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The asymptotic approach derived by Kozameh-Quiroga provides a modern framework to obtain the
evolution of global variables of isolated sources of gravitational radiation. We test the Kozameh-Quiroga
formalism evolving the equations of motion for the center of mass, the intrinsic angular momentum, and
several other global variables, for black hole binary coalescence. First, we evolve the equations of motion
using 777 simulations from the RIT catalog of numerical data of ψ4 [J. Healy and C. O. Lousto, Third RIT
binary black hole simulations catalog, Phys. Rev. D 102, 104018 (2020).]. We then analyze the trajectory of
the center of mass and compute the final state of other physical variables after the coalescence has taken
place. Finally, we show that the results obtained from our equations of motion are consistent with those in
the Rochester metadata.
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I. INTRODUCTION

The equations of motion for global variables describing
isolated sources of gravitational radiation is an old and
important area of research in general relativity (GR). Out
from the many formulations presented in the literature,
those using the mathematical formulation of asymptotic
flatness offer the possibility of matching its predictions
with observations.
The notions of Bondi mass, linear momentum, dipole

mass moment, and angular momentum resemble their
Minkowskian counterparts in classical field theory, except
that in this case they are not conserved quantities but obey
evolution equations that are derived from the field equations
of GR. Linking those quantities with equations of motion for
the center of mass and intrinsic angular momentum is the
goal of the different approaches given in the literature [1–5].
Many of the key ideas to define and evolve those variables

were presented and developed by E. T. Newman and
collaborators [6,7]. More recently, these results were gen-
eralized and a relativistic approach is now available in the
literature [8].
Since binary coalescence offers an excellent scenario

to test predictions both in terms of numerical solutions,
semianalytical approaches, and direct observations of
gravitational radiation. The purpose of this work is to
numerically evolve the equations of motion for the center of
mass and intrinsic angular momentum for some 800 cases
that were taken from the Rochester repository [9].
The main idea in this work is to present the equations,

give technical details of the numerical setup and show

some results both for particular cases and for the whole
numerical evolutions.
To classify the binary system type, we follow the

conventions of the Rochester repository, dividing the
numerical outcomes in different classes according to
the relative masses into equal or nonequal masses (EM or
NEM). Likewise, the spins of the black holes are taken into
account and we can distinguish them between nonspinning
(NS), aligned (A) which are aligned with the orbital angular
momentum (A) or precessing spins (P).
In Sec. II, we give a brief outline of the definition of these

global variables and their equations of motion and offer the
reader the relevant references with thorough approaches.
In Sec. III we discuss the technical issues of the

numerical setup. The relationship between spin weighted
and tensorial spherical harmonics is used to link the
gravitational radiation of the repository with the equations
of motion for the global variables.
In Sec. IV we present some results that show the global

behavior of these classes of binaries. The center of mass
trajectories for selected members of the six classes are
given, the tilt and change of the angular momenta are
obtained for all cases, and kickback velocities are also
computed. The results obtained from our equations of
motion are consistent with those in the Rochester metadata.

II. EQUATIONS OF MOTION FOR THE CENTER
OF MASS AND INTRINSIC ANGULAR

MOMENTUM

There are many results that are needed for this work. In
this section, we introduce several of the key ideas and the
basic tools that are useful for our later discussion.*emmanuel.tassone@unc.edu.ar
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A. Asymptotically flatness and I +

We assume our spacetime is empty except for a bounded
region where the dynamical interaction of the sources of
gravitational radiation takes place. For such spacetimes
there is a well-known mathematical structure where a null
boundary Iþ is added together with an appropriate defi-
nition of global variables that take into account the time
evolution of the sources. In a neighborhood of Iþ the
gravitational field is given by the Weyl tensor. In the
neighborhood of null infinity, it is also possible to introduce
a particular system called Bondi system. A Bondi system
is an inertial frame in general relativity, whose coordinates
are labeled by ðuB; rB; ζB; ζ̄BÞ. The time uB represent null
surfaces, rB is the affine parameter along the null geodesics
of the constant uB surfaces and ζB; ζ̄B are the complex
stereographic coordinates.
Using a null tetrad adapted to a Bondi system one defines

five complex scalars, whose asymptotic behavior is [10]

ψ0 ¼ Cabc
dmalblcmd ≃

ψ0
0

r5B
;

