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In this work, we study the relation of the eikonal quasinormal modes (EQNMs) and the unstable
fundamental photon orbits (UFPOs) in the Kerr-Newman spacetime. We find that in the eikonal limit the
gravitational and electromagnetic perturbations of the Kerr-Newman black hole are naturally decoupled,
and a single one-dimensional Schrödinger-like equation encoding the QNM spectrum can be derived. We
then show that the decoupled Teukolsky master equation and the Klein-Gordon equation for the massless
scalar field in the Kerr-Newman spacetime are of the same form in the eikonal limit. As a direct
consequence, taking into account of the boundary conditions for EQNMs we show an exact correspon-
dence between EQNMs and UFPOs, that is, EQNM/UFPO correspondence. More precisely, similar to the
Kerr case, the real part of EQNM’s frequency is a linear combination of the precessional and (polar) orbital
frequencies, while the imaginary part of the frequency is proportional to the Lyapunov exponent of
the UFPO.
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I. INTRODUCTION

According to the unique theorems [1], in four-
dimensional spacetime, the most general stationary asym-
potically flat black hole solution to the electrovacuum
Einstein field equations is the Kerr-Newman (KN) black
hole [2,3]. The solution is uniquely characterized by the
mass M, angular momentum J ¼ Ma and the charge Q.
The Kerr, Reissner-Nordstrom (RN) and Schwarzschild
black holes correspond to the limiting cases of the KN
black hole: Q ¼ 0, a ¼ 0 and a ¼ Q ¼ 0, respectively.
Although it is believed that the astrophysical black holes
are electrically neutral [4–7], charged black holes are still of
great interest in several aspects. For example, the stability
of the perturbed KN black hole is still a major unsolved
problem in general relativity [8].
When a KN black holes is perturbed, the linear pertur-

bations are composed of a set of characteristic modes that
satisfy an ingoing boundary condition at the horizon and an
outgoing boundary condition at infinity. These oscillatory

and decaying modes are called the quasinormal modes
(QNMs) [9–11], which play an important role in the study
of black holes. For example, the complex frequencies of the
QNMs can be used to determine the linear stability of a
perturbed BH. Moreover, in the ringdown stage of the
coalescence of two astrophysical black holes, the gravita-
tional waves (GWs) take the form of superposed QNMs of
the remnant black hole. As a consequence of the no-hair
theorem [12], the measurement of the QNMs would help us
to test general relativity and probe the nature of remnants
from compact binary mergers [13]. In general, the calcu-
lation of QNM relies on the separation of the linear
perturbations in all variables. The QNM spectrum appears
then as the eigenvalues of a single one-dimensional
Schrödinger-like equation. This procedure is achievable
for the Schwarzschild, the RN and the Kerr black holes. For
the Kerr black hole, such an equation is known as the
Teukolsky equation [14]. However, it does not seem
possible to cast the general perturbations of a KN black
hole into a single equation, due to the coupling between
different kind of perturbations. Except for some limiting
cases, such as the weakly charged [15] or slowly rotating
cases [16,17], one has to resort to numerical technique to
handle the coupled partial differential equations in order to
calculate the QNMs [8,18].
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On the other hand, null geodesics have been studied
extensively in various black hole backgrounds, and many
special optical characteristics were found in the presence of
a black hole. As pointed out in [19,20], the gravity around a
black hole is strong enough that the light would bend very
strongly so that the photons under certain conditions would
move along the bounded spherical orbits, which are called
fundamental photon orbits (FPOs)1[22]. For a general
stationary axisymmetric black hole spacetime, such orbits
could be stable or unstable in the radial direction of FPOs
[21,23,24]. However, the unstable FPOs (UFPOs) are of
more concern since under a slight perturbation, they would
either fall into the black hole or escape to the infinity. The
photons in the “nearly bounded” UFPOs could enter
the eyes of distant observers away from the black holes.
The radii and impact parameters of these UFPOs are found
to be confined to a certain range. The radial deviations from
the UFPOs turn out to be exponentially increasing, and the
exponential factor is referred to as the Lyapunov exponent
[25,26]. Moreover, there has been some works that tried to
build connections between FPOs and thermodynamics of
the black holes, see [27–33].
In particular, QNMs and geodesic photon orbits (GPOs),

the two seemingly very different things are actually closely
related. It was found that for the Schwarzschild, the RN and
the Kerr spacetimes, the eikonal QNMs (EQNMs) of the
gravitational perturbations correspond to the specific null
geodesics that reside on the spherical photon orbits, or the
UFPOs [25,26,34]. Initially, Ferrari and Mashhoon [25]
showed the QNM frequency of perturbed Schwarzschild
black holes in the eikonal limit has a very close connection
with the Keplerian frequency of the circular photon orbit
and Lyapunov exponent of the orbit. In addition, they found
similar results for slowly rotating black holes. In the
sequent works, Cardoso et al. [26] generalized the corre-
spondence to the stationary, spherically symmetric and
asymptotically flat spacetimes in any dimensions. Later on,
by comparing the WKB calculation of the Teukolsky
equation in the eikonal limit and the Hamilton-Jacobi
equations in the Kerr spacetime, Yang et al. [34] found
a relationship between the EQNM frequencies of Kerr
black holes of arbitrary spins and UFPOs. More precisely
they showed that when l ≫ 1, the QNM frequencies ω ¼
ωR − iωI can be written as

ω ¼
�
lþ 1

2

��
ωorb þ

m
lþ 1

2

ωprec

�
− i

�
nþ 1

2

�
γL; ð1:1Þ

where ωorb is the frequency at which the photon osci-
llates below and above the equatorial plane, ωprec is the
Lense-Thirring precession frequency and γL is the
Lyapunov exponent of the spherical photon orbit.
Moreover, l, m are the familiar angular multipoles and n
is the overtone number. Due to the relation of FPOs and
black hole shadow [19,20], the QNM/geodesic correspon-
dence can be used to relate EQNMs with the black hole
shadows, see the recent works [35–38].
In this paper, we would like to investigate whether the

EQNM/UFPO correspondence reviewed above (1.1) is
valid for the KN black holes.2 Before we proceed to this
goal, we would point out a simple but essential fact that
would be useful as we explore the EQNM/UFPO corre-
spondence for the KN black holes. In the eikonal limit,
or equivalently the high frequency limit, both the electro-
magnetic and massless scalar waves behave like massless
particles moving along null geodesics in the general curved
spacetime. Since the scalar QNMs can be viewed as
the waves propagating in the black holes background
with proper boundary conditions, it is expected that in
the eikonal limit, the scalar QNMs correspond to some
special null geodesics, whose form depends on the boun-
dary conditions being considered. Therefore, the EQNM/
UFPO correspondence (1.1) is possible only when the
QNM equation can be transformed into the massless Klein-
Gordon equation, otherwise the elegant relation would be
broken. For example, for asymptotically flat black holes in
the EinsteinLovelock gravity, it was found [39] that all
three types of perturbations satisfy the equations different
from the (separated) massless Klein-Gordon equation,
indicating the violation of the correspondence (1.1).
Now let us get back to the KN black hole. Shortly after

the pioneer work [25], Mashhoon studied the linear
stability of KN black holes via the QNMs obtained from
the EQNM/UFPO correspondence, which has not yet been
proven to be valid for the KN black holes [40]. By
following the work [34], Zhao et al. [41] built a relation
between the QNMs of a test charged scalar field and the
(modified) geodesics in the KN spacetime.3 However, it is
known that the QNMs of a scalar field is significantly
different from those from gravitational perturbations. Thus,
obtaining the analog of the Teukolsky equation for the KN
black holes is a prerequisite for exploring the EQNM/
UFPO correspondence. Due to the inseparability of the
coupling between the gravitational perturbations and
electromagnetic perturbations, to date all attempts to cast
the general perturbations of a KN black hole into a single
differential equation have failed [20]. However, as we will
show in this work, the gravitational perturbation are

1In the literatures, spherical photon orbits (SPOs) are some-
times used to denote the photon orbits with a constant radius in
the Boyer-Lindquist coordinates of Kerr and KN spacetimes
instead of FPOs. However, it is imprecise to use the term “SPOs”,
since r ¼ const. does not really correspond to a sphere in Boyer-
Lindquist coordinates. To avoid the ambiguity, we would like to
use FPOs rather than SPOs in our paper. A rigorous definition of
FPOs are be found in [21].

