
Mimicking Kerr’s multipole moments
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Multipole moments carry a lot of information about the gravitational field. Nonetheless, knowing all the
multipole moments of an object does not determine conclusively the nature of the object itself. In particular,
the field multipole moments of the Kerr spacetime are not unique. Here we construct several physically
motivated Newtonian objects with multipole moments identical to those of Kerr. Moreover, we also provide
a description of how to include post-Newtonian corrections to these objects without changing their
multipole moments.
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I. INTRODUCTION

Ground-based gravitational-wave (GW) detectors have
achieved tremendous success with the observation of
merging stellar-mass black holes (BHs) and neutron stars
(NSs). These observations are not only of astrophysical
interest, but also interesting with regard to the foundations
of gravity as they allow for stringent tests of general
relativity. Such tests include searching for additional
gravitational wave polarization modes [1–4], consistency
of higher harmonics with the dominant harmonics in the
signal [5–7], effects of dispersion during the wave propa-
gation indicating a nonzero mass for the graviton [8–10],
searches for echoes [11–13] and parametrized tests [14–
21]. If the gravitational waves are emitted by a black hole,
these tests aim to determine whether these black holes are
described by the Kerr solutions of general relativity or some
black hole solution in modified theories of gravity, or some
other exotic compact objects altogether.
In this spirit, a natural question to ask is: how unique is

the exterior Kerr solution? To make this question more
concrete, how unique are the multipole moments of the
Kerr black hole? In other words, are there other (stellar)
objects with the same multipole moments as those of the
Kerr spacetime? Some remarkable results in the literature
answer a related question: if you know the multipole
moments of a given spacetime, how much do you know
about the spacetime itself? In the Newtonian theory, the
equivalent question is trivially answered: knowing all
multipole moments, one can directly reconstruct the gravi-
tational potential outside sources given that the multipole
moments are simply defined as the coefficients in the 1=r
expansion of the gravitational potential. In the general
relativistic context, the situation is significantly more
challenging, nonetheless similarly rigid results have been

established. In particular, the Geroch-Hansen multipole
moments characterize a stationary, vacuum spacetime
uniquely up to isometries [22,23].[24] Moreover, any
stationary, asymptotically flat vacuum solution approaches
the Kerr metric at infinity [25]. These results are strong and
suggest that any vacuum spacetime with all field multipole
moments equal to those of the Kerr spacetime has to be the
Kerr spacetime itself. This seems to answer the question
whether there are any objects with the same multipole
moments of Kerr to the negative.
However, these results all rely on a key assumption: the

absence of sources. If we relax this condition, we show by
an explicit construction that there are many stationary,
axisymmetric Newtonian objects with identical multipole
moments as those of a rotating black hole in general
relativity. We also provide a constructive algorithm to go
beyond the Newtonian context and include post-Newtonian
corrections, but leave a fully relativistic generalization for
future work (see [26–30] and references therein for earlier
attempts at finding matter sources for the Kerr metric) [31].
The objects constructed in this manner satisfy the dominant
energy condition ρ ≥ 0 everywhere, although their stress is
not isotropic. In particular, material elements at different
locations may not satisfy the same equation of state. While
these objects may not exist in nature, this work shows
explicitly that even if one knows all the (field) multipole
moments of an object, one cannot conclusively tell the
nature of the object.
This also has theoretical implications on the conjecture

put forward in [32], in which it is suggested that the
multipole moments of a Kerr black hole are minimal in
some sense. In particular, they provide numerical evi-
dence that all multipole moments of a large family of
horizonless microstate geometries known as fuzzballs are
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larger (in absolute value) than those of a Kerr black hole
with the same mass and spin. The simple Newtonian
objects we construct show that the Kerr values are not
minimal, in the sense that Newtonian objects with the same
mass and spin as a Kerr black hole may have smaller
multipole moments than the Kerr values. While their
conjecture may still hold for the class of specific modified
black hole solutions they considered, it cannot be more
generically true for all possible compact objects within
general relativity.[33]
In recent years there is a revolutionary development of

