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We present a new choice of initial data for binary black hole simulations that significantly improves the
efficiency of high-spin simulations. We use spherical Kerr-Schild coordinates, where the horizon of a
rotating black hole is spherical, for each black hole. The superposed spherical Kerr-Schild initial data
reduce the runtime by a factor of 2 compared to standard superposed Kerr-Schild for an intermediate
resolution spin-0.99 binary-black-hole simulation. We also explore different variations of the gauge
conditions imposed during the evolution, one of which produces an additional speed-up of 1.3.
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I. INTRODUCTION

The exciting era of gravitational wave astronomy
started with the first detection of a gravitational wave
(GW) in 2015 by the Laser Interferometer Gravitational-
Wave Observatory (LIGO) [1–4]. The event, named
GW150914, was generated by a binary-black-hole (BBH)
system. About 50 detections have been published so far
[5,6], and most of them were emitted by BBHs, including
GW190521 [7], the first detection of an intermediate-mass
black hole (BH).
GW detection requires accurate waveform templates to

extract the astrophysical signal from the noisy data.
While a full analytic solution of BBH evolution is not
known, analytical approximations like the post-Newtonian
method can generate approximate BBH waveforms [8].
However, such approximations fail to describe the strong-
field regime as the black holes merge [8]. Numerical
relativity is currently the only way to model the merger
event and provide full inspiral-merger-ringdown wave-
forms. Comparison between these numerically informed
waveforms and detected signals allows GW observatories
to extract physical properties about compact objects [4,9]
and measure possible deviations from general relativity
[10–13].
Since the first stable BBH simulations in 2005 [14–16],

numerical relativists have enlarged the parameter space of
simulations to include higher spins and mass ratios [17–
25]. Nowadays, for example, the SXS Collaboration has
published BBH simulations of dimensionless spin magni-
tude up to 0.998 in its catalog [25]. Though all the BBH
events published so far by LIGO and Virgo have effective
spin smaller than 0.9 (within 90% credible intervals) [5,6],
spin is not constrained to lie in this range, and there is

evidence of nearly extremal-spin BHs in x-ray binaries
[26–30]. Thus, we must have models of high-spin BBH
GWevents so they can be searched for in the detector data.
There are several interesting phenomena that can occur

for a high-spin BBH and not for a nonspinning one. Two
examples are the hangup effect [31] and the flip-flop effect
[32]. The hangup effect describes how the merger is
delayed or accelerated by spin-orbit coupling compared
to a nonspinning BBH merger, while the flip-flop effect
may reverse the spin direction of a progenitor BH by spin-
spin coupling. Both effects can be exaggerated by near-
extremal spins and can only be further understood by
simulations. Furthermore, high-spin simulations are needed
for filling out the parameter space for surrogate models
[33–36] and effective-one-body models [37–40]. A recent
development among surrogate models is NRSur7dq4
(together with NRSur7dq4Remnant), which is trained with
numerical simulations of spin up to 0.8 [41]. An instance of
effective-one-body calibrations using simulations of spin
up to 0.98 can be found in Ref. [42].
Unfortunately, high-spin simulations are very computa-

tionally expensive and rapidly increase in cost as the spins
are increased. For example, a 25-orbit spin-0.9 BBH
simulation takes weeks to complete, while a 25-orbit
spin-0.99 simulation takes months to complete. Thus, a
more efficient method of performing the simulations is
highly desirable. Our objective in this paper is to develop
faster high-spin BBH simulations by changing gauge
conditions.
All simulations in this paper were done using the spectral

Einstein code (SpEC) [43]. SpEC uses the first-order
generalized harmonic evolution system to simulate the
spacetime [44]. Before evolving spacetime quantities,
SpEC solves for the initial data for BBH evolution
using the extended conformal thin-sandwich formalism
[45,46]. SpEC chooses the free data to be given by a*yc2377@cornell.edu

PHYSICAL REVIEW D 104, 084046 (2021)

2470-0010=2021=104(8)=084046(18) 084046-1 © 2021 American Physical Society

https://orcid.org/0000-0002-8664-9702
https://orcid.org/0000-0003-4557-4115
https://orcid.org/0000-0001-5392-7342
https://orcid.org/0000-0001-9765-4526
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.084046&domain=pdf&date_stamp=2021-10-12
https://doi.org/10.1103/PhysRevD.104.084046
https://doi.org/10.1103/PhysRevD.104.084046
https://doi.org/10.1103/PhysRevD.104.084046
https://doi.org/10.1103/PhysRevD.104.084046


Gaussian-weighted combination of two single BH analytic
solutions [47]. A traditional choice for the single BH
analytic solution is Kerr-Schild (KS), while more recently,
harmonic-Kerr has been used successfully [48].
Simulations starting with harmonic-Kerr initial data are
up to 30% faster than ones starting with KS. However, the
harmonic-Kerr initial data can only be solved for spins
smaller than 0.7 [48]. Reference [49] extends harmonic-
Kerr initial data to spin-0.9 BBH simulations by using a
modified version of harmonic-Kerr, but the overall com-
putational efficiency is not greatly improved compared to
simulations using the KS initial data.
In this paper, we develop and use several gauge con-

ditions both in the initial data and in the evolution. We
compare their stability, efficiency, and gravitational wave-
form output with the goal of making high-spin (dimension-
less spin χ ≥ 0.9) simulations cheaper. Our most successful
choice of initial data reduces the cost of χ ¼ 0.99 aligned-
spin simulations by nearly a factor of 2.
The rest of this paper is organized as follows: in Sec. II,

we describe the numerical methods that are crucial in SpEC
BBH simulations and fundamental in the following dis-
cussion of this paper. In Sec. III, we introduce spherical
Kerr-Schild as a spherical version of KS and wide Kerr-
Schild as a modification of spherical Kerr-Schild that
increases the coordinate separation between the inner
and outer horizons. We will also briefly discuss how we
delay the transition from the initial data gauge to the
evolution gauge. In Sec. IV, we implement these new
configurations in single BH and BBH simulations, and
analyze their effect on computational cost, constraint
violations, waveforms, resolution, and apparent horizons.
We finally summarize the results and consider future
developments in Sec. V.
Here are some conventions used in this paper. (1) Unless

specified, spin refers to the dimensionless spin χ.
Dimensionful spin refers to spin angular momentum per
unit mass and is labeled by a. (2) We use geometric units,
i.e., G ¼ c ¼ 1. All dimensionful quantities in this paper
are then equipped with units that are an integer power ofM,
the total ADM mass of a system. For example, time and
distance have units ofM. (3) We use letters at the beginning
of the latin alphabet (a; b; c;…) as spacetime indices, and
later letters (i; j; k;…) as spatial indices. (4) We reserve
symbols gab, γij, α, and βi for spacetime metric, spatial
metric, lapse, and shift.

II. NUMERICAL TECHNIQUES

In this section, we provide an overview of some of the
numerical methods SpEC uses. We start by briefly describ-
ing the extended conformal thin-sandwich formalism and
SpEC’s choice of free data in Sec. II A. Next, we discuss
the first-order generalized harmonic system in Sec. II B.
Finally, in Sec. II C, we briefly describe the configuration
of the computational domain in SpEC.

