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In this paper we study the accretion of matter onto the black holes and the shadow images obtained by an
infalling accretion flowof gas in a theory ofmassive gravitywith a spontaneously breakingLorentz symmetry.
This black hole solution is characterized bymassM, scalar chargeS, and the parameter λ. In order to extract the
astrophysical results of our analyses, first, we have assumed a specific range for the parameter λ to constrain
the scalar charge S using the Event Horizon Telescope (EHT) result. To this end, we have studied the effect of
the scalar charge on the intensity of the electromagnetic radiation from the black hole. Moreover, we
investigate the behavior of polytropic as well as the isothermal fluid flow ontomassive gravity black hole and
notice that accretion starts from supersonic/subsonic flow, passes through the critical point using particular
model parameter and ends near the horizon.We also analyzed themass accretion rate in the presence of various
fluidswhich indicates important signatures.We also elaborate on the possibility to analyze the phase transition
and the stability of the black hole using the shadow formalism.
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I. INTRODUCTION

During the last decades a lot of efforts has been made to
modify general relativity and, in particular, to formulate a
theory with massive gravitons known as massive gravity
theory. Such a theory is speculated to have rich phenom-
enology, for example it may explain many problems is
cosmology without invoking the concept of dark energy.
Initially it was formulated a linear theory of massive
gravity (MG) by Fierz and Pauli [1], but unfortunately it
was shown that this theory suffered from the so-called
discontinuity, which was subsequently addressed by
Vainshtein [2]. Furthermore, another issue in MG was also
shown to exist: namely a ghost instability [3], which then
lead to the further extension of this theory [4]. Note that
recently other formulations of MG have been proposed [5].
It is interesting that a relation between the hierarchy pro-
blem and brane-world theories with the MG was inves-
tigated in Ref. [6]. Recently, Bebronne and Tinyakov [7]
found an interesting black hole (BH) solution in MG that
depends on additional parameter known as the scalar
charge S. In this theory, the deflection of light was studied
in Ref. [8], strong lensing was studied in [9], shadows in
rotating regular BHs in MG was investigated in Ref. [10],
phase transition and thermodynamics were studied in

[11,12], and quasinormal modes were studied in [13]
and references therein.
Nowadays it is widely known that the process of

accretion of matter onto a black hole plays a significant
role in explaining many astrophysical phenomena. In
particular, the accretion of gas onto the black holes is
linked to the quasiperiodic oscillations observed by astron-
omers. On the other hand, the emission of electromagnetic
radiation in the form of gamma-ray burst, x-ray binaries,
and the tidal disruption events are mainly related to the
process of accretion matter onto black holes.
In this work, we would like to understand to what extant

the effect of massive gravity with a spontaneously breaking
Lorentz symmetry are important in the accretion of matter
onto black holes and investigate the shadow images. In
order to have a more realistic picture, we are going to use
the EHT result for the M87 black hole to constrain the
scalar charge parameter in this theory. We aim to construct
the shadow images and the intensity of radiating infalling
gas (see related works with different accretion models,
[14–21]). To this end, we are going to investigate the matter
accretion, we are going to use a polytropic fluid flow and
address the critical points of the accretion process obtained
by different fluids such as subrelativistic fluid, radiation
fluid, ultrarelativistic fluid, and ultrastiff fluid. In this
regard, besides the effect of black hole mass, it is interesting
to investigate the effect of “hair parameter” (λ) and scalar
charge S on the change of mass or accretion rate using a
particular domain of parameters. For studies related to the
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accretion of matter onto black holes see the following
Refs. [22–56].
The rest of this paper is structured. In Sec. II we shortly

review the basics of the BH solution in MG. In Sec. III we
study the BH shadow using a radiation thin accretion flow
and the intensity of infalling radiating gas. In Sec. IV we
use the EHT result to constrain the scalar charge S and the
parameter λ. In Secs. Vand VI, we investigate the accretion
rate using fluid with different equations of state such as the
polytropic fluid using different fluids. In Sec. VII we
elaborate on the connection between the phase transition
and the shadow radius. Finally in Sec. VIII we comment
on our results. In the present paper we set the natural
units G ¼ c ¼ ℏ ¼ 1.

