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Superradiant instability and charged scalar quasinormal modes
for (2 +1)-dimensional Coulomb-like AdS black holes
from nonlinear electrodynamics
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We study the propagation of charged scalar fields in the background of 2 + 1-dimensional Coulomb-like
AdS black holes, and we show that such propagation is unstable under Dirichlet boundary conditions.
However, all the unstable modes are superradiant and all the stable modes are nonsuperradiant, according
with the superradiant condition. Mainly, we show that when the scalar field is charged the quasinormal
frecuencies (QNFs) are always complex, contrary to the uncharged case, where for small values of the black
hole charge the complex QNFs are dominant, while that for bigger values of the black hole charge the

purely imaginary QNFs are dominant.
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I. INTRODUCTION

Gravity at lower dimensions is usually considered a
vibrant field of research. In particular, gravity at (2 + 1)
dimensions has a few features which make such space-time
quite interesting. To name a few, the absence of propagating
degrees of freedom simplifies the things with respect to
the (3 4 1)-dimensional counterpart. In addition, it should
be pointed out that gravity in (2 + 1) dimensions is closed
related to Chern-Simons theory [1-3]. Also, it is well-
known that (2 + 1)-dimensional gravity shares certain
properties of its higher dimensional analogs. A few decades
ago, a three-dimensional black hole was investigated in the
presence of a negative cosmological constant. This is
precisely the case of the now well-known Bafados,
Teitelboim, and Zanelli (BTZ hereafter) black hole [4,5].

Initially, the electrically charged BTZ black hole was
also studied in Ref. [4] and subsequently, it was reviewed in
Ref. [6]. The charged and rotating black hole was presented
in Ref. [7]. The inclusion of a charge Q is parameterized
via the usual Maxwell Lagrangian, and the corresponding
lapse function shows a logarithmic dependence on the
radial coordinate [7]. Notice that the (linecar) Maxwell
action is not invariant under conformal transformations of
the metric. To have an action invariant under conformal
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transformations, we can take advantage of nonlinear
electrodynamics as the source of the Einstein equation.
Up to now, we have a vast series of papers where
nonlinear electrodynamics is investigated. For instance
see Refs. [8—10] and references therein. Some remarkable
examples of nonlinear electrodynamics in the context
of black hole physics in general relativity or alternative
theories of gravity are: (i) Born-Infeld [11-20], (ii) Power-
Maxwell [21-27], and (iii) regular charged black holes
[28,29]. Indeed, a few months ago, a new family of black
holes was published in (2 + 1) dimensions [30] (including
regular solutions without the need to impose conditions
on the parameters of the theory or fine-tuning on the
Lagrangian). These black holes can be considered in a
frame in which they involve a nonminimally coupled scalar
field or a dual-frame that corresponds to a nonlinear
electrodynamic theory. Be aware and notice that, in
Ref. [31] a nontrivial black hole solution in (2 + 1)-
dimensional space-time in the presence of an Einstein-
power-Maxwell electrodynamics was firstly derived
satisfying the weak energy condition. It should be men-
tioned that the electric field has the Coulomb structure of a
point charge in the Minkowski space-time, and the sol-
utions describe charged (anti)-de Sitter space-times. Also,
such a solution does not have a logarithmic contribution to
the lapse function.

What is more, their thermodynamic properties were
recently studied in Ref. [32]. Be aware and notice that
the invariance under conformal transformations is also
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recovered for arbitrary dimensions n whether the Maxwell
Lagrangian is raised to the (n/4)th power. Under such
circumstances, a Coulomb-like electric field (in arbitrary
dimensions) was obtained [33]. Thus, these particular types
of theories were extended to study the existence of hairy
black hole solutions, as was pointed out in Ref. [34].

Black holes, their stability, and also the behavior of the
propagation of fields in black hole backgrounds have been
considerably investigated for more than five decades. In
this respect, the seminal work performed by Regge and
Wheeler [35] was the starting point to dozens of papers
regarding perturbations on black holes. Quasinormal
modes (QNMs hereafter) are distinctive frequencies with
a nonvanishing imaginary part, which contain the informa-
tion on how black holes evolve after the perturbation has
been applied [36,37]. Thus, after such perturbation, it
responds by emitting gravitational waves. At this point,
the importance of QNMs becomes evident: they have
gained attention due to the recent detection of gravitational
waves [38]. Also, the QNMs have a recognizable relevance
in the context of the correspondence AdS/CFT [39-41].
The quasinormal frequencies depend on: (i) the type of
geometry, and (ii) the type of the perturbation (i.e., scalar,
vector, tensor, or fermionic), irrespectively of the initial
conditions. Black hole perturbation theory [42-44] and
QNMs become important during the “ring down” phase of
a black hole merger. In such a stage is where a single
distorted object is formed and where the geometry of space-
time undergoes damped oscillations due to the emission of
gravitational waves. Up to now, we have a significant
collection of papers where the QNMs and their correspond-
ing quasinormal frequencies (QNFs) are computed.
However, barely the most canonical black hole back-
grounds have been investigated in detail. For an incomplete
list of papers in this topic see [45-60] and references
therein. For an extensive review, see Ref. [36]. Also, it has
been found that most of the black holes are stable under
certain types of perturbations (see Ref. [36] and references
therein). In this respect, an astute way to investigate the
stability of black holes is to perform the computation of the
QNMs and their QNFs [37,42,61,62].