A. Binary-black-hole initial data

We adopt the standard 3þ 1 form of the spacetime
metric gab,

ds2 ¼ −α2dt2 þ γijðβidtþ dxiÞðβjdtþ dxjÞ; ð1Þ
where α is the lapse, βi the shift, and γij the spatial
metric. In vacuum, the spacetime metric gab and its time
derivative ∂tgab must satisfy the Hamiltonian and momen-
tum constraints,

Rþ K2 − KijKij ¼ 0; ð2Þ
DjðKij − γijKÞ ¼ 0; ð3Þ

where R is the spatial Ricci scalar, Di the spatial covariant
derivative, Kij the extrinsic curvature, and K ¼ Ki

i the
trace of the extrinsic curvature.
The spatial metric and extrinsic curvature are split using

a conformal decomposition as

γij ¼ ψ4γ̄ij; ð4Þ

Kij ¼ Aij þ
1

3
γijK; ð5Þ

where ψ is the conformal factor, γ̄ij the conformal
metric, and Aij the traceless part of Kij. Aij is further
decomposed as

Aij ¼ ψ−2Āij; ð6Þ

Āij ¼ ψ6

2α
ððL̄βÞij − ūijÞ; ð7Þ

where ūij ≡ ∂tγ̄ij (note that γ̄ijūij ¼ 0 to uniquely fix ūij
[50]), and the vector gradient part ðL̄βÞij is defined as

ðL̄βÞij ≡ D̄iβj þ D̄jβi −
2

3
γ̄ijD̄kβ

k; ð8Þ

with D̄j the covariant derivative associated with γ̄ij.
In the extended conformal thin-sandwich formalism, γ̄ij,

ūij, K, and ∂tK are freely specifiable. The elliptic solver in
SpEC [51] computes ψ , α, and βi by solving

D̄j

�
ψ6

2α
ðL̄βÞij

�
− D̄j

�
ψ6

2α
ūij

�
−
2

3
ψ6D̄iK ¼ 0; ð9Þ

D̄2ψ −
1

8
ψR̄ −

1

12
ψ5K2 þ 1

8
ψ−7ĀijĀij ¼ 0; ð10Þ

D̄2ðαψÞ − αψ

�
7

8
ψ−8ĀijĀij þ 5

12
ψ4K2 þ 1

8
R̄

�
þ ψ5ð∂tK − βk∂kKÞ ¼ 0; ð11Þ
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where R̄ is the conformal Ricci scalar. Equations (4) and (5)
are then used to compute γij and Kij.
The free variables ūij and ∂tK are typically set to 0 to

construct quasiequilibrium initial data. SpEC sets the
remaining free variables γ̄ij and K using a superposition
of two single BH spacetimes blended together by a
Gaussian weight function [47]. We define γρij and Kρ to
refer to these quantities for a boosted spinning BH, where
ρ ¼ A, B labels each BH. γ̄ij and K are chosen to be [47]

γ̄ij ≡ ηij þ
X
ρ

e−r
2
ρ=w2

ρðγρij − ηijÞ; ð12Þ

K ≡X
ρ

e−r
2
ρ=w2

ρKρ; ð13Þ

where ηij is the 3D flat metric, rρ is the Euclidean distance
from BH ρ, and wρ controls the falloff of BH ρ’s
contribution. We use wρ equal to 3=5 of the Euclidean
distance between the BBH’s L1 Lagrange point (Euclidean
center-of-mass) and BH ρ’s center. This choice of wρ is
wider than a BH’s size but still relatively far from the
companion BH.
The most common choice for the free data at each BH is

Kerr-Schild (KS), though using Harmonic-Kerr has much
promise for low-spin binaries [48]. In this paper, we use a
Kerr-Schild-like gauge where the horizon is spherical at
each black hole to set the free data. We will discuss the KS
and KS-like gauges in Sec. III.

B. Generalized harmonic evolution system

SpEC evolves the initial data using the first-order
generalized harmonic (GH) system [44]. (See Refs. [52–
54] for more details on the GH systems.) The coordinates
xa (referred to as generalized harmonic coordinates) satisfy
the inhomogeneous wave equation,

Ha ¼ ∇b∇bxa ¼ −Γa; ð14Þ

where Γa ≡ gbcΓa
bc is the trace of the Christoffel

symbol, and ∇a the gab-compatible covariant derivative.
The gauge source function Ha ¼ Haðxb; gcdÞ is any
arbitrary function dependent only on xb and gcd (but
not derivatives of gab). In these coordinates, the vacuum
Einstein equations can be cast into a manifestly hyperbolic
form,

gcd∂c∂dgab ¼−2∇ðaHbÞ þ2gcdgefð∂egca∂fgdb−ΓaceΓbdfÞ;
ð15Þ

where Γabc ¼ gadΓd
bc. After expanding Eq. (15) into a

first-order representation (done analogously to expanding
the covariant scalar field system [55,56]) and adding
constraint damping terms (see [14,44,54,57,58] for

detailed discussions on constraint damping), we arrive
at the GH evolution equations implemented in SpEC,

∂tgab ¼ −αΠab − γ1β
iΦiab þ ð1þ γ1Þβk∂kgab; ð16Þ

∂tΠab ¼ 2αgcdðgijΦicaΦjdb − ΠcaΠdb − gefΓaceΓbdfÞ

− 2α∇ðaHbÞ −
1

2
αncndΠcdΠab − αncΠcigijΦjab

þ αγ0½2δcðanbÞ − ð1þ γ3Þgabnc�ðHc þ ΓcÞ
− γ1γ2β

iΦiab þ βk∂kΠab − αgki∂kΦiab

þ γ1γ2β
k∂kgab; ð17Þ

∂tΦiab ¼
1

2
αncndΦicdΠab þ αgjkncΦijcΦkab − αγ2Φiab

þ βk∂kΦiab − α∂iΠab þ αγ2∂igab; ð18Þ

where gab, Φiab ≡ ∂igab, Πab ≡ −nc∂cgab are the three
dynamical fields being evolved, γ0, γ1, γ2, and γ3 the
constraint damping parameters, and na the future-pointing
unit normal to constant-t spatial hypersurfaces. See the
Appendix for values of γ0, γ1, γ2, and γ3 used in the
simulations of this paper.
The simplest choice of gauge source function is the

harmonic gauge, whereHa ¼ 0. The harmonic gauge dates
back to Einstein’s work [59] and has been an important tool
in many aspects of analytical general relativity [60–62].
Unfortunately, using a harmonic gauge condition in sim-
ulations of BBH mergers leads to explosive growth of γ ¼
detðγijÞ near the apparent horizons as two BHs merge [63].
To suppress such growth, SpEC adopts the damped wave
gauge or damped harmonic (DH) gauge Ha ¼ Ha

DH [63],

Ha
DH ¼ μLna ln

� ffiffiffi
γ

p
α

�
− μS

βi

α
γai ; ð19Þ

μL ¼ μS ¼ e−ðln 1015Þr2=σ2
�
ln

� ffiffiffi
γ

p
α

��
2

; ð20Þ

where r is the Euclidean radius, and σ ¼ 100M. Note that
the DH gauge reduces to the harmonic gauge to machine
precision for r ≥ σ.
SpEC uses the following gauge transition from the initial

gauge Ha
init to the DH gauge Ha

DH during evolution:

Ha ¼ FðtÞHa
init þ ½1 − FðtÞ�Ha

DH; ð21Þ

where

FðtÞ ¼

8>><
>>:

exp

�
−
�
t − t0
w

�
4
�
; t ≥ t0

1; t < t0:
ð22Þ
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Here, t0 is the start time, and w is the temporal width of the
transition. Unless stated otherwise, we choose t0 ¼ 0M and
w ¼ 50M. Note that this transition function is not finely
tuned. It is chosen because it decays to 0 rapidly for large t
and has a continuous third derivative at t ¼ t0.

