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We present covariant symmetry operators for the conformal wave equation in the (off-shell) Kerr–NUT–
AdS spacetimes. These operators, that are constructed from the principal Killing–Yano tensor, its
‘symmetry descendants’, and the curvature tensor, guarantee separability of the conformal wave equation
in these spacetimes. We next discuss how these operators give rise to a full set of conformally invariant
mutually commuting operators for the conformally rescaled spacetimes and underlie the R-separability of
the conformal wave equation therein. Finally, by employing the WKB approximation we derive the
associated Hamilton–Jacobi equation with a scalar curvature potential term and show its separability in the
Kerr–NUT–AdS spacetimes.
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I. INTRODUCTION

Symmetries, both explicit and hidden, play an important
role in general relativity—in their presence one may be able
to explicitly integrate the Einstein equations and/or sig-
nificantly simplify the study of matter fields in a given
curved spacetime. Perhaps one of the most remarkable
symmetries is a hidden symmetry of the principal Killing–
Yano tensor [1]. Such a symmetry appears for the Kerr
family of spacetimes in all dimensions, or more precisely
for all the so called (off-shell) Kerr–NUT–AdS metrics
[2–4], and underlies many of their remarkable properties. In
particular, it stands behind the separability of the massless
and massive scalar, spinor, and vector field equations in the
Kerr–NUT–AdS backgrounds [5–8] (see also [9] for a
separability of p-form fields).
Most recently, it has been demonstrated [10] that also the

conformally coupled scalar wave equation

ð□ − ηRÞΦ ¼ 0; η ¼ 1

4

D − 2

D − 1
; ð1Þ

separates in the general off-shell Kerr–NUT–AdS space-
times. Here, D stands for the number of spacetime
dimensions, R is the Ricci scalar of the background metric
g, and prefactor η is chosen so that the equation enjoys
conformal symmetry, (see, e.g., Appendix D of [11]).

Namely, a solution to this equation remains a solution in
a conformally scaled spacetime

g̃ ¼ Ω2g; ð2Þ

provided it also scales as Φ̃ ¼ ΩwΦ, with the conformal
weight w ¼ 1 −D=2. The wave equation Eq. (1) is of
fundamental importance and has a number of applications,
see e.g., recent study of the asymptotic structure of Kerr
spacetime via conformal compactification [12].
The purpose of the present paper is to further our

understanding of the conformal wave equation (1) in the
Kerr–NUT–AdS spacetime—filling some important gaps
in the previous analysis. In particular, we want to “intrinsi-
cally characterize” the obtained separability by finding an
explicit covariant form of the corresponding symmetry
operators that were found in [10] in a given coordinate
basis. As we shall see, such operators can be written in
terms of the principal Killing–Yano tensor, its symmetry
descendants, and the curvature tensor. Moreover, following
[13], such operators can be “lifted up” to conformal
operators and guarantee R-separability of the conformal
wave equation in any conformally related spacetime (2).
Finally, by applying the WKB approximation we derive

an associated with (1) Hamilton–Jacobi equation with a
scalar curvature potential,

gab∂aS∂bSþ ηR ¼ 0; ð3Þ

and demonstrate its separability in the Kerr–NUT–AdS
spacetimes. Equation (3) has a long history, going back at
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least to a paper by DeWitt [14] which considers quantum
Hamiltonians arising from classical systems. Therein,
couplings to the geometrical objects can naturally arise.
In a similar vein, the extra term we find in the Hamiltonian
can arise due to ambiguities in operator ordering when
quantizing nonlinear systems [15]. It has also found use
when considering the quantum mechanics of the motion of
a free particle constrained to a Riemannian surface [16,17].
Here we understand it as a purely classical equation that
describes certain modification of the free particle motion in
a curved space.
Our plan for the remainder of the paper is as follows. In

the next section we review the Kerr–NUT–AdS spacetimes,
their hidden symmetry of the principal Killing–Yano
tensor, and its “symmetry descendants.” In Sec. III we
construct the covariant form of the symmetry operators for
the conformal wave equation in these spacetimes. The
associated operators for the conformally rescaled metrics
are studied in Sec. IV. In Sec. V we derive the Hamilton–
Jacobi equation (3) and demonstrate its separability in
Kerr–NUT–AdS spacetimes. Section VI is devoted to the
final discussion. Technical results are summarized in
Appendices A and B.

II. PRINCIPAL KILLING–YANO TENSOR AND
KERR–NUT–AdS SPACETIMES

The principal Killing–Yano tensor h is a nondegenerate
closed conformal Killing–Yano 2-form h obeying the
following equation:

∇ahbc ¼ gabξc − gacξb; ð4Þ

where

ξa ¼ 1

D − 1
∇bhba ð5Þ

is the associated primary Killing vector field [3]. The
nondegeneracy means that in D ¼ 2nþ ε number of
spacetime dimensions (with ε ¼ 0 in even and ε ¼ 1 in
odd dimensions), h has n functionally independent nonzero
eigenvalues.
Starting with a single principal Killing–Yano tensor h,

one can generate the whole towers of explicit and hidden
symmetries—the “symmetry descendants” of h. In brief,
we can construct the following tower of closed conformal
Killing–Yano tensors:

hðjÞ ¼ 1

j!
h ∧ … ∧ h|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

j times

: ð6Þ

Their Hodge duals f ðjÞ ¼ ⋆hðjÞ are Killing–Yano tensors,
and their square gives rise to a tower of rank-2 Killing
tensors:

kabðjÞ ¼
1

ðD − 2j − 1Þ! f
ðjÞa

c1…dd−2j−1f
ðjÞbc1…cd−2j−1 ð7Þ

for j ∈ ð0;…; n − 1Þ. In turn, these tensors give rise to the
tower of Killing vectors:

lðjÞ ¼ kðjÞ · ξ♭: ð8Þ

Note that the j ¼ 0 Killing tensor is just the inverse metric
and the zeroth Killing vector is the primary Killing vector,
lð0Þ ¼ ξ. We also have in odd dimensions an extra redun-
dant Killing tensor kðnÞ ¼ lðnÞ ⊗ lðnÞ.
All of the above constructed symmetries mutually

Schouten–Nijenhuis commute

½lðiÞ; kðjÞ�SN ¼ 0; ½lðiÞ; lðjÞ�SN ¼ 0;

