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Motivated by exploring the interface between thermodynamics of spacetime and quantum gravity
effects, we develop a heuristic derivation of Hawking temperature and Bekenstein entropy from the
existence of a minimal resolvable area. Moreover, we find leading order quantum gravity corrections to
them that are in qualitative agreement with results obtained by other methods, both heuristic and rigorous.
In this way, we recover, as a particular case, the corrections heuristically obtained from the existence of
minimal length. We also show that the size of minimal area is constrained from above by well-understood
results of semiclassical black hole physics, specifically by the entropy content of Hawking radiation. The
minimal area derivation we introduce is also applied to finding the Unruh temperature associated with
causal diamonds and to establish a new relation between this temperature and the entropy of the causal
diamond’s horizon.
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I. INTRODUCTION

In the study of gravitational phenomena, the introduction
of thermodynamic tools has revealed a useful approach to
understand different processes involving horizons, such as
black hole evaporation. Black hole thermodynamics
emerged in the early 1970s with the argument that black
holes posses entropy proportional to their horizon area [1].
Soon thereafter, it was found that black hole evolution
follows four laws analogous to the laws of thermodynamics
[2] and that they emit black body radiation corresponding
to a finite temperature [3] (the Hawking effect). The ideas
behind the Hawking effect were later further extended and
it was found that a uniformly accelerating observer per-
ceives the Minkowski vacuum as a thermal bath of particles
whose temperature is proportional to the observer’s accel-
eration [4] (while this phenomena, known as the Unruh
effect, is related to the Hawking effect through the
equivalence principle, they are nevertheless distinct [5]).
In order to get a better understanding of these effects and

developnewpredictions,many results concerning the relation
of thermodynamics and gravity have been later reproduced
and extended by rather simple heuristic arguments. For

instance, expressions of Hawking and Unruh temperatures
are implied by the uncertainty relation between position and
momentum of the produced particles [6]. The form of
Bekenstein entropy then follows from the Hawking temper-
ature and the equilibrium Clausius relation, providing a
complete thermodynamic description of a Schwarzschild
black hole just from heuristic considerations. While these
derivations of course cannot replace the corresponding
rigorous calculations, they still provide useful physical
intuition and allow one to develop new predictions and
directions to explore meticulously in the future.
Furthermore, one can extend heuristic reasoning beyond
the well-explored semiclassical setting and employ it to gain
insight into low energy quantum gravity effects. To achieve
this, the standard HUP has been replaced by the generalized
uncertainty principle (GUP) [7–10], that phenomenologically
incorporatesminimal resolvable length appearing in a number
of approaches to quantum gravity [11,12].
In this paper, inspired by previous successes of heuristic

results,wepark for awhile themore rigorous side of blackhole
thermodynamics and drive our ideas to explore new directions
and results. The nature of our reasoning is similar to that of the
derivations based on GUP. However, in place of minimal
length we introduce a new game piece: minimal resolvable
area. There aregood reasons to consider it.While the existence
of minimal length trivially implies minimal area, the converse
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does not hold. To see this, consider an ellipse with height 2b
and width 2a, whose area, A ¼ πab corresponds to the
minimal value. One can then set the height arbitrarily small, as
long as its product with width and, thus, the area, remains
fixed. Moreover, some approaches to quantum gravity say
something about minimal area but not necessarily about
minimal length, e.g., loop quantum gravity (LQG) [13,14]
and proposals to quantise the area of a black hole horizon [15].
We begin by finding a derivation for the modified black

hole temperature and entropy from minimal area. As
expected, whenever the GUP approach is applicable, we
obtain results equivalent to it. However, as we emphasized
above, our findings are more general and hold even for some
theories that do not necessarily imply GUP. Upon verifying
and generalizing the known previous results, we proceed to
ask two new questions. First, if minimal area allows us to
recover some predictions concerning black hole thermody-
namics, can we in turn use our knowledge of black hole
thermodynamics to learn something about minimal area? We
argue that average entropy per photon of Hawking radiation
indeed provides an upper limit on the minimal area and,
indirectly, the minimal length. Since the semiclassical
entropy of Hawking radiation depends only on its black
body nature [16], the limits obtained in this way are model
independent. Furthermore, the upper bound we find for the
minimal area, Amin ≲ 10.80l2P, is consistent with theoretical
predictions of its value [15,17]. The second question we pose
comes from the fact that one can assign entropy proportional
to area even to observer-dependent horizons associated with
accelerating observers [18–20], who measure non-zero
Unruh temperature. Therefore, it is natural to ask: can
one connect the values of horizon entropy and Unruh
temperature associated to such horizons? Applying our
derivation based on minimal area, we show that this is
indeed possible in the case of causal diamonds (and,
possibly, other closed horizons). It turns out that the relation
between the Unruh temperature measured by finite lifetime
inertial observers inside the diamond [21,22] and the entropy
of diamond’s horizon is similar as in the case of temperature
and entropy of a Schwarzschild black hole. Furthermore, we
derive corrections to diamond’s temperature and entropy,
obtaining results consistent with the GUP modified Unruh
temperature [9] and the entanglement entropy of a spherical
horizon in Minkowski spacetime [19].
Whilewedonot aim toprovide a solid closed answer to any

of these questions, we offer a novel and intuitive viewpoint
that might prove helpful in solving them completely and even
motivate further research in related topics. In any case, a
slightly playful approach we adapt seems fitting for a field of
research that is said to begin with a question: “What happens
when you pour a cup of tea into a black hole1?”