C. Computational domain

SpEC adopts a dual-frame configuration for BBH
simulations [64]. In the inertial frame, the two BHs are
orbiting each other and deform as they merge. In contrast,
in the grid frame, the BHs are at fixed coordinate locations
and are kept approximately spherical. The two frames are
related by a time-dependent analytic map determined by
feedback control systems in SpEC [65].
SpEC’s domain decomposition is described in the

Appendix of Ref. [66], while the adaptive mesh refinement
(AMR) algorithm is described in Refs. [67,68]. SpEC uses
spherical shells around each BH. The number of spherical
harmonicmodes (l) used in the shells aroundBHs is a direct
proxy for how the shape of each BH affects the computa-
tional cost of a simulation. High-spin BBH simulations use
l ≥ 40, which results in not only many grid points, but also
close spacing between grid points. A simulation with more
grid points requires more computation per time step, while a
closer spacing between grid points requires a smaller time
step in order to maintain stability. Both factors slow down
the overall simulation. With this in mind, we seek to reduce
the angular resolution needed in high-spin BBH simula-
tions, anticipating faster simulations.
SpEC uses excision to avoid the physical singularities

inside BHs. Specifically, the region within an inner
boundary for each BH is excluded from the computational
domain. This boundary is called an excision surface or
excision boundary and lies slightly inside the apparent
horizon (AH) of each BH [54,65]. Causality prohibits any
physical content in the interior region from propagating out.
The excision surface has to be placed in a trapped region
between the inner and outer horizons for each BH. Since the
distance between the inner and outer horizons decreases as
spin increases, the placement of the excision boundary
becomes increasingly difficult as the spin increases. As a
result, smaller time step sizes are necessary to track the
apparent horizons and to keep the excision boundary inside
the narrow trapped region. Thus, a gauge where horizons
remain spherical for any spin should not only decrease the
resolution used by AMR but also reduce the workload in
tracking the apparent horizons and controlling the excision
boundaries. At the outer boundary, suitable constraint-
preserving boundary conditions [44] are imposed.

III. NEW INITIAL DATA AND GAUGE
CONDITIONS

We describe three modifications to SpEC’s current
configuration that will be explored in this paper. The major

modification is to introduce a Kerr-Schild-like gauge in the
free initial data, where the horizons are spherical for any
spin. We will refer to this choice as spherical Kerr-Schild.
The other two modifications are variants of the spherical
KS initial data. One variant increases the coordinate
distance between the inner and outer horizons in spherical
Kerr-Schild to construct what we refer to as the wide Kerr-
Schild gauge. The other variant keeps the spherical Kerr-
Schild data but delays the transition to damped harmonic
gauge during the evolution.

A. Spherical Kerr-Schild

The Kerr metric in KS coordinates ft; x; y; zg, with spin
pointing along the z axis,1 massM, and angular momentum
aM ¼ χM2 is

gab ¼ ηab þ 2Hlalb; ð23Þ

where ηab is the Minkowski metric,

H ¼ Mr3

r4 þ a2z2
; ð24Þ

la ¼
�
1;
rxþ ay
r2 þ a2

;
ry − ax
r2 þ a2

;
z
r

�
; ð25Þ

and r, implicitly given by

x2 þ y2

r2 þ a2
þ z2

r2
¼ 1; ð26Þ

is the radial coordinate in Boyer-Lindquist coordinates.
Since we are only interested in astrophysical BHs, we
restrict ourselves to χ < 1. Then for any nonzero spin, there
are inner and outer horizons r� ¼ ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
ÞM. In the

region r− < r < rþ, any object must travel radially inward,
while outside this region (r < r− or r > rþ, excluding
horizons), an object can travel both radially inward and
outward. For high spins, the horizons r� become closer
together and increasingly nonspherical in the KS coordi-
nate system, requiring greater angular resolution to simu-
late the BHs. This suggests that we might mitigate the
required resolution increase by using coordinates in which
the horizons are spherical, as we now describe.
We denote the spherical KS coordinates by ft; x̄; ȳ; z̄g.

These are related to the KS coordinates ft; x; y; zg by

x̄
r
¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p ; ð27Þ

ȳ
r
¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p ; ð28Þ

1For spin not along the z axis, adding a 3D rotation suffices to
determine the metric.
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z̄ ¼ z: ð29Þ
Equation (26) describes an oblate spheroid in fx; y; zg and
is equivalent to a sphere in fx̄; ȳ; z̄g coordinates. That is,

x̄2 þ ȳ2 þ z̄2 ¼ r2: ð30Þ
The left panel of Fig. 1 shows the inner and outer horizons
in KS as solid lines, and a sample excision surface as a
dashed line. The right panel of Fig. 1 shows the inner and
outer horizons, and excision surface but in spherical KS
coordinates instead. We will abbreviate spherical KS as
SphKS hereinafter.

B. Wide Kerr-Schild

Recall from Sec. II C that as the BHs inspiral, the
excision regions track the BHs. The excision boundary
must be inside rþ but outside r− so that all information
leaves the computational domain and no boundary con-
dition must be applied. This becomes more difficult as the
spin increases, partly because the space between rþ and r−
decreases. We attempt to reduce the work of the control
system by expanding the region between the horizons by
performing a radial transformation. Note that the idea of
expanding the region between horizons in the initial data is
not new. For example, Ref. [69] applies a fisheye radial
transformation to the quasi-isotropic coordinates to expand
the horizon size. We here apply a different radial trans-
formation to the SphKS coordinates. We refer to this gauge
as wide Kerr-Schild (WKS). We continue using the
notation in Sec. III A and denote the coordinates of
WKS as ft; x̃; ỹ; z̃g. We introduce a new variable r̃ that
is related to r and choose the coordinate transformation
between WKS and SphKS as

x̃
r̃
¼ x̄

r
; ð31Þ

ỹ
r̃
¼ ȳ

r
; ð32Þ

z̃
r̃
¼ z̄

r
: ð33Þ

With this convention, Eqs. (26) and (30) are equivalent to

x̃2 þ ỹ2 þ z̃2 ¼ r̃2; ð34Þ

i.e., a sphere of radius r̃ in WKS.
Starting with SphKS, we want a radial transformation

r → r̃ that keeps rþ fixed but shrinks r− radially inward by
some factor b, i.e.,

r̃ðrþÞ ¼ rþ; ð35Þ

r̃ðr−Þ ¼ br−: ð36Þ

We can achieve these relations with a quadratic,

r̃ðrÞ ¼ 1 − b
rþ − r−

r2 þ brþ − r−
rþ − r−

r; ð37Þ

with r−=rþ ≤ b ≤ 1 to ensure monotonicity, e.g., the lower
bound of b is ∼0.75 for a spin-0.99 BH. This b is a
squeezing parameter that controls how far r− is pushed
inwards after the transformation.
Unfortunately, this quadratic has the pathology that the

metric would no longer be asymptotically flat, so we use
the quadratic only near the BH, smoothly transitioning to
r̃ ¼ r far away from the BH. Specifically,

rðr̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4Ar̃

p
− B − 2Ar̃

2A
1

1þ eðr̃−CÞ=λ
þ r̃; ð38Þ

where

A ¼ 1 − b
rþ − r−

; ð39Þ

B ¼ brþ − r−
rþ − r−

¼ 1 − Arþ: ð40Þ

We write the relation as a function rðr̃Þ instead of r̃ðrÞ for
easier implementation in SpEC. C and λ are parameters of
the sigmoid function, controlling the center and width of
transition. Theoretically, we could choose C and λ to satisfy
eðrþ−CÞ=λ ∼ 10−15 so that Eq. (37) holds exactly inside rþ
within numerical precision, but such combinations
always result in large Jacobians. A quantity with large
derivatives (and second derivatives) needs sufficiently high
resolution to be resolved, which increases computational
cost. In practice, because the starting point of WKS is
broadening the region between rþ and r− nonlinearly, we
simply choose C ¼ 3M and λ ¼ 8M. This combination of
C and λ maintains stable simulations without increasing

FIG. 1. The xz plane for a single BH with spin 0.9 along the z
axis in KS coordinates (left) and spherical KS coordinates (right).
The left diagram shows that the excision surface and both
horizons are spheroids. The right one shows that in spherical
KS coordinates the excision surface and horizons are spheres.
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computational cost too much. Figure 2 shows r̃=r versus r
for these C and λ.

C. Delayed evolution gauge transition

When studying evolutions using SphKS initial data we
noticed that the apparent horizons become spheroids
around t ¼ 50M when the gauge has mostly transitioned
to damped harmonic. With the change to a spheroidal
horizon, we observe the expected increase in the required
angular resolution. Since the damped harmonic (DH)
condition is generally only necessary during merger, we
perform simulations where we delay the transition from
Ha

init to Ha
DH in an attempt to extend how long the horizons

remain (nearly) spherical. We change both t0 and w in
Eq. (22) and report our results in Sec. IV E.

