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A number of authors provided arguments that a rotating gravastar is a good candidate for a source of the
Kerr metric. These arguments were based on the second order perturbation analysis. In the following paper,
we construct a perturbative solution of the rotating gravastar up to the third perturbation order and show that
once we demand finiteness of the Kretschmann scalar expansion, it cannot be continuously matched with

the Kerr spacetime.
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I. INTRODUCTION

Gravastars, proposed by Mazur and Mottola [1] as an
alternative to black holes, have been studied extensively in
the recent years [2-9]. One of the issues concerning
gravastars is to find a rotating gravastar solution. So far
only perturbative versions of such a solution exist [10-12].
These studies indicate that in the ultracompact limit [13] the
rotating gravastar can be a source of the Kerr metric (i.e., I,
Love, Q numbers tend to those of Kerr in this limit). Similar
perturbation-type sources (thin shells) of the Kerr metric
were studied earlier by, e.g., [14-16]. On the other hand,
constructing perturbation sources of the Kerr metric have
been criticized by Krasinski [17].

In this work, we take perturbation approach to check if
the matching of the gravastar with the Kerr spacetime
survives at higher orders. It means that we want to construct
arotating analogue of [13] with the Kerr spacetime outside.
We use slightly different framework to [10-12] and instead
of solving Einstein equations both for interior and exterior,
we a priori assume that an exterior solution is the Kerr
metric. Then we seek for an interior solution and try to
match it with the Kerr metric.

Most of the work on rotating gravastars was based on
Hartle’s structure equations [18] (see also [19-21]). Hartle’s
framework allows to study slowly rotating perfect fluid
objects up to the second order in the angular momentum. To
go beyond the second order, we find it easier to follow
Rostworowski [22], who provided a nonlinear extension of
Regge-Wheeler and Zerilli formalisms. Formalism given by
[22] is dedicated to (A-) vacuum spacetimes and can be
easily adapted to our needs. The difference between Hartle’s
framework and our approach is only on the level of ansatz on
metric perturbation form and they are physically equivalent
within the range of applicability of Hartle’s framework.
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We find that [22] provides a very powerful tool for dealing
with nonlinear perturbations. Although in the present article
we describe perturbation analysis only up to the third order,
we solved Einstein equations up to the sixth order to
calculate the Kretschmann scalar and we think it’s possible
to go further if needed.

The paper is organized as follows: in Secs. II-IV we
provide preliminaries, in Sec. V we discuss the matching, in
Sec. VI we expand the Kerr metric, in Secs. VII and VIII we
solve interior Einstein equations and try to match interior
and exterior metrics and in Sec. IX we summarize and
discuss our calculations.

II. BACKGROUND SOLUTION

As a background, we take the ultracompact gravastar
model [13]. In static coordinates (z, r, u, @), where
u = cos @, its metric is given by:

1 2

g = f(r)de* + h(r)

dr? + r2< du

1—u? + (1 B MZ)dqoz)’

where

—T r>R,
l—i r<R

h(r)—{ e T )
1—% r> R.

An induced metric is continuous across the (null) matching
surface r = 2M. There is a nonzero stress-energy tensor
induced on this shell, see [13] for the details. The exterior
metric is a solution to vacuum Einstein equations and the
interior metric is a solution to Einstein equations with a
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cosmological constant A = % Both interior and exterior

4
metrics are singular at r = 2M. To keep them regular, also

in higher perturbation orders, we use Eddington—
Finkelstein (EF) coordinates (v, r, u, ¢). Interior metric
in EF coordinates reads:

1 2
g:4<l—m>dv + drdv

+ r? du’ +
1—u?

and exterior metric in EF coordinates reads:

~)dg? )

(5)

(1- uzw). @)

2M du’
= <1——)dvz+2drdv—|—r2< ! 5+ (1
r I—u

III. POLAR EXPANSION

In a spherically symmetric background, in 3 + 1 dimen-
sions, vector and tensor components split into two sectors:
polar and axial (for the details see e.g., [23-27]).
Symmetric tensors have 7 polar and 3 axial components.
Below we list the expansion of the components of sym-
metric tensors in axial symmetry (P, denotes the /th
Legendre polynomial). In the polar sector we have:

Sap(rsw) = Seap(r)Pe(u) a,b=vr,  (6)
0<?
_Zsfau(r)aqu(u)’ a="ur, (7)