II. BLACK HOLES IN MASSIVE GRAVITY

In the present work we shall consider the massive gravity
model described by the following action [7]

SMG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

þ Λ4F ðX;WijÞ
�
; ð1Þ

with R being the scalar curvature and the function F
describes the scalar fields ψ i and ψ0, respectively. Note that
the scalar field is minimally coupled to gravity while in
theory the Lorentz symmetry is spontaneously broken.
The parameter Λ is proportional to

ffiffiffiffi
m

p
, with m being the

graviton mass. It is possible to express the function F in
terms of two Goldstone fields, X and Wij, given by

X ¼ ∂0ψ i∂0ψ
i

Λ4
; ð2Þ

Wij ¼ ∂μψ i∂μψ
j

Λ4
−
∂μψ i∂μψ

0∂νψ j∂νψ
0

Λ4X
: ð3Þ

It is important to note that finding analytical solutions for a
generic function F is not possible. One can choose this
function in such a way that the resulting equations are
solvable analytically. Using a static and spherically sym-
metric metric (detailed derivation can be found in [7])

ds2 ¼ −fðrÞdt2 þ gðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð4Þ

with

ψ0 ¼ Λ2ðtþ NðrÞÞ; ψ i ¼ ϕðrÞΛ
2xi

r
; ð5Þ

along with the choice [7]

F ¼ c0

�
1

X
þ w1

�
þ c1ðw3

1 − 2w1w2 − 6w1 þ 2w3 − 12Þ;

ð6Þ

where c0 and c1 are some dimensionless constants and

w1 ¼ −ðf1 þ 2f2Þ; w2 ¼ f21 þ 2f22;

w3 ¼ −ðf31 þ 2f32Þ; ð7Þ

with

f1 ¼
ϕ02

fgX
; f2 ¼

ϕ2

r2
; ¼ g − fN02

fg
: ð8Þ

Solving the field equations the solution is found to be [7]

fðrÞ ¼ 1 −
rs
r
−

S
rλ

þ Λcr2; ð9Þ

in which rs and S are integrating constants, and

λ ¼ −12b6
c1
c0

; Λc ¼ 2m4c1ðb6 − 1Þ: ð10Þ

Furthermore it was shown that the following equations
holds [7]

gðrÞ ¼ 1

fðrÞ ;

NðrÞ ¼ �
Z

dr
fðrÞ

�
1 − fðrÞ

�
Sλðλ − 1Þ
c0m2

1

rλþ2
þ 1

�
−1
�1

2

;

ϕðrÞ ¼ br: ð11Þ

Note that b is related to c0 and c1, and satisfies the
following equation [7]

ðb2 − 1Þð6b4 þ 6b2 þ c0=c1Þ ¼ 0: ð12Þ

We can see that if b ¼ 1 and c1=c0 > 0, then Λc ¼ 0 and
λ < 0, then the black hole metric is not asymptotically flat:
if c1=c0 < 0 then λ > 0. However one can further observe
that when λ < 1 the ADM mass of these solutions is
infinite. Therefore to recover a spacetime with a finite
ADM mass we shall focus on the case λ ≥ 1 and set b ¼ 1.
In such a case the solution reduces to

fðrÞ ¼ 1 −
2M
r

−
S
rλ
; ð13Þ

where in the limit of vanishing scalar charge S the
Schwarzschild black hole solution is obtained. We have
identified rs ¼ 2M, and M is the Arnowitt–Deser–Misner
(ADM) mass provided λ > 1. We can see this fact by using
the following definition for the ADM mass [57]

M ¼ lim
r→∞

r
2

�
1 − fðrÞ
fðrÞ

�
≃M þ S

2rλ−1
: ð14Þ

If we set λ ¼ 1, then the ADMmass shifts by a constant and
we can say that such a black hole cannot be distinguished
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from the Schwarzschild black hole, due to the simple
scaling of mass M → M þ S=2. But for any λ > 1 the
ADM mass is exactly M. The scalar charge in general can
be positive, i.e., S > 0, or negative, i.e., S < 0. The
parameter λ is known also as the “hair parameter.” As a
special case λ ¼ 2, and S ¼ −Q2, we obtain the Reissner–
Nordström (RN) black hole spacetime, but obviously the
case λ ¼ 2 for S > 0 differs from the RN black hole.

III. BLACK HOLE SHADOW VIA RADIATING
AND INFALLING ACCRETION GAS

In this section we turn our attention to the shadow
images and, for that purpose, let us write the Hamilton-
Jacobi equation

∂S
∂σ þH ¼ 0; ð15Þ

in the last equation σ represents an affine parameter. For the
Hamiltonian for light rays it can be shown [58]

1

2

�
−

p2
t

fðrÞ þ fðrÞp2
r þ

p2
ϕ

r2

�
¼ 0: ð16Þ

From the Hamiltonian one can obtain the two conserved
quantities defined as

pt ≡ ∂H
∂_t ¼ −E; ð17Þ

pϕ ≡ ∂H
∂ _ϕ ¼ L; ð18Þ

which is the energy E and angular momentum of the photon
L. The unstable orbits are obtained via the effective
potential under the conditions