the post-Newtonian and post-Minkowskian theory based
on effective field theory calculations of scattering ampli-
tudes [37–39]. In particular, it was shown that the scattering
experiment of “minimally” coupled spin fields gives rise
to the Kerr multipoles up to high orders in black hole spin
[40–46]. This is a rather surprising result as “minimally
coupled” spin fields and Kerr black holes are rather
different objects in nature. One possible way to build a
connection between these two systems is to require that the
Kerr moments are special in certain sense, e.g., minimal for
any object with the same mass and angular momentum. The
analysis presented in this work provides counterexamples
to such an intuitive explanation, as one can construct
objects with smaller multipole moments than the Kerr
values within general relativity. The coincidence observed
in [40–44] ought to have a deeper origin.
This paper is organized as follows. In Sec. II, we discuss

the various notions of multipole moments and make sharp
the comparison we make in this paper regarding the multi-
pole moments of the Kerr spacetime and our Newtonian
mimicker. Thorne’s field multipole moments for the Kerr
spacetime are also presented in that section. In Sec. III, we
construct a Newtonian object whose field multipole
moments have the same value as those of the Kerr exterior
region. A generalization to include post-Newtonian cor-
rections is described in Sec. IV. We conclude in Sec. V. Our
conventions are: We set Newton’s constantG and the speed
of light c both equal to one, the spacetime metric has
signature −þþþ and for the normalization of the various
harmonics, we use the conventions in [47].

II. MANY MULTIPOLE MOMENTS

There are two distinct notions of multipole moments:
source multipole moments, defined as integrals over the
source, and field multipole moments, defined from the
gravitational field near infinity. In Newtonian gravity,
the source multipole moments describe the way in which
mass is distributed, while the field multipole moments are
important to determine the motion of extended or nearby
objects. While the definitions are distinct, the source and
field multipole moments of a single object are the same in
the Newtonian context (see e.g., Eqs. (1.139) and (1.140)
in [48]). In general relativity, the story is more compli-
cated and generically one cannot even define the source

multipole moments rigorously in the full nonlinear context
[49]. The exception are spacetimes with black holes
described by axisymmetric isolated horizons (for which
the symmetry restriction only applies to the horizon
geometry and not the entire spacetime) [50]. Another
exception is the scenario in which a post-Newtonian
description of the sources applies [47]. Field multipole
moments are well-defined for a large class of spacetimes.
The Geroch-Hansen multipole moments are an example of
such field multipoles [51,52]. Here we will not use the
geometric definition by Geroch and Hansen, but we use the
definition due to Thorne instead [47]. We make this choice
because the Newtonian limit is more transparent in
Thorne’s approach. In addition, despite the clear difference
in their definitions, Thorne’s multipole moments of a
stationary, asymptotically flat spacetime are identical to
the field multipole moments of Geroch-Hansen, up to a
normalization factor [53].
The post-Newtonian field and source multipole moments

are equivalent when no gravitational radiation is present. In
this paper, we will use this equivalence to relate the (post-)
Newtonian source multipole moments of the objects we
construct to the relativistic field multipole moments of the
Kerr spacetime.

A. Multipole moments of Kerr

The mass and current multipole moments of the Kerr
spacetime are only nonzero for m ¼ 0 due to its axisym-
metry and are given by:

Il0Kerr ¼
(
MðiaÞl ffiffiffiffiffiffi

4π
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2lþ1Þðlþ1Þðlþ2Þ
2lðl−1Þ

q
2lþ1ðl−1Þ!

ð2l−1Þ!ð2lþ1Þ
0

ð1Þ

Sl0Kerr ¼
(
0

iMðiaÞl ffiffiffiffiffiffi
4π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þðlþ1Þðlþ2Þ

2lðl−1Þ
q

2lþ1ðl−1Þ!
ð2l−1Þ!ð2lþ1Þ

ð2Þ

where the first line indicates the result for l being even and
the second for l being odd. Here, M is the mass parameter
of the Kerr spacetime while l andm indicate the degree and
order of the spherical harmonic decomposition. The above
formulas are only valid for l ≥ 2. For l ¼ 0 the mass
multipole moment of Kerr is simply M and the current
multipole is not defined, and for l ¼ 1 the mass multipole
moment vanishes and the current multiple moment is aM.
The vanishing of the odd mass multipole moments and
even current multipole moments is due to the reflection-
symmetry of Kerr in its equatorial plane. The dependence
on l has been derived using the relation between the
Geroch-Hansen multipole moments and Thorne’s symmet-
ric tracefree multipole moments in [53] and translating
those results to the multipole moments in the spherical
harmonic decomposition. We have explicitly checked these
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numerical factors up to l ¼ 6 using the ACMC-6 coor-
dinate system in [54].