IV. RESULTS

In this section, we test the new configurations described
in Sec. III by evolving multiple single BH and BBH
systems. In particular, we will compare the constraint
violations, computational efficiency, AH shapes, total
number of grid points, and waveforms from different
simulations.

A. Single spherical Kerr-Schild black hole

We evolve a spin-0.99 BH to time 4000M in both KS and
SphKS coordinates. We keep the domain decomposition
the same by using the transformation Eqs. (27)–(29) from
the SphKS domain, such that any sphere is mapped to a
spheroid matching the given spin. AMR is disabled,
ensuring the domain decomposition and resolution are
unchanged throughout the simulations. We fix the radial
resolution in both coordinates but vary the angular reso-
lutions, represented by l. The number of angular grid
points is then 2ðlþ 1Þ2. We investigate four single BH

simulations: three in KS with l ¼ 22, 26, 30 and one in
SphKS with l ¼ 22.
In the top panel of Fig. 3, we show the L2 norm of the

metric errors gab − ganalyticab for all four simulations. The
blue lines represent the evolution using KS coordinates,
with l ¼ 22, 26, 30 corresponding to the solid, dashed,
and dash-dotted styles. The metric error decreases as
the angular resolution increases, especially at early time
(before t < 500M). After t ∼ 1000M, the metric error
approaches a 10−7 error floor. This error floor appears
because the numerical error gets reflected at the outer
boundary and amplified when traveling inward [70].2 The
orange line is for the evolution using SphKS coordinates
with l ¼ 22.3 It reaches the same error floor at late time but
is at least 10 times smaller than the metric error of the
l ¼ 22 KS simulation (the blue solid curve).

FIG. 2. The ratio r̃=r as a function of r for various squeezing
parameters b for a spin-0.9 BH with C ¼ 3M and λ ¼ 8M. The
horizontal axis (r=M) is on a logarithmic scale to show both near-
field and far field behaviors. Since for b ¼ 1 (no squeezing)
r̃ ¼ r, the curve stays at 1. All curves tend to 1 far from the BH to
preserve asymptotic flatness, while becoming smaller than 1
inside the outer horizon. The reader can confirm from the graph
that the transformation in Eq. (38) keeps rþ fixed.

FIG. 3. Metric errors and constraint energy of four single BH
simulations. The top panel plots the L2 norm of the error of the
spacetime metric, i.e., the L2 norm of gab − ganalyticab . The bottom
panel plots the L2 norm of the constraint energy. The blue lines
represent the simulations using KS initial data, with l ¼ 22, 26,
30 in the solid, dashed, and dash-dotted line styles, while the
orange solid lines are results from the SphKS l ¼ 22 simulation.
As l increases, the KS simulations achieve lower metric errors
and constraint violations. The SphKS l ¼ 22 simulation has
lower metric errors and constraint violations than the KS l ¼ 22

case by factors of 10 and 103. Note that the 10−7 error floor of the
metric errors at late times is caused by the outer boundary
condition.

2The floor is decreased when we move the outer boundary
farther out.

3Simulations in SphKS coordinates with higher l’s yield
nearly the same metric errors as the l ¼ 22 curve, so they are
not shown.
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In the bottom panel of Fig. 3, we show the GH constraint
energy Ec for these four simulations. The constraint energy
(or constraint violation) used in this paper is defined as

Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
C2GH

ffiffiffi
γ

p
d3xR ffiffiffi

γ
p

d3x

s
; ð41Þ

where

C2GH ¼ δab½γijðCiaCjb þ δcdCiacCjbd þ γklδcdCikacCjlbdÞ
þ F aF b þ CaCb�: ð42Þ

Here, δab is the 4D Kronecker delta and
fCa;F a; Cia; Ciab; Cijabg are the five constraints used in
Ref. [44]. Note that our definition of Ec is different from the
one in Ref. [44]. Among the simulations using KS
coordinates, the constraint violation is smaller as l
increases. In contrast to the metric errors, the constraint
violations do not hit an error floor because of the use of a
constraint-preserving boundary condition [70]. We see that
the SphKS evolution has a constraint violation over a factor
of 103 smaller than the evolution in KS coordinates using
the same angular resolution (l ¼ 22). Even compared to
the KS l ¼ 30 case, the SphKS l ¼ 22 simulation still has
a smaller constraint violation by a factor of 10.
Because the horizons are spherical in the SphKS gauge,

spacetime quantities are constructed and evolved directly in
spherical domains. In the KS gauge, quantities are evolved
in spheroidal domains, so a spatial map converting sphe-
roids to spheres is necessary in the spectral calculation of
derivatives. The Jacobian and Hessian of this spatial map
and its inverse can introduce errors. Thus, in Fig. 3, we see
the single BH simulation in SphKS provides a more
accurate result than in KS.
The KS l ¼ 22 simulation takes 978 CPU hours to reach

t ¼ 4000M, while the SphKS l ¼ 22 simulation takes 948
CPU hours on the same number of cores. However, a better
comparison is to the l ¼ 26 KS case, which takes 1438
CPU hours and still has considerably larger errors. It may
not be surprising that we are able to reduce the numerical
error of single BH simulations by using coordinates better

adapted to the geometry of the BH, but it is reassuring to
have confirmation.

B. Spin-0.9 binary-black-hole simulations using
spherical Kerr-Schild initial data

We evolve three pairs of noneccentric, nonprecessing,
equal-mass, equal-spin BBH systems, corresponding to
spin 0.9, 0.95, and 0.99, all along the z-axis. Each pair
consists of a run with superposed KS initial data and
another run with superposed SphKS initial data. They both
merge after nearly the same number of orbits and at nearly
the same simulation time. The initial orbital frequency Ω0

and the initial rate of change of separation _a0 are tuned
separately for each run, subject to a fixed initial separation
D0. We perform this tuning by eccentricity reduction [71]
to achieve a negligible eccentricity (e < 0.0007). The
specific values of these parameters, including the number
of orbits, are provided in Table I. Furthermore, we simulate
each BBH run at three resolutions, Lev-1, Lev-2, and
Lev-3. For Lev-i, the target truncation error of the AMR
algorithm is ∼2 × 4−i × 10−4.
We focus on the spin-0.9 and spin-0.99 simulations in

this paper. Comparisons of CPU times and constraint
energy [Eq. (41)] between the two gauges for the spin-
0.9 and spin-0.99 simulations are shown in Fig. 4.
Comparison of waveforms for the spin-0.9 and spin-0.99
Lev-3 simulations are shown in Fig. 5. Additionally, the
CPU times4 at the end of ringdown are recorded in Table II.
We will explain and analyze these figures and tables in
greater detail.
We do not show figures for the spin-0.95 case because

the spin-0.95 and spin-0.99 simulations share the same
qualitative behavior. However, we still provide the CPU
times of the spin-0.95 case in Table II to show the trend that
using SphKS accelerates BBH simulations more signifi-
cantly as the spin increases.

TABLE I. Parameters for the six BBH simulations studied in Secs. IV B and IV C. χ⃗A;B are the spin vectors of the progenitor-BHs.D0,
Ω0, _a0, and e are the initial coordinate separation, initial orbital frequency, initial rate of change of separation, and eccentricity. All these
six simulations have mass ratio 1.