The paper is organized as follows. In Sec. II we derive
the modified temperature and entropy of a Schwarzschild
black hole and discuss bounds on minimal area implied by
black hole evaporation. Section III is devoted to derivation
of temperature and entropy of a causal diamond. We also
explore how are both quantities modified due to quantum
gravitational effects. Section IV sums up our results and
discusses unresolved issues.
Throughout the paper we will work in four spacetime

dimensions, assume metric signature ð−1; 1; 1; 1Þ and use
SI units. Other conventions follow [24].

II. THERMODYNAMICS OF SCHWARZSCHILD
BLACK HOLES

Our first scenario will be a Schwarzschild black hole. It
makes for a convenient choice as it is fully described by a
single parameter, the mass M. Therefore, we have a very
simple dependence of entropy on temperature given by the
equilibrium Clausius relation, dS ¼ c2dM=T. Later on,
when we turn our attention to causal diamonds (Sec. III),
we will see how the presence of thermodynamic quantities
beyond mass, temperature and entropy (in this case volume
and pressure) makes the derivation more cumbersome and
less clear. We first recap the uncertainty principle based
reasoning for the sake of comparison with our method
(Sec. II A). In Sec. II B, we carry out a derivation of
modified black hole temperature and entropy from minimal
area. Lastly, Sec. II C introduces constraints on the minimal
area and length implied by black hole evaporation.
Before, setting up the model and starting to play with it,

we ought to say a few words about its limitations. Both the
uncertainty principle and the minimal area method can
determine temperature of the photons of Hawking radiation
(up to a numerical factor). However, they do not say
anything about their existence. To use them, we must
assume that black hole does emit radiation corresponding
to a well-defined temperature. One can rigorously show
that this indeed occurs and specify the necessary conditions
[3,25] (of course, the Hawking temperature is then found as
a simple by-product of the calculations). However, to
keep in tune with the rest of the paper, we will just
support the existence of black hole radiation by a well
known intuitive description introduced in the Hawking’s
seminal paper [3]. Consider pairs of virtual particles
created just inside the horizon. Then, there exists a
probability that the positive energy particle will tunnel
outside of the horizon as Hawking radiation, while the
negative energy one will be absorbed by the black hole,
reducing its mass. Alternatively, one might consider a
virtual particle pair just outside the horizon, with the
negative energy particle tunneling inside the black hole
(while this model may sound somewhat hand-wavy, it can
actually be used to derive many features of the Hawking
radiation [26,27]).

1Reportedly, the question was posed by J. A. Wheeler to his
student, J. D. Bekenstein, who consequently proposed his for-
mula for black hole entropy [23].
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A. Hawking temperature from uncertainty principle

We begin by reviewing a heuristic derivation of Hawking
temperature and modifications to it from the uncertainty
principle [6–8]. It will serve to provide a comparison with
the minimal area approach we will introduce later on.
Consider a Schwarzschild black hole of mass M. A

photon emitted from the black hole has uncertainty in its
position comparable with the black hole’s Schwarzschild
radius, rS ¼ 2GM=c2 [28]. The Heisenberg uncertainty
principle (HUP) then implies a minimal uncertainty in
photon’s momentum

Δp ¼ ℏ
2Δx

≈
ℏc2

4GM
: ð1Þ

If we takeΔE ¼ cΔp to be the typical energy of an emitted
photon, the temperature of the radiation obeys

T ≈
ΔE
kB

≈
ℏc3

4kBGM
; ð2Þ

which agrees with the Hawking result for black hole
temperature up to 1=2π. However, since the above pre-
sented argument is only qualitative, some discrepancy in
numerical factor can be expected. Therefore, the result must
be corrected by a calibration factor of 1=2π. Then, one
recovers the Hawking temperature of a Schwarzschild
black hole

TH ¼ ℏc3

8πkBGM
: ð3Þ

To obtain a formula for the black hole entropy, one simply
needs to integrate the equilibrium Clausius relation,
dS ¼ c2dM=T, finding

SB ¼ 4πkB
GM2

ℏc
¼ kB

A
4l2P

; ð4Þ

where A denotes the horizon area. This is of course the
well known expression for the Bekenstein entropy of a
Schwarzschild black hole.
Let us remark that HUP sets a lower limit on the product

of both uncertainties, but allows in principle arbitrarily
precise determination of either position or momentum.
However, thought experiments combining quantum
mechanics with (even Newtonian) gravity indicate exist-
ence of a minimal resolvable length [11,12]. Moreover,
minimal length also arises in string theory [29]. To study its
implications, one can introduce a modification of HUP, the
GUP. It reads

ΔxΔp ≥
ℏ
2

�
1þ α0

l2P
ℏ2

Δp2

�
; ð5Þ

where lP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p
is the Planck length and α0 is a model

dependent real number generally expected to be of the
order of unity. The corresponding minimal length equals
lmin ¼ ffiffiffiffiffi