VeffðrÞjr¼rph ¼ 0;
∂VeffðrÞ

∂r
����
r¼rph

¼ 0; ð19Þ

One can now easily show that [58]

dr
dϕ

¼ �r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ

�
r2fðrphÞ
r2phfðrÞ

− 1

�s
: ð20Þ

Let us consider that a light ray is sent from the static
observer located far away from the black hole at a position
r0 along with some angle ϑ with respect to the radial
direction. In that case, one can write [58]

cotϑ ¼
ffiffiffiffiffiffi
grr

p
gϕϕ

dr
dϕ

����
r¼r0

: ð21Þ

Using all these equations one can relate now the shadow
radius seen by the observer; this is located using the
equation

rs ¼ rph

 
1 − 2M

r0
− S

rλ
0

1 − 2M
rph

− S
rλph

!
1=2

≃
rphffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
rph

− S
rλph

q ; ð22Þ

in which rph determines the photon radius. Furthermore one
can obtain the circular shape of the shadow, which can be
thought of as a stereographic projection on the observer’s
plane byusing the coordinates, say ðX; YÞ, that are defined by

X ¼ lim
r0→∞

�
−r20 sin θ0

dϕ
dr

����
ðr0;θ0Þ

�
; ð23Þ

Y ¼ lim
r0→∞

�
r20
dθ
dr

����
ðr0;θ0Þ

�
: ð24Þ

As we already noted that, the position of the observer far
away from the black hole is given by the coordinates ðr0; θ0Þ.
In our setup, we consider here a very simple model which
consists of a spherically symmetrical accretion model of
infalling and radiating gas. One can now define the specific
intensity Iν0, which is observed at ðX; YÞ by the observer by
using the following equation [14–21]:

Iobsðνobs; X; YÞ ¼
Z
γ
g3jðνeÞdlprop: ð25Þ

In the last equation we have the following important
quantities: g ¼ νobs=νe being the red-shift factor, νe (νobs) is
the photon frequency that is measured in the rest frame of the
emitter (or observer), respectively. Importantly, the quantity
dlprop ¼ kαuαedκ measures the infinitesimal proper length,
and κ is some affine parameter. On the other hand, the
quantity jðνeÞ represents the emissivity, say per unit volume,
in the rest frame of the emitter; in the present work, we are
going to assume a gas such that the emission is mono-
chromatic with the emitter’s rest frame frequency given as

jðνeÞ ∝
δðνe − ν⋆Þ

r2
: ð26Þ

Note here that in general one can chose a different power
low for the radial profile given by

jðνeÞ ∝
δðνe − ν⋆Þ

rδ
; ð27Þ

thus, in our case we identify δ ¼ 2, but δ ¼ 3 is also a
commonly used case. To obtain the red-shift factor we can
use the following relation [14–20]

g ¼ kαuαobs
kβu

β
e
; ð28Þ

with kμ being the 4-momentum of the photon, uμobs the four
velocity of the distant observer and uαe the four velocity of
the infalling and radiating gas, which has the components
(see for more details, see [16])
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ute ¼
1

fðrÞ ; ure ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞ

p
; uθe ¼ uϕe ¼ 0: ð29Þ

In order to obtain the black hole images we need to
integrate the intensity over all the observed frequencies; in
other words, we need the observed flux given by

FobsðX; YÞ ∝ −
Z
lγ

g3kt
r2kr

dr: ð30Þ

The corresponding intensities obtained from accretion
gas along with the shadow images with accretion gas by

FIG. 1. Images of shadows with the corresponding intensities using the infalling gas model seen by a distant observer using different
values of λ and S. The first plot with corresponds to the Schwarzschild black hole with S ¼ 0.
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varying the hair parameter and the scalar charge are
depicted in Fig. 1. Note that we have used a region of
parameters within 1σ and found that the size of the shadow
radius is bigger when S > 0 compared to the case when
S < 0. Contrary to that, we observe that the range of the
intensity of the radiation is stronger for the case S < 0. This
feature can be explained from the fact that when the scalar
charge is positive, i.e., S > 0, the deflection angle of light
increases meaning that a larger number of light rays are
captured by the black hole as a result the number of light
rays that escape from the black hole can decrease.

