2101.05715
https://doi.org/10.1090/S0025-5718-09-02280-7
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.2977/prims/1195185270
https://doi.org/10.1103/PhysRevD.78.084035