III. A NEWTONIAN MIMICKER

In this section, we will first discuss the mass multipole
moments and next consider the spin multipole moments.
Since the Kerr spacetime is stationary, the configuration of
the Newtonian object should be time-independent, i.e., no
explicit dependence on the time coordinate t.

A. Mass multipole moments

We start with a general Newtonian star with a density
profile ρðr; θ;ϕÞ. Decomposing the mass density as

ρðr; θ;ϕÞ ¼
X
l;m

ρlmðrÞYlmðθ;ϕÞ; ð3Þ

the Newtonian mass multipoles are given by

IlmNewtonian ¼
16π

ð2lþ 1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðlþ 1Þ

2lðl − 1Þ

s Z
drrlþ2ρlmðrÞ:

ð4Þ

One immediate observation of Eq. (4) is that there are
many possible ρlm giving rise to the same set of IlmNewtonian,
because of the nature of the integration equation. In this
study we shall focus on the axis-symmetric scenarios,
with no explicit dependence on ϕ. As a first example, we
assume a thin shell of matter with mass density ρlm ¼
αlδm;0

M
R2 ðaRÞlδðr − RÞ with R being the radius of the thin

shell, M its mass and a its spin parameter. The constant αl
is determined by matching the Newtonian mass multipole
moments with those of the Kerr black hole

αl ¼
(

il
ffiffiffiffiffiffiffiffi
2lþ1
4π

q
0

: ð5Þ

For this choice, whenever ρlmðRÞ is not zero, it is positive
in roughly half of the cases ðl ¼ 0; 4; 8; 12;…Þ and nega-
tive in the other half ðl ¼ 2; 6; 10; 14;…Þ. Similarly, the
combination ρlmðrÞYlmðθ;ϕÞ for given l and m ¼ 0 can
be negative at specific polar angles even if ρlm is positive.
With the monopole piece ðl ¼ 0Þ included, the mass
density itself ρðr; θ;ϕÞ is nowhere negative as long as
a=R ≤ 0.57735. This is illustrated in Fig. 1, which shows
that the mass density is concentrated near the equator and
minimized near its pole. As the spin to radius ratio
increases, this feature becomes more pronounced. The l
multipoles of the mass density of the thin shell at the poles
(where ϕ is undefined) is given by

ρl0ðr ¼ RÞYl0ðθ ¼ 0;ϕÞ ¼ il
2lþ 1

4π

�
a
R

�
l
: ð6Þ

When the ratio a=R is increased beyond the numerical
value 0.57735, the mass density becomes negative near the
poles. The restriction on the ratio a=R certainly seems
reasonable to assume, because if we were to take the spin
parameter to be equal to a maximally spinning Kerr black
hole (i.e., a ¼ M), the compactness of this object as
measured by the ratio M=R would be close to a half. In
this regime, one certainly would need relativistic correc-
tions as this is close to the compactness of a Schwarzschild
black hole.
Other straight-forward examples with mass multiple

moments equal to those of the Kerr spacetime include a
stellar object with a constant radial profile and an elemen-
tary decaying profile:

ρlm ¼
(
βlδm;0

M
R3 ðaRÞl constant radial profile

γlδm;0
M
R3 ðaRÞl cosðπr4RÞ decaying radial profile

with the constant βl and γl given by

βl ¼ ðlþ 3Þαl
γl ¼ π3þl

64 · 22l
1

Re½ilþ1Γðlþ 3;− iπ
4
Þ� þ Γð3þ lÞ sinðπl

2
Þ αl:

For simplicity, we will only consider the thin shell model
and the constant radial profile from hereon. The mass

0

0

0.1

0.2

(R)

M / R2

a/R = 0.1 a/R = 0.2 a/R = 0.3

a/R = 0.4 a/R = 0.5 a/R = 0.57735

FIG. 1. This figure shows the angular dependence of the mass
density ρ for the thin shell model at radius R for different ratios of
a=R. It is clear that the mass density is positive for all
a=R ≤ 0.57735. In all cases, the mass density is peaked near
the equator and minimal at the poles. For plotting purposes, the
sum over l in Eq. (3) is truncated at l ¼ 200. This truncation
does not alter the plot as higher order terms are suppressed (in
fact, for a=R ¼ 0.1 truncating at l ¼ 4 does not alter the plot, but
as a=R increases more terms are needed).
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density for the constant radial density profile is non-
negative for all polar angles as long as a=R ≤ 0.42583.
A comparison with the thin shell model is shown in Fig. 2.