The QNMs for the BTZ background was studied in
Ref. [63,64]. Also, it was shown that for scalar and
fermionic fields the vanishing boundary conditions at
infinity are automatically satisfied for the exact solutions,
which implies a spectrum of QNFs without a decay rate
for the extremal rotating BTZ black hole [65]. Also, the
Dirac quasinormal modes for rotating BTZ black holes
with torsion were studied in Ref. [66]. The QNMs of the
BTZ black hole for a conformal scalar field were studied
in Ref. [67]. Also, the QNMs of the BTZ black hole
surrounded by a conformal scalar field was analyzed in
Ref. [68], where it was estimated the shift in the quasi-
normal spectrum of the BTZ black hole stipulated by the
backreaction of the Hawking radiation. See Refs. [69,70],

for the scalar, and fermionic quasinormal modes of the
BTZ black hole in the presence of spacetime noncommu-
tativity, respectively, and see [46,57,71-79], for other
charged geometries.

In this work, we consider (2 + 1)-dimensional Coulomb-
like AdS black holes as background, and we study the
stability of the propagation of a charged scalar field in order
to study the effects of the scalar field charge on the
propagation, by using the pseudospectral Chebyshev
method [80], which is an effective method to find high
overtone modes [45-53]. Also, we study the superradiance
phenomenon in this background, in order to analyze the
stable and unstable modes. It is worth to mentioning that it
was shown that there is no superradiance in the rotating
BTZ black hole for vanishing boundary conditions at
infinity for the real scalar field [81]. However, it was
shown the existence of superradiant modes of massive
scalar fields propagating in BTZ black holes when
certain Robin boundary conditions are imposed at spatial
infinity [82]. As we will show, all the unstable modes are
superradiant and all the stable modes are nonsuperradiant,
according to the superradiant condition. This work is
organized as follows. In Sec. II we give a brief review
of (2 4 1)-dimensional Coulomb-like AdS black holes.
Then, in Sec. III we study the stability under Dirichlet
boundary conditions. Then, in Sec. IV we analyze the
superradiance phenomenon, and we calculate the QNFs
of charged scalar perturbations numerically by using the
pseudospectral Chebyshev method in Sec. V. Finally, we
conclude in Sec. VI.

Along this manuscript, we will use geometrized units
where G = ¢ = 1. We also use the most negative metric
signature (—, 4, +).

II. THREE-DIMENSIONAL COULOMB-LIKE
AdS BLACK HOLES

We will start by considering the Einstein Hilbert action in
(2 + 1) dimensions in presence of a cosmological constant
and matter content described by nonlinear electrodynamics,
minimally coupled with gravity. This action can be written
as follows

S:/d3x\/——g[é(R—2A)+L(F) : (1)

where R is the Ricci scalar, A corresponds to the cosmo-
logical constant, and L(F) represents the electromagnetic
invariant Lagrangian, and it is a nonlinear function of
F =} F,, F*. There are many black hole (BH) solutions
for nonlinear electrodynamics [12,16,18,20-22], and in
particular for the case of power Maxwell invariant

s=3 [ dxvmaELy. )
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the BH solution for conformal nonlinear electrodynamics
and the traceless energy momentum tensor was found for
the first time in [31] for p = % and later in Ref. [33] it was
obtained the BH solution for the case p :ff where the
conformal symmetry is manifestly. Here we are focusing in
Ref. [31] because there are BH solutions for a vanishing
trace energy-momentum tensor for the nonlinear electro-
dynamics under consideration in (2 + 1) gravity theory.
Here the electromagnetic nonlinear Lagrangian corre-
sponds to L(F) = C(—F)3*, and the negative sign inside
the Lagrangian guarantees purely real electric configura-
tions. On the other hand, in (3 + 1) dimensions for linear
Maxwell electrodynamics, it is well known that the energy-
momentum tensor is trace-free, and in this case, the
solution for Maxwell equations is the standard very well
known Coulomb solution. Now, for linear Maxwell theory
minimally coupled to (2+ 1) dimensional gravity, the
energy-momentum tensor has a not vanishing trace, and
therefore the electric field for a circularly symmetric static
metric coupled to a Maxwell field is proportional to the
inverse of r, i.e., E, « 1/r. Hence the vector potential zero
component A is logarithmic, i.e., A o In(r) and conse-
quently blows up at r =0, this solution correspond to
the charged BTZ black hole [4]. Then, when we are
considering nonlinear electrodynamics minimally coupled
with 241 gravity described by the electromagnetic
Lagrangian L(F) = C(—F)%*, we can show the traceless
energy-momentum tensor condition is satisfied and there-
fore, the resulting solution for the electric field is propor-
tional to the inverse of 72, surprisingly alike the Coulomb
law for a point charge in 3 + 1 dimensions. Furthermore,
the energy-momentum tensor satisfies the weak energy
condition.