ψ3 ¼ Cabc
dlanbncm̄d ≃

ψ0
3

r2B
;

ψ1 ¼ Cabc
dnalblcmd ≃

ψ0
1

r4B
;

ψ4 ¼ Cabc
dm̄anbncm̄d ≃

ψ0
4

rB
;

ψ2 ¼
1

2
ðCabc

dlanbmcm̄d − CabcdlanblcndÞ ≃
ψ0
2

r3B
:

With help of the peeling theorem, which describes the
asymptotic behavior of the Weyl tensor, the radial part of
the Einstein equations can be integrated leaving only the
Bianchi identities at Iþ as the unsolved equations. In a
Bondi frame the resulting equations look remarkably
simple. Some of those equations relate the Weyl scalars
with the Bondi shear, i.e., [6,10]

ψ0
2 þ ð2σ̄0 þ σ0 _̄σ0 ¼ ψ̄0

2 þ ð̄2σ0 þ σ̄0 _σ0; ð1Þ

ψ0
3 ¼ ð _̄σ0; ð2Þ

ψ0
4 ¼ − ̈σ̄0: ð3Þ

Here the operator ð is known as the “eth operator” and is
basically the complex covariant derivative over S2 in
stereographic coordinates. The derivative is taken at
uB ¼ const surfaces [11].
Finally, the Bianchi identities (in Bondi coordinates) at

Iþ are given by [6,10]

_ψ0
0 ¼ −ðψ0

1 þ 3σ0ψ0
2; ð4Þ

_ψ0
1 ¼ −ðψ0

2 þ 2σ0ψ0
3; ð5Þ

_ψ0
2 ¼ −ðψ0

3 þ σ0ψ0
4: ð6Þ

Note that Eq. (1) defines a real variable Ψ called the
mass aspect [12].

Ψ ¼ ψ0
2 þ ð2σ̄0 þ σ0 _̄σ0: ð7Þ

In term of Ψ is possible to write the Bondi mass M and
Bondi lineal momentum Pi by

M ¼ −
c2

8π
ffiffiffi
2

p
G

Z
ΨdS; ð8Þ

Pi ¼ −
c3

8π
ffiffiffi
2

p
G

Z
Ψl̃idS; ð9Þ

with

l̃i ¼ 1

1þ ζζ̄
ðζ þ ζ̄;−iðζ − ζ̄Þ; 1 − ζζ̄Þ; ð10Þ

where dS ¼ 4dζ∧dζ̄
P2
0

is the area element on the unit sphere,

and where i, j, k, l, m ¼ 1, 2, 3 are three-dimensional
Euclidean indices.
It is also quite convenient to give the evolution equation

for Ψ. Directly from (6) one obtains

_Ψ ¼ _σ0 _̄σ0: ð11Þ

The above equation and (6) contain identical information.

B. Center of mass and intrinsic angular momentum

The center of mass and intrinsic angular momentum are
useful concepts for isolated systems in general relativity.
One can obtain global features from binary coalescence
such as the kickback velocity, reaction radiation force, and
angular momentum loss, among other physical quantities.
Following a formulation presented several years ago [7], to
obtain such variables, we first introduce special congruen-
ces of generalized Newman-Unti (NU) cuts at null infinity

uB ¼ ZðxaðuÞ; ζ; ζ̄Þ;

with xaðuÞ an arbitrary worldline in a fiducial Minkowski
space. The above equation has a geometrical kinematical
meaning. It represents the intersection of the future light
cone of each point xaðuÞ with Scri and it is called a null
cone cut congruence. In general, these cuts have caustics,
but it is possible to construct the so-called regularized null
cone cut congruences with a well-defined procedure that
yields regular cuts at null infinity. In flat spacetime, the
regularized cuts are given by
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Z0 ¼ tðuÞ − 1

2
xiðuÞY0

1i; ð12Þ

where Y0
0; Y

0
1i; Y

0
2ij are the tensorial spin-s harmonic [13],

and xaðuÞ an arbitrary worldline in Minkowski spacetime.
The linearized deviation from flat space is given by [8],