2Note that unless specified, we always refer to the QNMs of
gravitational perturbations.

3Due to the presence of Lorentz force, the charged particles no
longer move along the geodesics.
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naturally decoupled from the electromagnetic perturbations
in the eikonal limit, such that the analog of the Teukolsky
equation for the KN black hole can be derived as well. We
further show that similar to the Kerr case, this equation is
equivalent to the (separated) massless Klein-Gordon equa-
tion. This equivalence suggests that EQNMs must have a
definite correspondence with GPOs. Next, considering the
boundary conditions of EQNMs, we can further identify
that the GPOs corresponding to EQNMs is nothing but
UFPOs, and we establish the EQNM/UFPO correspon-
dence for the KN black holes.
The remaining parts of the paper is organized as follows.

In Sec. II, we present a detailed study of the perturbations
of the KN black holes in the eikonal limit. In Sec. III, we
prove the EQNM/UFPO correspondence for KN black
holes by considering the boundary conditions of EQNMs.
We summarize and discuss our results in Sec. IV. In the
Appendix, we give a quick review of the geometric optics
approximation in a curved spacetime, and show the
equivalence between the Teukolsky equation and the
(separated) massless Klein-Gordon equation in the eikonal
limit for the Kerr black holes.

II. EIKONAL QNM FOR KN BLACK HOLES

In this section we study the perturbation equations of the
charged black holes in the eikonal limit. For the static
Reissner-Nordstrom black holes, since the black holes are
charged, purely electromagnetic perturbations induce
gravitational perturbations and vice versa. In this case
the gravitational and electromagnetic perturbations are
coupled together, which makes the separation in r and θ

difficult. Fortunately, due to the symmetry of the spacetime,
Moncrief and Zerilli successfully decoupled the perturba-
tion equations by considering the linear combination of the
gravitational and electromagnetic perturbations, i.e., the so-
called “gravito-electromagnetic” perturbations [42–44].
With this the complete separation becomes possible and
the QNMs can be calculated [10].
For the Kerr-Newman black holes, in contrast to Kerr

black holes or RN black holes, to date all attempts to
decouple the electromagnetic and gravitational perturbations
have failed. For example, Dudley and Finley obtained
approximate decoupled equation (dubbed DF equation)
describing the propagation of spin-weighted test fields the
Kerr-Newman spacetime [45,46]. However, the DF equation
was derived under the assumption that the electromagnetic
and gravitational perturbations of KN black holes could be
treated independently, which is only a rough approximation
[18]. Furthermore, as shown by [15] the DF equation can be
understood as the Teukolsky equation with modification
ΔKerr → ΔKN . It is clearly then the DF equation correctly
captures the QNMs of a massless scalar field in the KN
spacetime. But for other kinds of perturbation, they are
coupled with each other and cannot be separated in general.
For the recent developments of the QNMs of the KN black
holes, one can see [7,8,15–17,47–50]. However, as we will
see below, in the eikonal limit, significant simplification
occurs and the gravitational perturbations decouple naturally
from the electromagnetic ones, and moreover the complete
separation in all variables becomes viable.
In terms of the Boyer-Lindquist coordinates, the metric

of the KN spacetime is of the form

ds2 ¼ −dt2 þ Σ
ΔKN

dr2 þ Σdθ2 þ ðr2 þ a2Þsin2θdϕ2 þ 2Mr
Σ

ðasin2θdϕ − dtÞ2; ð2:1Þ

where

ΔKNðrÞ ¼ r2 − 2Mrþ a2 þQ2; Σðr; θÞ ¼ r2 þ a2cos2θ: ð2:2Þ

WhenQ ¼ 0, it reduces to the metric of the Kerr spacetime. As the Kerr spacetime, the KN spacetime is also of type D in the
Petrov classification, which indicates that the Weyl scalars, Ψ0, Ψ1, Ψ3 and Ψ4, and the spin coefficients, κ, σ, λ and ν all
vanish. When the KN black hole is perturbed gravitationally and electromagnetically, by adopting the phantom gauge, i.e.,
the Maxwell scalars ϕ0 ¼ ϕ2 ¼ 0, the perturbations are described by these Weyl scalars and spin coefficients. Introducing

Φ0 ¼ Ψ0; Φ1 ¼ Ψ1ρ
� ffiffiffi

2
p

; k ¼ κffiffiffi
2

p ðρ�Þ2 ; s ¼ σρ

ðρ�Þ2 ; ð2:3Þ

then the first set of four perturbation equations are given by [20]

�
L2 −

3ia sin θ
ρ�

�
Φ0 −

�
D0 þ

3

ρ�

�
Φ1 ¼ −2k

�
3

�
M −

Q2

ρ

�
þQ2

ρ�

ρ2

�
; ð2:4Þ

ΔKN

�
D†

2 −
3

ρ�

�
Φ0 þ

�
L†
−1 þ

3ia sin θ
ρ�

�
Φ1 ¼ 2s

�
3

�
M −

Q2

ρ

�
−Q2

ρ�

ρ2

�
; ð2:5Þ
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�
D0 þ

3

r

�
s −

�
L†
−1 þ

3ia sin θ
ρ�

�
k ¼ ρ

ρ�2
Φ0; ð2:6Þ

ΔKN

�
D†

2 −
3

r

�
kþ

�
L2 −

3ia sin θ
ρ�

�
s ¼ 2

ρ

ρ�2
Φ1; ð2:7Þ

where ρ ¼ rþ ia cos θ and ρ� ¼ r − ia cos θ. The other four perturbation equations involving Ψ4, Ψ3, λ and ν will not be
presented here. In this case, the gravitational perturbations is still denoted by the Weyl scalar Φ0 and the information of the
electromagnetic perturbations are encoded in the Weyl scalar Φ1 and the spin coefficients k and s. In the above equations,
various operators are defined as

Dj ¼ ∂r þ
iK
ΔKN

þ 2j
r −M
ΔKN

; D†
j ¼ ∂r −

iK
ΔKN

þ 2j
r −M
ΔKN

; ð2:8Þ

Lj ¼ ∂θ þ Pþ j cot θ; L†
j ¼ ∂θ − Pþ j cot θ; ð2:9Þ

with

P ¼ −aω sin θ þ m
sin θ

; K ¼ −ðr2 þ a2Þωþ am: ð2:10Þ

In the eikonal limit l ≫ 1, we find that the variables can
be separated by the substitutions

Φ0 ¼ R2ðrÞS2ðθÞ; Φ1 ¼ R1ðrÞS1ðθÞ; ð2:11Þ

k ¼ kðrÞS1ðθÞ; s ¼ sðrÞS2ðθÞ; ð2:12Þ

where the angular functions S2ðθÞ and S1ðθÞ are the
normalized proper solutions of the equations

L†
−1L2S2 ¼ −μ2S2; L2L

†
−1S1 ¼ −μ2S1; ð2:13Þ

where μ2 ∼Oðl2Þ. Compare with (A15) we find μ2 ¼ A2 þ
a2ω2 − 2amω and conclude that S2 satisfies Eq. (A16) as
well in the eikonal limit l ≫ 1.
Besides, the functions S2ðθÞ and S1ðθÞ are simply

related by

L2S2 ¼ μS1; L†
−1S1 ¼ −μS2: ð2:14Þ

Note that when a ¼ 0 and without taking the eikonal limit,
the angular functions, S1 and S2, are simply related by the
above formulas. However, these relations do not hold in
the Kerr case for a general l. As shown in the appendix A,
the angular function S2 satisfies the equation (A15), but the
angular function S1 satisfies the equation [20]