In our case, the circularly symmetric solution of this
theory is given by the following metric

ds* = —f(r)d* + f~1(r)dr* + r*d¢?, (3)

and solving the FEinstein-Maxwell equations under the
condition of vanishing trace, we have

T=T,g"=3L(F)—4FL.p, (4)
which yields
L(F) = C|F]’*, (5)
where C is an integration constant. Because the magnetic
field is vanished as a consequence of Einstein’s equation,
we get

L(F) = CE*?, (6)

and from the Maxwell equation it follows that

e - (&) & )

where Q is an integration constant and finally, setting
C = /|0|/6m, the electric field becomes

£ =5, 0

a Coulomb-like electric field but in (2 + 1) dimensions.
Now, under the traceless condition, the components of

Einstein equations R,, = —f?R,,, and R can be written as
I 20°
f,rr"f_T:_zA—’_?’ (9)
40?

It is easy to show Eq. (9) by virtue of the Maxwell
equations. Therefore, the only remaining component of
Einstein equations (10) can be directly integrated, with the
lapse function given by

f(r):—M—/\r2 (11)

40?
+ 3
where M is a constant related to the physical mass, and Q
is a constant related to the physical charge. In brief, we
will return to this point later to discuss the physical
significance of these constants. Let us reinforce that this
solution mimics those obtained in (3 + 1)-dimensional
space-time for linear electrodynamics. The latter is an
example of the electric field in light of the Einstein-power-
Maxwell nonlinear electrodynamics, which, as we stated
before, have been extensively studied (see Refs. [83,84]
and references therein).

The space-time is asymptotically de-Sitter space-time for
A > 0, asymptotically flat for A = 0, and asymptotically
anti de-Sitter for A < 0. The roots of the lapse function are
given by

KoM
-2 12
TN T (12)
h M N3(h M
=2 (2T, 13
T TR <3A+h> (13)
h M 3(h M
rp, = —— ——'£ -+ (14)
T T6a 2 "2 BA T

being s defined as follows
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h= <<18q2 + 34 /3(A/4\3+ 12Q4)>A2>§. (15)

Here, we focus our study on the AdS case, where M > 0.
The solution shows different behaviors for the geometry
depending on the value of the cosmological constant.
There is a black hole solution with inner and outer horizons

when 0 > A > —%, there is one real and two complex
solutions when A < —%. Finally, when A = —%54, the

solution represents an extreme black hole.

III. CHARGED SCALAR PERTURBATIONS

In order to study charged scalar perturbations in the
background of the metric (11) we consider the Klein-
Gordon equation for charged scalar fields

1

\/—_9(8” —igA,) (/=99 (0, — iqA,)y) = m*y,  (16)

plus suitable boundary conditions for a black hole geom-
etry. In the above expression m represents the mass and ¢
the charge of the scalar field . Due to the circular
symmetry, the Klein-Gordon equation can be written as

%(,f(,)%> . <r(a)—;c(]—;4)’(r))2_’<_j—m2r>R(r) —0,

by means of the ansatz w = e e R(r), where
k=0,1,2,..., and A, = —% Then, redefining R(r) as

R(r) = F\%), and by using the tortoise coordinate r* given

by dr* = f‘ff ), the Klein-Gordon equation can be written as
d*F(r*)
ar? — Ve(r)F(r*) = —a)zF(r*), (18)
that corresponds to a one-dimensional Schrodinger-like
equation with an effective potential V. (r), which is
parametrically thought as Vg (r*), and it is given by

Veir(r) = J%zr) (K2 + r<m2r+]¥> _%r)>

—2wqA,(r) — ¢*A,(r)*. (19)

Now, in order to study the stability of the propagation of
scalar fields in the background of (2 + 1)-dimensional
Coulomb-like AdS black hole, we follow the general
argument given in Ref. [41]. Thus, by replacing w(r) =
e F(r), in the Schrodinger-like equation (18) we obtain

- ( £(r) d";i’)) ~2i0 ™) fog’f)’ Ly =0 (0)

Then, multiplying Eq. (20) by w* and performing integra-
tions by parts, where we have considered Dirichlet boun-
dary condition for the scalar field at spatial infinity, it is
possible to obtain the following expression

© rl f(r % 2 7*A(r)? 2
/r+ d <f() 10 v f(r) M)
ol = )P

dy|?
- +

So, notice that the sign outside the horizon of the
expression Vegr|,—o — q*A,(r)?, is crucial for stability.
For the neutral scalar perturbations the effective potential
(19) is positive outside the horizon and then the left-hand
side of (21) is strictly positive, which demand that
Im(w) <0, and then the stability of the neutral scalar
field under perturbations respecting Dirichlet boundary
conditions is obeyed, which was pointed out in
Ref. [85]. However, for charged scalar field, the integral
can yield a negative value, therefore the stability is not
guaranteed in this case.