1<z

% ((1 —u?)S,,(r,u) —

_Zsf

2<C

ST )))

(1-
£+ 1)Ps(u) +2ud,Py(u)). (9)

In the axial sector we have:

a(p ZSfago -1+ uz)aupf(u)’ a=uv,r,
1<?
(10)
u) = Zsfw(")(f(f‘f' )P (u) —2ud,Ps(u)).
20
(11)

IV. METRIC PERTURBATIONS

We assume that there exists an exact, stationary and
axially symmetric solution to Einstein equations, which we
expand into series in a parameter a (which will be an
angular momentum per unit mass of a an exterior metric)
around the static metric (2):

_ a
gﬂD:gﬂU+Z-_<>hﬂD (12)

After perturbation expansion we polar—expand metric

1 i i _
L ) perturbations according to (6)—(11). Thus, apart from the
2 <(1 4) S (r. ) + ) OZ;SH r)Pe(u perturbation index i, all perturbations gain an index ¢
corresponding to the #th Legendre polynomial.
(8) For axial perturbations we take:
J
0 0 0 Dhpy(r)(=1 + u?)0,Ps(u)
(@)
(p, — 0 0 Dhpy(r)(—=1+ u?)8,Ps(u) (13)
0 0 0 0
Dheuy(r)(=1 +u?)3,Pe(u)  Ohypy(r)(=1+u?)0,Pp(u) 0 0
Using the gauge freedom, we set (">hﬁ,¢(r) = 0, what corresponds to the Regge-Wheeler (RW) gauge.
For the polar perturbations we take:
<i)hf1w(r)Pf(u> (i)hfvr(r)Pf(u) 0 0
i), Ok (r)Pe(u) gy (r)Pp(u) 0 0 (14)
¢ = "
0 0 Dhgy (r) 420 0
0 0 0 Dhp (r)(1 = u?)Pp(u)
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Using the gauge freedom, we set (n,, = O, =
(h,_ =0, what also corresponds to the RW gauge.
Note that in [18] there are no Vi, and Vh,,,, coefficients
in the metric ansatz. This fact arises from the fact that
Hartle uses static coordinates. For EF coordinates in the
background both /1, and Vh,,,, turn out to be nonzero in
most cases.

In the interior, we solve perturbation Einstein equations
with a cosmological constant A = ﬁ. For a given order i
and a given multipole ¢, they have the following form:

. 3 . .
8VG,, + Ve Dhgy, = 0S4, (15)

where 5([)G,,ﬂ”y denotes the components of the Einstein
tensor expansion built of metric perturbations of order i.
(s 4w denotes a source for the ith order Einstein equations
consisting of metric perturbations of orders lower that i. We
provide an explicit form of Eqgs. (15) in the Appendix A.

V. MATCHING INTERIOR WITH EXTERIOR

We match the exterior metric with the interior metric on a
three-dimensional hypersurface located at r* = ri, where
|

(4P g g

(U) + A% gy, F='(U)

“+” and “-” stand for exterior and interior, respectively.
From the first Israel junction condition ([28,29]) we
demand the continuity of the induced metric at the match-
ing hypersurface:

([8.s]] = 0. (16)

where [[E]] = E*(r}) — E~(r},). Following [11], we intro-
duce intrinsic coordinates on the three-dimensional hyper-
surface: y* = (V,U,®). Then we express interior and
exterior coordinates x™ on a hypersurface in terms of y“:

Xt = A7V, (U), F7(U), @), (17)

b
X = (AT, (U), FH(U), ®), (18)

where ri(U) = 2M + &0 (U) + O(a*), F*(U) = U+
X‘/l—zzii(U) + O(a*). We expand 5% into n*(U) =ni+
’ﬁ Py (U).

The metric induced on this hypersurface is given by:

A*g,

8 = | ASgry (U) + A% F(U)  (F¥'(U))ga+ (13 (U) g + 2F (U)ry (U)gry F='(U) gy + 13" (U) g

A*gy,

Using the freedom of choice of coordinates V, U, ®@, we set
FH(U)=U and A" =1 (see, e.g., [10]). For simplicity,
we denote A™ = A.