α0
p

lP. There also exist variants of GUP incorpo-
rating minimal and/or maximal momentum [30]. However,
we will limit our study to the above stated version, as it is
represents the simplest modification of HUP necessary to
incorporate minimal length and has the advantage of being
supported by a variety of arguments, from simple thought
experiments to more sophisticated calculations in various
approaches to quantum gravity [11,12]. Black hole temper-
ature heuristically obtained from GUP then contains
quantum gravity corrections coming from the existence
of minimal length [7].
The previously described derivation, with HUP

replaced by GUP, yields modified formulas for black hole
temperature,

TGUP¼
2

16π2α0k2Bl
2
P

ℏ2c2 TH

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

16π2α0k2Bl
2
P

ℏ2c2
T2
H

s �

¼TH

�
1þ4π2α0k2Bl

2
P

ℏ2c2
T2
HþO

�
α20k

4
Bl

4
P

ℏ4c4
T4
H

��
; ð6Þ

and entropy,

SGUP ¼ kBA
4l2P

−
πα0kB
4

ln
A
A0

þO

�
kBα20l

2
P

A

�
: ð7Þ

This form of modified temperature has not been (to our
best knowledge) confirmed by any rigorous method.
However, a logarithmic correction term in black hole
entropy was reported in many approaches to quantum
gravity, including LQG [31,32], string theory [33] and
AdS=CFT correspondence [34].

B. Hawking temperature from minimal area

We have seen how modified black hole temperature and
entropy arise from the existence of minimal length.
However, that turns out to be a slightly too strong
assumption, as we show how to accomplish similar results
by considering just a minimal area which, as we discussed
in the introduction, represents a more general concept.
Relaxing the requirement of minimal length is especially
advantageous since some approaches to quantum gravity
do not assume it, while still including a notion of
minimal area.
One of the main candidate theories of quantum gravity,

LQG, obtains a positive minimal eigenvalue of the area
operator [14]. When considering loop quantum cosmology
(LQC) within the improved dynamics prescription, this
eigenvalue is identified with the “area gap,” which is
then treated as a physical minimal resolvable area given
by Δl2P ¼ 4

ffiffiffi
3

p
πγl2P, with γ being the Barbero-Immirzi
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parameter [17,35–38]. (Note, also, that the appearance of
physicalminimal area inLQGandLQChas been questioned
in some works [39,40]). In an opposite way, the length
operator in LQG does not provide a similar notion of
minimal resolvable length [14,41]. This framework then
does not imply GUP in any straightforward way.
Nevertheless, we do know that LQG leads to negative
logarithmic correction to Bekenstein entropy [31,32] con-
sistent with that implied by GUP. Generalizing the deriva-
tion ofmodified entropy reviewed in the previous subsection
to work just with minimal area could shed some light on the
consistency of the phenomenological results.
Another approach to quantum gravity in which the

difference of minimal length and minimal area becomes
relevant is the proposal to quantize the area of black hole
horizon [15,42–46]. It assumes that quantized area of a
Kerr-Newman black hole has an evenly spaced spectrum,
thus it directly introduces a minimal change in black hole
area [15]. However, while the area is discretized, no
specific realization of a minimal area surface is envisioned.
In other words, one does not divide the event horizon into
some “minimal area patches” of a given shape, and the
existence of minimal area only manifests in discrete (rather
than continuous) changes of the horizon area. Hence, no
constraints whatsoever are put on the minimal length. Since
this idea offers a very simple model for quantum properties
of black holes, its implications for their temperature and,
especially, entropy are of interest, but they do not follow
from the GUP-based argument.
Suppose there exists a minimal resolvable area, Amin,

implied by quantum gravity effects. Then, emission of a
single photon of energy c2δM decreases the area of a
Schwarzschild black hole event horizon at least by Amin. If
black hole’s initial mass equals M, we have

AM −Amin ≥
16πG2

c4
ðM − δMÞ2;

δM2 − 2MδM þ c4

16πG2
Amin ≤ 0; ð8Þ

whereAM ¼ 16πG2M2=c4 denotes the initial horizon area.
Taking the value δMc2, that saturates this inequality, as
the typical energy of emitted photons, we get for their
temperature

T ≈
δMc2

kB
: ð9Þ

We first apply this formula to a black hole large enough to
satisfy M ≫ δM. In this approximation, we find δM ¼
c4Amin=32πG2M and, therefore,

T ≈
c6Amin

32πkBG2M
: ð10Þ

We can simplify the expression by writing Amin in terms of
squared Planck length, Amin ¼ Δl2P, where Δ is some
positive real number. Note that this entails no assumptions
about the size of the minimal area as we keep Δ arbitrary.
We reserve the discussion of its value for Sec. II C. Then,
our expression for temperature reads

T ≈
Δ
4
TH: ð11Þ

Due to a qualitative nature of our argument which may
ignore some numerical factors, we must again introduce a
calibration factor, in this case 4=Δ, to obtain the correct
Hawking temperature. This factor explicitly depends on the
size of the minimal area and for the typically considered
values of Δ, it turns out to be close to one (for instance,
Δ ≈ 5.17 often assumed in LQC [17] yields calibration
factor approximately 1.29). In conclusion, the photon
temperature obeys