½kðiÞ; kðjÞ�SN ¼ kðiÞeða∇ekðjÞbcÞ − kðjÞeða∇ekðiÞbcÞ ¼ 0: ð9Þ

In addition, the Killing tensors obey the following algebraic
identity (i.e., they commute as matrices):

kaðiÞbk
b
ðjÞc − kaðjÞbk

b
ðiÞc ¼ 0; ð10Þ

see [1] for all the details and proofs of the above statements.
The most general spacetime admitting the principal

Killing–Yano tensor is the (off-shell) Kerr–NUT–AdS
spacetime [2,3] (see also [4]) whose metric takes the
following explicit form:

g ¼
Xn
μ¼1

�
Uμ

Xμ
dx2μ þ

Xμ

Uμ

�Xn−1
j¼0

AðjÞ
μ dψ j

�
2
�

þ εc

AðnÞ

�Xn
k¼0

AðkÞdψk

�
2

; ð11Þ

while the principal Killing–Yano tensor reads

h ¼
Xn
μ¼1

xμdxμ ∧
�Xn−1

k¼0

AðkÞ
μ dψk

�
: ð12Þ

The employed coordinates fxμ;ψkg have a natural
geometrical meaning associated with the principal
Killing–Yano tensor. They split into (time and azimuthal
angle) Killing coordinates ψk (k ¼ 0;…; n − 1þ ε) that
correspond to the Killing vectors (8),

lðkÞ ¼ ∂ψk
; ð13Þ

and the nontrivial (radial and longitudinal angle) coordinates
xμ (μ ¼ 1;…; n) that represent the “eigenvalues”ofh, see [1].
In the above, the functions AðkÞ, AðjÞ

μ , and Uμ are
“symmetric polynomials” of the coordinates xμ, and are
defined by:
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AðkÞ ¼
Xn

ν1 ;…;νk¼1
ν1<…<νk

x2ν1…x2νk ; AðjÞ
μ ¼

Xn
ν1 ;…;νj¼1
ν1<…<νj

νi≠μ

x2ν1…x2νj ;

Uμ ¼
Yn
ν¼1
ν≠μ

ðx2ν − x2μÞ; U ¼
Yn
μ;ν¼1
μ<ν

ðx2μ − x2νÞ ¼ detðAðjÞ
μ Þ;

ð14Þ

where we have fixed Að0Þ ¼ 1 ¼ Að0Þ
μ . Each metric function

Xμ is an unspecified function of a single coordinate xμ:

Xμ ¼ XμðxμÞ: ð15Þ

Lastly, the constant c only appearing in odd dimensions is a
free parameter.
Despite the fact that the metric is rather complex, its

Ricci scalar takes a fairly simple form [18]

R ¼
Xn
μ¼1

rμ
Uμ

; ð16Þ

where each function rμ depends only on a single variable
xμ:

rμ ¼ −X00
μ −

2εX0
μ

xμ
−
2εc
x4μ

: ð17Þ

The determinant of the metric reads

ffiffiffiffiffi
jgj

p
¼ ðcAðnÞÞε2U: ð18Þ

Importantly for our purposes the Killing tensors kðjÞ take
the following coordinate form:

kðjÞ ¼
Xn
μ¼1

AðjÞ
μ

�
Xμ

Uμ
∂2xμ þ

Uμ

Xμ

� Xn−1þε

k¼0

ð−x2μÞn−1−k
Uμ

∂ψk

�2�

þ ε
AðjÞ

cAðnÞ ∂
2
ψn
; ð19Þ

where j ¼ 0 corresponds to the inverse metric, g−1 ¼ kð0Þ.

III. SEPARABILITY OF THE CONFORMAL WAVE
EQUATION AND ITS INTRINSIC

CHARACTERIZATION

Recently it was shown [10], that a solution to the
conformal wave equation (1) in the background (11) can
be found in the multiplicative separated form,

Φ ¼
Yn
μ¼1

ZμðxμÞ
Yn−1þε

k¼0

eiΨkψk ; ð20Þ

where Ψk are the Killing vector separation constants, and
each of the Zμ, which is a function of the single corre-
sponding variable xμ, obeys the following ordinary differ-
ential equation:

Z00
μþZ0

μ

�
X0
μ

Xμ
þ ε

xμ

�
−
Zμ

X2
μ

� Xn−1þε

k¼0

ð−x2μÞn−1−kΨk

�
2

−
Zμ

Xμ

�
ηrμþ

ε

cx2μ
Ψ2

nþ
Xn−1
k¼0

Ckð−x2μÞn−1−k
�
¼0; ð21Þ

where Ck (k ¼ 0;…; n − 1Þ are the (nontrivial) separation
constants and we have set C0 ¼ 0.
As also shown in [10], underlying this separability is a

complete set of symmetry operators fKðjÞ;LðjÞg,

KðjÞ ¼ ∇akabðjÞ∇b − ηRðjÞ; ð22Þ

LðjÞ ¼ −ilaðjÞ∇a; ð23Þ

that all mutually commute with one another,

½KðkÞ;LðlÞ� ¼ 0; ½LðkÞ;LðlÞ� ¼ 0; ½KðkÞ;KðlÞ� ¼ 0;

ð24Þ

and one of which is the wave conformal operator. Namely,

Kð0ÞΨ ¼ 0 ð25Þ

is the conformal wave equation (1). The fact that these
commuting operators exist means that, there exists a
common eigenfunction of these operators Φ obeying

KðjÞΦ ¼ CjΦ; ð26Þ

LðjÞΦ ¼ ΨjΦ: ð27Þ

It is precisely this eigenfunction which is the separated
solution (20).
The operators LðjÞ are the standard scalar operators that

are generated from Killing vectors lðjÞ. On the other hand,
the Killing tensor operators KðjÞ pick up, in addition to the
standard Killing tensor part ∇akabðjÞ∇b, also an “anomalous

conformal term” RðjÞ which ensures the commutation with
the conformal wave operator Kð0Þ. In [10] an explicit
coordinate expression for this term has been found, it reads