IV. OBSERVATIONAL CONSTRAINTS
ON THE SCALAR CHARGE

In this section, we are going to constrain the scalar
charge S using the EHT result θs ¼ ð42� 3Þμas, where
the distance of the black hole M87 is D ¼ 16.8 Mpc, and
the mass of the M87 black hole is chosen M ¼ ð6.5�
0.9Þ × 109 M⊙. It follows that the diameter of the shadow
in units of mass dM87 reads [59]

dM87 ¼
Dθs
M87

¼ 11.0� 1.5: ð31Þ

Within 1σ confidence, we have the range 9.5 ≤ dM87 ≤
12.5, yielding the lower and upper bound of the scalar
charge as follows: −0.17≲ S ≲ 0.41. This parameter space
is shown in Fig. 2 where the range for λ in our analyses is
chosen to be 1 ≤ λ ≤ 3. The diameter of the shadow is
smaller for negative Swhen the value of λ approaches 1, on
the other hand, the diameter increases when S > 0when the
value of λ approaches 1. We can see this fact from Fig. 1:
for instance, if we compare to the Schwarzschild black hole
(case S ¼ 0) shadow for the values λ ¼ 1.1 and S > 0, then
the shadow is considerably bigger, but as the value of λ

increases the shadow radius decreases. From that figure we
also the case with the smaller shadow radius obtained for
λ ¼ 1.1 and S < 0.

V. POLYTROPIC TEST FLUID

The motion of fluid near the BH is very important to see
the particular signature of the BH, and there are different
models that described the behavior of fluid. In this study,
our particular model is Chaplygin gas, which leads to very
interesting results. In astrophysics, the most general exotic
fluid is modified Chalpygin gas [48]. Its equation of state is
given by

p ¼ An −
B
nσ

; ð32Þ

where A and B are arbitrary constants and 0 < σ < 1. If we
plug A ¼ 0, B ¼ −Z, and σ ¼ −γ, then we get a polytropic
equation of state [41], i.e.,

p≡ Znγ; ð33Þ

where Z, γ are arbitrary constants and γ > 0 for ordinary
matter. Now using the technique given in Refs. [48–55],
one can find the final form of the Hamiltonian, which is

H ¼ fðrÞ
1 − v2

�
1þ L

�
1 − v2

r4fðrÞv2
�γ−1

2

�2

; ð34Þ

where

L≡ Zγnγ−1c

mðγ − 1Þ
�
r5cfðrcÞ;rc

4

�ðγ−1
2
Þ
¼ constant; ð35Þ

FIG. 2. The regions of parameter space ðS; λÞ and the diameter of the black hole. In the left panel S > 0, in the right panel S < 0, and
both plots cover the diameter range pf. The shadow is given by 9.5 ≤ dM87 ≤ 12.5.
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along with the critical points

ðγ − 1 − v2cÞ
�

1 − v2c
r4cfðrcÞv2c

�γ−1
2 ¼ nc

2L
ðr5cfðrcÞrcÞ12v2c; ð36Þ

v2c ¼
rcfðrcÞ; rc

rcfðrcÞ; rc þ 4fðrcÞ
: ð37Þ

Figure 3 shows the contour plot for the corresponding
intensities using infalling gas model seen by distant
observer using S ¼ 0.35ðλ ¼ 1Þ (left panel) and using S ¼
0.35ðλ ¼ 2Þ (right panel). We observe that the accretion for
corresponding intensities for S ¼ 0.35ðλ ¼ 2Þ begins from
the subsonic flow as r approaches to infinity, then follows
supersonic flow avoiding the saddle (critical) point and
ends in the horizon. The supersonic outflow starts in the

FIG. 3. Left panel is the contour plot for infalling gas model seen by distant observer using S ¼ 0.35 (λ ¼ 1) with M ¼ 1; nc ¼ 0.2,
γ ¼ 0.535, and L ¼ −0.2. The parameters are rc ≈ 3.480626053, vc ≈ 0.5847583391, Hc ≈ 0.1650133794. Right panel is the contour
plot for infalling gas model seen by distant observer using S ¼ 0.35 (λ ¼ 2) with M ¼ 1; ; nc ¼ 0.2, γ ¼ 0.5, and L ¼ −0.2. The
parameters are rc ≈ 2.297206433, vc ≈ 0.8939292467, Hc ≈ 0.1429485501.

FIG. 4. Left panel is the contour plot for infalling gas model seen by distant observer using S ¼ 0.1 (λ ¼ 3) with M ¼ 1; nc ¼ 0.2,
γ ¼ 0.5, and L ¼ −0.2. The parameters are rc ≈ 1.894211057, vc ≈ 1.159808543,Hc ≈ 0.10765175091. Right panel is the contour plot
for infalling gas model seen by a distant observer using S ¼ −0.1 (λ ¼ 3) with M ¼ 1; nc ¼ 0.2, γ ¼ 0.5, and L ¼ −0.2. The
parameters are rc ≈ 1.732859099, vc ≈ 1.403403718, Hc ≈ 0.07812913389.
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region of horizon avoiding the saddle (critical) point and
ends to subsonic flow for r approaches to infinity. On the
other hand, the accretion for corresponding intensities for
S ¼ 0.35ðλ ¼ 1Þ begins from the subsonic flow as r
approaches to infinity, then follows as the supersonic flow

passes through the critical (saddle) point and ends in the
horizon. The supersonic outflow starts in the region of
horizon passing the critical (saddle) point and ends sub-
sonically as r approaches to infinity. Figure 4 shows
the contour plot for the corresponding intensities using