χ⃗A;B Initial data gauge D0 [M] Ω0 _a0 e No. of orbits

(0, 0, 0.9) KS 15.450 1.4095 × 10−2 5.3578 × 10−4 ∼0.0003 ∼25
SphKS 15.450 1.42 × 10−2 4.5284 × 10−4 ∼0.0005 ∼25

(0, 0, 0.95) KS 11.580 2.0875 × 10−2 1.0650 × 10−3 ∼0.0007 ∼14
SphKS 11.580 2.1100 × 10−2 8.5921 × 10−4 ∼0.0005 ∼14

(0, 0, 0.99) KS 11.577 2.0384 × 10−2 1.4799 × 10−3 ∼0.0005 ∼14
SphKS 11.577 2.0808 × 10−2 1.1357 × 10−3 ∼0.0002 ∼14

4Because the number of CPUs used may vary during a
simulation, CPU time is a better measure of efficiency than wall
clock time and we do not include wall clock time in this paper.
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1. Efficiency and constraint energy

The top left panel of Fig. 4 shows the CPU time ratio
TSphKS=TKS as a function of simulation time for the spin-
0.9 BBH simulations, where TSphKS and TKS are the CPU
times of SphKS and KS runs. A ratio smaller than 1 means
SphKS is more efficient than KS. The smaller the ratio the
more efficient the SphKS simulation is. Since all curves in
the top left panel are below 1, the performance of SphKS
runs is overall better. The ratio TSphKS=TKS at the end of the
simulation (after ringdown) is listed in Table II, together
with the CPU times. This CPU time ratio ranges from 0.79
to 0.91, which means a significant improvement for a BBH
simulation by switching to the SphKS initial data.
The bottom left panel shows the constraint energy for

both gauges. Solid lines stand for KS while dashed lines for
SphKS. Curves of the same resolution (Lev) are plotted in
the same color. We see that the constraint energy is similar
for the same Lev between the SphKS and KS initial data.
This is because AMR adjusts the target truncation error to
control the constraint violations. What the top and bottom
panels together show is that the SphKS initial data allows
us to perform simulations with the same constraint viola-
tions at a reduced computational cost. Furthermore, we
observe exponential convergence of the constraint energy
between t ∼ 700M and merger. Before t ∼ 700M, the
curves in different Levs overlap, and their values are much

greater than the later portion. This is because the AMR
algorithm is disabled in the wave zone before t ∼ 700M to
avoid using excessive computational resources to resolve
the junk radiation.

2. Waveforms

We extract the strain h on multiple spherical surfaces of
Euclidean radii r and extrapolate rh to Iþ as a function of
retarded time tret [72–76]. Note that rh is always center-of-
mass-corrected in this paper. We show the ðl ¼ 2; m ¼ 2Þ
and ðl ¼ 4; m ¼ 4Þ modes of rh, denoted as rh22 and rh44,
in the first row of Fig. 5. Only the waveforms of the Lev-3
simulations are plotted. In each graph, the blue curve is data
from the KS simulation and the orange curve from the
SphKS simulation.
The top left diagram of Fig. 5 shows the real part of rh22

and rh44. For clearer comparison, these waveforms are both
time shifted and phase shifted. Within the range of the
retarded time tret, we choose the point tpeak at which jrh22j
reaches its maximum and shift the horizontal axis by tpeak.
We then multiply each waveform by a phase such that the
waveform is real and positive at tpeak. In other words, after
time shifting and phase shifting, jrh22j is peaked (but not
necessarily jrh44j) at t ¼ tpeak, and both rh22 and rh44 have
zero phase at time tret − tpeak ¼ 0. This is similar to the
procedure in Ref. [48]. The waveforms of the KS and

FIG. 4. The left and right columns correspond to spin 0.9 and 0.99. The top row shows the ratio of CPU times (TSphKS=TKS) between
the same Lev using the SphKS and KS initial data. In all cases, we see that initially the SphKS initial data are nearly 2 times faster than
the KS initial data, but late in the simulation this ratio gets closer to 1 since the majority of the simulation is performed using the damped
harmonic gauge. The bottom row shows the constraint energy for the different simulations at the different resolutions. We see that in all
cases the constraint violations between the SphKS and KS initial data are nearly indistinguishable, demonstrating that the SphKS initial
data can achieve similar constraint violations as the KS initial data at significantly reduced computational cost.
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SphKS simulations overlap very well after the junk
radiation, tret ≳ 700M, except for some ≲0.001 deviations
after tret − tpeak ∼ 40M during the ringdown phase.
We quantify the similarity between two waveforms by

the mismatch M,

Mðh1; h2Þ ¼ 1 −max
δϕ;δt

� jhh1jh2;δϕ;δtijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2;δϕ;δtjh2;δϕ;δti
p �

; ð43Þ

where h2;δϕ;δt ¼ eiδϕh2ðtþ δtÞ and h1, h2 are waveforms in
a specific mode. δϕ and δt are parameters in phase and time
shifting to maximize the overlap between two waveforms.
The inner product h·j·i is defined as

hfjgi ¼
Z

tf

ti

fðtÞg�ðtÞdt; ð44Þ

where * denotes complex conjugation. The mismatch is
calculated for each mode (h22 or h44) over the time domain,
unlike Ref. [25], which considers the strain h before mode
decomposition and calculates the inner product over the

FIG. 5. Strain rh (extrapolated to Iþ) as a function of retarded time for the Lev-3 simulations. The top and bottom rows are for spin 0.9
and 0.99. The left column shows Re(rh22) and Re(rh44), while the right column shows jrh22j and jrh44j. Waveforms in the left column
are all time shifted so that jrh22j (but not jrh44j) reaches its maximum at time 0. They are also phase shifted so that both rh22 and rh44 are
real at time 0. Waveforms for KS and SphKS overlap well, except for the junk stage and tens of M after merger in mode (4, 4).
Waveforms in the right column are not time shifted, and only the junk parts are displayed. The amount of junk radiation for both gauges
is comparable.

TABLE II. CPU times at the end of the six BBH simulations.
TKS and TSphKS are the CPU times with the KS and SphKS initial
data. We calculate the ratio TSphKS=TKS for each spin and Lev in
the fifth column. A smaller ratio means the SphKS simulation is
more efficient than the KS simulation. We see improvements in
all cases. The CPU time ratio ranges from ∼0.56 to ∼0.93. In the
two most expensive runs, spin-0.95 Lev-3 and spin-0.99 Lev-3
runs, using the SphKS initial data is almost 2 times faster than
using the KS initial data.

Spin Lev TKS [hr] TSphKS [hr] TSphKS=TKS

0.9 1 10582 8307 0.785
2 16957 14628 0.863
3 23369 21272 0.910

0.95 1 7318 6778 0.926
2 10273 9094 0.885
3 22697 13104 0.577

0.99 1 14651 13147 0.897
2 28764 18312 0.637
3 70709 39583 0.560
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frequency domain. We choose ti to be 700M after the
earliest time in KS Lev-3 waveform and tf ¼ tpeak þ 50M.
For both the (2,2) and (4,4) modes, the mismatch between
KS Lev-2 and KS Lev-3 are at the same level as the
mismatch between KS Lev-3 and SphKS Lev-3.5 Thus, the
waveforms after junk radiation passes are in good agree-
ment between KS and SphKS.
The high-frequency fluctuation within tret ≲ 700M is the

transient gravitational perturbation called junk radiation.
The origin of the junk radiation is the initial data not
representing the true spacetime snapshot of a BBH system
in quasiequilibrium. The top right diagram of Fig. 5 shows
jrh22j and jrh44j during the junk phase. This waveform is
not time shifted because we only care about the qualitative
comparison of junk radiation between the two gauges. Note
that the retarded time tret can extend to negative values, and
the waveform on this negative time axis corresponds to
perturbations in the wave zone initial data. Both the KS and
SphKS gauges produce roughly the same amount of junk
radiation in the (2,2) mode, while SphKS produces more
than KS in the (4,4) mode.

C. Spin-0.99 binary-black-hole simulations using
spherical Kerr-Schild initial data

We omit a discussion of the spin-0.95 BBH data and
jump directly to the spin-0.99 BBH case because the
efficiency and waveform comparisons are very similar.