Z1 ¼ Z0 þ
�
ΔσijR
12

þ 1

72
_σigI xðuÞfϵgfi

�
Y0
2ij; ð13Þ

where the extra term is the quadrupolar contribution of the
Bondi shear with ΔσijR the deviation from the initial real
part of the shear. _σigI is the derivative with respect to Bondi
time of the shear imaginary part and ϵgfi is the Levi-Civita
symbol. The extra term in (13) explicitly depends on the
gravitational radiation and it vanishes for a stationary
situation. If xaðuÞ describes any worldline, then Z1

describes a NU foliation up to the order needed for this
calculation. From the geometrical meaning outlined before,
the above equation represents NU congruences parame-
trized by worldlines in a Minkowski spacetime. This
fiducial flat space will be used to write down the equations
of motion for the center of mass and intrinsic angular
momentum.
We then use the Winicour linkages [14] to define the

notion of dipole mass moment and angular momentum on
these null cone cut congruences from the real and imagi-
nary parts of the linkage integral as follows [7,12],

D�i þ ic−1J�i ¼ −
c2

12
ffiffiffi
2

p
G

�
2ψ0

1 − 2σ0ðσ̄0 − ððσ0σ̄0Þ
Z03

��i
:

ð14Þ

The reader should here distinguish between the i labeling
the index of the equation and the i multiplying the factor
c−1, which is the imaginary unit. This latter i will no longer
appear after we separate the equation into its real and
imaginary part.
Finally, we assume that among all possible null cone cut

congruences, there exists a special worldline RaðuÞ such
that at each u ¼ const cut the mass dipole moment D�i
vanishes. This special worldline will be called the center of
mass worldline of the system. The angular momentum Ji�
evaluated at the center of mass will be the intrinsic angular
momentum Si.
From the point of view of Bondi observers for each

u ¼ const cut, there exist a Lorentz boost and a translation
that relate the above defined variables to the equivalent
definitions given on Bondi cuts; i.e., if we define Di and Ji

in a Bondi system as

Di þ ic−1Ji ¼ −
c2

12
ffiffiffi
2

p
G
½2ψ0

1 − 2σ0ðσ̄0 − ððσ0σ̄0Þ�i; ð15Þ

then the transformation law between the quantities
ðψ0�

1 ; σ0�; ðÞ and ðψ0
1; σ

0; ðBÞ together with the condition
that in the center of mass foliation the dipole mass moment
vanishes, i.e., Di�ju¼const ¼ 0, yields the relativistic defi-
nition of center of mass worldline. The details can be found
in Refs. [7,12]. The final results read

Di ¼ MRi þ 1

c2
ϵijkVjSk −

8

5
ffiffiffi
2

p
c
PjΔσijR

−
c2

G
ϵijk

�
4

5
σjlI σ

kl
R −

36

7
σklmI σjlmR

�
; ð16Þ

Ji ¼ Si þ ϵijkRjPk −
151c2

168
ffiffiffi
2

p
G
ðσijkR σjkI − σijkI σjkR Þ; ð17Þ

where the above equations have been written keeping up to
linear terms in the velocity and up to second order in the
radiation fields. We have only kept quadrupole and octu-
pole terms in the Bondi shear since these terms capture
the main part of the gravitational radiation given in the
repository.
The main contribution to the gravitational radiation

comes from the l ¼ 2 and l ¼ 3 spherical harmonic
decomposition.
The above equations relate the center of mass Ri and

intrinsic angular momentum Sj with the asymptotic vari-
ables Di, M, Pi, and Ji, given on a Bondi coordinate
system. Note also that Vi ¼ 1ffiffi

2
p _Ri since the relativistic time

is t ¼ u
ffiffiffi
2

p
.

We list in Eqs. (18)–(21) the evolution equations of the
Bondi physical variables that are needed for this work. The
evolution equations of Di and Ji follow from the Bianchi
identity for ψ0

1 when the l ¼ 1 component of the real and
imaginary parts of _ψ0

1 is computed [8]. Furthermore, the
dynamical evolution of the Bondi mass M and momentum
Pi can be computed from the Bianchi identity for _ψ0