IV. SUPERRADIANT EFFECT

The superradiant scattering of charged scalar field results
in the extraction of both Coulomb energy and electric
charge from the corresponding charged black hole. Then,
this amplification of charged massive fields by charged
black holes leads to instability as was shown for Reissner-
Nordstrom space-time by Bekenstein [86], for a recent
review on superradiance see [87]. To find the conditions for
superradiance amplification of scattering waves we will
compute the greybody factor and the reflection coefficients.
Then if the greybody factor is negative or the reflection
coefficients is greater than 1 [88] then the scalar waves can
experiment a superradiant amplification by the black hole.
Following Ref. [89] we will split the space-time in three
regions and we will consider the low frequency limit, that is
o+ qgA(r) <Ty and (w+ gA,(r.))ry <1, and by
simplicity we consider k = 0.

(i) Region I: Corresponds to the region near the event
horizon, which is defined by r~ . Here, the potential
can be approximated as V.x(r) ~ —2qwA,(ry) —
G*A(r.)* or Ve (r)],—o < (@ + gA,)*. In this re-
gion, the solution to the radial equation (17), is
given by

R(r) = Ale—i(a)+qA,(r+))r*’ (22)
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(i)

(iii)

which slightly away the horizon yields

)

(23)

Region II: Corresponds to the intermediate region,
between the horizon and the asymptotic region. This
region is defined by Vi (r)],—o > (@ + gA,)*.

In this case the radial equation (17) reduces to

d dR
& (rn %) =o. (24)
whose solution is given by
R(r) = Ay + B;G(r), (25)
where
rodr
G(r) = / 26
0= (26)
So, for r ~ r, we obtain
Glr) 1og<”‘ ”) 27)
r) & .
fi(ro)ry Iy

Matching this solution with the solution of region I,
we obtain

A=A By = —i(o+qA(ry))riA;. (28)
On the other hand, for r > r,
G(r)z[:%:ﬁ. (29)
Therefore
R) =, (1= 122D o

which will be matched with the asymptotic behavior.
Region III: Corresponds to the asymptotic region,
which is defined by r > r,. In our particular case, it
is sufficient to consider the leading term in the
asymptotic behavior of the effective potential, i.e.,

3A22
1

Ve (r) (31)

Thus, the solution of the radial equation, in the
asymptotic region, can be written as

R(r) = C, + C,/r*. (32)

Then, matching the solution of region II, for r > r,
with the solution of region III yields
C,=A;,Cy=—i(w+qA(r))riA/(2A). (33)

After that, we will compute the fluxes utilizing the
following expression

F = @ (R*0,R — RO,R). (34)
So, at the horizon we have
Fror & —(@ + qA,(ry))ro A . (35)
and at infinity
F o x —2AIm(C,C5). (36)

In order to characterize the fluxes at the asymptotic
region, it is convenient to split up the coefficients C;
and C, in terms of the incoming and outgoing coefficients,
C, and Cy, respectively. We define C; = C;+C, and
C, = i(C, — C). Therefore, the asymptotic incoming and
outgoing fluxes are respectively given by

2 2
Fineo % 20|65 = m@ <1 _(o+ th(m))m) |

2A
(37)
¢ Al 0+ qA,(r.)r,\2
Foew & 200, = 2041 <1+< ) +> |
(38)

Then, the reflection coefficient and
factor [89-96] yields

the greybody

(0+qA (r))r.\ 2
R = Foutoo _ 1+ 2A (39)
finoo 1 - (@+qA (ry))rs ’
2A
F -2 A
}’(CU) _ hor (a)+q t(r+))r+ (40)

Finoo a A(l __(w+‘1A;\(’+))’+>2 '

Finally, based on the reflection coefficient (or from the
greybody factor), it is possible to find the superradiant
condition. So the reflection coefficient is greater than 1
or alternatively the greybody factor is negative if
o+ qA,(ry) <0 or

w<qg—,

: (41)
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FIG. 1. The effective potential V(r) as a function of r, with
M=1 A=-1, 0=035 ¢=0, 5, 17, 10, ¢, ~13.761,
m = 0, and k = 0. The horizontal line corresponds to w? ~28.3.

that coincides with the Bekenstein’s superradiance con-
dition [86]. In Fig. 1, we show the behavior of the effective
potential in order to visualize how it changes when the
superradiance condition (41) is satisfied or not. Note, for
instance, that for ?> ~28.3 and ¢ > g, with ¢, = wr,/Q

a potential well is possible, and there are bound states for
charged scalar fields which allows to accumulate the energy
to trigger the instability. However, for ¢ < ¢, there are not
bound states and the perturbation wave can be easily
absorbed by the black hole and the corresponding back-
ground becomes stable under charged scalar perturbations.