ðL†
0L1 − 2aω cos θÞS1 ¼ −λ1S1: ð2:15Þ

Clearly, these two equations are very different. The fact that
the angular functions, S1 and S2, are simply related by
(2.14) is a consequence of the eikonal limit, which is not

expected to happen in general. This is the first simplifica-
tion caused by taking the eikonal limit.
Taking into account of the relation between S1 and S2,

the above perturbation equations become

μR2 −D0R1 ¼ −2k
�
3

�
M −

Q2

ρ

�
þQ2

ρ�

ρ2

�
; ð2:16Þ

ΔKND
†
2R2 − μR1 ¼ 2s

�
3

�
M −

Q2

ρ

�
−Q2

ρ�

ρ2

�
; ð2:17Þ

D0sþ μk ¼ ρ

ρ�2
R2; ð2:18Þ

ΔKND
†
2kþ μs ¼ 2

ρ

ρ�2
R1: ð2:19Þ

Note that here we have taken into account that μ ∼OðlÞ and
K ∼OðlÞ, so we can safely discard the annoying terms
involving ρ� in the eikonal limit. In fact, on the right-hand
sides of the above equations, the angular dependence is still
present through ρ and ρ�, which hinders the further
separation in r and θ. This trouble can be overcome easily
in the eikonal limit. Just as the reduction made in the
previous step, since μ ∼OðlÞ and K ∼OðlÞ, in (2.17) and
(2.19), the coefficients of s and R1 on the right-hand sides
are of Oð1Þ, while their counterparts on the left-hand sides
are of OðlÞ, so one can discard the terms on the right-hand
sides and then obtains

ΔKND
†
2ðR2 þ kÞ ¼ μðR1 − sÞ; ð2:20Þ

ΔKND
†
2ðR2 − kÞ ¼ μðR1 þ sÞ: ð2:21Þ
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The fact that neither of the two equations has angular
dependence implies that the complete separation in all
variables has been achieved. Similarly, from (2.16) and
(2.18) one has

D0ðR1 þ sÞ ¼ μðR2 − kÞ; ð2:22Þ

D0ðR1 − sÞ ¼ μðR2 þ kÞ: ð2:23Þ

Combining the above four equations, then we find a single
ordinary differential equation for the gravitational pertur-
bations

ðD0ΔKND
†
2 − μ2ÞR2 ¼ 0; ð2:24Þ

which explicitly gives

Δ−2
KN

d
dr

�
Δ3

KN
dR2

dr

�
þ VðrÞR2 ¼ 0; ð2:25Þ

where

VðrÞ ¼ K2

ΔKN
− A2 þ 2amω − a2ω2: ð2:26Þ

Comparing the above equation with (A17), one can see that
the two equations share the same form and the difference is
only embodied in the radial function ΔKN . Moreover, one
can easily check that in the eikonal limit the DF equation
behaves exactly the same as (A16) and (2.25) after the
separation in r and θ.
In short, for KN black holes it is feasible to separate r

and θ variables in the eikonal limit, due to the following
two facts: one being that the two angular function S1 and S2
are simply related by (2.14), the other being that the terms
involving ρ and ρ� can be discarded in the eikonal limit. For
RN black holes and a general l, the former fact exists as
well but the latter one does not. However, the spherical
symmetry of the background spacetime assures the sepa-
rability of the variables. For Kerr black holes and a general
l, even though the two angular functions are not simply
related, the term involving ρ and ρ� does not appear, which
makes the separability of the variables possible.
Different from the gravitational and electromagnetic

perturbations, the scalar field is completely separable in
the KN spacetime. Taking the eikonal limit, the separation
of the massless scalar field in r and θ as (A23) leads to

1

sinθ
d
dθ

�
sinθ

dS0
dθ

�
þ
�
a2ω2 cos2 θ−

m2

sin2 θ
þA2

�
S0 ¼ 0;

ð2:27Þ

and

d
dr

�
ΔKN

dR0

dr

�
þ VðrÞR0 ¼ 0; ð2:28Þ

where VðrÞ is exactly the same as that in (2.26).
Obviously, the above equations differ from their counter-

parts in the Kerr spacetime only through the function ΔKN .
Thus, the angular function S2ðθÞ in the gravitational pertur-
bation equation satisfies the same equation as the angular
function S0ðθÞ in the Klein-Gordon equation. Furthermore,
similar to previous discussion around Eq. (A27), we can
easily show that Eqs. (2.25) and (2.28) are of the same form,
i.e., the one-dimensional Schrödinger-like equation. From
the experience of the Kerr black hole, we can obtain the
QNMs from the perturbation equations (2.28) and (2.27) by
using theWKB approximation [51]. Furthermore, we expect
that the QNM/geodesic correspondence (1.1) applies to the
KN black hole, as we will show below.

III. EQNM/UFPO CORRESPONDENCE FOR KN

In this section we present the explicit relation between
the high-frequencies of the QNMs and the characteristic
quantities of the unstable fundamental photon orbits in the
KN spacetime. Our following derivation is very close to
the one in [34], and similarly we show that in the KN
spacetime the EQNM’s real frequencies are also a linear
combination of the precessional and (polar) orbital frequen-
cies, and the imaginary part of the frequencies corresponds
to the Lyapunov exponent of UFPOs.
As we know, the frequencies of EQNMs can be

calculated using the WKB approximation, with appropriate
boundary conditions. In order to obtain the frequencies of
EQNMs, one has to ensure the validity of WKB method
and take into account of the boundary conditions to solve
the equation of EQNMs. Next, we are not going to review
the process of solving EQNMs using the WKB method in
detail,4 instead, we only present the necessary steps.

A. QNMs from the WKB method

Firstly, as usual, we set the complex frequency of the
QNMs appearing in (A12) as

ω ¼ ωR − iωI; ð3:1Þ

Let us begin with the one-dimensional Schrödinger-like
wave equation (A21) and its radial potential (A22) with Δ
replaced by ΔKN. The exact expression takes in this form,

Ṽ ¼ ½ðr2 þ a2Þω − am�2 − ΔKNðA2 þ a2ω2 − 2aωÞ
ðr2 þ a2Þ2 :

ð3:2Þ

4We suggest readers to see [51] or find a more approachable
calculations in [34] if interested in the calculation details.
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Recall the tortoise coordinate introduced in Eq. (A20), we
find x → þ∞ at r → ∞ and x → −∞ at r → rh, where rh
is the event horizon radius of the KN black hole. It is not
hard to find that the potential Ṽ is constant at x ¼ �∞, and
it reaches a minimum at x ¼ x0, that is, ∂xṼðx0Þ ¼ 0. For
the purposes of this article, we only focus on the leading
and next-to-leading orders in the WKB approximation to
ωR, which is similar to [34], but different from [51], in
which the higher orders of the QNM frequency had been
discussed. Thus we expand the potential Ṽ around r0 to the
second order, that is,

ṼðxÞ ¼ Ṽðx0Þ þ
1

2
∂2
xṼðx0Þðx − x0Þ2: ð3:3Þ

In addition, as described in [34] Sec. III.C.1 and [51]
Sec. III.A, by analyzing the behavior of the Schrodinger-
like wave function, we can know that in order to satisfy the
boundary conditions of QNMs, the potential need satisfy

Ṽðx0Þ ≃ 0: ð3:4Þ

This condition enables us to match the two WKB solutions
across both of the turning points simultaneously. Thus, we
finally obtain the conditions

Ṽðx0Þ ≃ 0 ¼ ∂xṼðx0Þ; ð3:5Þ

which corresponds to

Ṽðr0Þ ≃ 0 ¼ ∂rṼðr0Þ; ð3:6Þ

where r0 and x0 satisfy the Eq. (A20). Thus, at the leading
and next-to-leading orders of ωR, ωR must satisfy

Ṽðr0;ωRÞ ¼ ∂rṼðr0;ωRÞ ¼ 0; ð3:7Þ

from the condition (3.6). On the other hand, a constraint has
been found in [51] [see Eq. (1.4)] to help to look for the
values of the QNMs, which reads

i
Ṽðx0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∂2

xṼðx0Þ
p ¼ nþ 1

2
; ð3:8Þ

where n is often referred to as the overtone number. Note
that we have dropped the terms of higher orders appeared in
[51] in our case. In fact, to derive Eq. (3.8), Eq. (3.4) has
been employed, that is, the information of Eq. (3.4) has
been contained in Eq. (3.8). To see this, we expand
Ṽðx0;ωÞ around the point ðx0;ωRÞ to the first order