RðjÞ ¼
Xn
μ¼1

AðjÞ
μ

Uμ
rμ; ð28Þ

where rμ are the “Ricci scalar functions” (17). However, no
covariant expression for RðjÞ has been given in [10].
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Here we amend this situation. That is to say, we show in
the Appendix A that RðjÞ are given in terms of the principal
Killing–Yano tensor, its symmetry descendants, and the
curvature tensor by the following covariant formula:

RðjÞ ¼ kabðjÞRab þ
D − 4

2ðD − 2Þ□TrðkðjÞÞ

þ αjkacðj−1Þhc
bðdξÞab − βjlaðj−1Þξa

¼ kabðjÞRab þ
D − 4

2ðD − 2Þ□TrðkðjÞÞ

− kabðj−1ÞðαjhacðdξÞcb þ βjξaξbÞ; ð29Þ

where ξ ¼ lð0Þ is the primary Killing vector (5), for j ¼ 0

we defined kð−1Þ ≡ 0≡ lð−1Þ, and the constants αj and βj
are given by

αj ¼
ðn − jþ ϵ

2
Þ

ðn − 1þ ϵ
2
Þ βj ¼ 2

ðn − jþ ϵ
2
Þ

ðn − 1þ ϵ
2
Þ ð2j − 3Þ: ð30Þ

Interestingly these objects can be understood as follows.
Let us define the following 1-forms κðjÞ:

κðjÞa ¼ kðjÞab∇bR: ð31Þ

Then, quantities RðjÞ can be understood as “potentials” for
the above 1-forms:

κðjÞ ¼ dRðjÞ; ð32Þ
see Appendix A for the proof. In fact, it is this property
which underlies the commutation of the operators (22).
Given that ½∇akabðiÞ∇b;∇ckcdðjÞ∇d�f ¼ 0 [10,19] for any

scalar function f, we have

½KðiÞ;KðjÞ�f ¼ −ηð½∇akabðiÞ∇b; RðjÞ�f þ ½RðiÞ;∇akabðjÞ∇b�fÞ
¼ −ηf∇aðkabðiÞ∇bðRðjÞfÞÞ − RðjÞ∇aðkabðiÞ∇bðfÞÞ
þRðiÞ∇aðkabðiÞ∇bðfÞÞ −∇aðkabðjÞ∇bðRðiÞfÞÞg

¼ −ηf∇aðf½kabðiÞ∇bRðjÞ − kabðjÞ∇bRðiÞ�Þ
þ ð∇afÞðkabðiÞ∇bRðjÞ − kabðjÞ∇bRðiÞÞg

¼ −ηf∇aðf½kaðiÞbkbðjÞc − kaðjÞbk
b
ðiÞc�∇cRÞ

þ ð∇afÞðkaðiÞbkbðjÞc − kaðjÞbk
b
ðiÞcÞ∇cRg

¼ 0; ð33Þ

where in the final step we have used the algebraic
identity (10).
We note that, this is a special case of the result presented

in [20]. Therein, it is shown that the commutation of any
operators, □þ g and ∇aKab∇b þ f, where f; g ∈ C∞ðMÞ
and Kab is a Killing tensor is guaranteed provided

∇af ¼ Ka
b∇ag −

1

3
∇bðKa

cRc
b − Ra

cKc
bÞ: ð34Þ

In the case of the off-shell Kerr–NUT–AdSmetrics the final
term on the right-hand side vanishes as the Killing and
Ricci tensors are diagonal in the same basis [1,18] (See
(A2) and (A4) in Appendix A). Thus, this equation reduces
to the relationship between (31) and (32).

IV. SYMMETRYOPERATORS IN CONFORMALLY
RELATED SPACETIMES

As mentioned in the introduction, the conformal
wave equation (1) enjoys the conformal symmetry. That
is, provided we have a solution Φ in the spacetime g,
then

Φ̃ ¼ ΩwΦ; w ¼ 1 −D=2 ð35Þ

is a solution of the same equation in the conformally
rescaled spacetime

g̃ ¼ Ω2g: ð36Þ

In particular, this means that (35) with Φ given by (20)
yields an R-separated solution of the conformal wave
equation in any spacetime related to the off-shell Kerr–
NUT–AdS metric by the conformal transformation (36).
It is interesting to ask if also such R-separability can be

intrinsically characterized by some complete set of
mutually commuting operators. In what follows we show
that this is indeed the case—we explicitly construct such
operators and discuss their properties. First, starting from
the special conformal frame with Ω ¼ 1, we scale the
operators fKðjÞ;LðjÞg, to construct a complete set of
mutually commuting operators for the metric g̃, (36).
Second, following [13], we show that such operators can
in fact be lifted to conformally invariant operators, provid-
ing thus a complete set of conformally invariant mutually
commuting operators for the conformal wave equation (1)
in any spacetime related to the Kerr–NUT–AdS metric by a
conformal transformation.

A. Mutually commuting operators

Starting from the mutually commuting operators
fKðjÞ;LðjÞg in the special frame with Ω ¼ 1, let us define

new operators fÕðjÞ; P̃ðjÞg for general Ω by:

ÕðjÞ ≡ΩwKðjÞΩ−w;

P̃ðjÞ ≡ΩwLðjÞΩ−w: ð37Þ

By construction such operators mutually commute, as we
have
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½ÕðiÞ; ÕðjÞ� ¼ Ωw½KðiÞ;KðjÞ�Ω−w ¼ 0; ð38Þ

½ÕðiÞ; P̃ðjÞ� ¼ Ωw½KðiÞ;LðjÞ�Ω−w ¼ 0; ð39Þ

½P̃ðiÞ; P̃ðjÞ� ¼ Ωw½LðiÞ;LðjÞ�Ω−w ¼ 0: ð40Þ

Moreover, it follows that whenΦ satisfies the eigenvalue
problem (26) in the spacetime g, Φ̃ ¼ ΩwΦ given by (35)
obeys the “associated” eigenvalue problem:

ÕðjÞΦ̃ ¼ CjΦ̃;