FIG. 5. Left panel is the contour plot for infalling gas model seen by distant observer using S ¼ 0.35 (λ ¼ 1) withM ¼ 1; nc ¼ 0.001,
γ ¼ 1.5, and L¼ 0.125. The parameters are rc1 ≈ 3.012941963;vc1 ≈ 0.6854442942;Hc1 ≈ 0.4684637242 and rc2 ≈ 55.08762356;
vc2 ≈ 0.1049634266;Hc2 ≈ 0.9817239945. Right panel is the contour plot for infalling gas model seen by distant observer using
S ¼ 0.35 (λ ¼ 2) withM ¼ 1; nc ¼ 0.001, γ ¼ 1.5, and L ¼ 0.125. The parameters are rc1 ≈ 2.748090692; vc1 ≈ 0.6898671753; Hc1 ≈
0.4912239522 and rc2 ≈ 69.55648888; vc2 ≈ 0.08593066630; Hc2 ≈ 0.9904976826.

FIG. 6. Left panel is the contour plot for infalling gas model seen by distant observer using S ¼ 0.1 (λ ¼ 3) with
M ¼ 1; nc ¼ 0.0.001,γ ¼ 1.5, and L ¼ 0.125. The parameters are rc1 ≈ 2.567839201; vc1 ≈ 0.6932484363; Hc1 ≈ 0.4769661820
and rc2 ≈ 70.06543962; vc2 ≈ 0.08539629339; Hc2 ≈ 0.9906416885. Right panel is the contour plot for infalling gas model seen
by a distant observer using S ¼ −0.1 (λ ¼ 3) with M ¼ 1; nc ¼ 0.001, γ ¼ 1.5, and L ¼ 0.125. The parameters are rc1 ≈
2.508290694; vc1 ≈ 0.6943815761; Hc1 ≈ 0.4664014420 and rc2 ≈ 70.07167753; vc2 ≈ 0.08538979385; Hc2 ≈ 0.9906431420.
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infalling gas model seen by distant observer using S ¼
0.1ðλ ¼ 3Þ (left panel) and using S ¼ −0.1ðλ ¼ 3Þ (right
panel). We analyze the accretion for both corresponding
intensities, which starts from subsonic flow as r approaches
to infinity, then follows the supersonic flow avoiding the
saddle (critical) point and ends in the horizon. The
supersonic outflow starts in the region of horizon avoiding
the saddle (critical) point and ends subsonically as r
approaches to infinity.
In Figs. 5 and 6, we present the contour plot for different

corresponding intensities using infalling gas model seen by
distant observer. We presented three sorts of fluid flow,
(i) subsonic nonglobal flow, (ii) nonheteroclinic flow, and
(iii) nonrelativistic outflow, because the solution curves
avoiding the critical points and accretion starts from the
furthest left point until the horizon.

VI. BLACK HOLE’S ACCRETION RATE

Mass accretion rate is described by the change in mass of
BH per unit time. It is the area times flux of the BH at the
event horizon and symbolically represented by _M. Here, we
will point out factor that how the radius of accretion
changes by the effect of different fluids. The relativistic
statement of the flux of mass-energy density is modeled by
_Mjrh ¼ 4πr2Tr

t jrh (see [51–55]). The energy-momentum
tensor of perfect fluid is given by Tr

t ¼ ðρþ pÞutur
[49,54]. As energy of our dynamical system is conserved
so we have ∇μJμ ≡ 0 and ∇νTμν ≡ 0, from these con-
servation equations it follows that

r2urðρþ pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfðrÞ þ ðurÞ2Þ

q
¼ K3; ð38Þ

where K3 is a constant of integration. Now considering the
equation of state p≡ pðρÞ, the equation of relativistic
energy flux is [51–55]

dρ
ρþ p

þ dur

ur
þ 2

dr
r
¼ 0: ð39Þ

By integrating the above equation, we get

r2ur exp
�Z

ρ

ρ∞

dρ́
ρ́þ pðρ́Þ

�
¼ −K4; ð40Þ

where K4 is a constant of integration. After simplify
Eqs. (40) and (38), it can be shown

K5 ¼ −
K3

K4

¼ ðρþ pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðrÞ þ ðurÞ2

q
exp

�
−
Z

dρ́
ρ́þ pðρ́Þ

�
;

ð41Þ

where K5 is a constant. Consider the boundary condi-
tion at infinity, then K5 ≡ ρ∞ þ pðρ∞Þ ¼ − K3