2. These
equations are given by

_Di ¼
ffiffiffi
2

p
Pi þ 3

7

c2ffiffiffi
2

p
G
½ð _σijkR σjkR − σijkR _σjkR Þ�

þ 3

7

c2ffiffiffi
2

p
G
½ð _σijkI σjkI − σijkI _σjkI Þ�; ð18Þ

_Ji ¼ c3

5G
ðσklR _σjlR þ σklI _σjlI Þϵijk

þ 9c3

7G
ðσklmR _σjlmR þ σklmI _σjlmI Þϵijk; ð19Þ

_M ¼ −
c

10
ffiffiffi
2

p
G
ð _σijR _σijR þ _σijI _σ

ij
I Þ

−
3c

7
ffiffiffi
2

p
G
ð _σijkR _σijkR þ _σijkI _σijkI Þ; ð20Þ
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_Pi ¼ 2c2

15
ffiffiffi
2

p
G

_σjlR _σ
kl
I ϵ

ijk −
ffiffiffi
2

p
c2

7
ffiffiffi
2

p
G
ð _σjkR _σijkR þ _σjkI _σijkI Þ

þ 3c2

7
ffiffiffi
2

p
G

_σjlmR _σklmI ϵijk: ð21Þ

The main idea then is to give initial data to solve for
Eqs. (18)–(21), assuming that before the gravitational
radiation is emitted the center of mass world line is the
origin of a Bondi coordinate system. Once the Bianchi
identities have been solved we introduce a perturbation
procedure that preserves the order of the equations and
algebraically solve for Ri and Sj.
It is worth noting that the equations of motion are written

in terms of the Bondi shear whereas the gravitational
radiation is given by ψ0

4. To find the relationship between
those scalars we first write [15]

ψ0
4 ¼

X
l;m

Ψlmð−2ÞYlm: ð22Þ

Here Ψlm represents the multipole of the gravitational wave
at infinity. In practice, Ψlm are functions stored in data files
generated by the numerical simulation of the astrophysical
systems such as the binary coalescence of black holes [16].
We then use Eq. (3) to write

̈σ̄0 ¼ −
X
l;m

Ψlm
ð−2ÞYlm

: ð23Þ

Integrating twice the above equation one obtains the
real and imaginary parts of the Bondi shear. Usually one
assumes the real part of the shear vanishes initially, but it is
just a matter of convenience since the equations are
supertranslation invariant. Also, in many works in GR, it
is usual to expand the shear, and other scalars, in terms of
the tensorial harmonics as follows (cf. [13]):

σ0 ¼ σijY2
2ij þ σijkY2

3ijk þ � � � ; ð24Þ

̈σ̄0 ¼ ̈σ̄ijY−2
2ij þ ̈σ̄ijkY−2

3ijk þ � � � ; ð25Þ

where σij and σijk are related to the quadrupole and octupole
contribution of the gravitational wave, respectively. On the
other hand, the spin weighted spherical harmonic decom-
position is often used in the literature of gravitational
radiation. Thus, to be able to find the evolution of Ri and
Sj one must first obtain a correspondence between Y−2

2ij →

ð−2ÞY2m
and Y−2

2ijk → ð−2ÞY3m
(see [17]) and then solve for

̈σ̄ij. This is further discussed in the next section. The relevant
components of the shear needed for this work are given by