P̃ðjÞΦ̃ ¼ ΨjΦ̃; ð41Þ

in the conformal spacetime g̃. In other words, the operators
fÕðjÞ; P̃ðjÞg, (37), intrinsically characterize the separability of
the conformal wave equation in the conformal spacetime (36).
The only “problem” with (37) is that the new operators

fÕðjÞ; P̃ðjÞg remain expressed in terms of the “old” con-
nection ∇a, the old Ricci tensor Rab, and other objects
associated with the metric g rather than the conformally
rescaled metric g̃. However, using the well-known trans-
formation properties of the connection and curvature
tensor, one can straightforwardly amend this situation.
For example, let us define the following tilded objects1:

k̃abðjÞ ¼ Ω−2kabðjÞ; h̃ab ¼ Ω2hab; l̃aðjÞ ¼ Ω−2laðjÞ;

ð42Þ
and raise or lower their indices with the metric g̃ and its
inverse. We further denote by ∇̃a the covariant derivative in
the spacetime g̃ and by R̃ab its Ricci tensor. With these at
hand, the operators (37) can be expressed as follows (see
Appendix B for details):

ÕðjÞ ≔ Ω2

�
K̃ðjÞ þ η

��
∇̃a∇̃b

�
k̃abðjÞ þ

1

2
k̃cðjÞcg̃

ab

����
;

ð43Þ

P̃ðjÞ ≔ Ω2

�
L̃ðjÞ −

w
D − 2

∇̃al̃
a
ðjÞ

�
; ð44Þ

where K̃ðjÞ and L̃ðjÞ are given by expressions (22), (23), and
(29), with all the objects replaced by the tilded ones. Note
that the quantities ∇̃b½k̃abðjÞ þ 1

2
k̃cðjÞcg̃

ab� and ∇̃al̃
a
ðjÞ vanish

identically when Ω ¼ 1 due to the Killing tensor and
Killing vector equations

∇ðakðjÞbcÞ ¼ 0; ∇ðal
ðjÞ
bÞ ¼ 0; ð45Þ

respectively.
Moreover, Õð0Þ is just a conformally rescaled K̃ð0Þ,

K̃ð0Þ ¼ Ω−2Õð0Þ ¼ Ωw−2Kð0ÞΩ−w; ð46Þ
highlighting the conformal invariance of this operator. The
other operators, however, take a more complicated form, as
is to be expected from the privileged role of the conformal
frame with Ω ¼ 1.2 We shall return to this issue in the next
subsection where we discuss the conformal form of these
operators.

B. Conformal symmetry operators

Conformal symmetry operators for the conformal wave
equation have been studied for many years, see e.g.,
[20,22–30]. This work culminated in Ref. [13] where a
complete and constructive theory was finally formulated.
Our goal for the remainder of this section is to review this
theory in a more physics community oriented language,
and briefly discuss how it applies to the problem at hand.
To start with, we define a conformally invariant operator

as an operator that preserves its form under a conformal
transformation. More specifically, a conformally invariant
operator of weights s1 and s2 obeys the following equality:

Q̃s1;s2 ¼ Ωs2Qs1;s2Ω
−s1 ; ð47Þ

under the conformal transformation (36). That is, Q̃s1;s2 has
exactly the “same form” as Qs1;s2 but is constructed out of
conformally scaled (tilded) tensors associated with the
metric g̃ rather than g. To give an example, the conformal
wave operator Kð0Þ obeys the Eq. (46) and thence is a
conformal operator with weights s1 ¼ w and s2 ¼ w − 2.
In what follows, we are going to concentrate on

conformal operators of equal weights, s1 ¼ s2 ¼ s. In
particular, as shown in [13] the most general second-order
conformal operator with weight s that is built out of a
symmetric tensor Kab is given by

QsðKÞ ¼ ∇aKab∇b þ ðγ1½∇aKab� þ γ2½∇bTrK�Þ∇b

þ γ3ð∇a∇bKabÞ þ γ4ð□TrKÞ þ γ5RabKab

þ γ6RTrK þ f: ð48Þ

1We stress that these objects are not the conformal symmetries
of the spacetime g̃, although it is possible to define such
symmetries. Namely, the following objects:

kabðj>0Þ; Ω3hab; laðj≥0Þ;

are the conformal Killing tensors, conformal Killing–Yano 2-
form, and conformal Killing vectors of the spacetime g̃. Notice
that in doing this, necessarily kð0Þ ¼ g transforms differently to
the rest of the Killing tensors. One could, of course, use these
objects to define the transformed operators, leading to different
(seemingly more complex) expressions. We will adopt this
strategy for the Killing tensors at least in the next Sec. IV B.

2This is the only frame where the spacetime admits full (not
only conformal) Killing tensors and the Ricci tensor is diagonal in
the natural orthonormal frame [21].
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Here f is a function which does not scale under conformal
transformation, we assume K̃ab ¼ Kab, and the coefficients
are

γ1 ¼ 2γ2 ¼ −
ð2sþDÞ
Dþ 2

; γ3 ¼
ðs − 1Þs

ðDþ 1ÞðDþ 2Þ ;

γ4 ¼
sðDþ 2s − 1Þ

2ðDþ 1ÞðDþ 2Þ ; γ5 ¼
sðDþ sÞ

ðD − 2ÞðDþ 1Þ ;

γ6 ¼ −
2sðDþ sÞ

ðD − 2ÞðD − 1ÞðDþ 1ÞðDþ 2Þ : ð49Þ

Similarly, having a vector La, the corresponding conformal
operator is given by

QsðLÞ ¼ La∇a −
s
D
ð∇aLaÞ: ð50Þ

In particular, we consider conformal operators of weight
w ¼ 1 −D=2, c.f. (35),

Q̃w ¼ ΩwQwΩ−w; ð51Þ

that are symmetry operators of the conformal wave operator
Kð0Þ, that is, they satisfy the following relation:

Kð0Þ∘Qw ¼ D∘Kð0Þ; ð52Þ

for some operator D; in fact, it is easy to see that the
conformal invariance implies D≡D−2þw. Note that the
Eq. (52) obviously preserves the kernel of Kð0Þ.
To find such symmetry operators we can use the

following theorem [13]:
Theorem 1. Let Kab be a (special) Killing tensor of the

metric g, so that the following conformally invariant
“geometric obstruction” built from the Weyl tensor Cabcd:

ObsðKÞa ¼
2ðD − 2Þ
3ðDþ 1Þ ð∇bKcdCb

cda −
3

D − 3
Kcd∇bCb

cdaÞ

ð53Þ

is exact, that is,

ObsðKÞ ¼ −2df: ð54Þ

Then (48) with f given by (54) (up to a constant) is a
symmetry operator for the conformal wave operator and in
fact satisfies