T ¼ 4

Δ
δMc2

kB
≈

ℏc3

8πkBGM
; ð12Þ

from which we easily find the Bekenstein entropy using
the Clausius relation, just like in previous subsection. That
is, the minimal area derivation recovers the standard
expressions.
Upon deriving the standard formulas for black hole

temperature and entropy, we turn to phenomenological
quantum gravity corrections to them. To do so, we simply
have to abandon the limit M ≫ δM (minimal area is
already a consequence of quantum gravity, so no additional
concept is required). Assuming again that the change in
horizon area corresponds to Amin and solving the quadratic
equation for δM yields

δM ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

Δm2
P

16π

r
; ð13Þ

where mP ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=G

p
is the Planck mass. We choose the

minus sign as the plus sign gives a clearly unphysical
solution for which δM > M, i.e., the emitted photon
would have greater energy than the black hole itself
(a similar ambiguity stemming from the existence of two
solutions of a quadratic equation is also present in the
GUP approach [7]). Temperature corresponding to δM ¼
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − Δm2

P=16π
p

equals

Tmod ¼
1

2πΔ k2Bl
2
P

ℏ2c2TH

Mc2

kB

 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4πΔ

k2Bl
2
P

ℏ2c2
T2
H

s !

¼TH

�
1þπΔk2BG

ℏc5
T2
HþO

�
Δ2k4BG

2

ℏ2c10
T4
H

��
: ð14Þ
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Once again, we find the entropy by integrating the Clausius
relation. It yields

Smod ¼ kBA
4l2P

−
ΔkB
16

ln

�
A
Δl2P

�
þO

�
kBΔ2l2P

A

�
; ð15Þ

where we chose Amin ¼ Δl2P as a natural lower bound for
the integration.
The previous formulas are implied only by the existence

of a minimal area, without the necessity to introduce a
minimal length. Nevertheless, one can consider a special
case in which nonzero Amin indeed arises due to a minimal
resolvable length, lmin ¼ ffiffiffiffiffi

α0
p

lP. While it clearly holds that
Amin ∝ l2min, we are aware of no preferred exact relation
between both quantities. However, one of the fairly natural
options is to choose Amin as an area of a 2-sphere whose
radius equals lmin, i.e., Amin ¼ 4πl2min ¼ 4πα0l2P. Then, the
modified temperature and entropy formulas become

TGUP¼
2

16π2α0k2Bl
2
P

ℏ2c2 TH

 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

16π2α0k2Bl
2
P

ℏ2c2
T2
H

s !

¼TH

�
1þ4π2α0k2Bl

2
P

ℏ2c2
T2
HþO

�
α20k

4
Bl

4
P

ℏ4c4
T4
H

��
; ð16Þ

SGUP ¼ kBA
4l2P

−
πα0kB
4

ln
A
A0

þO

�
kBα20l

2
P

A

�
; ð17Þ

in precise agreement with results obtained from GUP. If one
considers a different relation between Amin and lmin, the
numerical factors in the correction terms differ, but basic
structure of the expressions remains the same.

C. Estimation of free parameters

All the formulae for modified black hole temperature and
entropy we discussed contain a single undetermined model
dependent parameter, either α0, or Δ. (Recall that α0 is
present in the statement of GUP and we introduced Δ as a
measure of minimal area). While both are widely believed
to be of the order of unity based on the theoretical
frameworks in which they arise, the current experimental
constraints are far less stringent. The lowest reported upper
limit on α0 we are aware of (coming from measurements of
frequency shifts of harmonic oscillators) is α0 ≲ 106 [47]
and most methods yield much higher upper bounds [48,49].
Here, upon adding a new game piece, we are able to
introduce a novel theoretical estimate providing a fairly
stringent bound, α0 ≈ Δ≲ 101.
The necessary additional game piece is the black body

character of Hawking radiation. The average entropy per
photon of black body radiation equals [16]

hŜi ¼ π4

30ζð3Þ kB ≈ 2.70kB: ð18Þ

After including the standard deviation, we get hŜi≈
ð2.70� 1.75ÞkB. Hawking radiation has a black body
spectrum at least up to the late stages of evaporation,
when quantum gravity effects might modify it. Since
the average Clausius entropy per photon of black body
radiation of any origin equals hŜi, this result also holds for
Hawking radiation at the level of macroscopic semiclassical
thermodynamics [16]. According to generalized second
law of thermodynamics [1], the average change of
Bekenstein entropy due to emission of one photon,
hΔSBi, obeys

hŜi þ hΔSBi ≥ 0: ð19Þ

This means that the average decrease of Bekenstein entropy
per emitted photon is at most jhΔSBij ≈ ð2.70� 1.75ÞkB.
Now, combine this bound with the existence of minimal
area, that implies the decrease of Bekenstein entropy per
emitted photon is at least ðΔ=4ÞkB. Comparing both limits
directly gives us an upper bound on Δ, specifically
Δ≲ 10.80. This value fits very well with the common
expectation Δ ≈ 1.
We have seen that in any minimal length scenario the