In the next section, we will study the quasinormal modes
and we will show that by comparing the real part of the
dominant modes, with the superradiant condition of
charged scalar fields [97-103] suggests that all the unstable
modes are superradiant unstable and consequently the
scalar waves can experiment a superradiant amplification
by the black hole, as in Ref. [46].

V. QUASINORMAL MODES

Now, in order to solve numerically the differential
equation (17) we consider the pseudospectral Chebyshev
method [80], for an extensive review of numerical methods,
see Ref. [36]. Firstly, it is convenient to perform the change

TABLE I. QNFs for massless charged scalar fields in the background of three-dimensional Coulomb-like AdS
black holes with M =1, Q = 0.10, A = —1, x = 0, and different values of the overtone number n, and q.
q = 0.00 qg = —0.01
o(n =0) —1.83976265i —0.00623018 — 1.83966370i
w(n=1) —2.12181146i 0.00409573 — 2.12191154i
w(n=2) —3.72425650i —0.00432750 — 3.72422698i
o(n =3) —4.18567498i 0.00227199 — 4.18570504i
o(n=4) —5.63006461i —0.00352381 — 5.63004821
qg =-0.02 q=-0.03
o(n =0) —0.01243873 — 1.83936885i —0.01860501 — 1.83888393;
w(n=1) 0.00816982 — 2.12220981i 0.01220165 — 2.1227004 1
w(n=2) —0.00865245 — 3.72413854i —0.01297234 — 3.72399144i
o(n =3) 0.00454143 — 4.18579510i 0.00680580 — 4.18594489i
o(n=4) —0.00704679 — 5.62999903i —0.01056811 — 5.62991713i
qg =-0.04 q = -0.05
o(n =0) —0.02471026 — 1.83821811i —0.03073829 — 1.83738327i
w(n=1) 0.01617247 — 2.12337418i 0.02006608 — 2.12421926i
w(n=2) —0.01728469 — 3.72378616i —0.02158707 — 3.72352336i
o(n =3) 0.00906261 — 4.18615393i 0.01130945 — 4.18642157i
o(n=4) —0.01408694 — 5.62980261 —0.01760246 — 5.62965559i
q = —0.06 q = —0.07
o(n=0) —0.03667579 — 1.83639310i —0.04251248 — 1.83526239i
w(n=1) 0.02386917 — 2.12522193i 0.02757147 — 2.12636743i
w(n=2) —0.02587713 — 3.72320385i —0.03015261 — 3.72282862i
o(n =3) 0.01354396 — 4.18674700i 0.01576387 — 4.18712922i
o(n=4) —0.02111387 — 5.62947625i —0.02462037 — 5.62926480i
q = —0.08 q = —0.09
o(n =0) —0.04824100 — 1.83400623i —0.05385663 — 1.83263949i
w(n=1) 0.03116564 — 2.12764064i 0.03464693 — 2.12902670i
w(n=2) —0.03441138 — 3.72239879i —0.03865139 — 3.72191562i.
o(n =3) 0.01796705 — 4.18756713i 0.02015145 — 4.18805945i
o(n=4) —0.02812119 — 5.62902148i —0.03161555 — 5.62874655i
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TABLE II. QNFs for massless charged scalar fields in the background of three-dimensional Coulomb-like AdS
black holes withM = 1,0 = 0.10,A = -1,k = 1,n =0, 1, 2, 3, 4, and different values of g. For positive values of
scalar field charge there is only a change of sign in the real part of the QNMs.