K4
, here

K3 ≡ ðρþ pÞuturr2 ¼ −K4ðρ∞ þ pðρ∞ÞÞ. Using above
relations it follows that

ρþ p
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ þ ðurÞ2

q
≡ K7; ð42Þ

where K7 is a constant such that K7 ¼ ðρ∞þp∞Þ
n∞

. Using (38),
we get new relation of the BH’s accretion rate

_M ¼ −4πr2urðρþ pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ þ ðurÞ2

q
¼ −4πK3; ð43Þ

then it becomes

_M ¼ −4πK4ðρ∞ þ pðρ∞ÞÞ: ð44Þ

The above result holds for all those fluids due to boundary
condition at infinity on which the equation of state holds in
the form p ¼ pðρÞ. So, the accretion rate of the BH takes
the form

_M ¼ −4πK4ðρþ pÞjr¼rh ð45Þ

at event horizon rh.
Let us take an isothermal equation of state, i.e., p ¼ kρ,

which implies that ðρþ pÞ≡ ρð1þ kÞ. Then Eq. (40)
reduces to r2urρ

1
1þk ¼ −K4, that is

ρ ¼
�
−

K4

r2ur

�
1þk

: ð46Þ

Using the above information, Eq. (38) takes the form

ðurÞ2 − K2
3K

−2ð1þkÞ
4

ð1þ kÞ2 r4kð−urÞ2k þ fðrÞ ¼ 0; ð47Þ

in which the ur can be obtained for the given values of k.
Using ur, one can find energy density ρðrÞ from (46).

A. Behavior of ultrastiff fluid (k= 1)

The four velocity ur is obtained by taking k ¼ 1 in (47),
that is [60–62]

ur ¼ �2K4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ

K2
3r

4 − 4K4
4

s
: ð48Þ

The corresponding energy density is

ρ ¼ ðK2
3r

4 − 4K4
4Þ

4K2
4r

4fðrÞ : ð49Þ

One can find the mass accretion rate by using (49)
and (45)
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_M ¼ 2πðK2
3r

4 − 4K4
4Þ

K4r4fðrÞ
: ð50Þ

Figure 7 represents the behavior of mass accretion rate for
different intensities of infalling gas model seen by distant
observer for the ultrastiff fluid (k ¼ 1). One can notice that
mass accretion rate depends upon the model parameter λ,
which further depends upon the scalar charge S. The mass
accretion rate is increased for higher values of scalar charge
S. We find the maximum accretion rate for
(1) λ ¼ 1, S ¼ 0.35, we have r ≈ 3.9.
(2) λ ¼ 2, S ¼ 0.35, we have r ≈ 4.0.
(3) λ ¼ 3, S ¼ 0.1, we have r ≈ 4.1.
(4) λ ¼ 3; S ¼ −0.1, we have r ≈ 4.12.

So, we can conclude that mass accretion rate depends upon
the parameters ðλ; SÞ. It is interesting to mention here that
mass accretion rate is higher for lower values of scalar
charge.

B. Behavior of ultrarelativistic fluid ðk = 1=2Þ
The four velocity ur is obtained by taking k ¼ 1

2
in (47),

that is [60–62]

ur ¼
2r2K2

3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2K4

3 − 81fðrÞK6
4

q
9K3

4

; ð51Þ

and corresponding energy density is given by

ρ ¼ 27

 
K4

4

r2ð2r2K2
3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r4K4

3 − 81fðrÞK6
4

q
Þ

!
3=2

: ð52Þ

By using (52) in (45), we get

_M ¼ 216πK4

"
K4

4

r2ð2r2K2
3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r4K4

3 − 81fðrÞK6
4

q
Þ

#
3=2

:

ð53Þ

Figure 8 represents the behavior of mass accretion rate
for different intensities for ðk ¼ 1

2
Þ (ultrarelativistic fluid).

We can find the maximum accretion rate for
(1) λ ¼ 1, S ¼ 0.35, we have rIH ≈ 0.1; rOH ≈ 2.336.
(2) λ ¼ 2, S ¼ 0.35, we have rIH ≈ 0.15; rOH ≈ 2.15.
(3) λ ¼ 3, S ¼ 0.1, we have rIH ≈ 0.07; rOH ≈ 2.
(4) λ ¼ 3; S ¼ −0.1, we have rIH ≈ 0.25; rOH ≈ 1.96.

From above values, it is evident that the maximum mass
accretion rate located at inner horizon (IH) and outer
horizon (OH). So, we can conclude that mass accretion
rate depend upon the constants ðλ; SÞ and its maximum
accretion rate occurs at λ ¼ 3 and S ¼ −0.1 for comparison
to other values.

