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The definition of well-behaved coordinate charts for black hole spacetimes can be tricky, as they can lead
for example to either unphysical coordinate singularities in the metric (e.g., r ¼ 2M in the Schwarzschild
black hole) or to an implicit dependence of the chosen coordinates to physical relevant coordinates (e.g., the
dependence of the null coordinates in the Kruskal metric). Here we discuss two approaches for coordinate
choices in spherically symmetric spacetimes allowing us to explicitly discuss “solitary” and spherically
symmetric black holes from a regular horizon to null infinity. The first approach relies on a construction of a
regular null coordinate system (where regular is meant as being defined from the horizon to null infinity)
given an explicit solution of the Einstein-matter equations. The second approach is based on an affine-null
formulation of the Einstein equations and the respective characteristic initial value problem. In particular,
we present a derivation of the Reissner-Nordström black holes expressed in terms of these regular
coordinates.
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I. INTRODUCTION

The classical theory of general relativity (GR) predicts
the existence of fascinating compact objects like black
holes. They are, roughly speaking, regions of spacetime in
which our understanding of the physical laws breaks down
and from which no information can escape. That black
holes are not just an academic mathematical solution of
Einstein’s field equations but a true astrophysical object is
acknowledged in the 2020 Nobel prize. Not only the
gravitational collapse of a compact object is an inevitable
feature of nature but also a direct measurement of a black
hole shadow of the supermassive black hole in the galaxy
M87 has been obtained by the Event horizon telescope1

The 2020 award was given to the two astrophysicists,
Andrea Ghez and Rainer Genzel, and the mathematical
physicist Roger Penrose. While the astrophysicists received
the award for the (indirect) astronomical observation of the
central black hole in the Milky Way, Penrose received it
“for the discovery that black hole formation is a robust
prediction of the general theory of relativity [1].” But
Penrose’s contributions to our understanding of black holes
go further than this, as his research provided most of the
mathematical tools we use nowadays to analyze black hole

spacetimes. One of the defining properties of a black hole is
the presence of an event horizon, a null hypersurface
separating the interior of a black hole from an external
observer.
Since the analysis of a spacetime involves the definition

of a spacetime chart, adapted coordinates may be given in a
way that the metric gab is either well defined or singular if it
is evaluated at the horizon. On one hand, the classical
example in a spherically symmetric spacetime for singular
coordinates at the event horizon are the Schwarzschild
coordinates or the Eddington-Finkelstein coordinates. In
the first case, the metric components blow up at the event
horizon located at the radius r ¼ 2M, where M is the mass
of the black hole; while in the second case, the null
coordinate diverges at the horizon. On the other hand,
one example of well defined coordinates in spherical
symmetry at the black hole horizon is given by the
Kruskal-Szekeres coordinates, which are globally well
defined and only singular at the central singularity
r ¼ 0. If we are interested in studying matter fields in
the vicinity of the horizon, we can see that it is of
importance to have well-defined coordinates at the horizon
as otherwise no proper statements on the physical behavior
of those fields can be made. However, having well behaved
coordinates at the horizon is one side of the story, only,
because we do not only want to study fields at and near the
horizon. We also want to know how these fields behave far

1Not to mention the 2017 Nobel prize given to The LIGO
collaboration.
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away from it, as this is the region where the external
observer is making his/her measurements of the dynamical
processes taking place in the horizon’s neighborhood. In
particular, an astronomical observer far away from the
black hole measures electromagnetic (or gravitational)
radiation coming from the near region of the black hole.
This emitted radiation follows outgoing null geodesics and
the astronomical observer receives the radiation at the
asymptotic end of the outgoing null hypersurfaces gen-
erated by those geodesics.
Mathematically there are two ways to asymptotically

analyze radiation fields; in the first approach, matter fields
and the physical metric gab are expanded in the physical
spacetime with respect to inverse powers of a suitable radial
coordinate while the second approach employs the so-
called Penrose compactification of spacetime [2]. This
compactification consists in attaching a null boundary to
the physical spacetime. Thereby an extended conformal
spacetime manifold is built using a conformal metric ĝab ¼
Ω2gab in which Ω is a suitable conformal factor vanishing
at the null boundary. The attached null boundary is called
null infinity, I , and a local Taylor series expansion of
geometrical and physical quantities off I in the conformal
spacetime allows one to mathematically analyse the radi-
ation fields. There are in fact two such boundaries Iþ and
I−, also known as future null infinity and past null infinity.
Indeed, an idealized astronomical observer would be placed
at Iþ, in the far future of the black holes.
The first convincing understanding of nonlinear radia-

tion fields in general relativity has been done by Bondi and
collaborators [3,4]. They introduced a chart consisting of an
(outgoing) null coordinate u (corresponding to the retarded
time in Minkowski spacetime), an areal distance r and two
spherical angles xA ¼ ðθ;ϕÞ. Furthermore they required the
metric to approach a Minkowski metric in outgoing polar
null coordinates for the (physical) spacetime metric gab that
is expanded in inverse powers of r. In the asymptotic region
u ¼ const are null hypersurfaces, whose generating rays
are parametrized with r. This Bondi null coordinate u
however is not well suited to study fields at the horizon of a
black hole. As an example, we consider again charts in
Schwarzschild spacetime. First, with the well known
tortoise coordinate r�ðrÞ, the outgoing Eddington-
Finkelstein coordinate u¼ t−r� takes the form u ¼ t − r
for large values of r, where t is the inertial time of the
asymptotic observer, but u is singular at the horizon
r ¼ 2m. Second, Kruskal-Szekeres coordinates are well
defined at the horizon and they allow us to understand the
conformal structure of the Schwarzschild spacetime; how-
ever, the coordinates have the caveat that the areal distance
coordinate r is expressed as an implicit function in terms of
the Kruskal’s null coordinates and the standard flat space
null coordinates. Because of this, the analysis of fields near
the horizon and at large distances in his chart is difficult.
Yet, there is another (less known) global representation of

the Schwarzschild spacetime due to Israel [5,6] (and
rediscovered by [7,8], see also Blau’s online lecture notes
for a complete discussion [9]) where the metric of a
Schwarzschild black hole takes a simple and explicit form
with rational functions

gabdxadxb ¼ −
2y2

8m2 − wy
dw2 þ 2dwdy

−
�
2m −

wy
4m

�
2

ðdθ2 þ sin2θdϕ2Þ: ð1Þ

Israel obtained this metric by analyzing the null geodesics
in the standard Schwarzschild metric representation adopt-
ing the w coordinate to the null structure. The past and
future horizons in the above metric are given by y ¼ 0 and
w ¼ 0, respectively. Note that the radial coordinate x1 ¼ y
is an affine parameter of the null vectors generating the null
hypersurfaces w ¼ const, which is indicated by gwy ¼ 1.
For an asymptotic analysis using Penrose’s compactifica-
tion scheme, introducing an inverse affine parameter
ϒ ¼ ð4mÞ=y, a rescaling w → 4mw and a conformal factor
Ω ¼ ϒ=ð4mÞ, we then discover that the metric is given by
the conformal metric

ĝabdxadxb ¼Ω2gabdx̂adx̂b

¼−2dwdϒ−w2ðdθ2þ sin2 θdϕ2ÞþOðlÞ ð2Þ

which is well defined forϒ ¼ 0, i.e., at null infinity. We can
see that the coordinate pair ðw; yÞ consists of bona-fide
coordinates so that it allows us to construct a coordinate
chart at the horizon y ¼ 0 as well as in the asymptotic
region for y → ∞. It is of interest to see whether such pair
ðw; yÞ exist in a general sense, so that it can be used to chart
black hole spacetimes from a horizon to null infinity. The
main purpose of this work is to give an affirmative answer
for various spherically symmetric spacetimes. Thereby we
present two possible scenarios for achieving this aim. In the
first one we follow previous works of [10,11], where a
regular null coordinate system is constructed based on
geometrical restrictions (see Sec. II). In the second
approach, we follow the affine-null metric formulation
of Einstein equations [12–14], which is a formulation of
Einstein equations with respect to an affine-null metric.
This formulation shares similarities with the Bondi-Sachs
metric approach of General Relativity in which the relevant
field equations are cast into a hierarchical system [15]. We
demonstrate with the example of the Reissner-Nordström
solution that the two approaches lead to equivalent results.
The regular null coordinate framework of [10,11] is

summarized in Sec. II. The following sections employ this
framework for nonextremal (Sec. III A) and extremal
spherically symmetric black holes (Sec. III B). We also
show how it can be used to find a regular null coordinate
version of the outgoing (Sec. IVA) and ingoing (Sec. IV B)
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Vaidya solution. The spherically symmetric affine null
metric formulation is discussed in Sec. V, where the
Reissner-Nordström solution is derived using for the first
time a characteristic initial value formulation to obtain the
charged version of the metric (1).
To be in lines with [10,11], we follow the notation of

Geroch, Held and Penrose (GHP) [16], and work exclu-
sively with the negative signature convention −2 for the
physical metric.