Ṽðx0;ωÞ ¼ Ṽðx0;ωRÞ þ ∂ωṼðx0;ωRÞðω − ωRÞ: ð3:9Þ

and take ω ¼ ωR − iωI, then we get

Ṽðx0;ωÞ ¼ Ṽðx0;ωRÞ − i∂ωṼðx0;ωRÞωI ð3:10Þ

We can see that due to the facts Ṽ ∼ ω2
R ∼Oðl2Þ and ∂ωṼ ∼

OðlÞ on the left hand of Eq. (3.8), while on the right hand
nþ 1=2 ∼Oð1Þ. In order to save the balance of orders, we
can see that the condition (3.4) is satisfied. Moreover, also
as a direct consequence, we can concludeωI ∼Oð1Þ. Using
Eq. (3.4), Eq. (3.10) can be simplified as

Ṽðx0;ωÞ ¼ −i∂ωṼðx0;ωRÞωI: ð3:11Þ

Then combining with the Eq. (3.8), we can find the final
expression of ωI

ωI ¼
�
nþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∂2

xṼðr0;ωRÞ
p
∂ωṼðr0;ωRÞ

: ð3:12Þ

at the leading order of ωI . However, the calculations of ω
with the WKB approximation does not end here. One can
see that the potential Ṽ ¼ Ṽðr;ω; A2Þ has three indepen-
dent variables. Even though we can split A2 into real and
imaginary parts, that is,

A2 ¼ AR
2 − iAI

2: ð3:13Þ

and approximately take ω ¼ ωR and A2 ¼ AR
2 , Eqs. (3.7)

are still not enough to completely determine the value
of ωR.
To close the calculations, the prerequisite is to find the

relation between the separation constant A2 and the position
of the turning points r0 and ωR, which can be derived from
the angular equation (2.27). Similarly, considering the
boundary conditions along the angular direction and the
validity of WKB method, the turning points θ� divide
θ ∈ ½0; π� into three intervals, that is, ½0; θ−�, ðθ−; θþÞ and
½θþ; π�. In each region, the angular function SðθÞ takes
different forms using the leading and next-to-leading WKB
approximation. One can obtain the solutions in each region
and match them at the turning points θ�. Then, the
matching condition leads to the Bohr-Sommerfeld quanti-
zation condition [34], that is,

Z
θþ

θ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ω2

R cos
2 θ−

m2

sin2 θ
þAR

2

s
dθ¼ ðL− jmjÞπ; ð3:14Þ

where L ¼ lþ 1
2
and θ� are the turning points of the

potential of the angular equation (A16).

B. Null geodesics in the KN spacetime

Then, we are ready to translate the above conditions into
GPOs. In the KN spacetime the Hamiltonian of null
particles can be separated due to the symmetries of the
spacetime. One can start with the Hamilton-Jacobi equation
in KN spacetime
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gμν∂μS∂νS ¼ 0; ð3:15Þ

where SðxÞ is the principal function and pμ ≡ ∂μS is the
conjugate momentum. Then the principal function can be
written as

Sðt; r; θ;ϕÞ ¼ −Etþ SrðrÞ þ SθðθÞ þ Lϕ; ð3:16Þ

where we have used the conserved energy E ¼ −pt and the
angular momentum L ¼ −pϕ along the null geodesics.
From the separation of the Hamiltonian, one can identify

another conserved quantity, viz., the Carter constant Q
[52], then with the help of the conserved quantities
ðE;L;QÞ along the motion, the geodesic equation (A6)
in the KN spacetime can be written in the first-order form

Σ_t ¼ r2 þ a2

ΔKN
½Eðr2 þ a2Þ − La� − aðaE sin2 θ − LÞ

≡ T ðr; θÞ; ð3:17Þ

Σ _ϕ ¼ −aE þ L
sin2 θ

þ a½Eðr2 þ a2ÞE − aL�
ΔKN

≡ F ðr; θÞ;

ð3:18Þ

Σ2 _θ2 ¼ Q − cos2 θ

�
L2

sin2 θ
− a2E2

�
≡ ΘðθÞ; ð3:19Þ

Σ2 _r2 ¼ ððr2 þ a2ÞE − aLÞ2 − ΔKNðQþ ðL − aEÞ2Þ
≡RðrÞ ¼ Ṽðr2 þ a2Þ2 ¼ ΔKNVðrÞ; ð3:20Þ

with

Σ ¼ r2 þ a2 cos2 θ; ð3:21Þ

where the dot denotes the derivative with respect to an
affine parameter ζ along the null geodesics. One can see
from above equations that the difference from the case in
the Kerr spacetime is completely reflected in the function
ΔKN . Sequentially, we can have the exact expressions of
Sr and Sθ

SrðrÞ ¼
Z
�� ffiffiffiffiffiffiffiffiffiffi

RðrÞp
ΔKNðrÞ

dr; SθðθÞ ¼
Z
� �

ffiffiffiffi
Θ

p
dθ; ð3:22Þ

where the “
R�” denotes an integral along the null geodesics.

Then, from

∂S
∂E ¼ ∂S

∂L ¼ ∂S
∂Q ¼ 0; ð3:23Þ

we can obtain the relation

0 ¼ ∂QSr þ ∂QSθ; ð3:24Þ

t ¼ ∂ESr þ 2∂ESθ: ð3:25Þ

C. Correspondence with QNMs

If we identify the principal function SðxÞ with the phase
of the geodesic equation (A10) and take into account
(A12), (A16), and (A21), we can immediately identify that

E ¼ ωR; L ¼ m; Q ¼ AR
2 −m2: ð3:26Þ

Obviously, due to the relation of RðrÞ and Ṽ, (3.20), one
can easily find Eq. (3.7) is equivalent to

RðrÞ ¼ R0ðrÞ ¼ 0; ð3:27Þ

where the prime denotes the derivative with respect to r. As
we know, the photon orbits in the KN spacetime that satisfy
these two equations are the FPOs, or SPOs and they are all
unstable in the radial direction. Thus, we define the radius
of an UFPO as rUFPO, and have

rUFPO ¼ r0; ð3:28Þ

where, r0 is introduced in Eq. (3.6).
On the other hand, consider a nearby photon on the FPOs

initially at a radius rUFPO, after (2nþ 1) half-orbits, it
advances to the larger radius r ¼ rUFPO þ δr such that

δr ¼ eγδt ¼ eðnþ1=2ÞγLδt ≃ eðn−1=2ÞγLδtδr1; ð3:29Þ

where we introduce δr1 ¼ eγLδt, and δt is the time interval
for one complete orbit, that is, two halves. For one
complete orbit, from Eq. (3.25), we find

δt ¼ ∂EδSr þ ∂EδSθ; ð3:30Þ

where

δSr ¼
Z
�

rUFPOþδr1

rUFPO

ffiffiffiffiffiffiffiffiffiffi
RðrÞp

ΔKNðrÞ
dr; δSθ ¼ 2

Z
�

θþ

θ−

ffiffiffiffi
Θ

p
dθ;

ð3:31Þ

with θ� being the roots of ΘðθÞ ¼ 0. Thus we have

δt ¼ ∂ERjrUFPOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R00ðrUFPOÞ

p
ΔKNðrUFPOÞ

log δr1 þ ∂EδSθ; ð3:32Þ

where we have used

RðrÞ ≃ ðr − rUFPOÞ2
2

R00ðrUFPOÞ ð3:33Þ

and from Eq. (3.24), we find
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∂QRjrUFPOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R00ðrUFPOÞ

p
ΔKNðrUFPOÞ

log δr1 þ ∂QSθ ¼ 0: ð3:34Þ

Note that, from the matching condition in the angular
direction for EQNMs, that is, Eq. (3.14), correspondingly
we have

δSθ ¼ 2ðL − jmjÞπ; ð3:35Þ

thus, we conclude that

∂EδSθ þ ∂QδSθ

�
dQ
dE

�
¼ 0; ð3:36Þ

and therefore, we would have

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R00ðrUFPOÞ

p
ΔKNðrUFPOÞ

×

�
∂ERjrUFPO þ ∂QR

�
dQ
dE

�����
rUFPO

�
logδr1 ¼ δt; ð3:37Þ

thus we have

γL ¼ log δr1
δt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R00ðrUFPOÞ

p
ΔKNðrUFPOÞ

∂ERjrUFPO þ ∂QRðdQdE ÞjrUFPO
; ð3:38Þ

thus we finally find

γ ¼
�
nþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R00ðrUFPOÞ

p
ΔKNðrUFPOÞ

∂ERjrUFPO þ ∂QRðdQdE ÞjrUFPO
; ð3:39Þ

Next, from Eqs. (3.7) and (3.20), we find

R ¼ R0 ¼ Ṽ ¼ Ṽ0 ¼ 0; at r ¼ rUFPO ¼ r0; ð3:40Þ

then, combining with the definition of the tortoise coor-
dinate (A20), we have

∂2
xṼ ¼ Δ2

KN

ðr2 þ a2Þ2 ∂
2
rṼ

¼ Δ2
KN

ðr2 þ a2Þ4 ∂
2
r ½Ṽðr2 þ a2Þ2� ¼ Δ2

KN

ðr2 þ a2Þ4 R
00;