C. Behavior of radiation fluid ðk = 1=3Þ
The radial velocity for k ¼ 1

3
is given by [60–62]

FIG. 7. Contour plot of mass accretion rate for different
intensities of infalling gas model seen by a distant observer with
M ¼ 1; K3 ¼ 1; K4 ¼ 2.

FIG. 8. Contour plot of mass accretion rate for different
intensities with M ¼ 1; K3 ¼ 0.1; K4 ¼ 2.
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ur ¼
"ð−32fðrÞK4

4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024fðrÞ2K8

4 − 27r4K6
3

q
K2

4Þ1=3
4K2

4

þ 3r4=3K2
3

4K2=3
4 ðð−32fðrÞK4

4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024fðrÞ2K8

4 − 27r4K6
3

q
ÞK2

4Þ1=3

#
2=3

: ð54Þ

When we put the value of ur as calculated above and k ¼ 1
3
in (46), we get

ρ ¼
�
K4

r2

�4
3

"ð−32fðrÞK4
4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024fðrÞ2K8

4 − 27r4K6
3

q
K2

4Þ1=3
4K2

4

þ 3r4=3K2
3

4K2=3
4 ðð−32fðrÞK4

4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024fðrÞ2K8

4 − 27r4K6
3

q
ÞK2

4Þ1=3

#−8
9

: ð55Þ

By using (55) and (45), we can get mass accretion rate

_M ¼
�
8πK

7
3

4

r
8
3

��
ð−32fðrÞK4

4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024fðrÞ2K8

4 − 27r4K6
3

q
K2

4Þ1=3ð4K2
4Þ−1

þ 3r4=3K2
3

4K2=3
4

ðð−32fðrÞK4
4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1024fðrÞ2K8

4 − 27r4K6
3

q
ÞK2

4Þ−1=3
�−8

9

: ð56Þ

Figure 9 represents the behavior of mass accretion rate
for different intensities for radiation fluid. Maximum mass
accretion rate is located at inner and outer horizons for
radiation fluid. So, we can conclude that mass accretion
rate depend upon the constants ðλ; SÞ and its maximum
accretion rate occur at λ ¼ 3 and S ¼ 0.1 for a comparison
to other values.

D. Behavior of subrelativistic fluid ðk= 1=4Þ
The mass accretion rate for different corresponding

intensities of infalling gas model seen by distant observer
is shown in Fig. 10 for a subrelativistic fluid. One can
notice that the Mass accretion rate increase for higher
values of scalar charge, i.e., λ ¼ 2; S ¼ −0.45 for a

FIG. 9. Contour plot of mass accretion rate for different
intensities with M ¼ 1; K3 ¼ 0.1; K4 ¼ 2.

FIG. 10. Contour plot of mass accretion rate for different
intensities with M ¼ 1; K3 ¼ 0.1; K4 ¼ 2.
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comparison to other values. One can find the max accretion
rate near
(1) λ ¼ 1, S ¼ 0.35, we have rIH ≈ 0.05; rOH ≈ 2.34.
(2) λ ¼ 2, S ¼ 0.35, we have rIH ≈ 0.05; rOH ≈ 2.15.
(3) λ ¼ 3, S ¼ 0.1, we have rIH ≈ 0.05; rOH ≈ 2.
(4) λ ¼ 3; S ¼ −0.1, we have rIH ≈ 0.2; rOH ≈ 1.95.

It is evident that the mass accretion rate is infinite near the
singularity [60–62].

VII. PHASE TRANSITION VIA BLACK
HOLE SHADOWS

In this last section we shall analyze the phase transitions
of the black hole based on the black hole shadow formalism
developed in [63]. We know that the specific heat of a black
hole can be positive, i.e., C > 0, and negative i.e., C < 0,
meaning a thermodynamically stable and unstable state,
respectively. In addition when C ¼ 0 is the phase transition
point. Furthermore the entropy S is related to the event
horizon rþ of the black hole with dS=drþ > 0, as a result
we can write

SgnðCÞ ¼ Sgn

� ∂T
∂rþ

�
; ð57Þ

where Sgn is the sign function. In other words, we can say
that in the rþ − T diagram a positive slope means that the
black hole is in a thermodynamically stable state and a
negative slope corresponds to a thermodynamically unsta-
ble black hole. As shown in Ref. [63] and subsequently
[64], there is a possibility to probe the phase transitions
using the shadow radius of the black holes. To see this,
recall that the effective potential of the photon can be
defined by

VeffðrÞ þ _r2 ¼ 0; ð58Þ

along with the further condition, which allows us to obtain
the radius of the photon

VeffðrÞ ¼ V 0
effðrÞ ¼ 0: ð59Þ

Considering the circular orbit of the photon with

V 00
effðrÞ < 0; ð60Þ

and using the fact that the Hawking temperature of the
black hole is positive if it follows [63]

drs
drþ

> 0: ð61Þ

Finally, for the temperature T of the black hole, it was
argued that [63]

∂T
∂rþ ¼ ∂T

∂rs
drs
drþ

; ð62Þ

which means

∂T
∂rþ > 0;

∂T
∂rþ ¼ 0;

∂T
∂rþ < 0; ð63Þ

and

∂T
∂rs > 0;

∂T
∂rs ¼ 0;

∂T
∂rs < 0; ð64Þ

respectively. In order to work with analytical expressions
we shall simplify our analyses by considering the special
case with: λ ¼ 1 and λ ¼ 2.