choice Δ ¼ 4πα0 leads to an equivalence between correc-
tions derived from GUP and from minimal area.
Furthermore, such a choice is geometrically well motivated
as an area of a 2-sphere whose radius is equal to the
minimal length. Thus, any estimate of the minimal area also
directly gives us the minimal length, provided that such a
length exists in the model of quantum gravity we consider.
Of course, the precise relation Δ ¼ 4πα0 is a bit arbitrary
and not necessarily correct. Hence, we only argue that α0
(if it exists) is roughly comparable with Δ and any upper
bound on Δ also represents an upper bound on α0 (while
not excluding the option Δ > 0, α0 ¼ 0, i.e., there is
minimal area but no minimal length). Therefore, we are
able to provide the general bound α0 ≲ 10.80. Note that if
we were to take seriously the relation Δ ¼ 4πα0, we would
have gotten even more stringent bound α0 ≲ 0.86.
Let us recall some theoretical predictions for Δ. First, if

the area gap of LQC indeed represents a physical minimal
area, it implies Δ ≈ 5.17. This value comes from fixing the
Barbero-Immirzi parameter by demanding that one recov-
ers Bekenstein entropy for black holes [17,32]. Second, in
the context of quantization of black hole horizon area, the
value Δ ¼ 4 ln 2 ≈ 2.77 has been suggested as the most
natural one [15]. It is chosen so that the minimal change of
(dimensionless) black hole entropy is precisely 1 bit.
We can see that not only both values fit within our
predicted upper limit Δ≲ 10.80, but both are rather close
to it, implying that the bound we found is already quite
restrictive.
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Actually, we can make a more ambitious attempt and not
only constrain Δ from above, but provide an estimation of
its value. The price to pay is a loss of robustness, so we may
more appropriately consider it a guess for an approximate
value than a genuine prediction. To do so, we associate the
minimal entropy per photon with the average entropy
minus its standard deviation, i.e., Δ=4 ≈ 2.70 − 1.95
(one can still expect a significant number of photons with
this entropy, so it should not be smaller than its minimal
value). In this way, we find Δ ≈ 3.80, in a very good
agreement with other theoretical predictions.
Let us stress that the argument for the upper value of

Amin does not depend on the heuristic reasoning we
discussed in previous subsections. Only two assumptions
are required; that a minimal resolvable area exists
(otherwise, estimating it feels rather pointless) and that
average entropy per photon of Hawking radiation is about
2.70kB, at least in the early stages of evaporation, when
quantum gravity effects can be safely neglected (while it
was proposed that the discreteness of area causes the
Hawking radiation to have a line spectrum instead of a
continuous one, this should not significantly affect the
entropy per photon [15,43]).

III. THERMODYNAMICS
OF CAUSAL DIAMONDS

It has been shown in the literature that heuristic deriva-
tions from HUP work both for the Hawking temperature of
Schwarzschild black holes and for the Unruh temperature
measured by uniformly accelerating observers [6]. From
them, on one hand, Hawking temperature and equilibrium
Clausius relation provide a more or less direct route to
obtain an expression for black hole entropy. On the other
hand, while one can assign entanglement entropy to a
horizon perceived by an accelerating observer who mea-
sures non-zero Unruh temperature [50], there appears to be
no way to obtain an expression for this entropy from the
temperature. If this were possible, it would establish a
heuristic analogy between thermodynamics of black holes
and observer-dependent horizons. However, one cannot
connect entanglement entropy and Unruh temperature for
horizons perceived by eternal, uniformly accelerating
observers (Rindler horizons, sketched in Fig. 1), because
a single such horizon corresponds to a class of observers
with different accelerations and, consequently, different
temperatures.
In this section, we will argue that a connection between

both quantities, Unruh temperature and entropy, exists in
the case of causal diamonds. We can understand these
structures as a convenient way to define small regions
filling the spacetime. Relating their temperature and
entropy is possible because causal diamonds posses a
“preferred” Unruh temperature; the one measured by finite
lifetime inertial observers [21,22].

A. Geodesic local causal diamonds

Let us begin by introducing the structure that will allow
us to obtain a connection between Unruh temperature and
entropy: geodesic local causal diamonds (GLCD). In this
subsection we will briefly explain their construction and
relevant properties before starting to play with them.
One can find more detailed descriptions of these objects,
e.g., in [51–54].
Choose any spacetime point P and an arbitrary unit

timelike vector nðPÞ. In every direction orthogonal to n
send out of P geodesics of parameter length l to form a
geodesic 3-ball, Σ0. The region of spacetime causally
determined by Σ0 is known as a GLCD. The construction
of this object is illustrated in Fig. 2 for the sake of clarity.
The boundary, B, of Σ is approximately a 2-sphere whose
area equals [20]

A ¼ 4πl2 −
4π

9
l4G00ðPÞ þOðl5Þ; ð20Þ

where G00 ¼ Gμνnμnν. The boundary B, understood as
a 2-surface embedded in a spatial 3-surface containing Σ0,
has extrinsic curvature [54]

k ¼ 2

l
: ð21Þ

The GLCD is endowed with an approximate (up to Oðl3Þ
curvature dependent terms) conformal Killing vector [20]