The location of the matching hypersurface is not known

a priori and y*(U) and A= (U) are unknown functions that
need to be found. Our procedure of matching interior and
exterior metrics for a given perturbation order is the
following:

(1) We solve perturbation Einstein equations for the
interior. These solutions contain two constants per £
in every perturbation order, but most of these
constants need to be set to zero to keep the
Kretschmann scalar expansion regular at r =0
and r = 2M. However, this is not straightforward
to apply, because in our case the singularities in the
expansion of the Kretschmann scalar occur in higher
perturbation orders than the singularities of the
metric itself (in the opposition to the exterior case,
e.g., Raposo et al. [30]). Therefore, to settle con-
stants in the third order, we solved Einstein equa-
tions up to the sixth perturbation order to study

F(U) gy + 13" (U) g7 Ty

(19)

behavior of the Kretschmann scalar. Since these
expressions are too long to be listed in this paper, we
make them available in the Mathematica note-
book [31].

(2) We act with the general gauge transformation on the
interior metric, and then we solve matching con-
ditions (16) for constants arising from FEinstein
equations, for #*(U), A(U), and for gauge compo-
nents. Finding a proper gauge is a part of the
matching problem and using the result of Bruni
et al. [32], we are able to control the impact of the
gauge from the lower perturbation order on the
metric functions in the higher perturbation order.

(3) If the matching is successful, we go to the higher
perturbation order.

The second junction condition tells about the energy
content of the matching hypersurface—already in the
background solution there is a thin shell located at r =
2M (since this is a null hypersurface, second junction
condition needs to be modified, see [29,13] for the details).
However, in the next sections we show that even the first
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junction condition is not possible to fulfill, therefore we do
not find it necessary to discuss second junction condition
at all.

2Mr atu? + 2
ds? = — <1 - P n r2> dv? + 2dvdr +ﬁ
4aMr(1 — u?
+ #_Frz)dvdgo +2a(1 — u?)drdg.

du2+(1—u2)<

VI. KERR METRIC EXPANSION

As an exterior metric, we take the Kerr solution. In the
advanced EF coordinates it reads:

2a°Mr(1 — u?)

a?u? +r? T+ r2> do*

(20)

Since we solve the interior equations in RW gauge, we prefer to use the Kerr metric in RW gauge as well. To do this, we
expand (20) into series in a up to the 3rd order, and then act with the gauge transformations (B1)—(B3) to move to the RW

gauge. Finally, we obtain:

5

= _<<1 B Z_M) _a’M(u?(6M* = Mr —3r%) = 2M*> + Mr + r2)>dvz

r r

r —u

n <2a2M(1 - 3u2))dr2 N <1 r? 4 a*M3u® - 1)(2M + r))du2

r(u?—1)

M(u? - 1)(3u® - 1)(2M
+ (rz(l—u2)+a (u I u2 JeM + 1) dy?
r
M3u? —1)(M SM(1—u?)(5u*> —1)(9M + 5
+2<1+a (Bu 7} I +r>>d1jdr—|—2<a (1= w)( u4 JOM + r)>drd(p
r 5r
2aM(1 —u?)  &*M(u? — 1)(M*(6u® —2) + M(r — 5ru®) + r*(1 — 5u®
+2<a ( u)_a (u ) (M*(6u )+5 (r=>5ru) +r( u”)dvdq;—l—(’)(a“), (1)
r r
For simplicity, we omit “+” and “—" coordinate superscripts and use them only when it is necessary to differentiate the

interior from the exterior. We expand (21) into series in a. Below we list nonzero components of this expansion after the

polar decomposition.

<1)th¢ =M
@ng,, =44, ot
AM(6M?* — Mr —3r°
Dpt = % o
(2)h+ _ AM(M +r)
ur T 7 ’ (3>h+
(2>h3_rr =~ 8_1? ’

VII. INTERIOR SOLUTION
A. The first order

1. Axial ¢ =1

For £ = 1 there is no h,,, component and we can use the
remaining gauge freedom to set (l)hl_r(p = 0. Linearized
Einstein equation are homogeneous (A1)-(A3) and yield:

Hll
r

(l)hl_m/) = Q”I"z + (23)

(2)h2++ = —

lvp —

_ 4M(-6M*+5Mr+5r7)
3vp T

3rp —

4M(2M +r)
- 2

24M°
5,.5 ’

(22)

57 ’
4M(9M +5r)
5t

|

where Q;; and I1;; are arbitrary constants. We set I[1;; =0
to make the Kretschmann scalar expansion regular atr = 0,
therefore we are left with <1)h1_w = Q7. It turns out that
this solution is a pure gauge, but we will discuss it later.