Kð0Þ∘QwðKÞ ¼ Q−2þwðKÞ∘Kð0Þ: ð55Þ

When Kab is a Killing tensor we can simplify the
operator (48) via the Killing equation,

∇ðaKbcÞ ¼ 0; ð56Þ

however this will only hold for a particular metric of the
conformal class. For this particular metric, we then have

QwðKÞ ¼ Qw−2ðKÞ

¼ ∇aKab∇b −
ðD − 2Þ
8ðDþ 1Þ ½□TrK�

−
ðDþ 2Þ
4ðDþ 1ÞRabKab þ RTrK

2ðDþ 1ÞðD − 1Þ þ f:

ð57Þ

In this case, therefore the corresponding symmetry operator
(52) actually commutes with the conformal wave equation

½Qw;Kð0Þ� ¼ 0; ð58Þ
and more generally, we have the conformal commutation

½Q̃w;Ω2K̃ð0Þ� ¼ 0; ð59Þ

valid in any conformal frame.
In particular, taking the Killing tensors kðjÞ (j > 0Þ in the

Kerr–NUT–AdS metric g, we find that they satisfy the
obstruction condition (54) with fðjÞ given by

fðjÞ ¼
1

4ð1 −D2Þ ½2DkabðjÞRab þ 3□Tr kðjÞ

þ ðDþ 1ÞðD − 2Þkabðj−1ÞðαjhacðdξÞcb þ βjξaξbÞ
− 2RTr kðjÞ�: ð60Þ

It can then easily be checked that3 the corresponding
operators

KðjÞ
w ≡QwðkðjÞÞ; ð61Þ

(48), coincide with the operators KðjÞ, (22),

KðjÞ
w ¼ KðjÞ: ð62Þ

Since all of these operators commute with one another for

Ω ¼ 1, their conformal versions K̃ðjÞ
w , (51) also mutually

commute in the spacetime g̃. Of course, these are nothing
else than the operators ÕðjÞ, (37), this time, however,
written in a conformally invariant way (48).4 The remaining

3Of course, the expression (53) is only defined in this
coordinate invariant way in the Ω ¼ 1 frame although its
coordinate expression will be unchanged no matter the frame.

4Although the formulas (43) and (48) look rather different,
they represent the same operators, and in particular, the coor-
dinate expressions for the operators ÕðjÞ and K̃

ðjÞ
w will coincide in

any conformal frame. The apparent differences arise from how
we choose to scale the Killing tensors.
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commutation relations are then guaranteed by (59), since
we define for j ¼ 0

K̃ð0Þ
w ≡ Õð0Þ ¼ Ω2K̃ð0Þ; ð63Þ

reflecting the fact that the metric transforms differently than
the other Killing tensors under the conformal transformation.
Similarly one can “lift” the operators LðjÞ, (23), to the

conformal ones (as in (50) and cf. (44) where the Killing
vectors transform differently)

LðjÞ
w ¼ −ilaðjÞ∇a þ i

w
D
ð∇alaðjÞÞ; ð64Þ

where the second term identically vanishes in the frame
Ω ¼ 1 where laðjÞ are (full, not conformal,) Killing vectors.

Of course, these will coincide with P̃ðjÞ, (44), in any
coordinate system.
To summarize, we have found a conformally invariant

“generalization” fKðjÞ
w ;LðjÞ

w g of the symmetry operators
(22) and (23), with the two being equal in the Kerr-NUT–
AdS conformal frame g. Writing Φ̃ ¼ ΩwΦ in any con-
formal frame g̃, these operators obey the following eigen-
value problem:

K̃ðjÞ
w Φ̃ ¼ CjΦ̃; ð65Þ

L̃ðjÞ
w Φ̃ ¼ ΨjΦ̃; ð66Þ

guaranteeing R-separability of Φ̃ in any of these frames.

V. ASSOCIATEDHAMILTON–JACOBI EQUATION
AND ITS SEPARABILITY

We finally turn to study the natural extension of the
Hamiltonian–Jacobi equation that arises from the geometric
optics (WKB) approximation of the conformal wave
equation.
Consider the following “α-modified conformal wave

equation”:

ðα2□ − ηRÞΦ ¼ 0: ð67Þ
Then, upon employing the geometric optics ansatz

Φ ¼ Φ0 exp

�
i
α
S

�
; ð68Þ

while taking the WKB limit α → 0, we arrive at the
corresponding Hamilton–Jacobi equation:

gab∂aS∂bSþ ηR ¼ 0: ð69Þ

This equation is obviously not conformally invariant,
however, it is consistent with the particle Hamiltonian,

H ¼ gabpapb þ ηR: ð70Þ

See, e.g., [14,15] for how such a coupling to the Ricci
scalar can arise from quantum corrections. The equations of
motion for this Hamiltonian yield the following modified
geodesic equation

Dpa

dλ
¼ −η∂aR: ð71Þ

Let us stress that the procedure of deriving (69) is similar
to how one arrives at the massive Hamilton–Jacobi equation
starting from the massive (α-modified) Klein–Gordon one,
e.g., [19]. There is, however, a fundamental difference.
Namely, the α-modified equation (67) is not conformally
invariant, unless α ¼ 1. This is the reason why the WKB
limit α → 0 does not produce a conformally invariant
Hamilton–Jacobi equation. If instead, one started with the
conformal wave equation, setting α ¼ 1 in (67), the WKB
approximation would then yield the massless Hamilton–
Jacobi equation, which of course is conformally invariant.
In what follows we consider the Hamilton–Jacobi

equation (69) of potential physical interest and show its
separability in the off-shell Kerr–NUT–AdS spacetimes.
Using the form of the inverse metric given by (19) for
j ¼ 0, the Hamilton–Jacobi equation (69) takes the follow-
ing explicit form:

Xn
μ¼1

�
Xμ

Uμ
S02μ þ 1

UμXμ

� Xn−1þε

k¼0

ð−x2μÞn−1−kΨk

�2�

þ ε
1

cAðnÞΨ
2
n þ η

Xn
μ¼1

rμ
Uμ

¼ 0; ð72Þ

where we have used the additive separation ansatz:

S ¼
Xn
μ¼1

SμðxμÞ þ
X
k

Ψkψk: ð73Þ

Using next the following identity:

1

AðnÞ ¼
X
μ

1

x2μUμ
; ð74Þ

we can rewrite the previous equation as

X
μ

Gμ

Uμ
¼ 0; ð75Þ

where
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Gμ ¼ XμS02μ þ 1

Xμ

� Xn−1þε

k¼0

ð−x2μÞn−1−kΨk

�2

þ ε
Ψ2

n

cx2μ
þ ηrμ:

ð76Þ
To proceed, we use the separation
Lemma: The most general solution of

Xn
μ¼1

fμðxμÞ
Uμ

¼ 0; ð77Þ

where Uμ is defined in (14), is given by

fμ ¼
Xn−1
k¼1

Ckð−x2μÞn−1−k; ð78Þ

where Ck are arbitrary (separation) constants.This yields
the following ordinary differential equations for the sep-
arated solution:

XμS02μ þ 1

Xμ

� Xn−1þε

k¼0

ð−x2μÞn−1−kΨk

�2

þ ε
Ψ2

n

cx2μ
þ ηrμ

¼
Xn−1
k¼1

Ckð−x2μÞn−1−k: ð79Þ

Inverting this expression and identifying the canonical
momenta p ¼ dS the corresponding constants of motion of
the modified geodesic equation (71) are given by

Cj ¼ kðjÞabp
apb þ ηRðjÞ; ð80Þ

where RðjÞ are given by (29). It would be interesting to
understand what these constants of motion represent
physically, e.g., in a quantum system [14,15], as this would
give a natural interpretation for the functions RðjÞ.

VI. DISCUSSION

In this paper we have elaborated on the recent results on
separability of the conformal wave equation in the Kerr–
NUT–AdS background [10]. Namely, we have shown that
such a separability is a consequence of the existence of a
complete set of mutually commuting operators, which are
built out of the hidden symmetry of the principal Killing–
Yano tensor, its symmetry descendants, and the curvature
tensor. While these operators are “simple” for the case
of massless wave equation (obtained formally by setting
η ¼ 0 in all formulas), they become highly nontrivial in the
conformal case.
The commutativity of these operators descends naturally

from the commutation properties of the Killing tensors and
the special character of the Ricci scalar functions RðjÞ, (29).
Moreover, we have shown how to lift these to a full set of
conformally invariant mutually commuting symmetry

operators fKðjÞ
w ;LðjÞ

w g that guarantee R-separability of the
conformal wave equation in any conformally related space-
time g̃.
From a physicist’s point of view our results provide a

geometric reason as to why separability of the conformal
wave equation is possible in the physically important class of
Kerr–NUT–AdS spacetimes. From a mathematical point of
view, our findings present a highly nontrivial example to the
beautiful theory of conformal operators developed in [13].
This ismore so, because this class of spacetimes is the unique
one to possess the principal Killing–Yano tensor (4) and the
corresponding Killing tower of hidden symmetries [1]. It is
our hope that this work will help bridge the gap between the
mathematics and physics community of researchers working
on separability of various field equations.
The conformal wave equation (1) is characterized by a

specific value of η. In principle one can consider more
general wave equations, where η takes any value. It is easy
to see that all such equations still separate in the Kerr–
NUT–AdS backgrounds; the operators (22) and (23)
commute for any value of η. However, for general η the
corresponding wave equations are not conformally invari-
ant and will not separate in a generic conformally related
spacetime. In this case, one could use the conformal
properties outlined in Appendix B to construct an equation
which separates in the conformal spacetime, however there
is no clear physical interpretation for such an equation.
We have also introduced a modified Hamilton–Jacobi

equation for a single particle with a Ricci scalar potential
term. This equation naturally arises from the WKB limit of
the “α-modified” conformal wave equation. This limit
breaks the conformal invariance and the resulting equation
no longer enjoys conformal symmetry. We have shown that
this equation also separates in the Kerr–NUT-AdS space-
times—the corresponding nontrivial constants ofmotion are
given by the Killing tensors and the scalar functions RðjÞ,
giving a natural setting for the interpretation of the latter.
In the future, we would like to study the physical

implications of the newly derived (nonminimal coupling)
Hamilton–Jacobi equation. We also hope to extend the
present results to understand separability of conformal
fields with higher spin.
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APPENDIX A: COVARIANT FORM OF RðjÞ
In this Appendix we find the covariant form of RðjÞ in

Kerr–NUT–AdS spacetimes by starting from the explicit
expressions in canonical coordinates (11). To start with we
need an expression for the Ricci tensor. It is rather simple
since it is diagonal in the orthonormanl basis of the metric

eμ ¼ dxμffiffiffiffiffiffi
Qμ

p ; êμ ¼ ffiffiffiffiffiffi
Qμ

p X
k

AðkÞ
μ dψk;

e0 ¼
ffiffiffiffiffiffiffiffi
c

AðnÞ

r X
k

AðkÞdψk; ðA1Þ

where Qμ ¼ Xμ=Uμ. In fact it is given by [1,18]

Ric ¼ −
X
μ

r̂μðeμeμ þ êμêμÞ − εr̂0e0e0; ðA2Þ

where we have introduced

r̂μ ¼
X̂00
μ þ ϵX̂0

μ

xμ

2Uμ
þ
X
ν≠μ

xνX̂
0
ν − xμX̂

0
μ − ð1 − ϵÞðX̂ν − X̂μÞ

ðx2ν − x2μÞUν
;