II. THE FRAMEWORK

Using the above mentioned framework, we introduce
regular null coordinates based on the assumption that a
suitable family of null surfaces are caustic free in a
neighborhood of timelike infinity iþ containing a portion
of the black hole horizon Hþ and future null infinity Iþ.
In this paper, we assume the spacetime to be spherically

symmetric, asymptotically flat at future null infinity
ðM; gabÞ and containing a black hole; for more details
about the formalism we refer to [10,11].
We choose a Bondi coordinate u in such a way that it

coincides with the center of mass Bondi cuts in the regime
u → ∞ limit. In the past of an open set of future null
infinity (Iþ) defined by those points for which their Bondi
retarded time u is in the range u ∈ ðu0;∞Þwe require there
exists a smooth null function w ¼ wðuÞ such that w ¼ 0 at
the horizonHþ, limu→∞ w ¼ 0, _w≡ dw

du > 0, and w < 0 for
all u in the (exterior) region betweenHþ and Iþ. The kind
of metrics satisfying these conditions are referred as
solitary black holes (SBHs) in [10,11]. The associated
conformal diagram is depicted in Fig. 1.
The null geodesic congruence defined by l̃ ¼ du allows

for the introduction of an affine parameter r used as a radial
coordinate which is fixed by the requirement that it

coincides asymptotically with the luminosity distance
[11]. The surfaces ðr; uÞ ¼ constant are spheres which
inherit natural spherical coordinates defined in the Bondi
cuts at Iþ which label null rays of the congruence. All this
provides a coordinate system ðu; r; xAÞ with xA coordinates
of the two-dimensional sphere S2. In a similar way, we
define the one form la ≡ ðdwÞa, then, the geodesic vector
field la is also tangent to the null congruence defined by
l̃a. It is therefore natural to introduce the affine function y
through la ¼ ð ∂∂yÞa. Therefore, the functions ðw; yÞ can be
used as coordinate functions in the region where the null
congruence la does not show caustics. The affine param-
eter y, for each null geodesic, can be chosen so that the 2-
spheres u ¼ const, r ¼ const. coincide with the 2-spheres
w ¼ const, y ¼ const, implying the following relationship
between r and y:

r ¼ _wyþ r0ðwÞ: ð3Þ

Hence, one has a new coordinate system ðw; y; xAÞ where
xA are again coordinates of S2. We assume that r is a
smooth function of ðw; yÞ all the way up to the horizon.
Let us observe that from the null vector fields la and l̃a

one can construct null tetrads ðla; ma; m̄a; naÞ, and
ðl̃a; m̃a; ¯̃ma; ñaÞ adapted to the geometry of the coordinate
system introduced above.2 The freedom in this choice is
reduced by choosing the vectors ma ¼ m̃a, and tangent to
the topological 2-spheres ðw; yÞ ¼ constant ¼ ðu; rÞ.
From w ¼ wðuÞ it follows that dw ¼ _wdu which implies

the following relation between the two tetrads

la ¼ _wl̃a; na ¼ 1

_w
ña; ma ¼ m̃a: ð4Þ

If we denote the five (complex) Weyl tensor spinor compo-
nents [16] ΨN and Ψ̃N for N ∈ f0; 1; 2; 3; 4g in each of the
respective tetrads, then we get the following relations for the
Weyl curvature scalars ΨN ¼ _wð2−NÞΨ̃N . Similar relations
are obtained for the Ricci curvature scalars, in particular
Φ00 ¼ _w2Φ̃00, Φ11 ¼ Φ̃11 and Φ22 ¼ _w−2Φ̃22.
The above assumptions of regularity of the new coor-

dinates at the horizon imply that the limit rH ≡
limw→0 rðw; yÞ exists and is constant [10,11].
Since by assumption _wðwÞ admits a Taylor expansion

around w ¼ 0 we can write:

_w ¼ aðwÞ ¼ a1wþOðw2Þ: ð5Þ

Assuming that a1 ≠ 0 the above equation can be integrated
giving the important relation

FIG. 1. In the past of an open set of future null infinity defined
by those points for which their Bondi retarded time u is in the
range u ∈ ðu0;∞Þ we require the existence of a regular null
function w such that: w ¼ 0 at the horizon Hþ, and w < 0 in the
region of interest. In a vicinity of iþ, the null surfaces of constant
retarded time u are smooth all the way up to the event horizon
for SBHs.

2With the usual normalization 1 ¼ lana ¼ −mam̄a and 1 ¼
l̃aña ¼ −m̃a ¯̃ma with all other respective scalar products being
zero.
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wðuÞ ¼ − exp ða1ðu − u0ÞÞ þOðexp ð2a1uÞÞ; ð6Þ

where expð−a1u0Þ is the rescaling freedom mentioned
previously associated with the choice of origin for the
Bondi retarded time u.
As shown in [10] a1 has a clear geometrical meaning as

follows from the properties of the vector field χ ¼ ∂u:
(1) It is a smooth vector field that is a null geodesic

generator at Iþ. As u is a Bondi coordinate it
generates inertial time translations at future null
infinity.

(2) It is a null geodesic generator of the horizon Hþ.
(3) At the horizon Hþ, χ satisfies the equation,

χa∇aχ
b ≡ kHχb; ð7Þ

where kH is a generalized surface gravity.
(4) The coefficient a1 is the negative of the surface

gravity kH, i.e.,

a1 ¼ −kH ¼ const:

For a proof of these properties, we refer to [10].
Therefore, the family of spacetimes considered here

admits a notion of surface gravity which coincides with
the usual one in cases when the spacetime is stationary.
Note that if we had taken a1 ¼ 0 above, one would have
obtained kH ¼ 0. This situation corresponds to the special
cases involving (in particular) the stationary extremal black
holes. We will discuss this case in Sec. III B.
With this definition of surface gravity, the relation

between the null coordinate w and the Bondi retarded time
u in the case of kH ≠ 0 reads

w ¼ − exp ð−kHðu − u0ÞÞ þOðexp ð−2kHuÞÞ: ð8Þ

III. THE FORMALISM APPLIED TO
SPHERICALLY SYMMETRIC BLACK HOLES

In this section, we specify the regular coordinates ðw; yÞ
of the previously explained formalism for static, spherically
symmetric spacetimes. We discuss the nonextremal and
extremal solutions.
Consider a static and spherically symmetric metric in

Bondi coordinates with a timelike Killing vector ∂u,

ds2 ¼ fðrÞdu2 þ 2dudr − hðrÞ2dΩ2; ð9Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2, is the metric of an unit
sphere written in standard spherical coordinates, ðθ;ϕÞ, and
hðrÞ a smooth function which is nonvanishing at the
horizon. The event horizon of this metric is located on
the null surface r ¼ constant placed in the bigger root of
fðrÞ ¼ 0. Wewill call this root rH and assume that fðrÞ and

hðrÞ are regular functions at r ¼ rH. A null tetrad adapted
to this coordinate system is given by:

l̃a ¼
� ∂
∂r

�
a
; ð10Þ

ña ¼
� ∂
∂u

�
a
−
fðrÞ
2

� ∂
∂r

�
a
; ð11Þ

m̃a ¼ 1ffiffiffi
2

p
hðrÞ

�� ∂
∂θ

�
a
þ i
sinðθÞ

� ∂
∂ϕ

�
a
�
; ð12Þ

˜̄ma ¼ 1ffiffiffi
2

p
hðrÞ

�� ∂
∂θ

�
a
−

i
sinðθÞ

� ∂
∂ϕ

�
a
�
: ð13Þ

Using the GHP notation [16] the resulting expressions for
the nonvanishing spin coefficients are

ρ̃ ¼ −
1

h
dh
dr

; ρ̃0 ¼ f
2h

dh
dr

;

ϵ̃0 ¼ −
1

4

df
dr

; β̃ ¼ β̃0 ¼
ffiffiffi
2

p

4h
cotðθÞ: ð14Þ

In particular, as it is well known, the expansion ρ̃ associated
to the null congruence l̃a is not vanishing if evaluated at the
horizon. This unphysical result is a consequence that this
coordinate system is not regular there.