B. Current multipole moments

As a second step, we match the values of the current
multipole moments. For a generic Newtonian body, they
are given by

SlmNewtonian ¼
32π

ð2lþ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þð2lþ 1Þ
2ðlþ 1Þðl − 1Þ

s

×
Z

d2Ω
Z

drrlþ2ϵijkȲi
l−1;lmv

jρnk ð7Þ

where ni is the radial unit vector and Ȳi
l−1;lm ¼

ð−1ÞmYi
l−1;l−m are the pure-orbital harmonics. The latter

are related to the spin-weighted spherical harmonics

−1Yl−m through

Yi
l−1;l−m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1

2ð2lþ 1Þ

s
ð−1Yl−mmi −1 Yl−mm̄iÞ ð8Þ

with mi and its complex conjugate m̄i being the Newman-
Penrose complex null vectors on the sphere (for more details,
see [47][Sec. 2]). The velocity field is most intuitively
decomposed into the pure-spin vector harmonics:

vi ¼
X
l;m

½Rlm
RYi

lm þ Elm
EYi

lm þ Blm
BYi

lm� ð9Þ

where RYi
lm;

EYi
lm and BYi

lm are normalized as in [47]
[Eq. (2.18)].Due to the cross product ofviwith the radial unit

vector ni in the definition of the current multipole moments,
Rlm does not contribute to SlmNewtonian and thus is not con-
strained by the requirement that the current multipole
moments are equal to those of Kerr. The Elm contribute
an imaginary part to the current multipole moments whenm
is odd, and are thus required to vanish in order to match the
current multipole moments of Kerr: Elm ¼ 0. Therefore, the
only relevant coefficients are Blm. Nevertheless, the coef-
ficients Rlm are not entirely free as the continuity equation
constrains its behavior. For both the thin shell model and the
constant density profile, the continuity equation implies that
the divergence of thevelocity vector field has tovanish. Since
the part proportional to Blm is by construction divergence-
free, this imposes the following constraint on Rlm

d
dr

Rlm þ 2

r
Rlm ¼ 0: ð10Þ

A solution to this equation is RlmðrÞ ∼ 1=r2, but this is not
well-defined at the origin and thereforewe are required to set
Rlm ¼ 0 for the model with a constant radial profile.Wewill
also set Rlm ¼ 0 for the thin shell model.
The Blm part in the velocity field can also be written in

terms of the spin-weighted harmonics as:

viB ¼ −
iffiffiffi
2

p
X
l;m

BlmðrÞ½−1Ylmðθ;ϕÞmi þ 1Ylmðθ;ϕÞm̄i�:

ð11Þ

Substituting this decomposition as well as the decom-
position for the mass density in Eq. (3) into the
current multipole moments in Eq. (7), and using that
ϵijknk ¼ 2im½im̄j�, we obtain

SlmNewtonian ¼
32π

ð2lþ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þð2lþ 1Þ
2ðlþ 1Þðl− 1Þ

s

×
Z

drrlþ2
ð−1Þm

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1

2lþ 1

r X
l0;m0

X
l00;m00

ρl0m0Bl00m00

×
Z

d2Ωð0Yl0m0−1Yl00m001Yl−m

þ 0Yl0m01Yl00m00−1Yl−mÞ: ð12Þ

The angular integrals over the two sets of three spin-
weighted spherical harmonics are given by the product of
two 3j-symbols[55][Eq. (34.3.22)]. Since ρlm is only
nonzero for m ¼ 0 and l even, the 3j-symbols simplify
significantly. Moreover, as we assume these current multi-
pole moments to match those of a rotating black hole, this
expression can be further simplified by setting Blm equal to
zero for all m ≠ 0 and l even. After these simplifications,
the infinite sums over l0 and l00 still remain:

0 π

0

0.25

0.5

(R)

M / Rn

Shell, a/R = 0.1 Shell, a/R = 0.3 Shell, a/R = 0.57735

Const., a/R = 0.1 Const., a/R = 0.3 Const., a/R = 0.42583

FIG. 2. This figure shows the angular dependence of the mass
density ρ evaluated at r ¼ R for the thin shell model versus the
constant density profile for different ratios of a=R. The value of n
on the vertical axis is 2 for the thin shell model and 3 for the
constant density profile.
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SlmNewtonian ¼
32π

ð2lþ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þð2lþ 1Þ
2ðlþ 1Þðl− 1Þ

s

×
Z

drrlþ2
ð−1Þm

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1

2lþ 1

r X
l0;l00

ρl00Bl000

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2l00 þ 1Þ

4π

r �
l0 l00 l

0 0 0

�

×

��
l0 l00 l

0 1 −1

�
þ
�
l0 l00 l

0 −1 1

��
: ð13Þ

Setting these current multipole moments equal to those of
Kerr yields a very large but invertible matrix equation for
Blm, which is in principle solvable. Here we will only
provide a perturbative solution in a=R up to OðaRÞ6. For
both the thin-shell model and the model with a constant
radial profile, we find

Bl0 ¼

8>>>>>><
>>>>>>:

ffiffiffiffiffiffi
6π

p
a
R ½1 − ðaRÞ2 þ 11

7
ðaRÞ4� þOðaRÞ6ffiffiffiffiffiffi

16π
21

q
ðaRÞ3½1þ ðaRÞ2� þOðaRÞ6

16
7

ffiffiffiffiffiffi
2π
165

q
ðaRÞ5 þOðaRÞ6

…

ð14Þ

with the different lines indicating the results for
l ¼ 1; 3; 5;…. (Both models have the same velocity vector
field as the extra factor of lþ 3 in βl compared to αl is
canceled after performing the integration over r.) Using
Mathematica, these expressions are easily obtained for
much larger l (we do not show these here as the
expressions are not particularly informative). It is clear
from this particular solution that the coefficients Bl0 are all
of the form

Bl0 ¼
X∞
l0¼l

cðlÞl0

�
a
R

�
l0

ð15Þ

with cll0 numerical coefficients that are nonzero only
for l;l0 odd. For instance, we already know from

Eq. (14) that cð1Þ1 ¼ ffiffiffiffiffiffi
6π

p
; cð1Þ3 ¼ −

ffiffiffiffiffiffi
6π

p
; cð1Þ5 ¼ 11

7

ffiffiffiffiffiffi
6π

p
and

cð3Þ1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π=21

p
.

Substituting the solution for Bl0 into the expression for
the velocity field, we find that the only nonzero component
of the velocity vector field is given by

viBê
ðϕÞ
i ¼ 1

2

�
−3

a
R
þ
�
a
R

�
3

ð4 − 5cos2θÞ

−
�
a
R

�
5

ð6cos4θ þ cos2θ þ 4Þ
�
sin θ þO

�
a
R

�
6

ð16Þ

where êðϕÞi is the orthonormal vector in the ϕ-direction.
Figure 3 shows the angular dependence of the velocity
above for different values of a=R (for plotting purposes, we
used expressions accurate to OðaRÞ20). This also shows that
the magnitude of the velocity vi is less than the speed of
light for all polar angles, and it vanishes at the poles.

IV. GOING THE EXTRA MILE: INCLUDING
POST-NEWTONIAN CORRECTIONS

In the previous sections, we have demonstrated how to
construct Newtonian objects with identical moments to
those of Kerr. The construction is not unique and there are
in fact many possible objects which share the same values
for the multipole moments as those of Kerr. In this section,
we give a constructive argument how to extend those results
to include post-Newtonian corrections.
First note that the expression for the mass multipole

moments with leading order post-Newtonian corrections
involves significantly more terms than at Newtonian order
[47] [Eq. (5.31)]