q =0.00 q = —0.01
o(n =0) 0.98388504 — 1.98552182i —0.98470433 — 1.98445121i
0.98306629 — 1.98659286i
w(n=1) 0.95193811 — 3.96371161i —0.95284085 — 3.96224667i
0.95103623 — 3.96517694i
o(n=2) 0.91087011 — 5.93960613: —0.91181622 — 5.93787124i
0.90992508 — 5.94134139i
o(n =3) 0.86293045 — 7.91428723i —0.86390606 — 7.91233636i
0.86195612 — 7.91623842i
w(n=4) 0.80921835 — 9.88816723i —0.81021642 — 9.88602802i
0.80822185 — 9.89030675i
qg =-0.02 g =-0.03
w(n=0) —0.98552418 — 1.983381031 —0.98634457 — 1.98231128i
0.98224810 — 1.98766432i 0.98143045 — 1.98873621i
on=1) —0.95374444 —3.96078213i —0.95464889 — 3.95931799i
0.95013521 — 3.96664266i 0.94923505 — 3.96810878i
w(n=2) —0.91276340 — 5.93613670i —0.91371164 — 5.93440252i
0.90898112 — 5.94307699i 0.90803823 — 5.94481295i
w(n=3) —0.86488296 — 7.910385841i —0.86586116 — 7.90843565i
0.86098309 — 7.91818993: 0.86001135 — 7.92014177i
o(n=4) —0.81121606 — 9.88388913i —0.81221726 — 9.88175056
0.80722690 — 9.89244657i 0.80623353 — 9.89458669i
qg = —0.04 q =-0.05
o(n=0) —0.98716551 — 1.98124195i —0.98798699 — 1.98017305
0.98061336 — 1.98980852i 0.97979682 — 1.99088126i
w(n=1) —0.95555420 — 3.95785424i —0.95646036 — 3.95639090i
0.94833574 — 3.96957528i 0.94743730 — 3.97104216i
w(n=2) —0.91466096 — 5.93266870i —0.91561134 — 5.93093526i
0.90709641 — 5.94654925i 0.90615566 — 5.94828589i
o(n =3) —0.86684064 — 7.90648580i —0.86782142 — 7.90453630i
0.85904090 — 7.92209392i 0.85807174 — 7.92404637i
o(n =4) —0.81322002 — 9.87961232i —0.81422434 — 9.87747443i
0.80524171 — 9.89672709i 0.80425146 — 9.89886777i
q = —0.06 qg = —0.07
o(n=0) —0.98880902 — 1.97910459i —0.98963160 — 1.97803656i
0.97898083 — 1.99195441i 0.97816539 — 1.99302799:
w(n=1) —0.95736737 — 3.95492796i —0.95827524 — 3.95346543i
0.94653971 — 3.97250943; 0.94564298 — 3.97397708i
o(n=2) —0.91656280 — 5.92920219i —0.91751532 — 5.92746949i
0.90521599 — 5.95002288i 0.90427738 — 5.95176020i
o(n =3) —0.86880348 — 7.90258716i —0.86978683 — 7.90063837
0.85710388 — 7.92599914i 0.85613730 — 7.92795220i
w(n=4) —0.81523023 — 9.87533687i —0.81623767 — 9.87319968i
0.80326277 — 9.90100872i 0.80227565 — 9.90314993i
q = —0.08 q =—0.09
w(n=0) —0.99045472 — 1.97696896i —0.99127838 — 1.97590179i
0.97735051 — 1.99410198i 0.97653618 — 1.99517639i
on=1) —0.95918396 — 3.95200330i —0.96009354 — 3.95054159{
0.94474712 — 3.97544512i 0.94385211 — 3.97691352i
o(n=2) —0.91846891 — 5.92573716i —0.91942357 — 5.92400522
0.90333986 — 5.95349785i 0.90240340 — 5.95523584i
w(n=3) —0.87077147 — 7.89868995i —0.87175740 — 7.89674189i
0.85517202 — 7.92990556i 0.85420803 — 7.93185921i
o(n=4) —0.81724668 — 9.87106284i —0.81825725 — 9.86892638i
0.80129009 — 9.90529140i 0.80030609 — 9.90743311:
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FIG. 2. QNFs for massless scalar fields in the background of
three-dimensional Coulomb-like AdS black holes with M =1,
A = —1, k = 1, and different values of the overtone number n, and
q. For the top panel, the black points correspond to complex QNFs,
while that blue points correspond to purely imaginary QNFs;
n =0, 1, 2, for small black hole charge and n = 0, 1, 2, 3, 4, for
bigger black hole charge [85]. Bottom panel corresponds to
complex QNFs for charged scalar field ¢ = —0.25, and n = 0,
1,2,3,4,5. For positive values of scalar field charge there is only a
change of sign in the real part of the QNMs.

of variable y = 1 — ry/r in order to bound the value of
the radial coordinate to the range [0, 1], and the radial
equation (17) becomes

L=y fOR"(y) + (1 =) f'(y) = (L =y f(»)R ()
(@ +qAO))’rh a0y _ oy _MTh B
( Ty U=y )R(” =0

(42)

where the prime means derivative with respect to the
coordinate y. Now, the event horizon is located at y =0
and the spatial infinity at y = 1. So, in order to propose an
ansatz for the field, we analyze the behavior of the
differential equation at the horizon and at infinity. In the
neighborhood of the horizon the function R(y) behaves as

i(0+4A:(0))

R(y)=Cie 70O “n y

(04441 (0)

+Ce 0 (43)

where: (i) the first term represents an ingoing wave, and
(ii) the second represents an outgoing wave near the black
hole horizon. So, imposing the requirement of only ingoing
waves on the horizon, we fix C, = 0. On the other hand, at
infinity the function R(y) behaves as

R(y) = Dy(1—y)"V15 4 Dy(1 = y)-VIE. (44)

So, imposing that the scalar field vanishes at infinity
requires D, = 0. Therefore, an ansatz for R(y) is R(y) =

i(w+qA; (0)r,

(1—y) v 1‘%{%1[1 "F(y), and by inserting this
expression in Eq. (42), it is possible to obtain a differential
equation for the function F(y). Now, to use the pseudo-
spectral method, F(y) must be expanded in a complete
basis of functions {¢;(y)}: F(y) = > 2, c;¢i(y), where c¢;
are the coefficients of the expansion, and we choose the
Chebyshev polynomials as the complete basis, which are
defined by T(x) = cos(j cos™" x), where j corresponds to
the grade of the polynomial. The sum must be truncated
until some N value, therefore the function F(y) can be
approximated by

NE

F(y)= ) ¢Ti(x). (45)

i=0

Thus, the solution is assumed to be a finite linear combi-
nation of the Chebyshev polynomials, that are well defined
in the interval x € [—1, 1]. Due to y € [0, 1], the coordinates
x and y are related by x =2y — 1.