A. The nonextremal case (kH ≠ 0)

Now, we wish to make a coordinate transformation to
regular coordinates on the horizon ðw; yÞ. To do that we
assume that the black hole of interest is nonextremal, i.e.,
the case where

_w ¼ a1wþOðw2Þ: ð15Þ

Moreover, we assume that the relation between _w and w is
exactly linear, giving

w ¼ ea1u; ð16Þ

r ¼ a1wyþ rH: ð17Þ

The extremal case will be dealt with below. The previous
equations imply

du ¼ dw
a1w

; ð18Þ

dr ¼ a1ydwþ awdy: ð19Þ

By replacing these relations into Eq. (9), we get
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ds2 ¼
�
fða1wyþ rHÞ

a21w
2

þ 2y
w

�
dw2 þ 2dwdy

− ½hða1wyþ rHÞ�2dΩ2: ð20Þ

This is an exact expression for the class of metrics (9) in
terms of regular coordinates ðw; yÞ. As follows from
Eq. (17), in these coordinates the horizon Hþ is placed
at w ¼ 0.
We would like to study these metrics in the limit w → 0

at a neighborhood of the horizon. As of the regularity
requirements, we can make an expansion of gww in terms of
w. In a neighborhood of the horizon of size a1yw ≪ rH we
have,

fðrH þ a1ywÞ ¼ fðrHÞ þ f0ðrHÞa1yw

þ 1

2
f00ðrHÞa21y2w2 þOðw3Þ

¼ f0ðrHÞa1ywþ 1

2
f00ðrHÞa21y2w2

þOðw3Þ; ð21Þ
where we used fðrHÞ ¼ 0. Note that the regularity of the
metric (20) at w ¼ 0 requires

a1 ¼ −kH ¼ −
f0ðrHÞ

2
: ð22Þ

which is true for static and spherically symmetric metrics.
This is an independent way of proving (7) which is valid in
the spherically symmetric situation we are considering.
Hence, the expansion in Eq. (21) becomes

fðrHþa1ywÞ¼−2a21ywþ1

2
f00ðrHÞa21y2w2þOðw3Þ: ð23Þ

A similar expansion follows for hðrÞ, but starting with a
nonzero constant term hðrHÞ (because the area of the
horizon is not zero).
Therefore by replacing this expression into Eq. (20)

we get

gww ¼ 1

2
f00ðrHÞy2 þ

1

6
f000ðrHÞa1wy3 þ � � �

þ 1

n!
fðnÞðrHÞða1wÞn−2yn þOðwn−1Þ: ð24Þ

In particular the 4-dimensional spacetime metric at a
vicinity of the horizon reads,

ds2jr¼rH ¼ 1

2
f00ðrHÞy2dw2 þ 2dwdy − h2ðrHÞdΩ2

þOðw3Þ: ð25Þ

The spin coefficients associated to the new null coor-
dinate system are

ρ ¼ _w ρ̃ ¼ − _w

�
1

h
dh
dr

�����
r¼ _wyþrH

; ð26Þ

ρ0 ¼ 1

_w
ρ̃0 ¼ 1

2 _w

�
f
h
dh
dr

�����
r¼ _wyþrH

; ð27Þ

ϵ0 ¼
�
ϵ̃0

_w
−
1

2
ña∇að _w−1Þ

�����
r¼ _wyþrH

¼
�
−

1

4 _w
df
dr

þ kH
2 _w

�����
r¼ _wyþrH

; ð28Þ

β ¼ β̃ ¼
� ffiffiffi

2
p

4h
cotðθÞ

�����
r¼ _wyþrH

: ð29Þ

Note in particular, that now ρ ¼ 0 at the horizon (as it
should be), and even when ρ0 and ϵ0 have a factor _w−1 in
their expressions, they are regular at the horizon as it can be
seen by studying their limit using Eqs. (21) and (22). For
completeness we give expressions for the nonvanishing
scalar curvatures,

Φ00 ≔
_ω2

h
d2h
dr2

; ð30Þ

Φ11 ¼ −
1

8h2

�
d2f
dr2

h2 þ 2 − 2f

�
dh
dr

�
2
�
; ð31Þ

Φ22 ¼
f2

4 _ω2h
d2h
dr2

; ð32Þ

Λ ¼ −
1

24h2

�
d2f
dr2

h2 þ 4h
dh
dr

df
dr

þ 4fh
d2h
dr2

−2þ 2f

�
dh
dr

�
2
�
; ð33Þ

Ψ2 ¼
1

12h2

�
d2f
dr2

h2 − 2fh
d2h
dr2

− 2h
dh
dr

df
dr

−2þ 2f

�
dh
dr

�
2
�
: ð34Þ

Note that taking into account the Eq. (23) all these
curvature scalars are regular at w ¼ 0, including Φ22.
As an example let us consider a Reissner-Nordström

black hole,

fðrÞ ¼ 1 −
2m
r

þQ2

r2
; ð35Þ

hðrÞ ¼ r; ð36Þ

rH ¼ mþ ðm2 −Q2Þ12; ð37Þ

kH ¼ r2H −Q2

2r3H
ð38Þ
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we get from (20)

ds2 ¼ ð1 − 2kHðrþ rHÞÞy2
r2

dw2 þ 2dwdy − r2dΩ2; ð39Þ

with r ¼ −kHwyþ rH. In these coordinates, y ¼ 0 corre-
sponds to the nonexpanding null hypersurface H− being
the past null horizon. The future horizon Hþ is at w ¼ 0.
In the case Q ¼ 0, we obtain the Schwarzschild solution

ds2 ¼ −
2kHy2

−kHwyþ 2m
dw2 þ 2dwdy

− ðrH − kHwyÞ2dΩ2; ð40Þ

with corresponding kH ¼ ð2rHÞ−1. This is exactly the
solution found by Israel [see Eq. (1)] [5,6] (and rediscov-
ered by Pajerski and Newman [7] as well as Klöbsch and
Strobl [8], who also obtained the Reissner-Norström metric
in these coordinates using a connection between this metric
and highly symmetric solutions of particular two-dimen-
sional generalized dilaton gravity models.)
As noted by Blau [9], the Schwarzschild metric as

expressed in Eq. (40) admits the isometry w̃ ¼ λw, ỹ ¼
λ−1y which corresponds to the timelike Killing vector
χ ¼ −kHðw∂w − y∂yÞ. This property is also shared by
the more general metric given by Eq. (20).
As a final remark, let us note that our construction of

regular coordinates fw; yg for static and spherically sym-
metric asymptotically flat spacetimes is not restricted to
metrics which are solutions of the Einstein’s equations, as
long as the assumptions given by the regularity require-
ments are satisfied.

B. The extremal case kH = 0

In many situations, for certain choices of parameters that
describe a black hole, an extremal solution can be obtained
where the surface gravity is zero. Let us consider for
example the extremal case with f ¼ ð1 − rH

r Þ2. An extremal
Reissner-Nordström solution with Q ¼ m falls into this
family. In such a case, as the surface gravity is zero, (and
therefore a1 ¼ 0) a naive ansatz for Eq. (5) would be to
consider that _w ¼ a2w2, however it can be checked that the
resulting expression for the metric in fw; yg coordinates is
not regular at w ¼ 0. In the next subsections we will present
two alternative approaches to solve this problem.

1. Approach I: The direct construction
of an analytic null function w

The extreme Reissner-Nordström metric can be
expressed [17] by:

ds2 ¼ fðrÞdt2 − dr2

fðrÞ − r2dΩ2; ð41Þ

where

fðrÞ ¼
�
1 −

m
r

�
2

: ð42Þ

It is customary to define the tortoise coordinate

r� ¼
Z

r

r1

dr
f
; ð43Þ

which for the extremal Reissner-Nordström metric gives

r� ¼ rþ 2m ln

�
r −m
m

�
−

m2

r −m
þ c1: ð44Þ

Then, it is usual to define the (outgoing/ingoing) null
coordinates,

u ¼ t − r�; ð45Þ
and

v ¼ tþ r�: ð46Þ
In general one can consider other families of null

coordinates where the metric can be expressed as:

ds2 ¼ −4fðrÞAðuÞBðvÞdudv − r2dΩ2; ð47Þ

with

dr ¼ −fðrÞðAðuÞduþ BðvÞdvÞ; ð48Þ

which for the previous case of (45) and (46) one has to take

AðuÞ ¼ −BðvÞ ¼ 1

2
; ð49Þ

and note that in this case one has

dr� ¼ 1

f
dr ¼ −

1

2
ðdu − dvÞ: ð50Þ

We now look for a null coordinate w which is regular
near the horizon, with

ds2 ¼ −fðrÞAðwÞBðvÞdwdv − r2dΩ2: ð51Þ

Recall that the null radial geodesic equation is [17]
[p. 216, Eq. (70)]:

dr
dλ

¼ �E; ð52Þ

so that along these null geodesics the radial coordinates is
proportional to the affine parameters. In particular for the
incoming null radial geodesics one has
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dr
dλ

¼ −EðvÞ; ð53Þ

where we have the freedom to choose for different v’s
different constants E > 0.
Let us consider then the incoming null geodesics, that is

with dv ¼ 0. Then, in the integral form one must have

r� ¼ −
Z

α0ðwÞdw; ð54Þ

where α0ðwÞ≡ dα
dw; so that

r� ¼ rþ 2m ln

�
r −m
m

�
−

m2

r −m
þ c1 ¼ −αðwÞ: ð55Þ

Since r behaves as the affine parameter, we can think of λ
as given by EðvÞλ ¼ −ðr −mÞ, and as we want w to be
regular at the horizon, r ¼ m, we take, along a null
geodesic in v ¼ v0, Eðv0Þ ¼ E0 > 0 and w ¼ λ, so that
we set

α

m
¼ −2 ln

�
−
E0

m
w

�
−

m
E0w

þ E0

m
w; ð56Þ

since in this way we capture the two terms with divergent
behaviors, and where we have divided by m the original
expression to deal with quantities without units.
Then, recalling the relation between r� and u at constant

v, we have

α

m
¼ −2 ln

�
−
E0

m
w

�
−

m
E0w

þ E0

m
w ¼ u − u0

2m
; ð57Þ

where without loss of generality we can take u0 ¼ 0, so that
after differentiation with respect to u we obtain

_w ¼ 1

2

E0w2

ðE0w −mÞ2 : ð58Þ

with a Taylor expansion around w ¼ 0,

_w ¼ E0

2m2

�
w2 þ 2

E0

m
w3

�
þOðw4Þ: ð59Þ

Note that w ¼ 0 corresponds to u → ∞, _w > 0 in the
exterior region of the black hole and it has an analytic
expansion in powers of w. Equation (57) [or equivalently
(58)] define our desired w coordinate.