A. Case λ = 1

In this particular case we have the following result for the
event horizon

rþ ¼ 2M þ S ð65Þ

along with shadow radius

rs ¼
3
ffiffiffi
3

p
rþ

2
; ð66Þ

and consequently the temperature

T ¼ 1

4πrþ
: ð67Þ

As can be observed from Figs. 11 (left panel) and 12 (left
panel), for this particular case, we have

drs
drþ

> 0;
∂T
∂rs < 0; ð68Þ

meaning that the black hole is thermodynamically unstable.

B. Case λ = 2

In this case we have the following result for the event
horizon

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ S2

p
: ð69Þ

As a result the shadow radius reads

rs ¼
ð3M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 þ 8S

p
Þ

2
h
1 − 2M

ð3Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2þ8S

p
Þ=2

þ S

ðð3Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2þ8S

p
Þ=2Þ2

i
1=2 ; ð70Þ

where
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M ¼ r2þ − S
2rþ

: ð71Þ

Finally, the temperature reads

T ¼ r2þ − Sþ rþS
4πr3þ

: ð72Þ

Similarly, from Figs. 11 and 12 (right panels) we see that
the slope of the black hole temperature as a function of the
shadow radius is negative; hence, we conclude that the
black hole is thermodynamically unstable for such a
domain of parameters.

VIII. CONCLUSIONS

In this paper we have used a model of infalling and
radiating gas and studied the shadow images as well as the
intensities in the spacetime of black hole solutions obtained
in a theory of massive gravity with a Lorentz violating
symmetry. In particular we have shown that the properties
of the shadow images depends strongly on the sign before
the scalar charge S. In the case S > 0, we saw that the
shadow radii are bigger while the intensities are smaller

compared to S < 0. Our analyses is based on a range of
values for S, which are obtained by constraining S from the
EHT results. We discussed the accretion process of differ-
ent fluids such as subrelativistic fluid (k ¼ 1=4), radiation
fluid (k ¼ 1=3), ultrarelativistic fluid (k ¼ 1=2), and ultra-
stiff fluid (k ¼ 1) on massive gravity black hole in the
presence of “Hair parameter” (λ) and scalar charge S. We
also investigated the behavior of the polytropic fluid onto
massive gravity black hole where the accretion starts from
supersonic/subsonic flow and it passes through the saddle
(critical) point on the massive gravity black hole using
model parameter λ ¼ 1 and scalar charge S ¼ 0.35,
whereas it does not pass through the critical point on a
massive gravity black hole for other parameters. Most
importantly, the accretion process ends near the Killing
horizon, which agrees with other recent studies.
We also explored the four velocity in radial the direction

(ur), the energy density (ρ), and the mass accretion rate
( _M). We investigated the mass accretion rate of massive
gravity black hole in the presence of different fluids, which
indicates important signatures as graphically represented in
Figs. 7, 8, 9, and 10. The mass accretion rate is higher in
massive gravity black hole for higher values of scalar
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FIG. 12. Left panel: plot of the black hole temperature as a function of the shadow radius for λ ¼ 1. Right panel: plot of the black hole
temperature as a function of the shadow radius for λ ¼ 2 and S ¼ 0.2.
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FIG. 11. Left panel: plot of the shadow radius as a function of the event horizon for λ ¼ 1. Right panel: plot of the shadow radius as a
function of the event horizon for λ ¼ 2 using S ¼ 0.2.
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charge in the presence of ultrastiff fluid (k ¼ 1). The
maximum mass accretion rate is located at inner and outer
horizons in the presence of radiation and subrelativistic
fluids. For subrelativistic, radiation, and ultrarelativistic
fluids accretion in massive black hole, the mass accretion
rate is higher for lower values of scalar charge. From the
figures, it is evident that mass accretion rate is infinite near
singularity in the presence of subrelativistic, radiation, and
ultrarelativistic fluids.
Our final part of this work is devoted to the problem of

phase transition and its connection to the shadow radius.

We have considered specific cases and found that the black
hole can be thermodynamically unstable in a given domain
of parameters.
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