Then, the interval [0, 1] is discretized at the Chebyshev
collocation points y; by using the so-called Gauss-Lobatto
grid, where

1 jr .
y/.:i[l—cos<ﬁ>:|, j:O,l,...,N. (46)

The corresponding differential equation is then evaluated at
each collocation point. So, a system of N + 1 algebraic
equations is obtained, which corresponds to a generalized
eigenvalue problem and it can be solved numerically to
obtain the QNMs spectrum, by employing the built-in
Eigensystem procedure in Wolfram’s Mathematica [104].
In this work, we use a value of N into the interval
[80-100] for the majority of the cases with an average
running time in the range [80—140 s] which depends on the
convergence of w to the desired accuracy. We will use an
accuracy of eight decimal places. In addition, to ensure the
accuracy of the results, the code was executed for several
increasing values of N stopping when the value of the QNF
was unaltered. Also, the complete parameter space asso-
ciated to the modelsis M >0, A <0,and xk =0,1,2,....
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Here, the regions of the parameter space explored is M = 1,
A = —1, and for the black hole charge we consider a
discrete set of values in the interval [0, 0.52], due to in
this region is guaranteed the existence of two positive real
roots for the lapse function, and a discrete set of values of
in the interval [0, 30]. Also, for the scalar field mass we
consider a discrete set of values in the interval [0, 0.3],
and for the scalar field charge a discrete set of values in
the interval [—0.09, 15].

A. Massless charged scalar fields

1. Case k=0

Is was shown that the QNMs for uncharged massless
scalar field with k = 0 are purely imaginary [85]. So, in
order to show the behavior of the QNMs for massless
charged scalar fields, with k = 0, we fix the black hole
mass M, the black hole charge Q, and the cosmological
constant A, see Table I. We can observe that the decay rate

TABLE III.

decreases, and the frequency of the oscillations increases,
when the absolute value of the charge of the scalar fields
increases. Also, the QNMs acquire a real part when scalar
fields is charged. It is worth mentioning that for positive
values of scalar field charge there is only a change of sign in
the real part of the QNMs.

2. Casex #0

In order to show the behavior of the QNMs, we fix the
black hole mass M, charge Q, and the cosmological
constant A, see Table II. Note that for uncharged scalar
fields the QNFs are complex, but when scalar field is
charged appear two branches for the modes. The rate decay
of the QNFs for both branches decreases and the oscillation
of the frequencies increases for one branch and decreases
for the other one when the absolute value of the charge of
the scalar field increases.

Also, for uncharged scalar fields, it was shown that there
are complex QNFs for small values of the black hole charge

QNFs for massive scalar fields in the background of three-dimensional Coulomb-like AdS black holes

with M = 1, A = —1, « = 0, and different values of the overtone number n, Q = 0.25, and ¢ = —0.10. For positive
values of scalar field charge there is only a change of sign in the real part of the QNMs.

m = 0.00 m = 0.02
o(n =0) —0.07307103 — 1.51833088i —0.07307092 — 1.51848883i
w(n=1) 0.00967228 — 2.21275393i 0.00966755 — 2.21295844i
w(n=2) —0.04307788 — 3.16477918i —0.04307604 — 3.16495013i
o(n =3) —0.02254329 — 4.15448750i —0.02254568 — 4.15467321i
m = 0.04 m = 0.06
o(n=0) —0.07307058 — 1.51896252i —0.07307001 — 1.51975136i
on=1) 0.00965334 — 2.21357170i 0.00962969 — 2.21459294
w(n=2) —0.04307053 — 3.16546280i —0.04306135 — 3.16631658i
w(n=3) —0.02255285 — 4.15523011i —0.02256478 — 4.15615752i
m = 0.08 m = 0.10
o(n=0) —0.07306922 — 1.52085444i —0.07306821 — 1.52227044i
on=1) 0.00959663 — 2.21602086i 0.00955418 — 2.21785367i
o(n=2) —0.04304851 — 3.16751049i —0.04303204 — 3.16904318i
w(n=3) —0.02258147 — 4.157454271 —0.02260287 — 4.15911879i
m=0.12 m=0.14
o(n=0) —0.07306697 — 1.52399771i —0.07306552 — 1.52603425i
on=1) 0.00950241 — 2.22008908: 0.00944139 — 2.22272431i
o(n=2) —0.04301194 — 3.17091288i —0.04298824 — 3.17311751i
o(n =3) —0.02262896 — 4.16114902i —0.02265969 — 4.16354251i
m = 0.16 m=0.18
w(n=0) —0.07306385 — 1.52837770i —0.07306196 — 1.53102541i
o(n=1) 0.00937118 — 2.22575612i 0.00929188 —2.22918083i
o(n=2) —0.04296097 — 3.17565458i —0.04293015 — 3.17852130i
o(n =3) —0.02269501 — 4.16629637i —0.02273487 — 4.16940732i