Ilm ¼ 16π

ð2lþ 1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðlþ 1Þ

2lðl − 1Þ

s Z
d2Ω

Z
drrlþ2

×

"
τ00Ȳlm þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þlðl − 1Þ

2l − 1

r
T̄2l−2;lm
ij τij

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6lðl − 1Þ2

ð2lþ 3Þðlþ 1Þð2l − 1Þ

s
T̄2l;lm
ij τij

#
ð17Þ

0

0

– 0.3

– 0.6

– 0.9

a/R = 0.1 a/R = 0.3 a/R = 0.5

a/R = 0.2 a/R = 0.4 a/R = 0.57735

FIG. 3. This plot shows the angular dependence of ϕ-compo-
nent of the velocity viB in an orthonormal basis for different ratios
of a=R. The maximal velocity increases as the ratio a=R
increases, but is always less than the speed of light. To make
this plot, we truncated the sum over l in Eq. (11) at l ¼ 20 and
verified that the higher order terms do not change the result. (For
the model with a constant radial profile, the ratio a=R needs to be
restricted to a=R ≤ 0.42583.)
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where T̄2lð−2Þ;lm
ij are tensor harmonics [47] [Eq. (2.27)-

(2.28)] and τμν is the effective stress-energy tensor
evaluated at the first post-Newtonian order in the post-
Newtonian de Donger gauge so that

τ00 ¼ ρð1þ 4U þ v2 þ ΠÞ − 3

8π
∇kU∇kU ð18aÞ

τij ¼ ρvivj −
1

4π
∇iU∇jU −

1

2π
U∇i∇jU

þ
�
Pþ 3

8π
∇kU∇kU − 2ρU

�
gij − 2Σij: ð18bÞ

Here the mass density ρ is the Newtonian mass density
and vi the Newtonian velocity vector field. The Newtonian
potential U and pressure P as well as the specific internal
energy densityΠ and stress tensor Σij are determined by the
Poisson, Euler and conservation of energy equation

∇2U ¼ −4πρ ð19Þ

∇iP − 2∇jΣij ¼ ρ∇iU þ ρΩ2ðni − r cos θêðzÞi Þ ð20Þ

ρvi∇iΠ ¼ −P∇ivi; ð21Þ

where êðzÞi is the unit-vector in the z-direction. The second
term on the right-hand side of the Euler equation is
the centrifugal force for which the angular velocity Ω is
determined by Ω2 ¼ viBv

B
i =r

2 (and thus, Ω also depends
on the polar angle θ).In the above equations, we
restricted ourselves to the case in which all fields are
time-independent.
Since the leading order terms themselves already match

the multipole moments of Kerr, the post-Newtonian cor-
rections have to vanish. Therefore, we need to establish
whether there is enough functional freedom to ensure this.
The strategy is to take ρ as the energy density previously
obtained plus some perturbation at post-Newtonian level,
say δρ, chosen such that exactly all the additional terms
introduced at the first post-Newtonian order vanish.
Concretely, one first needs to solve for U given ρ in
Eq. (19) (a solution is easily constructed by decomposingU
into spherical harmonics and using [48][Eq. (1.128)])

Ulm ¼ 4π

2lþ 1

�
rl

Z
∞

r
ρlmðr0Þr0−lþ1dr0

þ 1

rlþ1

Z
r

0

ρlmðr0Þr0lþ2dr0
�
: ð22Þ

This Newtonian potential will then serve as a source for the
pressure P and stress tensor Σij in Eq. (20). Since the stress
tensor is symmetric and traceless by definition and we are
interested in the axially symmetric case, we can decompose

the stress tensor simply as a linear combination of four
tensor harmonics

Σij ¼
X
l

½σð1ÞlmYlmðgij − 3ninjÞ

þ σð2Þlmð−1Ylmðminj þ nimjÞ − 1Ylmðm̄inj þ nim̄jÞÞ
þ σð3Þlmð−2Ylmmimj þ 2Ylmm̄im̄jÞ� ð23Þ

with σðiÞlm ¼ 0 whenever m ≠ 0. In the case of the thin shell

model, the stress tensor satisfies Σijnj ¼ 0 and σð1Þlm ¼ 0.
The ϕ-component of the Euler equation is trivially satisfied,
but the θ- and r-component yield two differential equations.
Since the source on the right-hand side of these equations is
the product of ρ and ∇iU, we obtain 3j-symbols again
which result into large matrix equations (similar to the
situation for Bl0). These equations can also be solved to
any desired order using, for instance, Mathematica. The
solutions are not unique given that there are two equations