FIG. 1. A simple scheme of a Rindler horizon. We depict only
the right Rindler wedge in detail, the left one is symmetric to it.
The horizon is represented by oblique lines, curved lines are
wordlines of a few selected uniformly accelerating observers
whose velocities are denoted by arrows. Even though the
observers have different accelerations and the temperatures they
measure thus differ, all of them have access to the same region of
spacetime (the right Rindler wedge) and perceive the same
entanglement entropy.
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ζ ¼ C

�
ðl2 − t2 − r2Þ ∂∂t − 2rt

∂
∂r
�
; ð22Þ

whereC represents an arbitrary normalization constant. It is
often set to C ¼ 1=2l so that ζ has a unit surface gravity
[20]. However, we will keep C unspecified and consider
arbitrary surface gravity denoted by κ to clearly demon-
strate that the value of C is irrelevant for our discussion.
From the definition of ζ one easily sees that the null
boundary of the GLCD forms a conformal Killing horizon.
In order to define temperature associated with a GLCD,

let us point out the appearance of two different concepts of
it in the literature. One option refers to the conformal
Killing vector ζ, defining the Hawking temperature of the
corresponding horizon as TH ¼ ℏκ=2πkBc [54]. Due to the
arbitrary normalization constant C in the definition of ζ,
temperature TH can take any value. The second possibility
is considering the Unruh temperature measured by accel-
erating observers moving inside the GLCD. While these
observers are not infinitely uniformly accelerating, they
will approximately measure the usual Unruh temperature,
TU ¼ ℏa=2πkBc, as long as the magnitude of their

acceleration is constant and satisfies a ≫ c2=l [55].
Furthermore, the isometry between a causal diamond in
flat spacetime and a Rindler wedge allows one to find the
Unruh temperature even for small accelerations [21]. In
particular, even a finite lifetime inertial observer traveling
between the apices of the diamond (see Fig. 3) measures
finite Unruh temperature T inertial ¼ ℏc=2kBl [21,22]. In the
following, we will concentrate on recovering T inertial from
the existence of minimal area.
To find the temperature and entropy of causal diamonds

from minimal area, we still need one more game piece,
some relation for small variations of causal diamond’s area
similar to Eq. (8) for a Schwarzschild black hole.
Thankfully, changes of area and volume of causal dia-
monds obey an equation analogous to the first law of black
holes mechanics [54],

δHm ¼ −
c4

8πG
κδAþ c4

8πG
κkδV; ð23Þ

where δHm denotes the change of the matter Hamiltonian.
Note that the first law of causal diamond can be rigorously
proved using theNoether charge formalism,withoutmaking
any reference to thermodynamics [54]. Therefore, we can
use it to heuristically obtain the expressions for diamond’s

FIG. 2. A GLCD with the origin in point P (the angular
coordinate θ is suppressed). Σ0 denotes a spatial geodesic ball of
radius l (some of the geodesics forming it are represented as grey
lines), whose boundary is an approximate 2-sphere B. The normal
to Σ0 is the timelike vector nμ. The tilted lines starting at the past
apex Ap (t ¼ −l=c) and going to the future apex Af (t ¼ l=c)
represent some of the null geodesic generators of the GLCD
boundary. Geodesic ball Σ0 is the spatial cross-section of the
future domain of dependence of Ap and the past domain of
dependence of Af at t ¼ 0.

FIG. 3. Observers moving inside a causal diamond who
perceive nonzero Unruh temperature. Oblique lines form the
diamond’s conformal Killing horizon. The vertical line represents
the inertial finite lifetime observer, whose existence starts in the
past apex of the diamond and ends in its future apex, corre-
sponding to lifetime 2l=c. The curved lines are example world-
lines of observers who travel inside the diamond with an
acceleration of constant magnitude a.
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temperature and entropy without making a circular
argument.

B. Diamond temperature and entropy
from minimal area

For simplicity, we will focus on a GLCD that is initially
in Minkowski spacetime. Generalization to a sufficiently
small GLCD in an arbitrary spacetime would be straight-
forward, but needlessly messy. Let us consider a photon
being detected by a finite lifetime inertial observer asso-
ciated with the GLCD. The presence of the photon will give
rise to a small spacetime curvature, decreasing the area of
the GLCD.2 For the variation of matter Hamiltonian it holds
δHm ¼ 4πl4κδT00=15 [54] (the same result applies even for
quantized conformal fields, just with δT00 replaced by the
expectation value, δhT00i [20]). The first law of causal
diamonds then implies

4π

15
l4κδT00 ¼ −

c4

8πG
κδAþ c4

8πG
κkδV: ð24Þ

We stress that κ drops out of the equation and, therefore, the
normalization of ζ indeed does not affect our reasoning.
Furthermore, variations of volume and area are not inde-
pendent. Since we keep l constant, it holds δV ¼ lδA=5
[20]. If we assume that δA corresponds to the minimal
area, Amin, and identify the photon’s energy as δE ¼
VδT00 ¼ 4πl3δT00=3 (i.e., energy density times volume),
we find