m = 0.20

—0.07305986 — 1.53397438i
0.00920358 — 2.23299433i
—0.04289582 — 3.181714531
—0.02277921 — 4.17287172i

m = 0.30
—0.07304631 — 1.55311464i
0.00863105 — 2.25772262i
—0.04267293 — 3.20244835i
—0.02306542 — 4.19534346i
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that then become in two branches of imaginary QNFs when
the black hole charge increases; thereby, for small values of
the black hole charge the complex QNFs are dominant,
while that for bigger values of the black hole charge the
purely imaginary QNFs are dominant. Also, the value of
the charge for which occurs decreases when the overtone
number increases, see top panel Fig. 2. Therefore, for
uncharged scalar fields, it is possible to observe the
existence of two distinct families of modes, one of them
are the complex ones associated with the photon sphere and
the other one is the purely imaginary ones which appear
when the inner and outer horizon come close, such
transition from complex to purely imaginary dominant
modes, as the charge increases, has been found in various
charged spacetimes. However, when the scalar field is
charged, the QNMs are always complex, see bottom
panel Fig. 2 [105-116].

B. Massive charged scalar fields

To analyze the propagation of massive charged scalar
fields we show the behavior of the QNFs for fixed values of
black hole mass, cosmological constant, black hole charge,
and a vanishing angular number, and different values of the
overtone number and scalar field mass, see Table III, where
we can observe that when the scalar field mass increase the
decay rate of the QNMs increases, and the frequency of the
oscillations decreases. The same effect occurs for « > 0,
see Table I'V. On the other hand, note that the longest-lived
modes are the ones with smallest angular number, contrary
to Schwarzschild-AdS and Reissner-Nordstrom-AdS
space-times where appear an anomalous behavior of the
decay rate, i.e., the longest-lived modes are the ones with

higher angular number for small values of the scalar
field mass [49,52].

C. Superradiant modes

Now, we show in Table V the fundamental QNMs for
massless charged scalar fields and in Table VI for massive
charge scalar fields for higher values of the scalar field
charge. So, by comparing the real part of the dominant
modes, with the superradiant condition of charged scalar
fields (41), we can see that all the unstable modes are
superradiant. The value of the scalar field charge for
which the modes became unstable decreases when the
black hole charge increases. Also, its charge increases
when the angular number increases.

VI. FINAL REMARKS

In this work, we studied the propagation of charged
scalar fields in the background of (2 4+ 1)-dimensional
Coulomb-like AdS black holes, and we showed that such
propagation is not always stable under Dirichlet boundary
conditions. Then, we solved the Klein-Gordon equation
by using the pseudospectral Chebyshev method, and we
found the corresponding quasinormal frequencies. Mainly,
we showed that, when the scalar field is charged, the QNFs
are always complex, contrary to the uncharged case, where
for small values of the black hole charge, the complex
QNFs are dominant, while that for bigger values of the
black hole charge the purely imaginary QNFs are domi-
nant. Last but not least, we found that all the unstable
modes are superradiant and all the stable modes are
not superradiant, according to the superradiant condition,

TABLE IV. The fundamental QNFs (n = 0) for massive scalar fields in the background of three-dimensional
Coulomb-like AdS black holes with M = 1, A = —1, and different values of x, Q = 0.25, and ¢ = —0.10. For
positive values of scalar field charge there is only a change of sign in the real part of the QNMs.

m = 0.02

m = 0.00
ok =1) ~0.91057032 — 1.87677763i
o(x = 10) —9.97518437 — 1.96141343i
o(x = 30) —29.9860098 — 1.9777749i
m = 0.04
w(k=1) ~0.91050867 — 1.87751886i
o(x = 10) ~9.97516825 — 1.96219464i
o(x = 30) ~29.9860007 — 1.9785639i
m = 0.08
ok =1) ~0.91032391 — 1.87973895i
w(x = 10) —9.97511994 — 1.96453452i
o(x = 30) ~29.9859736 — 1.9809271i
m = 0.20
w(k=1) —0.90903870 — 1.89513128i
w(k = 10) ~9.97478407 — 1.98075919i
w(x = 30) —29.9857850 — 1.9973137i

—0.91055490 — 1.87696299i
-9.97518034 — 1.96160879i
—29.9860075 — 1.9779722i

m = 0.06
—0.91043165 — 1.87844455i
—9.97514811 — 1.96317027i
—29.9859894 — 1.9795492i

m = 0.10
—0.91018553 — 1.88140049i
—9.97508376 — 1.96628576i
—29.9859533 — 1.9826958i

m = 0.30
—0.90715135 — 1.91757604i
—9.97429137 — 2.00442337i
—29.9855084 — 2.0212150i
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and consequently, the scalar waves can experiment a
superradiant amplification by the black hole by extracting
charged of the black hole indicating that the black hole
geometry is unstable.
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