and four free functions Plm and σðiÞlm (three in the case of the
thin shell model). One can use this freedom to simplify the
solutions. A simple solution for Π in Eq. (21) would be to
take Π ¼ 0 (as vi is divergence free). Knowing all the
relevant components of τμν, one can finally calculate the
leading order post-Newtonian correction to the mass multi-
pole moments. The last step is to determine δρ such that

16π

ð2lþ 1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðlþ 1Þ

2lðl − 1Þ

s Z
drrlþ2δρlmðrÞ ¼ −Ilm1 PN:

ð24Þ

The same argument applies to the current multipole
moments. This algorithm shows that the Newtonian con-
struction in Sec. III can be easily extended to the leading
post-Newtonian order. The expectation is that this will also
hold for higher-order post-Newtonian corrections.

V. DISCUSSION

The field multipole moments of the Kerr spacetime are
not unique: we constructed several examples in the
Newtonian theory with identical multipole moments as
those of a Kerr black hole. Therefore, knowing all the
(field) multipole moments of an object does not conclu-
sively tell us the nature of the object. That we were able to
construct such examples is not surprising in light of the fact
that the uniqueness results mentioned in the Introduction
rests on ellipticity of the field equations. The differential
equation for the Newtonian potential is clearly elliptic.
Einstein’s equations are elliptic provided that they describe
stationary vacuum spacetimes and are formulated on the
manifold of trajectories of the time-like Killing vector
field (and written in suitable coordinates) [56,57,58].
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Accordingly, uniqueness typically fails when ellipticity of
the equations is lost. The presence of matter is one such
way in which ellipticity and consequently uniqueness no
longer applies.
The construction of the explicit examples in this paper

also shows that the Kerr multipole moments are not
minimal in the sense that their absolute value is minimized
for objects with the same mass and angular momentum, as
the construction in this paper can also be used to find
objects with multipole moments smaller than those of the
Kerr spacetime. This point can be further elaborated by
considering an example of a solid star (so that nonisotropic
stress is allowed) with a mountain in the north pole. If the
star is rotating, the spin-induced quadrupole may perfectly
cancel the mountain-associated quadrupole, so that there is
no net quadrupole moment for such star. It is straightfor-
ward to see that such construction leads to a quadrupole
moment smaller than the Kerr value, assuming the mass
and angular momentum are the same. Of course, the
“minimalness” conjecture may still hold if we restrict
the matter sources to be fluid stars.
There are several important drawbacks to this analysis.

First, to mimic the multipole moments of very compact
objects with R not much greater than M, the Newtonian
analysis is not enough and one is required to include post-
Newtonian corrections (possibly many). This complicates
the analysis, but is in principle calculable.
Second, the star profiles that mimic Kerr moments

suggest materials with nonisotropic stress and likely
position-dependent equation of state, or different types
of materials at different locations. This “naturalness"
problem may be used to argue against the likelihood of
finding such object(s) in nature, as the required composi-
tions are difficult to be naturally fabricated. It is however

worth noting that the naturalness problem can be split into
two subproblems. The first one is whether the object is
allowed by the laws of nature (e.g., general relativity), and
the second one is whether its formation is natural, without
the intervention of intelligence. Our study can only address
the first question. Despite this possible objection, it is still
of fundamental interest whether one can also construct fully
relativistic objects with the same multipole moment struc-
ture as those of the Kerr spacetime.
Third, while the objects we constructed have a non-

negative mass density everywhere and velocity smaller than
the speed of light, we did not investigate their stability
under generic linear perturbations. Such a task should be
more technically complicated than analyzing the perturba-
tion of barotropic stars because of the nonisotropic stress
and nonhomogeneous equation of state. We shall leave this
for future work.
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[57] H. M. Z. Hagen, Math. Proc. Cambridge Philos. Soc. 68,

199201 (1970).
[58] The ellipticity also applies to the conformally completed

spacetime constructed for the formulation of the Geroch-
Hansen multipole moments.
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