r̂0 ¼
X
ν

X̂0
ν

xνUν
; X̂μ ¼ Xμ þ εc=x2μ: ðA3Þ

Also in this basis the Killing tensors are diagonal too,

kðjÞ ¼
Xn
μ¼1

AðjÞ
μ ½eμeμ þ êμêμ� þ εAðjÞe0e0: ðA4Þ

Hence, using the identity

X
ν≠μ

AðjÞ
μ − AðjÞ

ν

x2ν − x2μ
¼ ðn − jÞAðj−1Þ

μ ; ðA5Þ

we have

RðjÞ − kabðjÞRab ¼
X
μ

�
ε
Aðj−1Þ
μ xμX̂

0
μ

Uμ
þ 2

X
ν≠μ

AðjÞ
μ

x2ν − x2μ

�
xμX̂

0
μ − ð1 − εÞX̂μ

Uμ
þ xνX̂

0
ν − ð1 − εÞX̂ν

Uν

��

¼
X
μ

�
ε
Aðj−1Þ
μ xμX̂

0
μ

Uμ
þ 2

xμX̂
0
μ − ð1 − εÞX̂μ

Uμ

X
ν≠μ

AðjÞ
μ − AðjÞ

ν

x2ν − x2μ

�

¼ 2
X
μ

Aðj−1Þ
μ

Uμ
ð½n − jþ ε=2�xμX̂0

μ − ðn − jÞð1 − εÞX̂μÞ: ðA6Þ

Furthermore, since the Killing vectors satisfy ∇ðalðjÞbÞ ¼ 0
the only information of their derivatives is contained in
their exterior derivative. In particular, since in the ortho-
normal basis (A1)

lðjÞ ¼
X
μ

AðjÞ
μ

ffiffiffiffiffiffi
Qμ

p
êμ þ ϵAðjÞ

ffiffiffiffiffiffiffiffi
c

AðnÞ

r
e0; ðA7Þ

we have that

dlðjÞ ¼
X
μ

��
AðjÞ
μ Qμ

X0
μ

Xμ
− ε

2

xμ

cAðjÞ

AðnÞ þ 2xμ
X
ν≠μ

QμA
ðjÞ
μ þQνA

ðjÞ
ν

x2ν − x2μ

�
eμ ∧ êμ

þε2xμ
ffiffiffiffiffiffi
Qμ

p ffiffiffiffiffiffiffiffi
c

AðnÞ

r
Aðj−1Þ
μ eμ ∧ e0 þ

X
ν≠μ

2xν
ffiffiffiffiffiffiffiffiffiffiffiffi
QμQν

p AðjÞ
μ − AðjÞ

ν

x2ν − x2μ
eν ∧ êμ

�
: ðA8Þ
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Moreover introducing the Killing copotential

ðD − 2j − 1ÞωðjÞ
ab ≔ knðjÞahnb ¼

X
μ

AðjÞ
μ xμeμ ∧ êμ: ðA9Þ

which generates the Killing tensors [1]

laðjÞ ¼ ∇bω
ba
ðjÞ; ðA10Þ

we can calculate

kaðjÞnh
nbdlðkÞab ¼ 2

X
μ

1

Uμ

�
AðjÞ
μ AðkÞ

μ xμX̂
0
μ þ

X
ν≠μ

2X̂μðAðjÞ
μ AðkÞ

μ x2μ − AðjÞ
ν AðkÞ

ν x2νÞ − εcAðjÞ
μ ðAðkÞ

ν
Uν

− AðkÞ
μ

Uμ
Þ

x2ν − x2μ

�
: ðA11Þ

Notice the last term proportional to ε vanishes when k ¼ 0. Finally let us us calculate □TrðkðjÞÞ. First, we have

TrðkðjÞÞ ¼ εAðjÞ þ
X
μ

2AðjÞ
μ ¼ ð2ðn − jÞ þ εÞAðjÞ: ðA12Þ

Since this expression only depends on xμ we can use the form of the wave operator (see (20) in [10]) to write

∇aðkabðjÞ∇bTr½kðjÞ�Þ ¼
X
μ

AðjÞ
μ

Uμ

�
Xμ∂2μTrðkðjÞÞ þ ∂μTrðkðjÞÞ

�
X0
μ þ

ε

xμ
Xμ

��

¼ 4
X
μ

AðjÞ
μ Aðj−1Þ

μ

Uμ

�
n − jþ ε

2

�
ðxμX0

μ þ ð1þ εÞXμÞ: ðA13Þ

Putting this together we have

αjkaðj−1Þnh
nbdlð0Þab − βjlaðj−1Þl

ð0Þ
a þ D − 4

2ðD − 2Þ□TrðkðjÞÞ

¼ 2
X
μ

1

Uμ

�
Aðj−1Þ
μ

��
αj þ

ðD − 4Þðn − jþ ε
2
Þ

D − 2

�
xμX̂

0
μ −

�
βj
2
−
ðD − 4Þðn − jþ ε

2
Þð1þ εÞ

D − 2

�
X̂μ

�
− 2αjX̂μ

X
ν≠μ

AðjÞ
μ − AðjÞ

ν

x2ν − x2μ

�

¼ 2
X
μ

Aðj−1Þ
μ

Uμ

��
αj þ

ðD − 4Þðn − jþ ε
2
Þ

D − 2

�
xμX̂

0
μ −

�
βj
2
þ 2ðn − jÞαj −

ðD − 4Þðn − jþ ε
2
Þð1þ εÞ

D − 2

�
X̂μ

�
: ðA14Þ

Thus, using ε ¼ f0; 1gwecan choose the coefficients to be

αj ¼
2ðn − jþ ε

2
Þ

D − 2
; ðA15Þ

βj ¼
4ðn − jþ ε

2
Þ

D − 2

�
D − 3 − 2

�
n − jþ ε

2

��
: ðA16Þ

Thence we obtain our covariant expression for RðjÞ

RðjÞ ¼ kabðjÞRab þ
D − 4

2ðD − 2Þ□TrðkðjÞÞ

þαjkaðj−1Þnh
nbdlð0Þab − βjlaðj−1Þl

ð0Þ
a ; ðA17Þ

which matches the form in the text upon noting l0 ¼ ξ
and D ¼ 2nþ ε.
Moreover the derivative of RðjÞ is particularly nice. We

can calculate

∇aRðjÞ ¼a¼ν
Xn
μ¼1

∂νrμA
ðjÞ
μ

Uμ
þ 2xνA

ðjÞ
ν

X
μ≠ν

rν
Uν

þ rμ
Uμ

x2μ − x2ν

¼ r0νA
ðjÞ
ν

Uν
þ 2xνA

ðjÞ
ν

X
μ≠ν

rν
Uν

þ rμ
Uμ

x2μ − x2ν
: ðA18Þ

Notice that one can also construct

kðjÞab∇bR ¼a¼ν
X
μ

AðjÞ
ν ∂ν

rν
Uν

¼ r0νA
ðjÞ
ν

Uν
þ 2xνA

ðjÞ
ν

X
μ≠ν

rν
Uν

þ rμ
Uμ

x2μ − x2ν

¼ ∇aRðjÞ: ðA19Þ

Thus we have found a covariant expression for our
symmetry operators’ derivatives
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κðjÞa ≔ kðjÞab∇bR ¼ ∇aRðjÞ: ðA20Þ