ð3:41Þ

at r ¼ rUFPO ¼ r0. On the other hand, the radial potential
can be seen as R ¼ Rðr; EÞ, thus we have

∂ERjrUFPO þ ∂QR
�
dQ
dE

�
¼ ∂ER; ð3:42Þ

and then we get

∂ωṼ ¼ ∂ER
ðr2 þ a2Þ2 : ð3:43Þ

Thus, we obtain

γ ¼
�
nþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R00ðrUFPOÞ

p
ΔðrUFPOÞ

∂ERjrUFPO þ ∂QRðdQdE ÞjrUFPO
¼

�
nþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∂2

xṼðr0;ωRÞ
p
∂ωṼðr0;ωRÞ

; ð3:44Þ

compared with Eq. (3.12), we have

ωI ¼ γ ¼
�
nþ 1

2

�
γL; ð3:45Þ

where γL is known as the Lyapunov exponent. Up to now,
we can see that with the two additional matching conditions
of EQNMs, one can confirm that the corresponding GPOs
are UFPOs.
Moreover, as in [25,34], we can also introduce two

frequencies associated with individual spherical photon
orbits, viz., the orbital and precessional frequencies, and
connect them with the real part of the QNM frequency. The
θ-frequency is defined as

ωorb ≡ 2π=δt; ð3:46Þ

with δt being the time interval of a complete θ-cycle, and

ωprec ≡ δϕprec=δt; ð3:47Þ

is the ϕ-frequency, where δϕprec is the difference between
the angle the particle accumulate in the azimuthal direc-
tion during a complete θ-cycle and �2π, i.e., δϕprec ¼
δϕ − 2π · sgnðmÞ, here we usem > 0 to denote a corotating
orbit while m < 0 denotes a counterrotating orbit. In
addition, δt and δϕ can be computed out along the null
geodesics. From Eqs. (3.17), (3.18) and (3.19), we have

dt
dθ

¼ T ðr; θÞffiffiffiffi
Θ

p ;
dϕ
dθ

¼ F ðr; θÞffiffiffiffi
Θ

p ; ð3:48Þ

And then we can obtain

δt ¼ 2

Z
θþ

θ−

T ðr; θÞ dθffiffiffiffi
Θ

p ; ð3:49Þ

and

δϕ ¼ 2

Z
θþ

θ−

F ðr; θÞ dθffiffiffiffi
Θ

p ; ð3:50Þ

Recall that Sðt; r; θ;ϕÞ is the phase of the photons, S
should be unchanged during the time interval of a complete
orbit δt near r ¼ rUFPO. Thus, from Eq. (3.16) we have
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−Eδtþ δSr þ δSθ þ Lδϕ ¼ 0; ð3:51Þ

where δSr and δSθ have been introduced in Eq. (3.31).
Obviously, we can drop the term δSr, since RðrUFPOÞ ¼
R00ðrUFPOÞ ¼ 0.
Now Eq. (3.51) can be rewritten as

−ωRδtþ Lδϕþ δSθ ¼ 0 ð3:52Þ

then we can find

ωR ¼ mδϕþ δSθ
δt

¼ m½δϕprec þ 2πsgnðmÞ� þ 2πðL − jmjÞ
δt

¼ mδϕprec þ 2πL

δt
¼ L

�
ωorb þ

m
L
ωprec

�
: ð3:53Þ

Combining with Eq. (3.45), we show

ω ¼ L

�
ωorb þ

m
L
ωprec

�
− i

�
nþ 1

2

�
γL; ð3:54Þ

is valid for the QNMs of the KN black hole as well. Note
that this formula has the same form as Eq. (1.3) in [34],
which was derived for the QNMs of Kerr black holes.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we studied the EQNM/UFPO correspon-
dence [25,26,34] for the black holes in the Einstein-Maxwell
theory. The explicit content of the EQNM/UFPO correspon-
dence for the Kerr black holes was well explored in [34]. We
tried to shed new light on this correspondence.We found that
in the eikonal limit both the Teukolsky equation and the
(separated) massless Klein-Gordon equation in the Kerr
spacetime can be turned into the same one-dimensional
Schrödinger-like wave equation. This simple fact plays an
essential role in setting up the EQNM/UFPO correspon-
dence. Since the massless Klein-Gordon equation in the
eikonal limit can also be interpreted as the null geodesic
equation, the fact implies that the EQNMs must correspond
to some particular GPOs. Employing the WKB method, it
turns out that the boundary conditions in the radial and
angular direction on the EQNMs is equivalent to the require-
ments that GPOs must be UFPOs, or homoclinic null
geodesics[34]. Consequently, the imaginary part of the
frequency of the QNM of the overtone number n is related
to the Lyapunov exponent of the photon trajectory circling
(2nþ 1) half-orbits.
Moreover, we studied the EQNM/UFPO correspondence

for the Kerr-Newman black hole. We showed that in
the eikonal limit the gravitational and electromagnetic
perturbations of the Kerr-Newman black hole are natu-
rally decoupled, from which a single one-dimensional
Schrödinger-like equation encoding the QNM spectrum
can be derived. We then showed that the analog of the

Teukolsky equation and the (separated) massless Klein-
Gordon equation in the Kerr-Newman spacetime are of the
same form when taking the eikonal limit. This allows us to
set up the correspondence between the EQNM and UFPOs.
In particular, similar to the Kerr case (1.1), the quasinormal
mode’s real frequency is a linear combination of the
precessional and (polar) orbital frequencies, and the imagi-
nary part of the frequency is proportional to the Lyapunov
exponent of the spherical photon orbit.
In the literatures there have been found some examples

that EQNMs and UFPOs do not match for the black holes
in AdS spacetime [26] and the black holes in modified
theories of gravity [39]. Our study in this paper may give
some insights on these problems. For the former, one can
see that the equation of EQNM still shares the same as the
one of null geodesic, however, the boundary condition
along the radial condition for EQNMs has changed, so that
the EQNM/UFPO correspondence is broken. Nevertheless,
it is possible that EQNM could correspond to some other
GPO than UFPO. It would be interesting to study this
possibility further. For the latter, even though the boundary
conditions of EQNM remain unchanged, due to the
presence of higher order derivative terms, the equation
of EQNM is different from the null geodesic equation.
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APPENDIX: A BRIEF REVIEW OF THE
EQNM/UFPO CORRESPONDENCE

In this section, we would like to briefly review of the
EQNM/UFPO correspondence for the Kerr spacetime. We
show that the equations of EQNMs are the same as the ones
of free moving photons, which is a necessary condition for
EQNM/UFPO corresponce. As the first step, let us intro-
duce the geometric optics approximation, sometimes also
called the eikonal limit, to electromagnetic waves (EWs)
[53] and massless scalar waves (MSWs) [34,54], respec-
tively. They are actually equivalent under the geometric
optics approximation.
Let us begin with the gauge field Aμ which satisfies the

source-free Maxwell equations

∇μFμν ¼ 0; ðA1Þ

where Fμν ¼ ∂μAν − ∂νAμ. Imposing the Lorenz gauge
∇μAμ ¼ 0, Eq. (A1) can be rewritten as

∇ρ∇ρAμ − Rμ
ρAρ ¼ 0; ðA2Þ
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where we have utilized the Ricci identity, i.e., ∇ρ∇νAρ −
∇ν∇ρAρ ¼ RνρAρ and Rμν is the Ricci tensor. The validness
of the geometric optics approximation requires the wave-
length λ is much smaller than the other length scales in the
problem, which can be uniformly denoted by L, such as the
curvature radius of the background metric and the typical
length scale of variation of the amplitude, polarization or
the wavelength of the electromagnetic field.
Under the geometric optics approximation λ ≪ L, we

can write

AμðxÞ ¼ aμðxÞeiSðxÞ; ðA3Þ

where the phase SðxÞ changes on the scale λ and is rapidly
varying, while the amplitude changes only on the scale L
and is slowly varying. Since Rμ