̈σ̄xy ¼ −
i
4

ffiffiffi
5

π

r
ðΨ22 −Ψ2−2Þ; ð26Þ

̈σ̄xx ¼ −
1

4

ffiffiffi
5

π

r
ðΨ2−2 þ Ψ22Þ þ 1

6

ffiffiffiffiffiffi
15

2π

r
Ψ20; ð27Þ

̈σ̄yy ¼ 1

4

ffiffiffi
5

π

r
ðΨ2−2 þ Ψ22Þ þ 1

6

ffiffiffiffiffiffi
15

2π

r
Ψ20; ð28Þ

̈σ̄yz ¼ i
4

ffiffiffi
5

π

r
ðΨ2−1 þ Ψ21Þ; ð29Þ

̈σ̄xz ¼ 1

4

ffiffiffi
5

π

r
ðΨ21 − Ψ2−1Þ; ð30Þ

and

̈σ̄xxx ¼ 1

8

ffiffiffiffiffiffi
7

5π

r
ðΨ3−1 − Ψ31Þ þ 1

8

ffiffiffiffiffiffi
7

3π

r
ðΨ33 −Ψ3−3Þ; ð31Þ

̈̄σxyy¼ 1

24

ffiffiffiffiffiffi
7

5π

r
ðΨ3−1−Ψ31Þ−1

8

ffiffiffiffiffiffi
7

3π

r
ðΨ33−Ψ3−3Þ; ð32Þ

̈̄σyyy¼−
i
8

ffiffiffiffiffiffi
7

5π

r
ðΨ3−1þΨ31Þ− i

8

ffiffiffiffiffiffi
7

5π

r
ðΨ33þΨ3−3Þ; ð33Þ

̈̄σxxy¼−
i
24

ffiffiffiffiffiffi
7

5π

r
ðΨ3−1þΨ31Þþ i

8

ffiffiffiffiffiffi
7

5π

r
ðΨ33−Ψ3−3Þ; ð34Þ

̈σ̄xxz ¼ −
1

12

ffiffiffiffiffiffi
7

2π

r
ðΨ32 þΨ3−2Þ þ 1

4

ffiffiffiffiffiffiffiffi
7

15π

r
Ψ30; ð35Þ

̈σ̄yyz ¼ 1

12

ffiffiffiffiffiffi
7

2π

r
ðΨ32 þ Ψ3−2Þ þ 1

4

ffiffiffiffiffiffiffiffi
7

15π

r
Ψ30; ð36Þ

̈σ̄xyz ¼ i
12

ffiffiffiffiffiffi
7

2π

r
ðΨ3−2 −Ψ32Þ: ð37Þ

III. THE NUMERICAL EVOLUTION

In this section we explain how the time evolution is
made. The idea is basically to obtain the sigma tensors in
which our formalism is described. We thus use the set
of equations derived from the Bianchi identities at null
infinity presented in (18)–(21). They are valid in any
Bondi frame and can be numerically integrated to obtain
their time evolution.

A. A dictionary between tensorial and spin weighted
spherical harmonics

The solutions of Eqs. (18)–(21) are then used to
algebraically solve for the center of mass Ri and intrinsic
angular momentum Si. In order to obtain the mass dipole
moment, the angular momentum and the linear momentum,
we need only the 2 and 3 modes ofΨlm (taken from [18]) to
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get the values of the shear components shown above. Higher
order modes correspond with higher order tensor decom-
position of sigmas, and thus l ¼ 4 modes are irrelevant for
the precision order to which our formulation applies.
As a first step, we establish a relationship between the

spin weighted spherical harmonics used in the catalog and
the tensorial spherical harmonics used in the definitions of
R and S.
To expand the Weyl scalar ψ4 of the Newman-Penrose

formalism [6,7,12] and to map the tensorial Bondi shear
into the multipole associated with the gravitational wave
we use the one-to-one correspondence between tensorial

spin-s harmonics denoted by YðsÞ
ðlÞi…k [13] and the spin-

weighted spherical harmonics ðsÞYlm
. This correspondence

was shown in [17].

B. Sigma calculus

Obtaining the Bondi shear implies integrating twice
the scalar ψ4. There is a well-known nonlinear drift that
appears as a secular effect coming from the double
integration [19,20]. On top of this there is also a linear
drift coming from the initial values of σB and _σB that must
be given in the integration. These drifts must be corrected in
order to obtain a more accurate shear and thus more
accurate final parameters of the evolution.
Reisswig [20] has implemented a code to deal with those

problems performing the Fourier transformation with a
windowing function and a low-frequency cutoff (which
should be lower than all physically possible frequencies)
[21]. The code provides the strain of the gravitational
radiation, commonly denoted in the literature as h.
For the purpose of this work, which is to check

qualitatively the consistency of the Kozameh-Quiroga
formalism, it is understandable to disregard the drifts for
a first overview of the formalism. In Figs. 1(a) and 1(b) we
show the difference from integrating with Reisswig code
(blue dotted line) and making an integration directly
(orange solid line). Note that the plot is in terms of the
quantity σ, which is not directly obtained by the code but is
easy to obtain with the relation h ¼ −σ, where h is the
strain and σ the shear we use along all this writing. The
drifts produce a change of order ∼0.2 at most (largest
component σ). Moreover, Eqs. (21) and (20) are quadratic
on σij hence making the drift effect smaller (∼0.04). This
will be the case for the majority of simulations also. The
incorporation of this effect is left for a future and more
accurate study.

C. Getting rid of traveling waves

Another problem we address is how to get rid of
traveling waves that are present on any initial dataset.
We take as an example the evolution of the 0443 simulation
whose gravitational radiation is plotted in Fig. 2. We plot

the square root of the integral ofΨ0
4Ψ0

4 on the sphere to take

FIG. 1. Integration of the modes that made the most important
contribution to simulation 0014. On the left σdir are the plots of
integrating directly. On the right, σReiss are the sigmas obtained
when Reiss code is implemented.