Relation with coordinate y.—With respect to the coordinate
y, for an incoming null geodesic, contained in the hyper-
surface v ¼ v0, one will have a functional dependence of
the form yvðwÞ ¼ yvðλÞ.

The general relation between r and y is of the form:

r ¼ _wðy − y0ðwÞÞ þ r̃0ðwÞ ¼ _wyþ r0ðwÞ; ð60Þ

where we know that in general rH ≡ r0ðw ¼ 0Þ is the
radius of the horizon.
Then, along the incoming null geodesic, contained in the

hypersurface v ¼ v0, one will have

r ¼ _wðyvðwÞ − y0ðwÞÞ þ r̃0ðwÞ ¼ m − E0w; ð61Þ

due to the previous relation between affine parameter and
radial coordinate.
Let us note that at this stage we have the freedom to

choose y0ðwÞ and the function r̃1ðwÞ, in r̃0ðwÞ ¼
rH þ r̃1ðwÞ, with limw→0 r̃1ðwÞ ¼ 0, and rH ¼ m.
Choice (a) Let us consider the choice of y0ðwÞ so that:

_wy0ðwÞ ¼ r̃1ðwÞ; ð62Þ

then we would have

r ¼ _wyþ rH; ð63Þ

so that when we take y ¼ 0 one would have r ¼ rH, that is
the past horizonH−. Note that in this case y ¼ 0 implies an
incoming null geodesic contained in H−.
Let us note that although this seems to be a natural

choice, it might involve a singular definition for the
coordinate y; which is related to the fact that H− can
not be taken as the initial incoming null hypersurface, used
in the previous mechanism to define the coordinate w, since
it is outside the manifold covered by v.
Choice (b) From the previous discussion one is tempted

to consider

r̃1ðwÞ ¼ −E0w: ð64Þ

Then, for incoming null geodesic, contained in the hyper-
surface v ¼ v0, one will have from (61) that

_wðyvðwÞ − y0ðwÞÞ ¼ 0; ð65Þ

so that in particular, by taking y0ðwÞ ¼ 0 one would have
that at the original incoming null geodesic

yvðwÞ ¼ 0; ð66Þ

that is we choose in this way that the value 0 of coordinate y
is at the original incoming null geodesics. Then we would
have

r ¼ _wyþ rH − E0w: ð67Þ

Note that for Choice (a) one has r0 ¼ rH ¼ m; while
Choice (b) one has r0 ¼ rH − E0w ¼ m − E0w.
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Relation with the W≔gww component.—Using dw ¼ _wdu,
one has

fdu2 þ 2dudr ¼ f
_w2

dw2 þ 2

_w
dwdr − r2dΩ2: ð68Þ

And using the relation of rðw; yÞ one has

ds2 ¼
�
f
_w2

þ 2

_w

�
d _w
dw

yþ dr0
dw

��
dw2 þ 2dwdy

− r2dΩ2; ð69Þ

which shows the gww dependence on the choice of gauges
y0 and r0 or equivalently r̃0. Note that

W¼ð _wyþ r0ðwÞ−mÞ2
_w2ð _wyþ r0ðwÞÞ2

þ 2

_w

�
E0mw

ðm−E0wÞ3
yþdr0

dw

�
; ð70Þ

so that for Choice (a) one has

W ¼ y2

ð _wyþmÞ2 þ
2

_w
E0mw

ðm − E0wÞ3
y: ð71Þ

However, it is not well behaved at Hþ, W ¼
4y=wþ y2=m2 þ 4E0y=mþOðwÞ. Therefore, it does not
serve our purposes.

Notwithstanding, for Choice (b) one has

W ¼ ð _wy − E0wÞ2
_w2ð _wyþm − E0wÞ2

þ 2

_w

�
E0mw

ðm − E0wÞ3
y − E0

�

¼ −
4ð2w4E4

0 − 5w3E3
0mþ 3w2E2

0m
2 þ wE0m3 − w3yE2

0 −m4Þmy2

ð−E0wþmÞð−2w3E3
0 þ 6w2E2

0m − 6wE0m2 þ 2m3 þ w2E0yÞ2
; ð72Þ

which is well behaved at a neighborhood of Hþ,
W≈y2=m2þ6y2E0w=m3þOðw2Þ. Note also that Wjy¼0 ¼
W;yjy¼0 ¼ 0, in agreement with the condition that the
hypersurface y ¼ 0 be null with w as an affine parameter
of its null vector generator n ¼ ∂w (cf. Sec. V).
Hence, the coordinate system ðw; yÞ related to the Bondi

coordinates ðu; rÞ by

u ¼ 2m

�
−2 ln

�
−
E0

m
w

�
−

m
E0w

þ E0

m
w

�
; ð73Þ

r ¼ 1

2

E0w2

ðE0w −mÞ2 yþm − E0w; ð74Þ

is the kind of coordinates that accomplishes the require-
ments of Sec. II.

2. Approach II: Requiring regularity
of W at the horizon

We can also consider a more general transformation and
see the necessary conditions for the metric to be regular at

w ¼ 0. First, let as note that at the considered case
fðrHÞ ¼ f0ðrHÞ ¼ 0. Let us assume that

r ¼ _wyþ r0ðwÞ ¼ aðwÞyþ r0ðwÞ; ð75Þ

and make and expansion of aðwÞ and r0ðwÞ of the form

aðwÞ ¼ a2w2 þ a3w3 þOðw4Þ; ð76Þ

r0ðwÞ ¼ rH þ r1wþOðw2Þ; ð77Þ
with a2 ≠ 0. Therefore, by replacing du ¼ dw= _aðwÞ and
(75) in (9) and expanding in w we obtain

ds2 ¼ Wdw2 þ 2dydw − r2dΩ2; ð78Þ
with W given by

W ¼ f
aðwÞ2 þ

2

aðwÞ
�
daðwÞ
dw

yþ dr0
dw

�
: ð79Þ

Taking into account the relation Eqs. (76) and (77), we
obtain the following expansion of W in powers of w:

W ¼ ða2r1Þ2f00ðrHÞ þ 4r1a32
w2a42

−
−24a52yþ 12a3r1a32 þ ð6a3a22r21 − 6a42r1yÞf00ðrHÞ − a32r

3
1f

000ðrHÞ
6wa52

þOðw0Þ; ð80Þ

with f00ðrHÞ ¼ 2
r2H
, f000ðrHÞ ¼ − 12

r3H
.
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For the metric to be regular at w ¼ 0, the Oðw−2Þ and
Oðw−1Þ contributions must vanish. The Oðw−2Þ term is
zero if r1 ¼ 0 or r1 ¼ − 4a2

f00ðrHÞ ¼ −2r2Ha2. However, the
solution r1 ¼ 0 must be discarded because in that case the
Oðw−1Þ term of (80) cannot be made zero. Taking knowl-
edge of this, we solve for a3 from the requirement of
vanishing of the Oðw−1Þ term, resulting in

a3 ¼ −
4

3

f000ðrHÞ
ðf00ðrHÞÞ2

a22 ¼ 4rHa22:

Hence, we have obtained that a family of regular
coordinates at the neighborhood of w ¼ 0 is determined by

aðwÞ ¼ a2ðw2 þ 4rHa2w3Þ þOðw4Þ; ð81Þ

r0ðwÞ ¼ rH − 2a2r2HwþOðw2Þ; ð82Þ

with a2 a free parameter. Note that the transformation given
by (58) [with expansion (59)] and (74) are compatible with
the expansions (81) and (82) by setting a2 ¼ E0

2r2H
. Of course,

there exist other possibilities that satisfy these relations.
However, as we will see in Sec. V, these coordinates
naturally appear in the affine-null metric formulation of the
Einstein-Maxwell equations. An alternative proposal for
the transformation fu; rg → fw; yg that can be checked to
satisfy the relations (81)–(82) and which is also global in
the sense that admit maximal extension of the metric can be
found in [8].
To end this section, it is worthwhile to mention that at the

horizonHþ, the Killing vector χa ¼ ð∂uÞa expressed in the
fw; yg basis coordinates reads χajHþ ¼ −r1ð∂yÞa ¼
2a2r2Hl

a. In particular, χa never vanishes at Hþ, in
agreement with the well-known result that extremal black
holes do not have bifurcated Killing horizons [18].