ρAρ ¼ OðL−2Þ while
∇ρ∇ρAμ ¼ Oðλ−2Þ, then up to the leading and the next-
to-leading order in λ=L we can neglect Rμ

ρAρ, and the
Maxwell equation Eq. (A2) is simply

∇ρ∇ρAμ ¼ 0: ðA4Þ

Defining the wavevector kμ ≡ ∂μS, then from the Lorenz
gauge we obtain kμaμ ¼ 0. From Eq. (A4), to the lowest
order, we get

gμνkμkν ¼ 0; ðA5Þ

which is known as the eikonal equation, and one can show
that it is equivalent to the geodesic equation

kμ∇μkν ¼ 0: ðA6Þ

From the point of view of the Hamilton-Jacobi formalism,
the phase SðxÞ could be interpreted as the principal
function, and the eikonal equation just corresponds to
the Hamilton-Jacobi equation for massless particles.
To the next-to-leading order in λ=L, the Maxwell

equation (A4) gives

2kρ∇ρaμ þ ð∇ρkρÞaμ ¼ 0; ðA7Þ

which, in terms of the scalar amplitude a≡ ðaμaμÞ1=2, can
be written as

2kμ∂μ logaþ∇μkμ ¼ 0: ðA8Þ

The fundamental equations (A5) and (A8) contain the
necessary information about the propagation of a null
geodesic in curved spacetime.
In fact, the fundamental equations can also be derived

from the Klein-Gordon equation for a massless scalar
field [34],

∇2ΦðxÞ ¼ 0: ðA9Þ

Similarly, after writing

ΦðxÞ ¼ uðxÞeiSðxÞ; ðA10Þ

and setting kμ ≡ ∂μS, by requiring the phase SðxÞ changes
on the scale λ, while the amplitude uðxÞ changes only on
the scale L, from Eq. (A9) we can obtain the following
equations

gμνkμkν ¼ 0; 2kμ∂μ log uþ∇μkμ ¼ 0 ðA11Þ

at the leading order and the next-to-leading order in λ=L,
respectively. Comparing them with Eqs. (A5) and (A8),
we find they have the same forms by identifying
uðxÞ ¼ aðxÞ ¼ ðaμa�μÞ1=2. This means that it does not
matter which kind of field will be used in the geometric
optics approximation, as all of them should be described by
null geodesics. Therefore, we will use MSW equations in
the following discussion.
It is known that for the Schwarzschild, the Reissner-

Nordstrom and the Kerr black holes, the small perturbations
can be described by a set of linear second-order partial
differential equations, which can be separated completely
[20]. Formally, the perturbations of the stationary space-
time can be denoted by a field expressed as

Ψ ¼
X
l;m

Z
dωe−iωteimϕSωlmðθÞRωlmðrÞ; ðA12Þ

where ω is the frequency, l and m are the angular multi-
poles, due to the translational and rotational symmetry of
the spacetime.
According to the behavior under the parity operations,

the gravitational perturbations of the Schwarzschild black
hole can be classified and decoupled into the axial and the
polar sectors. The study of the axial sector was initiated by
Regge and Wheeler [55], and the polar sector was analyzed
by Zerilli [56]. In [20] Chandrasekhar had shown that these
two sectors can be transformed into each other and yield
identical spectrum of qusinormal modes, i.e., the two
sectors are isospectral.
The approach taken by Regge, Wheeler and Zerilli is to

study directly the perturbations of the metric via the
linearized Einstein’s equation about the background spac-
time. However, one can also study the perturbations in the
Newman-Penrose (NP) formalism [57]. The latter avenue is
particularly suitable for the study of the gravitational
perturbations of the Kerr black hole. Via the NP formalism,
Teukolsky derived the equations describing the perturba-
tions of Kerr black hole, which are completely separable
into ordinary differential equations (called the Teukolsky
equations) [14]. Taking a → 0 limit, the Teukolsky
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equations naturally reproduce the equations of the gravi-
tational perturbations of the Schwarzschild black hole.
For the Kerr black holes, the gravitational perturbations

are encoded by the linearized Weyl scalars Ψ0 and Ψ4,
which are gauge invariant under infinitesimal diffeomor-
phisms. Here for simplicity we only focus on Ψ0 and
similar discussion can be made for Ψ4. Following [20], it
can be separated in r and θ,

Ψ0ðr; θÞ ¼ R2ðrÞS2ðθÞ; ðA13Þ

and the perturbation equations reduce to

ðΔD1D
†
2 þ 6iωrÞR2 ¼ λ̄2R2; ðA14Þ

ðL†
−1L2 − 6aω cos θÞS2 ¼ −λ̄2S2; ðA15Þ

where Δ ¼ r2 − 2Mrþ a2 and various operators share the
same form as (2.8) but with Δ replacing ΔKN .
Note that although the above equations derived by

Chandrasekhar are equivalent to the ones by Teukolsky
[14], the separation constant is different. The two separa-
tion constants are related by λ̄2 ¼ A2 þ a2ω2 − 2amω,
where A2 is the one used by Teukolsky. In the following
we prefer to use A2 instead of λ̄2, since the former one
appears mostly in the literatures.
Taking the eikonal limit l ≫ 1, these two equations

become

1

sinθ
d
dθ

�
sinθ

dS2
dθ

�
þ
�
a2ω2 cos2 θ−

m2

sin2 θ
þA2

�
S2 ¼ 0;

ðA16Þ

and

Δ−2 d
dr

�
Δ3

dR2

dr

�
þ VðrÞR2 ¼ 0; ðA17Þ

where

VðrÞ ¼ K2

Δ
− A2 þ 2amω − a2ω2: ðA18Þ

Note that the limit l ≫ 1 and the high frequency limit,
i.e., the geometric optics limit ω ≫ 1 are essentially
independent of each other. Since the frequency appearing
in the above two equations is the eigenvalue to be
determined, as a consequence we have A2 ∼Oðl2Þ, ω ∼
OðlÞ and m ∼OðlÞ. For a ¼ 0, the solution of the angular
equation (A16) is just the Legendre function Pl with
A2 ¼ lðlþ 1Þ. Besides, via the transformation

R̃2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
ΔR2; ðA19Þ

and the tortoise coordinate

dx ¼ r2 þ a2

Δ
dr; ðA20Þ

the radial equation (A17) becomes the one-dimensional
Schrödinger-like wave equation

d2

dx2
R̃2 þ ṼR̃2 ¼ 0; ðA21Þ

where

Ṽ ≃
Δ

ðr2 þ a2Þ2 V: ðA22Þ

On the other hand, the scalar field is completely
separable in the Kerr spacetime. Taking the eikonal limit,
from the Klein-Gordon equation (A9) the separation of the
massless scalar field in r and θ, i.e.,

Φðr; θÞ ¼ R0ðrÞS0ðθÞ; ðA23Þ

leads to

1

sinθ
d
dθ

�
sinθ

dS0
dθ

�
þ
�
a2ω2 cos2 θ−

m2

sin2 θ
þA2

�
S0 ¼ 0;

ðA24Þ

and

d
dr

�
Δ
dR0

dr

�
þ VðrÞR0 ¼ 0; ðA25Þ

where

VðrÞ ¼ K2

Δ
þ 2amω − a2ω2 − A2: ðA26Þ

Clearly, the angular equation for the scalar field (A24) has
the same form as that of the gravitational perturbations
(A16), which means we have λ̄2 ¼ λ̄0. Moreover, by using
the tortoise coordinate and via the transformation

R̃0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
R0; ðA27Þ

the radial equation of the scalar field can also be trans-
formed into the standard one-dimensional Schrödinger-like
equation

d2

dx2
R̃0 þ ṼR̃0 ¼ 0; ðA28Þ

where Ṽ is exactly the same as that in (A21).
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From the above discussions we arrive at the conclusion
that in the eikonal limit the equations describing the
gravitational and the scalar perturbations possess essen-
tially the same form.5 Moreover, as pointed out in [34]

considering the infalling boundary condition at the horizon
and the outgoing boundary condition at infinity and the
validity of the WKB method, two additional matching
conditions should be imposed on the radial and angular
directions respectively to find the eigenvalues of EQNMs.
The corresponding two boundary conditions imposed on
GPOs restrict the photon orbits to be UFPOs. This
establishes the EQNM/UFPO correspondence, as encoded
in the relation (1.1).