1. Efficiency, constraint energy and waveforms

The top right panel of Fig. 4 shows the CPU time ratio of
the SphKS initial data to the KS initial data, while the
bottom right panel of Fig. 4 shows the constraint energy at
different resolutions for the two gauges. The curves and
axes are labeled the same as for the spin-0.9 BBH case.
Overall, the behavior of the CPU time ratio and constraint
violations are similar to what we observed for the spin-0.9
simulations. Specifically, the constraint violations for the
SphKS and KS initial data are very similar, while the
simulations using SphKS initial data are cheaper than those
using KS initial data. The Lev-3 spin-0.99 SphKS simu-
lation is almost two times faster than the KS simulation.
The bottom row in Fig. 5 shows the waveforms of the

spin-0.99 BBH simulations for the KS (blue) and SphKS
(orange) initial data. The waveforms of the two gauges
overlap well in both modes (2,2) and (4,4), except for some
deviation at later times during ringdown. The mismatch
[Eq. (43)] between KS Lev-3 and SphKS Lev-3 is also at
the same order as between KS Lev-2 and Lev-3 for each
mode. We note that both gauges have roughly the same

amount (but not the exact same form) of junk radiation in
both the (2,2) and (4,4) modes, in contrast with the spin-0.9
case, where the SphKS gauge (4,4) mode had more junk
radiation. The waveforms for both the SphKS and KS
initial data being very similar and the SphKS initial data
simulation being nearly twice as fast for higher resolutions
demonstrate the advantage of using SphKS initial data for
accurate and efficient high-spin BBH simulations.

2. Apparent horizon analysis

SpEC decomposes the computational domain into multi-
ple subdomains (Sec. II C). There is an innermost spherical
shell subdomain that encircles each BH and contains the
BH’s apparent horizon (AH). The shape of the AH needs to
be resolved, so we expect more spherical AHs to require
lower resolutions. For concreteness, we will focus on the
AHs of the Lev-3 spin-0.99 BBH simulations.
Figure 6 shows the AH profile of a progenitor-BH at two

different times in the SphKS run. The left picture is at the
beginning of evolution (t ¼ 0M) and clearly shows that
the horizon is spherical in the SphKS gauge. At t ¼ 0M,
the simulation starts to undergo a smooth transition
from the quasiequilibrium gauge to damped harmonic
(DH) gauge, with the temporal width w ¼ 50M (Sec. II B).
The right picture shows the AH at t ¼ 50M, at which point
the AH is already nonspherical. In addition to the images of
the AH, we record the angular resolution L used to
construct AHs by the AH finder [65], in the top panel
of Fig. 7. The graph shows the angular resolution L of Lev-
3 runs in both gauges for t < 500M. Because the AH in KS
gauge starts as a distorted spheroid, the angular resolution
L in the KS simulation stays at L ¼ 22 immediately after
the start and throughout the DH gauge transition. This
suggests that the AH in the DH gauge is close to the
spheroidal AH in the KS gauge. In the SphKS gauge, L
starts from a relatively low value (13) because of the
spherical shape of the AH in the initial data and then climbs

FIG. 6. Apparent horizons of a progenitor-BH in the SphKS
spin-0.99 Lev-3 BBH system, at t ¼ 0M (left) and t ¼ 50M
(right). The apparent horizon is spherical at t ¼ 0M, which is a
key feature of the SphKS gauge. The transition to damped
harmonic gauge is mostly complete by t ¼ 50M, when we can
see that the horizon is no longer spherical.

5For the (2,2) mode, the mismatch between KS Lev-2 and KS
Lev-3 is 6.44 × 10−6, while the mismatch between KS Lev-3 and
SphKS Lev-3 is 9.84 × 10−7. For the (4,4) mode, the mismatch
between KS Lev-2 and KS Lev-3 is 6.72 × 10−5, while the one
between KS Lev-3 and SphKS Lev-3 is 1.61 × 10−4.
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to a constant value throughout the DH gauge transition.
This behavior of L matches our expectation.
Although the AHs quickly lose their spherical shape, we

have found that the SphKS increases the speed of the
simulation far beyond t ∼ 50M (see the top right panel of
Fig. 4 and also the top left panel of Fig. 8). In the bottom
panel of Fig. 7, we show the number of grid points in
the innermost shell surrounding each BH. We see that
even though the angular resolution used by the AH finder
is nearly identical once the transition to DH gauge is
complete, the number of points used near the BHs is
significantly lower for the SphKS initial data all the way
to t ∼ 2000M.

3. Speed-up analysis

Speeding-up the simulations significantly while keeping
constraint violations and waveforms almost the same is
encouraging. In this section, we identify the contributions
that lead to such a large speed-up. It is almost impossible to
quantitatively decompose the speedup into various algo-
rithms’ contributions, but we may still obtain some
qualitative insight from several relevant diagnostics of
the evolution.
Figure 8 shows four such quantities. They are the

simulation rate (dT=dt, i.e., the derivative of CPU time
with respect to simulation time), total number of grid
points, minimum grid spacing, and time step size. There are

FIG. 7. The top graph depicts the angular resolution L used by
the AH finder. L in the KS run stays constant immediately after
t ¼ 0M, suggesting that the AHs in the DH and KS gauges are
similar. In the SphKS case, L starts at a relatively low value and
then increases to a constant during the DH gauge transition. The
bottom graph records the total number of grid points in the
innermost spheres surrounding the BHs.

FIG. 8. Four quantities related to the speedup in the spin-0.99 BBH simulations. The top left graph shows the simulation rate dT=dt,
and we see that the speed-up occurs throughout the evolution. The top right graph implies that the difference in the total number of grid
points between two gauges cannot fully explain the speed-up. The bottom two graphs indicate that the narrower grid spacing in the KS
simulations is a key factor making them slower than the SphKS simulations. The decreased grid spacing requires a smaller time step size
and so the simulation progresses more slowly. Note that the abrupt change at ∼1400M in Lev-3 is shared among all four graphs and the
bottom panel of Fig. 7 and is caused by an AMR decision.
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six curves in each graph, representing various Levs and
gauges. Since most of the speed-up occurs before the
merger (∼2340M), we restrict our plots to 0 ≤ t ≤ 2300M.
The earlier graph of CPU time ratio versus simulation

time in Fig. 4 provides an overall comparison of computa-
tional cost. By contrast, an instantaneous comparison of
efficiency between gauges can be quantified by the
derivative dT=dt, as shown in the top left panel of
Fig. 8. A slower simulation results in a higher curve in
this graph, since more CPU time is required to compute a
unit of simulation time. Given a fixed Lev, the curve for KS
almost always lies above the one for SphKS, so a SphKS
run is faster than a KS run not only collectively, but also at
almost every moment. The difference in dT=dt between
gauges is larger as Lev increases, meaning that the SphKS
gauge is especially useful if both high spin and high
accuracy are desired, as seen previously in Fig. 4. We
note that along the solid purple curve (KS Lev-3) in Fig. 8
the value of dT=dt stays nearly constant after the beginning
but then plummets to the level of the dashed purple curve
(SphKS Lev-3) at ∼1400M. This drop is related to the
AMR algorithm (Sec. II C) rearranging the shells near the
BHs. Attempts to replicate this domain configuration at
earlier times led to unstable simulations. We will continue
observing this behavior at 1400M throughout the next
several graphs.
To better understand the source of the speed-up that the

SphKS initial data provides, let us first look at the number
of grid points used by the SphKS and KS simulations as a
function of time. The top right panel of Fig. 8 shows the
number of grid points as a function of time for both gauges
and all three resolutions. While the Lev-1 and Lev-3
SphKS simulations have fewer grid points than KS, the
trends of their curves do not match the dT=dt curves. For
example, the number of grid points for the Lev-3 simu-
lations approach each other before t ∼ 250M, while dT=dt
is still much smaller for the SphKS simulation. More
surprisingly, the Lev-2 SphKS simulation uses more total
grid points than the Lev-2 KS simulation but still has a
smaller dT=dt. These differing trends between simulation
rate and number of grid points suggests that there is
another major contributing factor responsible for the
observed speed-up.
Next we look at the Courant-Friedrichs-Lewy condition