IV. VAIDYA SPACETIMES

Here we present the outgoing and ingoing Vaidya
solutions in the regular coordinates ðw; yÞ.

A. The retarded Vaidya spacetimes

Expressions for the outgoing Vaidya metric in regular
ðw; yÞ-type coordinates have already been discussed in the
literature by Israel [5] and Fayos et al. [19]. However, our
coordinate expression is not exactly the same and for
completeness we present the form of this solution in the
framework of Sec. II.
The Vaidya metric in Bondi coordinates is known

as [20]

ds2 ¼
�
1 −

2mðuÞ
r

�
du2 þ 2dudr − r2dΩ2 ð83Þ

In order to obtain the well behaved coordinates satisfying
the requirements of Sec. I we define

w ¼ − expð−kHuÞ; ð84Þ

with kH ¼ 1=ð4m0Þ where m0 ¼ limu→∞mðuÞ and r ¼
_wyþ 2m0 which gives

rðw; yÞ ¼ 2m0 −
yw
4m0

: ð85Þ

In the new coordinates, the metric becomes

ds2 ¼
�4m0

w

	
2
�
2 −

2mðwÞ
rðw; yÞ −

rðw; yÞ
2m0

�
dw2

þ 2dwdy − r2ðw; yÞdΩ2; ð86Þ

and the Ricci tensor that follows from Einstein’s equations
is given by,

Rab ¼
8m0

wrðw; yÞ2
dm
dw

lalb ¼ ρoutlalb; ð87Þ

with ρout representing the energy density of outgoing
(scalar) radiation. Physically, its divergence would signal
the presence of a firewall of outgoing radiation at the
horizon detected as a physical divergence of ρout for any
observers crossing the horizon. In principle there is not a
constraint on the dependence of mðwÞ with w, however, in
our setting, as explained in Sec. II, we require regularity of
the metric at the horizon. Such regularity therefore imposes
that mðwÞ ¼ m0 þ w2m2 þOðw3Þ. In terms of the Bondi
mass mðuÞ at Iþ representing a fall-off of the form
expð−2kHuÞ to the Schwarzschild geometry.
The previous result has an intuitive meaning: in order for

outgoing Vaidya radiation to escape to Iþ for late u → ∞ it
has to be sent with increasingly high local energy from the
vicinity of the black hole horizon where the geometry
imposes an ever increasing redshift.
This effect has been pointed out before by Israel [5] in

terms of null coordinates that are very similar to the ones
used here (See also Fayos et al. where global extensions of
this metric are discussed [19]). This effect is also reminis-
cent of the Christensen-Fulling regularity conditions of the
stress tensor in semiclassical studies of QFT on the
Schwarzschild background [21].

B. Ingoing Vaidya: Collapsing null shell

As a second application for Vaidya spacetimes we
consider a collapsing null shell. We assume that the
spacetime inside the shell is Minkowskian charted with
the standard double null coordinates, the retarded time
uM ¼ tM − rM, the advanced time vM ¼ tM þ rM and
spherical angles xAM ¼ ðθ;ϕÞ so that the metric is given by,
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ds2 ¼ dvMduM − r2MqABdx
A
Mdx

B
M: ð88Þ

with

2rM ¼ ðvM − uMÞ: ð89Þ
The shell collapses (Fig. 2) at the advanced time vM ¼ vi
and its metric outside is described by a Schwarzschild
metric in double null coordinates ðu; v; xAÞ

ds2 ¼
�
1 −

2m
r

�
dvdu − r2qABdxAdxB ð90Þ

where r is the areal radius function related to u and v by

2r� ¼ v − u; ð91Þ
with r� the tortoise coordinate

r� ¼ rþ 2m ln

�
r
4m

− 1

�
: ð92Þ

We require matching at the shell, i.e.: xAM ¼ xA, v ¼
vM ¼ vi and the continuity of the areal radius function

rðu; viÞ ¼ rMðuM; viÞ ¼
vi − uM

2
: ð93Þ

From the transformation (91), the metric (90) can be
rewritten in terms of the Bondi coordinates (outgoing
Eddington-Finkelstein coordinates) as

ds2 ¼
�
1 −

2m
r

�
du2 þ 2drdu − r2qABdxAdxB: ð94Þ

By replacing (91) and (93) into (92) (evaluated at v ¼ vi)
we obtain

2r� ¼ ðvi−uÞ¼ ðvi−uMÞþ4m ln

�
vi−uM
4m

−1

�
: ð95Þ

Hence,

u ¼ uM − 4m ln

�
vi − 4m − uM

4m

�
: ð96Þ

Now we define a new global coordinate

w≡ uM − vi þ 4m; ð97Þ

where w < 0 outside the black hole horizon. In terms of w,
(96) reads

u ¼ wþ vi − 4m − 4m ln

�
−

w
4m

�
: ð98Þ

From this relation we find

dw
du

¼ _w ¼ 1

ð1 − 4m
w Þ

¼ −
kHw

1 − kHw

¼ −kHwð1þ kHwþ ½kHw�2 þ � � �Þ ð99Þ

with kH ¼ 1=4m, the surface gravity of the resulting
Schwarzschild black hole. Note that (99) is positive for
w < 0. The expansion in (99) shows the regularity at
w ¼ 0. Applying the coordinate transformation (98) to
(94) while using (99) yields

ds2 ¼
�
1 −

2m
r

��
1 −

4m
w

�
2

dw2 þ 2dr

�
1 −

4m
w

�
dw

− r2dΩ2: ð100Þ

From Eq. (3) and taking r0ðwÞ ¼ rH ¼ 2m, we obtain

r ¼ y
ð1 − 4m

w Þ
þ 2m ð101Þ

whose total differential is

dr ¼ dy
ð1 − 4m

w Þ
−

4mydw
w2ð1 − 4m

w Þ2
: ð102Þ

Note that from (96), w and uM only differ by a constant, and
therefore the associated affine parameters can also be
chosen to agree, i.e., rM ¼ y. Moreover, using this iden-
tification between rM and y and taking into account
Eqs. (93) and (97), we see that the null shell vM ¼ vi is
described in the fw; y; xAg coordinates by y ¼ 2m − w

2
.

This gives us the final form of the metric,

FIG. 2. Penrose’s diagram for the collapsing null shell. For
values v < vi the spacetime is Minkowski, v ¼ vi is the null shell
and v > vi is the conformal diagram of a Schwarzschild
black hole.
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ds2 ¼
8<
:

−yðw2−12mwþ32m2−8myÞ
ð4m−wÞðywþ2mw−8m2Þ dw2 þ 2dydw −

�
yw

w−4m þ 2m
	
2
dΩ2 y > 4m−w

2

dw2 þ 2dwdy − y2dΩ2 y ≤ 4m−w
2

ð103Þ

In the bottom we have the Minkowski metric where we
can recognize y ¼ rM is the affine parameter. The metric
turns into the top one at the position of the shell. Notice that
rM (the Minkowski radius) does not coincide with the affine
parameter corresponding to the Bondi null hypersurfaces
u ¼ constant that here we call r.

V. EINSTEIN-MAXWELL FIELDS: A NULL
AFFINE CHARACTERISTIC FORMULATION

In the previous sections, we have seen how to construct
null regular coordinates starting from known spacetime
solutions of the field equations written in Bondi type
coordinates. In fact, the considered approach is valid
regardless of the validity of Einstein’s equations, as long
as the requirements demanded in the introduction are met.
A valid question is whether these coordinates can be
obtained naturally by a direct solution of the field equa-
tions, without the need to previously go through another
(Bondi) coordinate system. The answer to this question is
affirmative and leads toward the affine-null metric formu-
lation of Einstein equations [12]. In particular, we present
as an example, and for the first time in the literature, how to
obtain the Reissner-Nordström solution directly at these
regular coordinates starting with a characteristic formu-
lation of Einstein’s equations, i.e.; giving certain data on a
certain 2-sphere and on two null surfaces that intersect it
orthogonally.