1

5
lδE ¼ 3

5

c4

8πG
Amin: ð25Þ

Therefore, temperature measured by the inertial finite
lifetime observer satisfies

T inertial ≈
δE
kB

¼ 1

kB

3c4Amin

8πG
1

l
¼ 3Δ

8

ℏc
πkB

1

l
: ð26Þ

Here one can see that temperature is proportional to 1=l in
accordance with the result obtained from isometry between
a causal diamond and a Rindler wedge [21,22]. However, to
get the exact formula for Unruh temperature, we must again
add a calibration factor, 8=3Δ.3 Multiplying the expression

for T inertial by the calibration factor, we straightforwardly
obtain

T inertial ¼
ℏc
πkB

1

l
¼ ℏc

2πkB
k: ð27Þ

From that, finding the entropy of the GLCD’s horizon is
somewhat more difficult than in the case of a Schwarzschild
black hole, as the first law of causal diamonds involves an
extra term corresponding to the variation of volume. To
identify a notion of entropy, we interpret the quantities
present in the previously defined first law of causal dia-
monds in the standard thermodynamic form of

dU ¼ TdSþ pdV: ð28Þ

Thus, if we want to treat the left-hand side of Eq. (25) as
heat, it must have dimensions of energy. However, we have
seen that it is actually proportional to lδE. To amend this,
we can multiply the entire equation by some quantity with
dimensions of inverse length. The only such natural
quantity associated with the GLCD is extrinsic curvature,
k ¼ 2=l (another option would be 1=lP, but since we do not
consider any minimal length scenario, it appears to be a
rather artificial choice). Then, the first law yields

2

5
δE ¼ −

c4

8πG
kδAþ c4

8πG
k2δV

¼ −T inertial
kBc3

4Gℏ
δAþ c4

8πG
k2δV

≡ T inertialδSþ pδV; ð29Þ

where we have identified p ¼ c4k2=8πG, that has the
correct dimensions of pressure, kg · m−1 · s−2.
Now we can consider a simultaneous change of area and

volume with the matter content held fixed, obtaining

dS ¼ −
p

T inertial
dV; ð30Þ

and, therefore,

S ¼ πkBc3l2

Gℏ
¼ kB

A
4l2P

: ð31Þ

We have arrived precisely at the Bekenstein entropy of the
GLCD’s conformal horizon, in accordance with previous
assumptions in thermodynamics of spacetime [20,54].
The most interesting feature of our result is the con-

nection between the Unruh temperature and the entropy
associated with an observer dependent object. The pos-
sibility of such a connection has been hinted at in previous
papers dealing with the temperature of finite lifetime
inertial observers [21,22]. It occurs since a GLCD is,
much like a Schwarzschild black hole, fully characterized

2Treating the influence of the Unruh effect on spacetime
geometry in this way is admittedly rather cavalier. However, we
believe it suffices for the heuristic argument we intend to make.

3The necessary factor differs from the value calibrating the
case of the Schwarzschild black hole, 4=Δ. This difference is
expected as the processes we study in both cases are somewhat
different. For a black hole, we consider change in its Schwarzs-
child radius and, consequently, area due to the emission of a
photon. However, length scale l associated with a causal diamond
is held fixed. Instead, the change in area is brought about by the
backreaction of the spacetime geometry to a photon of Unruh
radiation.
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by a single length scale, l, and it holds ST inertial ¼ c4l=G.
Similarly, one gets STH ¼ c4rS=4G for the case of a
Schwarzschild black hole. A connection of this kind does
not exists between the Unruh temperature and entropy
associated with a Rindler wedge. In other words, one can
assign a preferred temperature to causal diamonds (the one
measured by inertial observers), but not to Rindler wedges
(where none of the accelerating observers is privileged, at
least as far as physics is concerned).

C. Modified temperature and entropy
for causal diamonds

Following our previous treatment of a Schwarzschild
black hole, a natural question now is whether we can use
the method developed in previous subsection to find phe-
nomenological quantum gravity corrections to GLCD’s
temperature andentropy.Thedirect answer is that theprocess
is rather tricky. Nevertheless, basic features of the modified
expressions can be guessed fairly easily. To do so,we include
the change of volume due to curvature to the left hand side of
the first law and leave the right-hand side as before

1

5
lδE −

27

70π

1

l
AminδE ¼ 3

5

c4

8πG
Amin: ð32Þ

The modified temperature then equals

Tmod ¼ T inertial

�
1þ 27πΔGk2B

14ℏc5
T2
inertial

þO

�
Δ2G2k4B
ℏ2c10

T4
inertial

��
; ð33Þ

and has the same structure as both modifications of the
Hawking temperature implied by the minimal area and
recently proposed modifications of the Unruh temperature
due to GUP [9]. For the entropy, we obtain in the same way
as previously (assuming unmodified pressure)

Smod ¼ kB
A
4l2P

−
27Δ
28

kB ln

�
A

Amin

�
þO

�
kBAmin

A

�
: ð34Þ

We can see that the result is qualitatively in agreement with
the modified Bekenstein entropy. In this way, we have
found that, up to a numerical factor, the existence of the
minimal area implies the same modified entropy for a black
hole and a causal diamond. Furthermore, it agrees with
logarithmic corrections to the entanglement entropy of
a 2-sphere in Minkowski spacetime [19].
The previous procedure of course disregards higher order

corrections to the right hand side of the first law. One can
actually attempt a more precise calculation, approximating
the effect of Unruh radiation on curvature in terms of
spatially homogeneous, isotropic and flat metric. In this
case, the first law yields