[77], by which the time step size is adjusted according to
the spacing between grid points. If the spacing is narrower,
then the time step size must be smaller, making the
simulation slower. We plot the minimum grid spacing in
the bottom left and the time step size in the bottom right
panel of Fig. 8. We see that the minimum grid spacing for
SphKS is larger than for KS in the first several hundredM,
except for the region t≲ 40M. However, they both reach
the same level later in the evolution for all Levs. The
bottom right panel of Fig. 8 shows that the SphKS time step
size is generally larger than the KS time step. Again, the

difference is also more noticeable in the first several
hundred M.
Focusing on the Lev-3 curves we see that SphKS has a

larger minimum grid spacing, a larger time step size and
faster simulation rate than KS in 40M < t < 1400M. We
also check that the minimum grid spacing is always located
in the innermost shells near BHs in this time range for
both KS and SphKS simulations. Around 1400M in the KS
simulation AMR changes the grid, resulting in fewer grid
points in the innermost shells (see Fig. 7) and a minimum
grid spacing, and a time step comparable to the SphKS
case. At this point, the SphKS and KS simulations also
have approximately the same dT=dt. This leads us to
conclude that the more sparse distribution of grid points
near the BHs in a simulation with SphKS initial data is the
major contributing factor to the speed-up.

D. Binary-black-hole simulations using wide
Kerr-Schild initial data

We evolve a 25-orbit, nonprecessing, noneccentric,
equal-mass, spin-0.9 BBH system using the wide Kerr-
Schild (WKS) gauge (Sec. III B) with b ¼ 0.95 and b ¼
0.9 (recall that b ¼ 1 corresponds to the SphKS gauge).
The parameters of initial setup are listed in Table III. Their
values are close to the previous spin-0.9 SphKS BBH run,
so we compare these three simulations together.
We find that the WKS simulations share most of the

properties of the SphKS simulations. Namely, there is no
consistent improvement in either CPU efficiency or con-
straint energy by switching from SphKS to WKS. Both the
strain modes Reðrh22Þ and Reðrh44Þ from different gauges
overlap well. However, the amount of junk radiation
significantly increases when b ≠ 1. We find that the junk
is approximately doubled when b ¼ 0.9 compared to
b ¼ 1. Therefore, we do not recommend the use of
WKS for evolutions of high-spin BBHs.

E. Binary-black-hole simulations with delayed
evolution gauge transition

In this section, we simulate BBH systems in SphKS
where we delay the transition from the initial spherical
gauge to damped harmonic (DH) gauge with the hope that
this further improves efficiency. We choose t0 ¼ 4000M

TABLE III. Parameters of three BBH simulations using WKS
initial data with b ∈ f1; 0.95; 0.9g. Note that WKS of b ¼ 1 is
equivalent to SphKS. In all three simulations, the mass ratio is 1,
χA;B ¼ ð0; 0; 0.9Þ, and the number of orbits is about 25. See
Table I for definitions of parameters.

Initial gauge D0 [M] Ω0 _a0 e

SphKS 15.450 0.0142 4.53 × 10−4 ∼0.0005
WKS b0.95 15.452 0.0142 4.56 × 10−4 ∼0.0003
WKS b0.9 15.455 0.0142 4.51 × 10−4 ∼0.0003
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and w ∈ f50M; 100M; 400Mg [see Eq. (22) for the defi-
nitions of t0 and w]. All of these cases share the same initial
parameters with the non-delayed-transition SphKS spin-0.9
run in Table I. All runs have negligible eccentricity
(e < 0.0007), and we only focus on the highest resolution,
Lev-3.

1. Efficiency and constraint energy

We plot the CPU time ratio T=TKS in the top panel of
Fig. 9. TKS, TSphKS, and Tdelay are the CPU times of
simulations with the KS initial data, the SphKS initial data
without delay, and the SphKS initial data with delayed
transition of various widths w. A clear improvement is seen
in all delayed simulations, with the average reduction in
final runtime being ∼25% compared to SphKS and ∼32%
compared to KS.
The temporal part of the DH gauge transition function

has a discontinuous fourth derivative at t0 [Eq. (22)], which
the high-order methods employed by SpEC may be
sensitive to. The fourth derivative is proportional to
1=w4, so a narrower width introduces a larger discontinuity
in the derivative, which can lead to larger numerical errors.

This feature shows up in the constraint energy plot (the
bottom panel of Fig. 9). All runs have the same order
of constraint violations before 4000M, but later the curves
of delayed runs abruptly jump up by several orders of
magnitude at 4000M. The jump in the constraint energy is
larger as the temporal width gets narrower since the
derivative is larger and the gauge transition is steeper.
This graph also suggests that only a width of at least 400M
would be acceptable for production BBH simulations.

2. Waveforms

The large jump in the constraint violations at t ¼ 4000M
may result in unphysical effects in the waveforms. We plot
jrh44j in the top panel of Fig. 10 on the interval
3800M < tret < 4800M. We see that large oscillations
appear at t ¼ 4000M in the delayed transition waveforms
that are absent in the nondelayed run. The amplitude of the
oscillations decreases with increasing width. This is not
surprising considering that the discontinuity in the fourth
derivative of the roll-off function decreases as 1=w4. Note
that the waveforms in different gauges overlap before the
transition, suggesting that the oscillations are an artifact of
the nonsmooth gauge transition.

FIG. 10. A comparison of the strain rh between SphKS and
delayed SphKS for the spin-0.9 Lev-3 BBH simulations. The top
panel shows jrh44j in 3800M < tret < 4800M. We see the
unexpected fluctuation in the delayed transition curves for all
three temporal widths. To better see how the oscillations change
with increasing width, the bottom panel depicts the relative
difference in jrh44j of the delayed SphKS compared to the SphKS
simulations. The fluctuation is greater as the temporal width w
becomes narrower.

FIG. 9. CPU time ratio T=TKS (top panel) and constraint energy
(bottom panel) of the spin-0.9 Lev-3 BBH in SphKS and delayed
SphKS. The speed-up by delaying the evolution gauge is
manifest, by a factor of 1.3 compared to SphKS and 1.5 compared
to KS. We see that the speed-up of the delayed runs is mostly
independent of the transition width. However, a large increase in
the constraint violations is observed at the moment the gauge
transition is started (t ¼ 4000M). Constraint violations in the
delayed gauge can reach several orders of magnitude higher than
the nondelayed one, immediately after the transition time
t ¼ 4000M.
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To better see how the fluctuations depend on the
transition width w, we calculate the relative difference in
jrh44j of the three delayed runs compared to the nondelayed
one, in the bottom panel of Fig. 10. The difference is in
general smaller as the transition width increases, which is
reasonable since a narrower transition induces a larger
discontinuity in the fourth derivatives. For example, the
width-50M curve has relative differences at the order of
10−1, while the width-400M differences are 10−3.
To better understand how smoothness in a delayed gauge

transition function affects a waveform, we simulate the
same BBH system as above with SphKS initial data but
with a different gauge transition temporal function. Instead
of Eq. (22), we use

FðtÞ ¼ exp

�
−
�

t
3500M

�
10
�
; t ≥ 0: ð45Þ

This temporal function is smooth after the start of a
simulation and delays the DH gauge until t ∼ 2600M
[when FðtÞ ¼ 0.95]. The waveforms rh22 and rh44 have
relative difference (compared to the nondelayed SphKS
simulation) at the same order as the t0 ¼ 4000M;w ¼
400M SphKS simulation. We find that the high-frequency
noise in the waveforms is greatly reduced, but not com-
pletely eliminated. Thus, the smoothness in the temporal

transition of the evolution gauge is a factor causing the
high-frequency fluctuation, but not the main factor.
Given the growth in constraint violations and the

appearance of fluctuations in the waveforms, we do not
recommend delaying the gauge transition despite the
significant speed-up of the simulations.