B. The second order

1. Polar ¢ =0

For £ = 0 there are no h_, h,,, h,, components in the
polar decomposition and we have an additional gauge

freedom, which we use to set Png,,, Phg, to zero.
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The only nonzero variables left are hg,, and Phg,,.
Solution to Einstein equations (A4)—(A10) with £ = 0 and
with sources (A13)—(A15) reads:

4r2§2%1 _ c20(r2 - 4M2) dy

2),—
Phg,, = 3 kT (24)
- €20
hg,, = T (25)

where ¢y and d, are arbitrary constants. This solution is
singular at r =0 and r=2M. To avoid singularity
in the Kretschmann scalar expansion at r=0, we
set dry = 0. Singularity at r =2M can be removed
using a transformation generated by a gauge vector
(2>§0 ((2)5%:Czo((rz—4Mzét:El;1(ﬁ)"‘ZM’), (2)§Oriczomnh71(ﬁ)

=7 M
¢, =0, @&, = 0), what yields:

@) 47‘29%1 Co
o =3 16M*’

(26)

c» dy(3(r* = 4M?)*coth™ (1) + 2Mr(5r% — 12M?))

(2>h61;r = 0’ (27)
Ohg,, =0, (28)
=, — 0
h0+ = W . (29)
2. Polar ¢ =2

Solution to Einstein equations (A4)—(A10) with £ = 2
and with sources (A16)—(A19) reads:

(2 — 4M2)? 4
@ 200 — 128M4 ) h2rr - 5 rZQ%l ’ (30)
_ 1 r? _
2 h2vr 4 <1 m) 2 h2rr’ (31)

R T

(2) o 622(4M2 + r2)

32M3 3 (r? — 4M?)?

dy(3M(4M? + r?)coth™! (L) — 2r(3M? + 1?))

, (32)

hs =
z 128MSr

where ¢y, and d,, are arbitrary constants. To avoid
singularity in the Kretschmann scalar expansion at r = 0
and r = 2M we need to set ¢y, = 0, dr, = 0, what yields:

, 33
256M°r (33)

C. The third order

1. Axial ¢ =1
The solution to Einstein equations (A1)—(A3) with £ = 1

B 4 reads:
(2)h2vv = g rZQ%l’ (34)
I
Oht,, = Q317 + % (38)
®h3,, =0, (35)
To avoid singularity in the Kretschmann scalar expansion at
r =0, we set [I3; = 0.
3, =0, (36)
2. Axial €=3
B Solution to Einstein equations (A1)—(A3) with £ =3
Pz, = 0. (37)  reads:
|
r? — AM? (=120M*r 4+ 20M?r* + 60(4M° — M>r*)coth™ (21) + )
<3)h§1)lll = ( 3 )H33 + 3,3 - Q3137 (39)
4 22, 4
~ 8M2 8M2(r(—1201\/£ -_&-201\;1 rirt) 60M3C0th_1(2TM))
<3)h3r[p - 3 H33 + =4 37‘3 9337 (40)
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where 33 and I35 are arbitrary constants. Singularities at
r =0 and r = 2M lead to the singularity in the Kretsch-
mann scalar expansion, therefore Q33 = 0, 133 = 0.

VIII. MATCHING
A. First order

Before matching, we act with the general gauge trans-
formation on the interior metric. Although we consider
stationary metrics, we take gauge vectors that depend on v
coordinate. It might happen that acting with gauge vectors
depending on v explicitly, we obtain metric independent of
v (we discuss such a case in Sec. IX). From the matching
conditions (16) we have:

l)th

( lvgo(ZM)

A - (l)h]‘w(zM) = _av(l)élw(”’zM)’

(41)

To keep transformed metric v-independent, we use (B4)
and (B5) and obtain a condition:

(1)51(,) =gqvr*+ (1)71(p(r), (42)

where ¢;; is an arbitrary constant and y; is an arbitrary
function of r. From (41) we obtain:

1

- 4
4AM? (43)

Q) = + q11-

Phg,, (2M) = A*Phg,, (2M) =

2M3
. A%y + 215
O, (M) — 42Oz, (201) = 20
23 — ;A = AM?Py,, (2M), (51)
8(ny — 1y
(o @00 = =2 o) 2 (0) + 8, 20,
(52)
801, —17)
[y, (2] -
+8M Py, (2M) - 6P, (2M).  (53)

16UA(U) +8(1 - U)X (U)
3(U*—1)?