A. The characteristic initial value formulation

In a spherically symmetric spacetime charted with
coordinates xa ¼ ðw; y; xAÞ consider a family of null
hypersurfaces N w ¼ fw ¼ constg. The surface forming
rays of N w are parametrized with an affine parameter
x1 ¼ y. Suppose there is a designated null hypersurface B
whose generators are orthogonal to those of N w. At the
common intersections Σw of N w and B, we set y ¼ 0
(Fig. 3). As any 4-dimensional spherically symmetric
manifold can be represented as a product of two dimen-
sional spacetimes and round 2-spheres whose total surface
areas are given by 4πr2 using a radius function rðxaÞ, we
choose the area function r such that the common inter-
sections of N w and B have the area 4πr2ðw; y ¼ 0Þ for
every value of w. The coordinates xA are the standard
spherical angles of the spheres.
A four dimensional metric with signature −2 adapted to

the above is given by

gabdxadxb ¼ Wdw2 þ 2dwdy − r2qABdxAdxB; ð104Þ

and its inverse metric is given by

gab∂a∂b ¼ 2∂w∂y −W∂2
y −

qAB∂A∂B

r2
; ð105Þ

where qAB ¼ diagð1; sin2 θÞ, Wjy¼0 ¼ 0 because the coor-
dinate surface y ¼ 0 is the null hypersurface B. We remark
that the affine parameter y has the gauge freedom
y → AðwÞ þ BðwÞy. On B we have the additional freedom
to choose w as an affine parameter along its generators
giving the further condition W;y ¼ 0

3 [14,22]. Ingoing (n)
and outgoing (l) null vectors in terms of the metric
fields are

la ¼ ð∂yÞa; na ¼ ð∂wÞa þ
W
2
ð∂yÞa; ð106Þ

whose expansion rates are4

Θl ¼ ∇ala ¼ ∂y ln r2; ð107Þ

Θn ¼ ∇ana ¼ ∂w ln r2 þ
ðWr2Þy
2r2

: ð108Þ

We consider the existence of a covector field Aa ¼
ðAw; Ay; 0; 0Þ forming the Faraday tensor Fab ¼ 2A½b;a� of
an electromagnetic field in vacuum. The Faraday tensor has
the gauge freedom in Aa → Aa þ χ;a with the real scalar
field χ allowing us to choose Ay ¼ 0 everywhere, by
selecting a χ such that [15,23]

χðw; yÞ ¼ −
Z

y

0

Ayðw; ỹÞdỹ: ð109Þ

Hence, we have in the adapted null gauge

Aa ¼ αðw; yÞdw: ð110Þ

Here, we formulate a metric-based spherically symmetric
characteristic initial value problem with respect to Σw, B

3On B, the null vector najB ¼ ð∂wÞa satisfies the geodesic
equation nb∇bna ¼ − 1

2
W;yna.

4In order to preserve notation of previous works [14] (where
y ¼ λ), in this section we will not make use of the GHP notation.
However, note that in general Θl and Θn are related to the GHP
scalars ρ, ρ0, ϵ and ϵ0 by: Θl ¼ −ðρþ ρ̄Þ þ ϵþ ϵ̄, Θn ¼ −ðρ0 þ
ρ̄0Þ þ ϵ0 þ ϵ̄0 respectively. In particular, in the case that l, n are
affine parametrized, ϵþ ϵ̄ ¼ ϵ0 þ ϵ̄0 ¼ 0.
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and N w for the Einstein-Maxwell equations for the
metric (104). This is an extension of [12,14] to the
Einstein-Maxwell case in spherical symmetry, while a
formulation for an Einstein-scalar field system can be
found in [13]. We provide initial boundary values for
the metric and Maxwell field on a null hypersurface
w0 ¼ const, on B given by y ¼ 0 and on the intersection
Σw0

characterized by w ¼ w0 with w0 and y ¼ 0. The field
equations are

Rab ¼ 8π

�
Tab −

1

2
gabTc

c

�
; ∇aTab ¼ 0;

where Rab is the Ricci tensor and Tab is the energy
momentum tensor (for negative metric signature)

Tab ¼ −
1

4π

�
FacFb

c −
1

4
gabFcdFcd

�
; Tc

c ¼ 0;

determined by the Maxwell field Fab.
The divergence free condition of the energy momentum

tensor gives the vacuum Maxwell equations ∇aFab ¼ 0
which can be grouped into a hypersurface equation

0 ¼ 1

r2
ðr2α;yÞ;y; ð111Þ

assumed to hold everywhere on the family N w and a
supplementary equation on B

0 ¼ 1

r2
ðr2α;yÞ;w

����
B
: ð112aÞ

The supplementary equation holds everywhere provided
the hypersurface equation are fulfilled everywhere [23].
Similarly, the twice contracted Bianchi identities allow

us to group the Einstein equations into one supplementary
equation on B, one hypersurface equation with no w–
derivatives and one evolution equation, respectively, for the
metric fields [12,14]

0 ¼
�
−
2r;ww
r

�����
B
; ð112bÞ

0 ¼ −
2r;yy
r

; ð112cÞ

0 ¼ ½yþ 2rr;w −Wrr;y�;y − r2α2;y ð112dÞ

Provided the hypersurface equation (112c) and evolution
equation (112d) hold on the family N w, the supplementary
equation (112b) holds on N w, provided it is fulfilled on
B [23].
The particular grouping of the Maxwell and Einstein

equations allows us to set up a characteristic initial
boundary value problem for a family of null hypersurfaces
w > w0 ¼ const with an initial null hypersurface N w¼w0

,
the null boundary surface B and the common intersection of
Σw0

of N w0
and B, (Fig. 3).

Since the spacetime is spherically symmetric, the shear
tensors of two null hypersurfaces B and N w0

must vanish
and the intrinsic metrics on those null hypersurfaces
must have the form −rðw; yÞ2qAB. Therefore, only the
expansion rate of N w and B have nontrivial physical
meaning. Since the two expansion rates evaluated on B
and N w determine the first derivatives of the conformal
factor r, and as r completely determines the intrinsic
properties of the two null hypersurfaces, it is natural to
take r and the fields5

N ≔ r;w; Θ ≔ r;y; ð113Þ

as fundamental metric variables for a characteristic initial
value formulation of the Einstein–Maxwell equations.
Regarding the Maxwell field, only the derivatives α;a of
the vector potential Aa come into question as fundamental
matter variables. Indeed, calculation of Fab reveals that
only α;y is needed to set up Fab in the chosen null gauge.

FIG. 3. A graphical representation of the geometry for the
spherically symmetric characteristic initial value formulation.
The boundary surface B where y ¼ 0 is given in green while the
initial data surfaceN 0 where w ¼ w0 is light blue. Every point in
this diagram represents a two-dimensional sphere, in particular
the red dots correspond to the two-dimensional common cross
sections of the family of null hypersurfaces N w with the
boundary B. In fact any other intersections of surfaces y ¼
const and w ¼ const are two-dimensional spaces. Note that in
general, the surfaces y ¼ const are not null hypersurfaces, like in
a double null formulation where the surfaces y ¼ const would be
displayed parallel to one another.

5The variable N is called ρ in [12–14], we have chosen a
different name here to not confuse it with the spin coefficients.
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In fact, because Σw0
is the common intersection of B and

N w0
, the fundamental matter and metric variables should

be prescribed as independent constants on Σw0
,

A ≔ α;yjΣw0
; r0 ≔ rjΣw0

;

N0 ¼ NjΣw0
; Θ0 ¼ ΘjΣw0

; ð114Þ

Due to the spherical symmetry, it is possible to relate
(before evaluation of the field equations on the boundary) A
with the charge Q on Σw0

in the following way; The
charge distribution on the cross section Σw0

is calculated
according to

Q ≔ QjΣw0
¼

Z
Σw0

jaΣa ¼
1

4π

Z
Σw0

Fab
;bdΣa

¼ 1

8π

Z
Σw0

FabdΣab; ð115Þ

where Q is the total charge. Using the surface element of
the 2-surface Σw0

, dΣab ¼ 2l½anb�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgABÞ

p
dθdϕ, we find

Q ¼ 1

4π

Z
Σw0

Fabr2 sin θdθdϕ ¼ r20A; ð116Þ

Thus, we set

α;yjΣw0
¼ A ¼ Q

r20
; ð117Þ

hereafter.
Following [12–14], introduction of

Y ¼ W −
2r;w
r;y

; ð118Þ

casts (112d) into a hypersurface equation

0 ¼ 1 − ðrΘYÞ;y − r2α2;y: ð119Þ

The hypersurface equation (112c) shows that its inte-
gration requires the knowledge of rjB and ΘjB, which are
not known on B (the supplementary equations (112b) only
allows one to propagate N along B). But if (112d) is
evaluated on B, we have

0 ¼ ½1þ 2ðr;wr;y þ rr;wyÞ − r2α2;y�jB; ð120Þ

allowing us to propagate Θ along the boundary, i.e.,

ð2rΘÞ;wjB ¼ ð−1þ r2α2;yÞjB: ð121Þ

Moreover, (120) allows us to find algebraically the mixed
derivative

μ ¼ r;wy ð122Þ

everywhere on B provided we know r, Θ, N and α;y on B,

μjB ¼ −1 − 2NΘþ r2α2;y
2r

����
B
; ð123Þ

In fact, evaluation of (123) on the cross section y ¼ 0 and
w ¼ w0 gives us

μ0 ≔ μjΣw0
¼ 1

2r0

�
Q2

r20
− 1 − 2N0Θ0

�
: ð124Þ

where we used (114) and (117). Taking the w derivative of
Eq. (112c), we obtain an equation to propagate μ off the
boundary B

μ;y ¼ 0: ð125Þ

We further note that the definition of μ ¼ r;wy ¼ N;y
serves as an additional hypersurface equation to propagate
N off the boundary B,

N;y ¼ μ: ð126Þ

Now we are in position to spell out the basic equations
for the spherically symmetric Einstein-Maxwell system in a
metric null-affine formulation. Given the data (114) and
(117) on a cross section Σw0

, the boundary data are
determined by the hierarchical set of equations

r;wwjB ¼ N;wjB ¼ 0; ð127aÞ

ðr2α;yÞ;wjB ¼ 0; ð127bÞ

ð2rΘÞ;wjB ¼ ð−1þ r2α2;yÞjB; ð127cÞ

together with the constraint (123) and the initial value for Y,

YjB ¼ −
2N
Θ

����
B

ð128Þ

determined from (118) evaluated on B. The hypersurface
equations are summarized by the following hierarchy

r;yy ¼ Θ;y ¼ 0; ð129aÞ

ðr2α;yÞ;y ¼ 0; ð129bÞ

ðrΘYÞ;y ¼ 1 − r2α2;y; ð129cÞ

μ;y ¼ 0; ð129dÞ

N;y ¼ μ: ð129eÞ
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The missing metric field W is found from the defini-
tion (118).