FIG. 2. Evolution of the gravitational radiation for the simu-
lation case 0443.
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into account the different contributions of the l ¼ 2 and
l ¼ 3 terms. One can see a traveling wave that is not
relevant for the coalescence problem at the beginning of the
time evolution. This will produce an unwanted jump of the
Bondi linear momentum.
The Fig. 3 shows the evolution of the Bondi momentum

using the Rochester repository on a Bondi frame whose
origin is at the center of mass which is initially at rest. After
the traveling wave passes by, the momentum is no longer
zero and remains constant until the gravitational wave of
the binary system is emitted. After that the Bondi momen-
tum is constant and nonvanishing. Since a traveling wave is
an unwanted and generic feature of any numerical simu-
lation we run the codes until a relaxation time is reached
before the binary coalescence. We then reset the time and
select another Bondi frame at rest with the center of mass at
that time.

D. The numerical setup

We first perform the numerical integration of _M (20),
_Pi (21), _Di (18), and _Ji (19), where the initial values for
those variables are taken from the metadata repository.
The unwanted solitary waves that are present in any
numerical integration are subtracted by finding the relax-
ation time (time where the wave is completely gone) and
then subtracting the contribution of the traveling wave to
the gravitational radiation at null infinity. Essentially this
amounts to resetting the initial time to the relaxation time
and then using the Rochester data as the initial data for the
evolution equations. Our Bondi system is such that at the
relaxation time the origin of our coordinates is at the center
of mass, which is at rest at that time.The initial time is then
reset to zero.

We then algebraically solve for

MRi þ c−2ϵijk
Pj

M
Sk ¼ Di þ 8

5
ffiffiffi
2

p
c
PjΔσijR

þ c2

G
ϵijk

�
4

5
σjlI σ

kl
R −

36

7
σklmI σjlmR

�

ð38Þ

and

Si þ ϵijkRjPk ¼ Ji þ 151c3

168
ffiffiffi
2

p
G
ðσjkI σijkR − σijkI σjkR Þ: ð39Þ

Where we have kept a first order expression of Vi from
the Bianchi identity of _Di (18).

IV. RESULTS

Following the conventions of the Rochester repository,
we have divided the numerical outcomes in different
classes according to the relative masses into EM or
NEM. Likewise, the spins of the black holes are taken
into account and we can distinguish between NS ones,
which are aligned with the orbital angular momentum or
precessing spins. Thus an EM-P simulation has two black
holes with equal mass and precessing spins nonaligned
with the orbital angular momentum.

A. Data analysis

1. A relationship between the initial angular
momentum and the kickback velocity

We plot below the relationship between the initial
angular momentum and the final velocity for two classes
of initial data, EM and NEM.
We can see a clear difference between the precessing

and nonprecessing cases in each class. The precessing
binaries attain the highest final velocities, although they
are highly spread for the same values of initial angular
momentum. The reason for the wide range of final
velocities in the P cases lies in the intrinsic chaotic behavior
of the precessing BHs.
One can see that there are only three simulations in

Fig. 4(a) for the EM-NS case. The center of mass in those
simulations does not acquire velocity as one might have
guessed. The NEM-NS cases yield small and nonchaotic
final kicks. For the aligned cases the final velocities are
small and densely distributed, showing a nonchaotic
behavior.
It is worth mentioning Figs. 4(a) and 4(b) seem to

achieve a peak for the final velocities in some range of
initial Sin depending on the classes. Nevertheless, this effect
could be biased due to the much fewer number of
simulations for the values Sin > 1.2.

FIG. 3. Time evolution of the magnitude of the Bondi mo-
mentum. A small change between 0 and 500 due to the traveling
wave can be seen.

EMMANUEL A. TASSONE et al. PHYS. REV. D 104, 084038 (2021)

084038-6



2. A relationship between the magnitudes
of the initial and final angular momenta

The loss of orbital angular momentum Fig. 5 shows up
for both the EM-NS, and the NEM-NS cases. The NEM-A
class has a wide range of outcomes and in some cases the
final angular momentum increases when the initial angular
momentum is very close to zero. This special feature occurs
when the spins are antialigned with the orbital angular
momentum. Whereas the magnitude of the orbital part
always decreases, the total angular momentum goes up
since the spins remain approximately constants. We made a
Fig. 5 fit of the final values obtained for all the classes to get
a representative value of the outcomes for the simulations.
This should not be regarded as the exact relation between
Jin and Jf, which is described by Eq. (19).