(2> 2M)]) = Pya, (2M) +
(54)

After plugging solutions to perturbation equations into
(49)—(54), we obtain:

A= 4+ 2t
Al T Mo

B. Second order

We act with the most general second order gauge
transformation (B1)-(B2) on the interior metric. To keep
transformed metric v-indepedent, we use (B7)—-(B13) and
obtain conditions:

Bgo, = =AM fqrov + Py, (7). (44)
@y, = 8Mqy0v + Py, (1), (45)
(2)521) = (2>}’2v(”)? (46)
D&y, = Py, (r), (47)
Py = Ppau(r), (48)

where ¢, is an arbitrary constant and (i>yfﬂ are functions
of r.
Matching conditions (16) yield:

16 2112 A? 2
?A M*qy,(q1 2911)+W You(2M), (49)
—EA2M2Q11(Q11 —2911) +A—2(2)7/2~(2M) (50)
3 2M Y ’
|
AMU M M
my— = —M*@yy,(2M) — 3 A gy
1
_ZM(3U2 - 1)<2>y2u(2M)7 (55)
M 1
n = —;—Mz(z)m(ZM) + 5 M, (2M), (56)
M 2A,MU 1
g ==+ 13 +§M(3U2 - 1)@y, (2M),  (57)
ny = g——M(z)yzu@M), (58)
A=-—1, (59)
3
MU) =2 (U* - 1)+§U(U2— 1)@y, (2M). (60)
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where 4, is an arbitrary constant. To keep 7, independent of @y, (2M) = 0 (67)
U, we have to set 4; = 0 and Py, (2M) = 0, what leads to: 2u '
M M
—_ = = 2(2> —_— _
Mo M*Pyo,(2M) g 0~ (61) C. Third order
_ M 202 Again, we act with the most general third order gauge
= T3 M )}/2”(2M ): (62) transformation (B1)-(B3) on the interior metric. To keep
transformed metric v-indepedent, we use (B4)—(B6) and
+ _ _M (63) obtain conditions:
7]0 6 ’
" <3)51¢ =gy rfv+ (3)71¢(”)7 (68)
’7; = > (64) (3) (3)
6 §3¢ = yS(p(r)’ (69)
A=-1, (65) where ¢ is an arbitrary constant and (i)}’gﬂ are functions of
r. Using (43) and (61)—(67), third order matching con-
A(U) =0, (60)  itions (16) yield:
|
_ 3(5¢y + 8
(3)h1+w(2M) - A(3>hlw(2M) - % +3c20q11 = 192M*qy1 G20 + M*4(q31 = 12¢59), (70)
_ 3
SM*P;,(2M) = 6Py, 2M) (4M2qyy + 1) +2(3M Py, (2M) + 1)(MVy), (2M) = Wy, (2M)). (72)

Condition (72) can be fulfilled just by setting all the  That makes impossible to match interior with exterior in the
gauge components to zero. Setting &, = 0 and plugging  third order.
(38)—(40) into (70), we obtain:

0. — 9 3(4M?*qyy + 1)(ca0 — 64M* ) IX. DISCUSSION AND SUMMARY
3= gopt T 16M* ‘

(73) Although we found the matching impossible, it is
interesting to know what is the interior solution we
However, (71) does not have any free parameters and it  obtained. The regular interior solution up to the third order

cannot be fulfilled (we obtain contradiction — > = 0).  reads:
|

~H(1- ) + (s + PO -)0R) 0 Lar(u? = 1)(6Q; + a*Qy)
% 0 0 0
ds* = , e (74)
0 0 -2 + 8M2(%0—u2) 0
%arz(u2 — 1)(6Q, + a*Qs;) 0 0 (1 —u?) + 7“2%52_”2)
It turns out that this is an exact solution to FEinstein ) )
e . . Cool Czo(r _4M ) CooV
quations—a gauge—transformed de Sitter space. To see @g, = (- > — ", 0,0, (76)
this, let us take the gauge vector with components: loM 128M 16M?
g, = (0,0,0, Q) v), (75) )¢, = (0,0,0,0), (77)
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3 20
(), = (o,o,o, <r2913 —%) v>, (78)