[1] P. T. Chrusciel, J. Lopes Costa, and M. Heusler, Stationary
black holes: Uniqueness and beyond, Living Rev. Relativity
15, 7 (2012).

[2] E. T. Newman, R. Couch, K. Chinnapared, A. Exton, A.
Prakash, and R. Torrence, Metric of a rotating, charged
mass, J. Math. Phys. (N.Y.) 6, 918 (1965).

[3] T. Adamo and E. T. Newman, The Kerr-Newman metric: A
review, Scholarpedia 9, 31791 (2014).

[4] G.W. Gibbons, The motion of black holes, Commun. Math.
Phys. 35, 13 (1974).

[5] G. Bozzola and V. Paschalidis, General Relativistic Simu-
lations of the Quasicircular Inspiral and Merger of Charged
Black Holes: GW150914 and Fundamental Physics Impli-
cations, Phys. Rev. Lett. 126, 041103 (2021).

[6] H.-T. Wang, P.-C. Li, J.-L. Jiang, Y.-M. Hu, and Y.-Z. Fan,
Post-Newtonian waveform for charged binary black hole
inspirals and analysis with GWTC-1 events, Eur. Phys. J. C
81, 769 (2021).

[7] H.-T. Wang, S.-P. Tang, P.-C. Li, and Y.-Z. Fan,
Quasinormal-modes of the Kerr-Newman black hole:
GW150914 and fundamental physics implications, arXiv:
2104.07594.

[8] O. J. C. Dias, M. Godazgar, and J. E. Santos, Linear Mode
Stability of the Kerr-Newman Black Hole and Its Quasi-
normal Modes, Phys. Rev. Lett. 114, 151101 (2015).

[9] K. D. Kokkotas and B. G. Schmidt, Quasinormal modes
of stars and black holes, Living Rev. Relativity 2, 2
(1999).

[10] E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal
modes of black holes and black branes, Classical Quantum
Gravity 26, 163001 (2009).

[11] R. A. Konoplya and A. Zhidenko, Quasinormal modes of
black holes: From astrophysics to string theory, Rev. Mod.
Phys. 83, 793 (2011).

[12] J. D. Bekenstein, Black hole hair: 25‐years after, arXiv:gr-
qc/9605059.

[13] E. Berti, K. Yagi, H. Yang, and N. Yunes, Extreme gravity
tests with gravitational waves from compact binary coa-
lescences: (II) Ringdown, Gen. Relativ. Gravit. 50, 49
(2018).

[14] S. A. Teukolsky, Perturbations of a rotating black hole. 1.
Fundamental equations for gravitational electromagnetic
and neutrino field perturbations, Astrophys. J. 185, 635
(1973).

[15] Z. Mark, H. Yang, A. Zimmerman, and Y. Chen, Quasi-
normal modes of weakly charged Kerr-Newman spacetimes,
Phys. Rev. D 91, 044025 (2015).

[16] P. Pani, E. Berti, and L. Gualtieri, Gravitoelectromagnetic
Perturbations of Kerr-Newman Black Holes: Stability and
Isospectrality in the Slow-Rotation Limit, Phys. Rev. Lett.
110, 241103 (2013).

[17] P. Pani, E. Berti, and L. Gualtieri, Scalar, electromagnetic
and gravitational perturbations of Kerr-Newman black
holes in the slow-rotation limit, Phys. Rev. D 88, 064048
(2013).

[18] E. Berti and K. D. Kokkotas, Quasinormal modes of Kerr-
Newman black holes: Coupling of electromagnetic and
gravitational perturbations, Phys. Rev. D 71, 124008 (2005).

[19] J. M. Bardeen, Timelike and null geodesics in the Kerr
metric, in Les Houches Summer School of Theoretical
Physics: Black Holes (1973), pp. 215–240.

[20] S. Chandrasekhar, The Mathematical Theory of Black Holes
(Oxford University Press, USA, 1985).

[21] P. V. P. Cunha, C. A. R. Herdeiro, and E. Radu, Fundamental
photon orbits: Black hole shadows and spacetime instabil-
ities, Phys. Rev. D 96, 024039 (2017).

[22] P. V. P. Cunha, E. Berti, and C. A. R. Herdeiro, Light-Ring
Stability for Ultracompact Objects, Phys. Rev. Lett. 119,
251102 (2017).

[23] P. V. P. Cunha and C. A. R. Herdeiro, Stationary Black
Holes and Light Rings, Phys. Rev. Lett. 124, 181101
(2020).

[24] M. Guo and S. Gao, Universal properties of light rings for
stationary axisymmetric spacetimes, Phys. Rev. D 103,
104031 (2021).

[25] V. Ferrari and B. Mashhoon, New approach to the quasi-
normal modes of a black hole, Phys. Rev. D 30, 295 (1984).

[26] V. Cardoso, A. S. Miranda, E. Berti, H. Witek, and V. T.
Zanchin, Geodesic stability, Lyapunov exponents and qua-
sinormal modes, Phys. Rev. D 79, 064016 (2009).

[27] M. Zhang and M. Guo, Can shadows reflect phase structures
of black holes?, Eur. Phys. J. C 80, 790 (2020).

[28] H. Li, Y. Chen, and S.-J. Zhang, Photon orbits and phase
transitions in Born-Infeld-dilaton black holes, Nucl. Phys.
B954, 114975 (2020).

[29] Y.-M. Xu, H.-M. Wang, Y.-X. Liu, and S.-W. Wei, Photon
sphere and reentrant phase transition of charged Born-
Infeld-AdS black holes, Phys. Rev. D 100, 104044 (2019).

5In higher dimensions, the scalar, the electromagnetic and the
gravitational perturbations of static black holes in Einstein’s
gravity have the same behavior in the eikonal limit [58–60].

LI, LEE, GUO, and CHEN PHYS. REV. D 104, 084044 (2021)

084044-12

https://doi.org/10.12942/lrr-2012-7
https://doi.org/10.12942/lrr-2012-7
https://doi.org/10.1063/1.1704351
https://doi.org/10.4249/scholarpedia.31791
https://doi.org/10.1007/BF01646451
https://doi.org/10.1007/BF01646451
https://doi.org/10.1103/PhysRevLett.126.041103
https://doi.org/10.1140/epjc/s10052-021-09555-1
https://doi.org/10.1140/epjc/s10052-021-09555-1
https://arXiv.org/abs/2104.07594
https://arXiv.org/abs/2104.07594
https://doi.org/10.1103/PhysRevLett.114.151101
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/RevModPhys.83.793
https://arXiv.org/abs/gr-qc/9605059
https://arXiv.org/abs/gr-qc/9605059
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1086/152444
https://doi.org/10.1086/152444
https://doi.org/10.1103/PhysRevD.91.044025
https://doi.org/10.1103/PhysRevLett.110.241103
https://doi.org/10.1103/PhysRevLett.110.241103
https://doi.org/10.1103/PhysRevD.88.064048
https://doi.org/10.1103/PhysRevD.88.064048
https://doi.org/10.1103/PhysRevD.71.124008
https://doi.org/10.1103/PhysRevD.96.024039
https://doi.org/10.1103/PhysRevLett.119.251102
https://doi.org/10.1103/PhysRevLett.119.251102
https://doi.org/10.1103/PhysRevLett.124.181101
https://doi.org/10.1103/PhysRevLett.124.181101
https://doi.org/10.1103/PhysRevD.103.104031
https://doi.org/10.1103/PhysRevD.103.104031
https://doi.org/10.1103/PhysRevD.30.295
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1140/epjc/s10052-020-8389-5
https://doi.org/10.1016/j.nuclphysb.2020.114975
https://doi.org/10.1016/j.nuclphysb.2020.114975
https://doi.org/10.1103/PhysRevD.100.104044


[30] M. Zhang, S.-Z. Han, J. Jiang, and W.-B. Liu, Circular orbit
of a test particle and phase transition of a black hole, Phys.
Rev. D 99, 065016 (2019).