Clearly κ is closed and also locally exact in all dimensions
thus we can say that our RðjÞ are the potentials for κðjÞ i.e.,

κðjÞ ¼ dRðjÞ: ðA21Þ

APPENDIX B: CONFORMAL
TRANSFORMATIONS

Given the spacetime ðM; gÞ we now consider a con-
formal transformation of the metric, Killing tensors, and
scalar field (kðjÞ → Ω−2kðjÞ, Φ → ΩwΦ for w ¼ 1 −D=2)
to the conformal spacetime ðM; g;ΩÞ. The goal of this
section is to find a conformally covariant form of our wave
operators

ðK̂ðjÞ − ηRðjÞÞΦ; K̂ðjÞ ¼ ∇akabðjÞ∇b; η ¼ 1

4

D − 2

D − 1
:

ðB1Þ
Using the conformal properties of the Ricci tensor and

covariant derivatives, we find the following transformations

Ω2K̂ðjÞΦ → ΩwðK̂ðjÞ þ w∇aðkabðjÞ∇b logΩÞ
þwðw − 2þDÞ∇a logΩkabðjÞ∇b logΩÞΦ ðB2Þ

and

Ω2kabðjÞRab → kabðjÞRab − ½ðD − 2ÞkabðjÞ þ kcðjÞcg
ab�∇a∇b logΩ

þ ðD − 2Þ½kabðjÞ − kcðjÞcg
ab�∇a logΩ∇b logΩ:

ðB3Þ
Thence we have

Ω2ðK̂ðjÞΦ−ηkabðjÞRabΦÞ=Φ→ ðK̂ðjÞΦ−ηkabðjÞRabΦÞ=Φþwð∇akabðjÞÞ∇b logΩþððwþηðD−2ÞÞkabðjÞþηkcðjÞcg
abÞ½∇a∇b logΩ�

þðwðw−2þDÞ−ðD−2ÞηÞkabðjÞþðD−2ÞηkcðjÞcgabÞ½∇a logΩ∇b logΩ�
¼ðK̂ðjÞΦ−ηkabðjÞRabΦÞ=Φþwð∇akabðjÞÞ∇b logΩ−ηDk̂abðjÞ½ðD−2Þ∇a logΩ∇b logΩþ∇a∇b logΩ�:

ðB4Þ

Here we have introduced the traceless Killing tensor
k̂abðjÞ¼kabðjÞ−k

c
ðjÞcg

ab=D. Clearly this vanishes when j ¼ 0

so the first operator is conformally invariant. Notice that the
last term contains two derivatives of the conformal factor,
so consider the term identically zero term (following from
the Killing tensor equation)

∇a∇b

�
kabðjÞ þ

1

2
kcðjÞcg

ab

�
≡ 0: ðB5Þ

Under the transformation kðjÞ → Ω2kðjÞ this becomes

Ω2∇a∇b

�
kabðjÞ þ

1

2
kcðjÞcg

ab

�
→ ∇a∇b

�
kabðjÞ þ

1

2
kcðjÞcg

ab

�
þ ðDþ 2Þð∇akabðjÞÞ∇b logΩ

þDk̂abðjÞ½ðD − 2Þ∇a logΩ∇b logΩþ∇a∇b logΩ�: ðB6Þ
So we have

Ω2

�
K̂ðjÞΦ − η

�
kabðjÞRab −

�
∇a∇b

�
kabðjÞ þ

1

2
kcðjÞcg

ab

�	�
Φ
�
=Φ →

�
K̂ðjÞΦ − η

�
kabðjÞRab −

�
∇a∇b

�
kabðjÞ þ

1

2
kcðjÞcg

ab

�	
þ ðD − 4Þð∇akabðjÞÞ∇b logΩ

�
Φ
�
=Φ: ðB7Þ

Note that, as the covariant derivatives and Killing tensors in the second line are in the Ω ¼ 1 frame, we have
ðD − 4Þð∇akabðjÞÞ∇b logΩ ¼ −ðD − 4Þ=2ð∇akcðjÞcÞ∇b logΩ. Thus this term will be canceled by the transformation of

□TrðkðjÞÞ. That is,

D − 4

2ðD − 2Þ□TrðkðjÞÞ → Ω−2
�

D − 4

2ðD − 2Þ□TrðkðjÞÞ þ
D − 4

2
∇a½TrðkðjÞÞ�∇a logΩ

�
: ðB8Þ
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We now consider the conformal transformation of the
final piece;

RðjÞ ≔ αjkaðj−1Þnh
nbdlð0Þab − βjlaðj−1Þl

ð0Þ
a : ðB9Þ

Now, if kðjÞ → Ω−2kðjÞ consistency demands that h → Ω2h
and that laðjÞ → Ω−2laðjÞ. That is, one can show on a p form

⋆ → Ωd−2p⋆. Assuming h → Ωrh; hj → Ωjrhj then
fðjÞ ¼ ⋆hj → Ωd−4jþjrfðjÞ. So

kðjÞab ∝ fac1…cD−2j−1
f
c1…cD−2j−1
b

→ Ω2ðd−4jþjrÞþ2ðD−2j−1ÞkðjÞab ¼ Ω2þ2jð−2þrÞkðjÞab : ðB10Þ

Hence demanding for all j that kðjÞab → Ω2kðjÞab fixes r ¼ 2.
Then, we are left withRðjÞ as a scalar density of weight −2:

RðjÞ → Ω−2RðjÞ: ðB11Þ
Thus putting this all together

Ω2

��
K̂ðjÞ−η

�
RðjÞ−

�
∇a∇b

�
kabðjÞþ

1

2
kcðjÞcg

ab

�	��
Φ
�
=Φ

→

��
K̂ðjÞ−η

�
RðjÞ−

�
∇a∇b

�
kabðjÞþ

1

2
kcðjÞcg

ab

�	��
Φ
�
=Φ;

ðB12Þ

which gives us the form we use in the main text.
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