()5 = (0,0,0,0). (79)

Acting with those vectors on (74) (using formulas (B1)—
(B3), we obtain

i(1-dm) 1+ 00
1
ds? — 2 00 0 . (80)
0 0 £, 0
0 0 0 —RM-1)

what is exactly the background de Sitter metric, so all
perturbations we obtained are a pure gauge. One can ask, if
allowing for a change in the background density does not
affect this result, but the answer is no. We repeated the
calculation allowing for the perturbations of density and
pressure (within the equation of state p = —p), but they do
not change the conclusions.

We would also like to comment on a recent article [33]
that concerns the same problem as our work. Authors of
[33] use Hartle formalism to match the rotating gravastar
with the Kerr black hole up to the second perturbation
order. They succeed to do that (as we do in the second
order), but there are two main differences between our
approaches. The first difference is the choice of the
matching surface. We do not fix the matching surface
and we treat it as a variable to be found. Authors of [33] fix
the matching surface to be the horizon of the Kerr black
hole. It seems to be contradictory to our results, because we
do not have a freedom to perform matching on the horizon,
but there comes the second difference between our papers.
We dismiss solutions which produce singularities both at
r = 0 and at r = 2M, whereas authors of [33] allow for the
solutions which have a singularity at » = 0 in the second
perturbation order. Because of that, they have additional
freedom in the interior solution and they are able to match it
with Kerr on the horizon. The justification they make for
allowing such a singular solution is the possibility that the
singularity is not real, but it appears as an artefact of the
perturbative expansion. This argument touches the sensitive
point of the perturbative expansion. It may happen that a
function which is not singular at some point, in this case at
r = 0, has singular expansion coefficients when expanded
in the perturbation parameter (see Summary and Discussion
in [33]). Authors of [33] do not determine whether such a
scenario is the origin of the singularity they allow for. On
the other hand, we cannot exclude that the singular terms in

the Kretschmann scalar that we put to zero are such
artificial singularities. If this is the case and if we did
not set c,, = 0, we would be able to match solutions in the
third order. Unfortunately, this ambiguity seems to be an
inherent limitation of the perturbation theory.

To sum up, we made an attempt to match the ultra-
compact rotating gravastar with the Kerr metric using the
nonlinear perturbation theory. The solution we choose is a
general solution to the perturbation equations around a
static gravastar that does not produce the singularities in the
Kretschmann scalar expansion. Although the matching can
be performed up to the second order, in the third order it is
is no longer possible. What is more, the interior of the
ultracompact rotating gravastar is just the de Sitter metric.
Since some of the proposed sources of the Kerr metric are
based on the second perturbation order calculations, we
find it necessary to check if these results survive at the
higher perturbation orders.
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APPENDIX A: EINSTEIN EQUATIONS

Einstein equations (15) of order i divide into two parts:
the homogeneous part 6G,, consisting of metric pertur-
bations of order i and sources (S £uy cONSisting of metric
perturbations of orders j (j < i). These equations need to
be solved order by order: after solving Einstein equations
up to order i one can construct explicit form of i + 1 order
source.

1. Homogeneous part

In the axial sector in the RW gauge, there are two
nonzero variables: (Vh,,,, and h,, (for simplicity, we
omit i and ¢ indices in formulas (Al)-(A10)).
Homogeneous part of Einstein equations reads (where
we introduce E,, = 6G,, + ﬁhﬂy):

2i!r2Emp =Q2f+2(¢+ 1)_2)hvw_r2fh'lbl‘f/" (A1)
2i'r?E,,=2rh},—4h,,+ (£(£+1)=2)h,,, (A2)
21\E,, = fh,, +2H,, + f'h,,. (A3)

In the polar sector in the RW gauge, there are four
nonzero variables:  Wh,,,.  Oh,,.. Oh,,, (l)hf+.
Homogeneous part of Einstein equations reads:
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8ilr'E,, = 2f3Ph,, + 8f*r3h,, — 2f°rPh + 4fr*(2rf' +2f + £(¢ + 1))h,,
+fQ@rf + €€+ 1) =2)hy + fr2f — rf W, + f2r2(4rf +2f + £(€ + 1))h,,

+4P22f + (4 1)) hyy + 8F 1,

4IVPAE,, = =2f2Ph., + (=2rf = £(£ + 1) + 2)hy — frR(4rf +2f + £(€ + 1)h,,

=22 (Arf' +4f + £(£ + 1))h,,

—873n,, — 8r%h,,,

2AE,, = P2rf + £(€ + 1)y, + 2f Ph., + 873K, — 22| + 4rh!, — 4h,.