B. Solution of the hierarchy of equations

We now solve this system with initial values (114) and
(117) and begin with the boundary equations (127). Its
general solution is

rðw; 0Þ ¼ r0 þ N0ðw − w0Þ; ð130aÞ

Nðw; 0Þ ¼ N0; ð130bÞ

α;yðw; 0Þ ¼
Q

r2ðw; 0Þ ; ð130cÞ

Θðw; 0Þ ¼ 1

rðw; 0Þ
�
r0Θ0 þ

1

2

�
Q2

r0rðw; 0Þ
− 1

�
ðw − w0Þ

�
;

ð130dÞ

together with the relations from the algebraic constraints

μðw;0Þ¼ 1

2rðw;0Þ
�
−1−2N0Θðw;0Þþ

Q2

r2ðw;0Þ
�

ð130eÞ

Yðw; 0Þ ¼ −
2N0

Θðw; 0Þ ð130fÞ

With these boundary values at hand, the solution of the
hypersurface equations (129) is

Θðw; yÞ ¼ Θðw; 0Þ ≔ ΘðwÞ; ð131aÞ

rðw; yÞ ¼ r0 þ N0ðw − w0Þ þ ΘðwÞy ð131bÞ

α;yðw; yÞ ¼
Q

r2ðw; yÞ ð131cÞ

Yðw; yÞ ¼ −2N0rðw; 0Þ
rðw; yÞΘðwÞ

þ y
rðw; yÞΘðwÞ

�
1 −

Q2

rðw; 0Þrðw; yÞ
��

ð131dÞ

μðw; yÞ ¼ μðw; 0Þ ≔ μðwÞ; ð131eÞ

Nðw; yÞ ¼ μðwÞyþ N0: ð131fÞ

Having calculated Θ, Y and N we are in position to find the
missing metric field

Wðw; yÞ ¼ y½1þ 2μðwÞrðw; yÞ þ 2N0ΘðwÞ�
rðw; yÞΘðwÞ

−
yQ2

r2ðw; yÞrðw; 0ÞΘðwÞ ; ð132Þ

which not only vanishes on B, thus assuring that B is a null
hypersurface, but also satisfies the other gauge condi-
tion W;yjB ¼ 0.
In a spherically symmetric spacetime the mass of a

system is given by the Misner-Sharp mass, m, defined
covariantly via

1 −
2mðrÞ

r
¼ −gabr;ar;b; ð133Þ

where the minus sign in the right-hand side comes from the
signature of the spacetime. The Misner-Sharp mass is a
special case for the quasilocal Hawking mass on a given
2-surface Σ [24]6

mHðΣÞ ¼
ffiffiffiffiffiffiffiffi
A
16π

r �
1þ 1

16π

Z
Σ
ΘlΘndS

�
; ð134Þ

where A is its area, dS its surface area element and Θl and
Θn are the expansion rates of two orthogonal null vectors
that are orthogonal to Σ. In spherical symmetry the
Hawking mass and Misner-Sharp mass coincide, which
can be seen by evaluation of the two on Σ0 resulting in

mjΣ0
¼ mHðΣ0Þ ¼

r
2
ð1þ gabr;ar;bÞjΣ0

¼ r0
2
ð1þ 2N0Θ0Þ ð135Þ

while using that

ΘljΣ0
¼ 2

Θ0

r0
; ΘnjΣ0

¼ 2
N0

r0
: ð136Þ

From Eqs. (132), (133) and (135) we can also recover the
well known relation between the quasilocal Misner-Sharp
mass mjΣ0

and the Bondi mass mB. More precisely, on an
arbitrary null hypersurface w ¼ const, the Misner-Sharp
mass (133) gives in the “proper” asymptotic limit the
constant Bondi mass mBðwÞ ¼ mB ¼ const,

mBðwÞ ≔ lim
y→∞

w¼const

r
2
ð1þ gabr;ar;bÞ

¼ r0
2
ð1þ 2N0Θ0Þ þ

Q2

2r0

¼ mjΣ0
þ Q2

2r0
≡mB ¼ const: ð137Þ

From now on, we will refer to the Bondi mass mB simply
as m.
Until now the two surfaces B and N w0

have been
arbitrary. With different choices for the corresponding

6The original reference gives a general form, (134) is its
specialization to maximal symmetry as e.g., found in [25].
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initial data we can obtain the nonextremal and extremal
Reissner-Nordström spacetimes. Let us consider these
separate cases.

1. The nonextremal Reissner-Nordström metric

Let us choose now the data on Σ0 such that N0 ¼ 0,
and Θ0 ≠ 0. As follows of (130a), this choice implies
that rðw; 0Þ ¼ r0 ¼ const ≠ 0. Then, evaluation of (131e)
shows the constancy of the field μ everywhere

μ0 ¼ μðwÞ ¼ −
r20 −Q2

2r30
: ð138Þ

Consequently, the null hypersurface B is free of expansion,
i.e., ΘnjB ¼ 0.
With respect to this expansion-free null boundary, we see

that the metric functions reduce to

r¼ r0þy½Θ0þμ0ðw−w0Þ�; ð139Þ

W ¼ 2yðμ20ðw − w0Þ þ μ0Θ0Þ þ 4r0μ0 þ 1

fr0 þ ½Θ0 þ μ0ðw − w0Þ�yg2
y2: ð140Þ

Also note that from (131a) and (130d) follows the existence
of a null hypersurface w ¼ ŵ inN w such that Θðŵ; yÞ ¼ 0,
meaning

Θðŵ;yÞ ¼ 1

r0

�
r0Θ0þ

1

2

�
−1þQ2

r20

�
ðŵ−w0Þ

�
¼! 0; ð141Þ

which implies

ŵ ¼ −Θ0 þ μ0w0

μ0
: ð142Þ

The coordinate transformation w → w̃ ¼ w − ŵ shifts the
affine parameter w of the geodesics on B such that the
metric components have a particular simple form

r ¼ r0 þ μ0wy; ð143Þ

W ¼ 1þ 2μ0ðrþ r0Þ
r2

y2; ð144Þ

independent of the values of Θ0 and w0 where we have
dropped the tilde to avoid a further complication of the
notation.
Using Eq. (137) we can relate the constant r0 with the

Bondi mass m of the metric:

Q2 þ r20
2r0

¼ m: ð145Þ

with solutions

r0ðϵÞ ¼ mþ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −Q2

p
; ð146Þ

where ϵ ¼ �1. We see that r0ðϵ ¼ 1Þ is nothing else than
the value(s) rþH of the event horizon of the Reissner-
Nordström solution. Note also, that the value of μ0 given
by (138) agrees with the value of minus the surface gravity,
−kH, of this spacetime. Indeed, this solution is exactly the
same as (40) presented in the Sec. III Awhich was obtained
using the coordinate transformation from Bondi to the
regular ones fw; yg.

2. The extremal Reissner-Nordström

For the extremal case Q ¼ m we can proceed in two
different ways.
Data I: Choosing again N0 ¼ 0 and Θ0 ≠ 0 on Σ0, we

can use the results of the previous Subsec. V B 1 obtaining
for the extremal case:

μðwÞ ¼ μ0 ¼ 0; ð147Þ

r0 ¼ m; ð148Þ

r ¼ mþ Θ0y; ð149Þ

W ¼ y2

r2
; ð150Þ

Θðw; yÞ ¼ Θ0: ð151Þ

We recognize that the resulting coordinates ðw; yÞ are
basically the Bondi coordinates ðu; rÞ after a rescaling of
u and a reparametrization of the affine parameter r:
w ¼ Θ0u, r ¼ mþ Θ0y, with metric

ds2 ¼
�
1 −

m
r

�
2

du2 þ 2dudr − r2dΩ2: ð152Þ

However, we know that this coordinate system is not
regular at the horizon Hþ, in particular there is not a
w ¼ ŵ value where Θðw̃; yÞ ¼ 0. Hence, in order to find a
regular coordinate system atHþ we must set the initial data
differently.
Let us also remark that in the limit Θ0 → 0 on Σ0 we

obtain from Eqs. (148)–(151),

r ¼ m ¼ Q; ð153Þ

W ¼ y2

m2
¼ y2

Q2
; ð154Þ

α ¼ y
Q
; ð155Þ

giving as a limit the metric
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ds2 ¼ y2

Q2
dw2 þ 2dwdy −Q2dΩ2; ð156Þ

with electromagnetic potential vector Aa ¼ y
Q dw.