3. Speed-up analysis

In this section, we examine the mechanism of the speed-
up from delaying the DH gauge transition.We consider
three spin-0.9 Lev-3 simulations: KS initial data, SphKS
initial data without delay, and SphKS initial data with the
delayed gauge transition of width w ¼ 400M. Figure 11
shows the simulation rate dT=dt, time step size, angular
resolution L used by the AH finder, and total number of
grid points in these three simulations. The blue curves
represent the simulation with the KS initial data, the orange
curves are for the nondelayed SphKS simulation, and the
purple ones for the w ¼ 400M delayed transition SphKS
simulation.
The graph of simulation rate (the top left panel of

Fig. 11) indicates that the delayed SphKS simulation is
more efficient than the other two gauges at almost any time,
especially before the transition time t ¼ 4000M. The top
right panel of Fig. 11 shows that the time step sizes for the
different gauges are nearly equal, so the time step has no
contribution to the speedup. In the bottom left panel of

FIG. 11. Four quantities for the speed-up analysis of delaying the DH gauge transition in the spin-0.9 Lev-3 BBH runs. The top left
panel shows that a simulation in delayed SphKS is faster at almost every moment before 4000M. In the top right panel, we see the same
level of time step sizes between nondelayed and delayed gauges, so time step is not a contributing factor of the speed-up. The bottom left
graph confirms that the AH stays close to spherical before the onset of the gauge transition. From the bottom right graph, we conclude
that the significantly smaller amount of grid points is responsible for the speed-up from delaying the gauge transition.
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Fig. 11, we see that the angular resolution L in the delayed
SphKS simulation is initially relatively low but then climbs
to the level of the other two gauges near t ¼ 4000M. This is
expected because the AH is spherical in the SphKS
coordinates but highly nonspherical in the DH gauge,
and delaying the transition keeps the AH in a nearly
spherical shape until t ¼ t0 ¼ 4000M. The bottom right
graph of Fig. 11 shows that the total number of grid
points in the delayed SphKS run is considerably smaller
than the other two gauges, especially before t ¼ 4000M.
Note that the number of grid points for delayed SphKS
is 19%–32% smaller than the other two gauges when
1000M < t < 4000M, which is comparable to the overall
efficiency improvement (1 − Tdelay;w400=TSphKS ¼ 26%).
Thus, in a SphKS simulation, delaying the DH gauge
transition accelerates the computation by substantially
reducing the number of grid points.

V. CONCLUSION

In this paper, we develop new gauge conditions for BHs
with thegoal of reducing the computational cost of high-spin
BBH simulations. We present several different attempts,
among which the most promising is the use of spherical
Kerr-Schild, where the horizons of a rotating BH are
spherical. For single BH evolutions using spherical Kerr-
Schild, we find a factor of 10 reduction in the metric error
and 1000 in the constraint energy, as compared to Kerr-
Schildwith the same resolution. For BBHevolutions, we see
efficiency improvement with equal accuracy. In general, we
find that the speed-up is greater for simulations with stricter
truncation error tolerances and higher spin. Specifically, we
observe an impressive factor of 2 reduction in CPU time for
the spin-0.99 Lev-3 (standard resolution of SXS BBH
simulations) case. This new gauge conditionwill also reduce
the computational cost of extending BBH simulations to
higher spins (e.g., χ ¼ 0.999), allowing waveform catalogs
and models (such as surrogates [33–36]) tuned to numerical
relativity to cover a larger and denser portion of the mass-
spin parameter space with significantly reduced cost.
While the main focus of this paper has been improve-

ments by changing the initial data, we also performed some
experiments where we delay the transition from the initial
data gauge to the damped harmonic gauge used in the
evolution. The goal is to keep the horizons spherical for
longer so that this further reduces the computational cost of
the simulations. In Sec. IV E, we find that imposing a
spherical gauge condition during the evolution will produce
an additional speedup by a factor of 1.3. However, one must
be careful not to introduce artifacts into the waveforms
when delaying the gauge transition.
Inspired by the benefit of delaying the evolution gauge,

we expect a dynamical spherical gauge condition to be very
useful for simulating high-spin BBHs. As future work, one
can develop a spherical version of damped harmonic gauge,
where the horizons of BHs can remain (nearly) spherical

during the whole evolution. As far as the initial data gauge
is concerned, one may consider blending the spherical
Kerr-Schild and harmonic-Kerr spatially, or even develop-
ing a spherical version of harmonic-Kerr with the hope to
reduce both the computational cost and junk radiation.
Nonetheless, solely changing the initial data as described in
this paper is certainly worthwhile.
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APPENDIX: γ0, γ1, γ2, AND γ3 USED IN
SIMULATIONS

SpEC evolves the spacetime of BHs in the first order GH
formalism [44], which is given by Eqs. (16)–(18). We
consider four constraint damping parameters in this for-
malism for this paper, namely γ0, γ1, γ2, and γ3. These
parameters have been used to simulate BHs in previous
papers. The quantities γ0, γ1, and γ2 are the same as those in
Refs. [44,68]. These three parameters are set to nonzero
values by default in a SpEC BBH simulation. γ3 in this
paper is different from the γ3 used in Ref. [44]. Instead, our
γ3 is the same as the parameter ρ used in Ref. [58]. The
authors of Ref. [58] set this parameter to 0 by default, while
we explore the possibility of a nonzero γ3 for single BH
simulations in this paper.
We here provide the expressions of γ0, γ1, γ2, and γ3 used

for simulations in this paper. Specifically, for single BH
simulations, we choose

γ0M ¼ γ2M ¼ 2 exp

�
−
�
rO
7M

�
2
�
þ 0.001; ðA1Þ

γ1 ¼ −1; ðA2Þ

γ3 ¼ 2; ðA3Þ

where M is the total ADM mass of the system as usual. γ0
and γ2 are spatially varying and depend on rO, the
Euclidean distance from the origin. We choose the origin
at the geometric center of a single BH. The choice γ1 ¼ −1
is adopted in the simulations of Ref. [44] as well, which
makes the GH system Eqs. (16)–(18) linearly degenerate.
Note that γ0, γ2 have dimension M−1 while γ1, γ3 are
dimensionless.
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The expressions of the parameters for BBHs are more
complicated than for single BHs. In the ringdown phase,
we use

γ0M ¼ γ2M ¼ 0.001þ 7 exp

�
−
�

rO
2.5M

�
2
�

þ 0.1 exp

�
−
�

rO
100M

�
2
�
; ðA4Þ

γ1 ¼ −1; ðA5Þ

γ3 ¼ 0: ðA6Þ

In the inspiral phase, we use

γ0M ¼ γ2M ¼ 0.001þ 0.075 exp

�
−
�
rOascale
2.5D0

�
2
�

þ 4M
MA

exp

�
−
�
rAascale
7MA

�
2
�

þ 4M
MB

exp

�
−
�
rBascale
7MB

�
2
�
; ðA7Þ

γ1 ¼ 0.999

�
exp

�
−
�

rO
10D0

�
2
�
− 1

�
; ðA8Þ

γ3 ¼ 0; ðA9Þ

where MA, MB are the initial Christoudoulou masses [78]
of BH A, B, and rA, rB are the Euclidean distances from BH
A, B.D0 is the initial separation between the two BHs, used
in Tables I and III. ascale is equivalent to the (dimensionless)
expansion factor a used in Refs. [64,65]. ascale is tuned by
the control system in SpEC [65], so it is time dependent.
The three distance variables rA, rB, and rO are measured in
the distorted frame of a BBH simulation. The distorted
frame is an intermediate frame between the grid frame and
the inertial frame, and we point interested readers to
Ref. [65] for details on the relation among these frames.
Note that we do not specify the measurement frame of rO
for a single BH simulation, because the grid, the distorted
and the inertial frames are identical for single BHs in
this paper.
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