3. The change in direction
of the intrinsic angular momentum

To calculate the change in direction of the angular
momentum we use the usual scalar product between the
initial vector Ji and the final Jf:

Δθ ¼ Jf · Ji
jJfjjJij

; ð40Þ

where Ji in this particular case is the angular momentum at
the relaxation time and Jf is the angular momentum at the
final time of the evolution. Ji is here chosen in such a
way to avoid the contribution of the traveling wave to the
tilting angle. Thus we use the following definition at
relaxation time

Ji ¼ Lni þ S1i þ S2i; ð41Þ
where Lni, S1i, S2i are the orbital angular momentum and
the spin of the first and second components at relaxation
time, respectively. Hence, initial angular momentum is
defined as Newtonian angular momentum since there is
no radiation at that particular time. Given the above,
Fig. 6 shows that NS systems have vanishing tilt. A similar
situation occurs for the EM-A subclass whereas the
NEM-A exhibit a small tilt. Overall, we see a tendency
of the aligned and nonspinning configurations to have a

FIG. 4. Initial angular momentum vs final velocity.

FIG. 5. A relationship between the magnitudes of the initial and
final angular momenta.

FIG. 6. A relationship between the change in the magnitude of
the angular momenta and the tilting angle.
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tilting angle ∼0, which we attribute to the known fact these
configurations are stable ones [22].
On the contrary, preccesing systems are known to be

chaotic. The most interesting cases are the P types, which
have a wide range of tilting angles. In particular, the tilting
angle in NEM-P subclass appears to be inversely propor-
tional to the change of angular momentum, the smaller the
change in magnitude of S, the bigger the tilt. Whether the
EM-P exhibit a similar behavior is unknown due to the lack
of simulation in the same range as NEM-P.
Finally we remark that, despite we calculate the change of

the tilting angle using the total angular momentum at the
relaxed and final time, it is important to note that the tilting
angle is the same for the intrinsic angular momentum S.
Indeed, at those times σ ∼ 0 as there is no radiation at
relaxation time and after the coalescence. Further,R × P ∼ 0
for the plot order in Fig. 14, making Ji ¼ Si and Jf ¼ Sf.

4. Correlation between the gravitational kick
and the final value of Pi=M

After selecting the new Bondi frame we run the codes
using the values for M and S at the relaxation time and
vanishing position and velocity for the center of mass.
Since the center of mass position is obtained algebraically
and then numerically derived to obtain the kickback
velocity it is worthwhile to check its relationship with
the final value of Pi=M.
Note that the Fig. 7 slope is a ¼ 1.02. This 2% difference

can be attributed to the fact that the numerical evolutions
for Pi andM are affected by the linear drifts in σ, making a
small contribution after the coalescence has taken place
(see Sec. III B).

5. Relation between the radiation reaction force (FR)
and the gravitational radiation

It is relevant to plot the time evolution of the (magnitude
of the) radiation reaction force and its relation with the
different modes of Ψ4. To do that we define

Fi
R ¼ 1ffiffiffi

2
p dðMViÞ

du
ð42Þ

and Fig. 8 plot its time evolution of the different cases. In
this case we select the simulation number 0443, but a
similar pattern is obtained by any of the cases obtained. We
first plot the contributions of the different modes of Ψ4, for
the whole process and enlarging the coalescence interval to
enhance the differences between the modes.
As we can see Fig. 8 in these graphs, each mode gives a

different contribution and they even peak at different times.
Thus, depending on the coalescing scenario, the magnitude
and direction of the impulse given by the FR can be quite
different.

FIG. 7. Correlation between Vf and ðPi=MÞf. FIG. 8. Time evolution of the different modes of Ψ4.
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In Fig. 9(b) we plot the magnitude of FR for the 0443
case. In this case the FR and the l ¼ 2 modes of the
gravitational radiation peak at the same time, but this can
only be seen in the numerical data.