1

5
lδE −

27

70π

8πG
3c4

δE2 ¼ 3

5

c4

8πG
Amin −

88G
7875c4

δE2; ð35Þ

and, up to coefficients in correction terms, we reach the
same conclusions. Anyway, we do know that we cannot
find the exact numerical factors using our method and we
expect that neither this correction nor any other more
refined approach is going to provide new qualitative effects.
Then, its analysis is not relevant for our purposes. The signs
and orders of magnitude of the correction terms are already
correctly captured by the simple estimate we made above,
and would not be modified by further corrections.
To sum up, we found that the relation between temper-

ature and entropy of a causal diamond is analogous to that
between temperature and entropy of a Schwarzschild black
hole not only semiclassically, but even when leading order
quantum gravity corrections are taken into account. It
would be interesting to rederive this relation in a more
rigorous study and to find out how far we can extend the
similarity of causal diamonds and black holes. We will
address these questions in a future work.

IV. DISCUSSION

We have heuristically derived modified Hawking tem-
perature and Bekenstein entropy of a Schwarzschild black
hole from the existence of minimal area, generalising a
similar derivation from minimal length. The modified
entropy containing a term logarithmic in horizon area
qualitatively agrees with results obtained, e.g., in LQG,
AdS=CFT and calculations of entanglement entropy.
Furthermore, we have used the known semiclassical prop-
erties of Hawking radiation to constrain the size of the
minimal area. The upper bound we found, Amin ≲ 10.80l2P,
is of the same order as theoretical proposals for minimal
area, but somewhat larger than them.
We have also extended our heuristic derivation to causal

diamonds, obtaining a formula for the Unruh temperature
measured by finite lifetime inertial observers and for the
entropy of diamond’s horizon. Furthermore, we have
proceeded to derive modifications of temperature and
entropy due to low energy quantum gravity effects, finding
results consistent with the proposal of GUP-modified
Unruh temperature and logarithmic corrections to entan-
glement entropy of a 2-sphere, respectively.
Let us stress that the entropy modifications we have

obtained for black holes and causal diamonds contain only
microcanonical corrections, coming from more precise
knowledge of microstates responsible for entropy due to
insights from quantum gravity (phenomenologically cap-
tured in the existence of minimal length/area). A complete
treatment of the logarithmic term in the entropy would
require adding canonical corrections. These ones arise due
to thermal fluctuations at fixed Hawking/Unruh temper-
ature and increase the entropy. It has been argued that
canonical correction to black hole entropy should be at least
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ΔSc ≳ ð3kB=2Þ lnðA=AminÞ [56]. Our upper bound on the
minimal area, Amin ≲ 10.80l2P, and heuristic formula for
modified entropy together yield an upper bound for
the magnitude of microcanonical corrections, jΔSmj≲
0.68kB lnðA=AminÞ. Combination of both bounds would
then imply ΔSc þ ΔSm ≳ 0.82kB lnðA=AminÞ > 0, i.e., the
total logarithmic correction to black hole entropy would be
positive. Since the overall sign of the logarithmic term
remains an open issue, with some implications for the final
stages of black hole evaporation [10,57,58], it would be of
interest to explore this issue further in the future. Moreover,
working out the complete logarithmic term in entropy of
causal diamonds could help to constrain quantum phenom-
enological gravitational dynamics proposed by the authors
of this paper [59].
Recently, a heuristic derivation of Bekenstein bound and

its modification due to quantum gravity effects from uncer-
tainty relations has been proposed [60]. The authors have
even derived the uncertainty relations from the Bekenstein
bound. Finding a similar relationship between the Bekenstein
bound and minimal area would strengthen the notion that
minimal area has the same implications for black hole
thermodynamics as minimal length. Moreover, it would
connect two Bekenstein’s ideas, the upper bound on entropy
contained in a given region and the quantization of area. This
direction will be further explored in a future work.
Besides our results concerning black hole physics, we

have also found a new relation between Unruh temperature
and entropy of causal diamonds. This connection we have

heuristically established strengthens the analogy between
thermodynamics of causal diamonds and black holes. Both
posses a “preferred” notion of temperature (black holes the
Hawking temperature measured by inertial observers at
infinity and causal diamonds the Unruh temperature mea-
sured by finite lifetime inertial observers), and entropy of
both can be derived from temperature via the equilibrium
Clausius relation. Next step will be trying to confirm the
relation of entropy and temperature by more rigorous
methods, especially since it could have implications for
deriving gravitational dynamics from thermodynamics of
causal diamonds [20,61–63].
To conclude, let us remark that in this paper, we have

introduced a new basic structure to the game of thermo-
dynamics of spacetime and its connection to phenomenol-
ogy of quantum gravity. Here, we do not pretend to
establish solid results based on first principles, but instead
explore new insights and relations that will be worth a more
detailed treatment in future works.
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