Zlvau = hvrf/ + fhgjr + Zh/vvv

4i'r3E,, = r*(rf' +2f)h,, — 4r*H,, + 8r*h,, — 2rh'. + 4h_,

AVPE, = —4P”2(4rf + 4f + £(€ + 1) = Dh,, — P (rf + 20K, — 43 (rf' + 2f)H,,

+2fr2H — 8r*hl], — 16r3h,,

4\E_ = fh,, + 4h,,.

2. Sources

Below we list the nonzero components of sources for
Einstein equations. Sources for the ith order perturbation
equations can be found in the following way (see, e.g.,
appendix A of [34]). Let us assume that we already know
the solution to perturbation Einstein equations up to the ith
order (it consists of metric perturbations (/)h,w with j < §):

L i ooal
I :g/w_FZZ(])hf/wF' (All)
=7 :

Using this solution we can calculate the Einstein tensor
G, (), which satisfies the ith order perturbation equations
and contributes to the i + 1th (and higher) order perturba-
tion equations. Finally, the source of the order i 4 1 is
given by:

(A4)
+r(rf' = 2f)h'. = 8fr3h,, + 2fr*h’.
(AS)
(A6)
(A7)
(A8)
+2r(rf = 2f)W, +4(f = rf)hy — PP(4f* + f(6rf + (€ + 1) = 4) + 2 f')h,,
(A9)
(A10)
The source for the second order:
2 r’ 2
@S0, :4(1 —W>QH, (A13)
(Q)SOW = _89%1’ (A14)
Sy, = —16Q2,, (A15)
r2 >
( )S21L <W_ 8>Q11’ (A16)
28y, = 8Q3, (A17)
2 8 2
@s,,, = 3 rQ?,, (A18)
)s,, = 16r2Q3,. (A19)

(0S8, = [i + 1](=Gu(9)), (A12)
where [k] (- - ) denotes the kth order expansion of a given
quantity. Although in most cases expressions for the
sources (i+1)Sﬂy are complicated, their construction is a
purely algebraic task and can be easily performed using
computer algebra. Below we list nonzero components of ith
order sources in terms of explicit solutions ¢/ )hm/ found for
lower orders.

The sources for the third order are zero.

APPENDIX B: GAUGE TRANSFORMATIONS

Consider a gauge transformation induced by a gauge
vector £ = ) 9, % (D€, According to [32], metric perturba-
tions transform in the following way:

(l)hlw — <1>hﬂl/ + £<1)é§]w, (B])

084041-9



MIESZKO RUTKOWSKI and ANDRZEJ ROSTWOROWSKI

PHYS. REV. D 104, 084041 (2021)

@hy, = Phy, + (£0: + £(21)§) G +2£0: Wk, (B2)

(3>hm/ - (3>hﬂy + (£(31)§ + 3£(1)5£(2)§ + £(3)£)§W

+3(£5, + £0.) Vhy, + 3£, hy,, (B3)
where £(): denotes a Lie derivative with respect to (g,

An explicit form of (B1)—(B3) for a gauge vector of order
i acting on a metric components of order i reads (for clarity,
we omit 7 indices, dots and primes correspond to derivatives
with respect to » and r, respectively):

hfv(p - hfmp - é(p’ (B4)
2¢,

hfr(p - hfrq) + Tp - ipv (BS)

hfu(p - hfu(p + 5(/;’ (B6)

1 .
hfm' - hfvv - Z (fér + Zéz)f, + 2§vv (B7)

howw = hew 4376+ 846, (BY)

here = hepr + 28, (B9)

hep = hey +2rfE —€(€+ 1)E, +4rE,, (B10)
he— = hy_ =&, (Bll)

hepw = Moy — &y — 5147 (B12)

here = hera =&+ 28— (B13)
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