This metric is the well-known Bertotti-Robinson solu-
tion which represents a shear and expansion free confor-
mally flat solution of the Einstein-Maxwell equations with
uniform electromagnetic field [26–29].
Data II: Let us choose both N0 and Θ0 different from

zero on Σ0. From Eq. (137) we obtain for the extremal case

Θ0 ¼ −
ðm − r0Þ2
2N0r20

: ð157Þ

After replacing this expression into the Eqs. (130a), (130d)
and (131a) we obtain,

Θðw; yÞ ¼ Θðw; 0Þ ¼ −
½N0ðw − w0Þ −mþ r0�2
2N0½r0 þ N0ðw − w0Þ�2

: ð158Þ

Therefore, there exists a null hypersurface w ¼ ŵ in N w
such that Θðŵ; yÞ ¼ 0, which implies

ŵ ¼ m − r0 þ N0w0

N0

: ð159Þ

As in V B 1, the coordinate transformation w→ w̃¼w−ŵ
shifts the affine parameter w of the geodesics on B such that
from the set of equations (130a)–(130f), (131a)–(131f) and
(132) we obtain for the metric components r and W the
following expressions (dropping again the tilde in w for
simplicity in the notation):

r ¼ mþ N0w −
N0w2y

2ðN0wþmÞ2 ; ð160Þ

W ¼ −
4ð2w4N4

0 þ 5w3N3
0mþ 3w2N2

0m
2 − wN0m3 − w3yN2

0 −m4Þmy2

ðN0wþmÞð2w3N3
0 þ 6w2N2

0mþ 6wN0m2 þ 2m3 − w2N0yÞ2
; ð161Þ

which agrees with the solution presented in Sec. III B after
the identification N0 ¼ −E0.

7 Note again, that near the
horizon Hþ, r and W behave as:

r ¼ mþOðwÞ; ð162Þ

W ¼ y2

m2
þOðwÞ; ð163Þ

in correspondence with the well-known result that an
extremal Reissner-Nordström black hole near the horizon
looks like the Bertotti-Robinson metric Eq. (156) [30].

VI. SUMMARY AND OUTLOOK

In this work, we have discussed two different approaches
to study coordinate charts of black hole spacetimes that are
regular at the black hole horizon and at large distances
toward null infinity. In particular, we discuss these charts in
spherical symmetry. The first approach consists in defining
a suitable coordinate pair ðw; yÞ, which obeys geometric
conditions as specified in Sec. II. Of particular importance
in the construction of this pair is the Bondi coordinate pair
ðu; rÞ where u takes the value of the retarded time in the
limit toward null infinity and r is the affine parameter on
surfaces u ¼ const. The pair ðw; yÞ is then constructed by

remapping the affine parameter r of the surfaces u ¼ const
to another parameter y. Unlike ðu; rÞ, ðw; yÞ can be defined
from the horizon to null infinity when caustics are not
present. Within this formalism, we find (i) regular repre-
sentations of static and spherically symmetric black holes,
including solutions for extremal/nonextremal Reissner
Nordström black holes, (ii) the outgoing Vaidya metric
depending on a mass function mðwÞ that has an extremum
at w ¼ 0 and (iii) an ingoing Vaidya solution of a collapsing
shell. All those solutions are explicit with respect to the
ðw; yÞ pair, allowing thus to write exemplary black hole
spacetimes using null coordinates in an explicit, rather than
implicit, way from the horizon to null infinity.
In the second approach, we have started out with a

general affine-null coordinate system. In this affine-null
chart, we set up a characteristic initial value problem8 for
the field equations in spherical symmetry for an Einstein-
Maxwell system. The derived equations form a hierarchical
system of equations that can be solved with data given on a
common intersection of two null hypersurfaces. There are
in principle four free parameters that can be specified in the
spherically symmetric case discussed here. Nevertheless,
after fixing the values of the expansion rates of the in and
outgoing null vectors at the common intersection, the final
solution provides us with the Reissner-Nordström black
hole whose line element is given by (20) for the

7This identification follows from the definition of N in
Eqs. (113) and (53) (with w≡ λ); both valued at Σ0.

8A past value problem is set up in a similar way.
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nonextremal case, and determined by the metric compo-
nents Eqs. (160) and (161) in the extremal situation.
For the nonextremal case, we can pursue with a com-

pactification procedure for (40) like for (1). If we make
the rescaling w → kHw and y → ðkHϒÞ−1 with kH the
surface gravity of Reissner-Nordström black hole together
with a suitable conformal factor Ω ¼ kHϒ, the resulting
conformal metric has the expansion at Iþ, i.e., at ϒ ¼ 0,
like (2).
To our knowledge, our presentation is the first to

construct a Reissner-Nordström black hole in Israel like
coordinates directly by solving the Einstein equations
using a characteristic initial value problem, while other
approaches relied on coordinate transformations [6] or
using two-dimensional generalized dilaton gravity models
[8] (also see for discussion [9]).
Both of the two approaches have their regime in which

they are most useful. The framework starting out with a
Bondi coordinate u is useful (as we have demonstrated) if
particular solutions of the Einstein equations are known.
Then, the null coordinate w and its affine parameter y can
be directly constructed locally. As we have restricted the
framework to spherical symmetry, further work is needed
to extend it to more general spacetimes, for example
axisymmetric spacetimes. Regarding the coordinates, we
expect a condition not only linking r with y, but also also
additional relationships between the angular coordinates
parametrizing the cuts u ¼ const at different values of r
with those of cuts of w for given values of y. In particular, in
the study of the Kerr metric in [31], the existence of a double
null family of hypersurfaces was used to define the corre-
sponding null coordinates. However, to define the complete
coordinate system, one has to solve two issues. First, the pair
of null functions have a functional dependence on a scalar
defined as the solution of a particular partial differential
equation that depends on the radial and nonsymmetric
angular coordinate. Second, the original Boyer-Lindquist
symmetric angular coordinatemust be changed [31] to a new
one that iswell behaved near and at the horizon. Therefore, in
extending the present work to axis-symmetric spacetimes,
one has to be prepared to address these issues. Indeed, in their
discussion of the gravitational wave memory effect of
boosted Kerr-Schild black holes [32,33], the authors have
shown in [32] using a Penrose compactification scheme on
uncharged Kerr-Schild metrics, that an asymptotic Bondi
frame can only be properly constructed if the angular
coordinates issue is taken into account. It remains to be of
further study, how the conditionofSec. II need to be specified
for more general systems.
The second approach is most useful numerically, i.e.,

when we wish to find a solution of the Einstein equation
given certain initial values. Recently, Crespo and collab-
orators [13] have used an affine-null formulation in

spherical symmetry with a scalar field to study the
Choptuik critical solution. Therein, the authors have
integrated the Einstein-scalar field equations numerically,
also using a hierarchical set of equations.9

We would like to make a few comments about possible
generalizations of the second approach to more general
spacetimes. In [14] it was shown that, for vacuum
Einstein’s equations, a null affine formulation can be set
as a hierarchical system. However its extension to space-
times containing matter fields could be nontrivial.
Consider, as one example, the Einstein scalar field equa-
tions for a general affine null metric gab and a massless
scalar field Φ. In this case, we have the nonzero contra-
variant components of the metric gya and gAB with
jgwyj ¼ 1, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gAB

p ¼ r2 [14]. The initial data required
to solve the field equations for gab and Φ is given by Φ and
the transverse traceless part of hAB;y on a given null hyper-
surface N w0

(for the following discussion we do not need
the boundary data). For the vacuum case, it was shown in
[12,14] that the main equations form a hierarchical system.
If the main equations also contain matter terms, this is also
formally true, as it can be inferred from a similar analysis
using Bondi-Sachs coordinates [34–37]. Nevertheless, the
main equations, become coupled because of the additional
requirement of a divergence-free energy momentum tensor.
In particular, for the example of a massless scalar field,
we must satisfy the scalar wave equation ∇a∇aΦ ¼ 0.
This equation has nontrivial coupling terms between
the metric components and derivatives of Φ, which
should be uncoupled in order to restore the hierarchy.
Notwithstanding, it is worthwhile to remark that for perfect
fluids with a Newtonian limit the metric variables of a
Bondi-Sachs metric can be obtained via a hierarchical
integration of initial data consisting of the fluid variables
and the Newtonian potential [34–36]. It remains to be seen
if this is also possible in the null affine formulation and
more generally, if it can be achieved in other situations or
under other symmetry assumptions.
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than the W–hypersurface equation (112d) as in our case.
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