[31] S.-Z. Han, J. Jiang, M. Zhang, andW.-B. Liu, Photon sphere
and phase transition of d-dimensional (d ≥ 5) charged
Gauss–Bonnet AdS black holes, Commun. Theor. Phys.
72, 105402 (2020).

[32] S.-W. Wei, Y.-X. Liu, and Y.-Q. Wang, Probing the relation-
ship between the null geodesics and thermodynamic phase
transition for rotating Kerr-AdS black holes, Phys. Rev. D
99, 044013 (2019).

[33] X.-C. Cai and Y.-G. Miao, Can shadows connect black hole
microstructures?, arXiv:2101.10780.

[34] H. Yang, D. A. Nichols, F. Zhang, A. Zimmerman, Z.
Zhang, and Y. Chen, Quasinormal-mode spectrum of Kerr
black holes and its geometric interpretation, Phys. Rev. D
86, 104006 (2012).

[35] I. Z. Stefanov, S. S. Yazadjiev, and G. G. Gyulchev, Con-
nection between Black-Hole Quasinormal Modes and Lens-
ing in the Strong Deflection Limit, Phys. Rev. Lett. 104,
251103 (2010).

[36] K. Jusufi, Quasinormal Modes of Black Holes Surrounded
by Dark Matter and Their Connection with the Shadow
Radius, Phys. Rev. D 101, 084055 (2020).

[37] B. Cuadros-Melgar, R. D. B. Fontana, and J. de Oliveira,
Analytical correspondence between shadow radius and
black hole quasinormal frequencies, Phys. Lett. B 811,
135966 (2020).

[38] H. Yang, Relating black hole shadow to quasinormal
modes for rotating black holes, Phys. Rev. D 103,
084010 (2021).

[39] R. A. Konoplya and Z. Stuchlík, Are eikonal quasinormal
modes linked to the unstable circular null geodesics?, Phys.
Lett. B 771, 597 (2017).

[40] B. Mashhoon, Stability of charged rotating black holes in
the eikonal approximation, Phys. Rev. D 31, 290 (1985).

[41] P. Zhao, Y. Tian, X. Wu, and Z.-Y. Sun, The quasi-normal
modes of charged scalar fields in Kerr-Newman black hole
and its geometric interpretation, J. High Energy Phys. 11
(2015) 167.

[42] V. Moncrief, Stability of Reissner-Nordstrom black holes,
Phys. Rev. D 10, 1057 (1974).

[43] V. Moncrief, Odd-parity stability of a Reissner-Nordstrom
black hole, Phys. Rev. D 9, 2707 (1974).

[44] F. J. Zerilli, Perturbation analysis for gravitational and
electromagnetic radiation in a Reissner-Nordstrom geom-
etry, Phys. Rev. D 9, 860 (1974).

[45] A. L. Dudley and J. D. Finley, Separation of Wave Equa-
tions for Perturbations of General Type-D Space-Times,
Phys. Rev. Lett. 38, 1505 (1977).

[46] A. L. Dudley and J. D. Finley, III, Covariant perturbed wave
equations in arbitrary type D backgrounds, J. Math. Phys.
(N.Y.) 20, 311 (1979).

[47] M. Zilhão, V. Cardoso, C. Herdeiro, L. Lehner, and U.
Sperhake, Testing the nonlinear stability of Kerr-Newman
black holes, Phys. Rev. D 90, 124088 (2014).

[48] S. Hod, Universality of the quasinormal spectrum of near-
extremal Kerr–Newman black holes, Eur. Phys. J. C 75, 272
(2015).

[49] S. Hod, Numerical evidence for universality in the relax-
ation dynamics of near-extremal Kerr–Newman black holes,
Eur. Phys. J. C 75, 611 (2015).

[50] A. Zimmerman and Z. Mark, Damped and zero-damped
quasinormal modes of charged, nearly extremal black holes,
Phys. Rev. D 93, 044033 (2016); 93, 089905(E) (2016).

[51] S. Iyer and C. M. Will, Black hole normal modes: AWKB
approach. 1. Foundations and application of a higher order
WKB analysis of potential barrier scattering, Phys. Rev. D
35, 3621 (1987).

[52] B. Carter, Global structure of the Kerr family of gravita-
tional fields, Phys. Rev. 174, 1559 (1968).

[53] M. Maggiore, Gravitational Waves. Vol. 1: Theory and
Experiments, Oxford Master Series in Physics (Oxford
University Press, New York, 2007).

[54] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman, San Francisco, 1973).

[55] T. Regge and J. A. Wheeler, Stability of a Schwarzschild
singularity, Phys. Rev. 108, 1063 (1957).

[56] F. J. Zerilli, Gravitational field of a particle falling in a
Schwarzschild geometry analyzed in tensor harmonics,
Phys. Rev. D 2, 2141 (1970).

[57] E. Newman and R. Penrose, An approach to gravitational
radiation by a method of spin coefficients, J. Math. Phys.
(N.Y.) 3, 566 (1962).

[58] H. Kodama and A. Ishibashi, A master equation for
gravitational perturbations of maximally symmetric black
holes in higher dimensions, Prog. Theor. Phys. 110, 701
(2003).

[59] A. Ishibashi and H. Kodama, Stability of higher dimensional
Schwarzschild black holes, Prog. Theor. Phys. 110, 901
(2003).

[60] H. Kodama and A. Ishibashi, Master equations for pertur-
bations of generalized static black holes with charge in
higher dimensions, Prog. Theor. Phys. 111, 29 (2004).

Correction: The corresponding author footnote indicator was
improperly presented at proof stage and has been rendered
properly.

CORRESPONDENCE OF EIKONAL QUASINORMAL MODES AND … PHYS. REV. D 104, 084044 (2021)

084044-13

https://doi.org/10.1103/PhysRevD.99.065016
https://doi.org/10.1103/PhysRevD.99.065016
https://doi.org/10.1088/1572-9494/aba259
https://doi.org/10.1088/1572-9494/aba259
https://doi.org/10.1103/PhysRevD.99.044013
https://doi.org/10.1103/PhysRevD.99.044013
https://arXiv.org/abs/2101.10780
https://doi.org/10.1103/PhysRevD.86.104006
https://doi.org/10.1103/PhysRevD.86.104006
https://doi.org/10.1103/PhysRevLett.104.251103
https://doi.org/10.1103/PhysRevLett.104.251103
https://doi.org/10.1103/PhysRevD.101.084055
https://doi.org/10.1016/j.physletb.2020.135966
https://doi.org/10.1016/j.physletb.2020.135966
https://doi.org/10.1103/PhysRevD.103.084010
https://doi.org/10.1103/PhysRevD.103.084010
https://doi.org/10.1016/j.physletb.2017.06.015
https://doi.org/10.1016/j.physletb.2017.06.015
https://doi.org/10.1103/PhysRevD.31.290
https://doi.org/10.1007/JHEP11(2015)167
https://doi.org/10.1007/JHEP11(2015)167
https://doi.org/10.1103/PhysRevD.10.1057
https://doi.org/10.1103/PhysRevD.9.2707
https://doi.org/10.1103/PhysRevD.9.860
https://doi.org/10.1103/PhysRevLett.38.1505
https://doi.org/10.1063/1.524064
https://doi.org/10.1063/1.524064
https://doi.org/10.1103/PhysRevD.90.124088
https://doi.org/10.1140/epjc/s10052-015-3466-x
https://doi.org/10.1140/epjc/s10052-015-3466-x
https://doi.org/10.1140/epjc/s10052-015-3845-3
https://doi.org/10.1103/PhysRevD.93.044033
https://doi.org/10.1103/PhysRevD.93.089905
https://doi.org/10.1103/PhysRevD.35.3621
https://doi.org/10.1103/PhysRevD.35.3621
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRevD.2.2141
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1724257
https://doi.org/10.1143/PTP.110.701
https://doi.org/10.1143/PTP.110.701
https://doi.org/10.1143/PTP.110.901
https://doi.org/10.1143/PTP.110.901
https://doi.org/10.1143/PTP.111.29