6. Some typical behaviors of the center of mass motion
while emitting gravitational radiation

Finally, we plot the trajectory of the center of mass for
selected representatives of each subclass.
Note the difference in the scale of both plots. In the

EM-NS Fig. 10 case the center of mass remains virtually
still and its final velocity is almost zero (1.3 × 10−13 or
0.039 mm=s). The NEM-NS is completely different, in this
case the center of mass describes a spiral trajectory until
the coalescing time, where it is ejected at a final speed of
5.5 × 10−04 or 165 km=s. In the EM-A Fig. 11 case the

center of mass remains virtually in the same place and
after emitting radiation remains at rest (1.26 × 10−12 or
0.378 mm=s). In contrast to EM case, the center of mass in
NEM-A case has a spiral trajectory that is noticeable at the
end, and its final speed is 8.96 × 10−04 (269 km=s).
Both configurations of EM when the spin is static, i.e.,

aligned or nonspinning, present a null kick velocity, whereas
when the masses are nonequal the final kick velocities are
noticeable. This suggests that equal masses configuration
(A or NS) are likely to be stable and thus end up with no
kickback and angular momentum in the same direction.
In the precessing graphs, where the spins are not static,

we observe a similar behavior between the EM or NEM
cases, even though the former is slightly lower than the
latter. The final speeds for the EM and NEM cases are
6.66 × 10−04 (200 km=s) and 1.18 × 10−03 (354 km=s),

FIG. 9. Time evolution of the magnitude of FR.

FIG. 10. Movement of the center of mass with aligned-spins
binaries.The red dot specifies the starting point of the center of
mass and the number above the plot indicates the simulation from
the RIT catalog where ψ4 has been taken.
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respectively. We see the precessing spin plays an important
role on increasing the kickback velocity in Fig. 12(a).
This is a general feature of the class, as can be seen in
Figs. 4(a) and 4(b).

B. Comparison with RIT catalog metadata

There are some scalar quantities listed as final param-
eters in Rochester metadata simulations. In this section we
compare Rochester parameters with the result obtained by
Eqs. (18)–(21). We show that they are consistent except for
some difference in decimals, which we could be better at
matching, making a more accurate evolution.

1. Correlation between mass variations

To compare the mass variation (20) we defined the
Rochester mass change as

ΔMRoch ¼ jMF −Mrelaxj ¼ Mrelax −MF; ð43Þ

whereMF is the final mass of the Kerr black hole andMrelax
is the mass at the relaxation time (which is slightly bigger
than initial mass due to the traveling wave).
Plotting both ΔM leads to 13. We see there is a 20%

difference from the ideal case. This could be attributed to
the fact that defining (43) with Mrelax, we are using a local
measure of mass. This quantity should not differ too much
from the asymptotic relaxed mass, as the only emitted
radiation has been due to the travelling wave. Still, the
effects discussed in Sec. III B can be another cause of this
discrepancy.

2. Correlation between angular momentum changes

In Fig. 14 we compare the variation ΔJ obtained in
Eq. (19) with the angular momentum variation in Rochester
metadata, which we define as

FIG. 11. Movement of the center of mass with nonspinning
binaries.The red dot specifies the starting point of the center of
mass and the number above the plot indicates the simulation from
the RIT catalog where ψ4 has been taken.

FIG. 12. Precessing spins.The red dot specifies the starting
point of the center of mass and the number above the plot
indicates the simulation from the RIT catalog where ψ4 has
been taken.
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ΔJ ¼ jχM2 − JADMj: ð44Þ

The absolute value here makesΔJ positive. We are using as
definition of final angular momentum that of a Kerr black
hole Jf ¼ χM2, where χ andMf are the dimensionless spin
parameter and the final mass of the resultant black hole,
respectively. As the components of the final angular
momentum from the black hole are not provided, we use
definition (44), which gives the correct change for non-
spinning and aligned configurations. Yet this definition
does not coincide exactly with the angular momentum
change for precessing configurations.
On the other hand, we subtract the absolute value of

initial ADM angular momentum to estimate a change of the
angular momentum. Note that making this subtraction we
are considering the small contribution of the traveling wave
to ΔJRoch in Fig. 14.
We end this section by showing the comparison of the

obtained final angular momentum for the evolution
equation (19). The correlation is shown in Fig. 15. JF is
defined as

Jf ¼ jJFj ¼ jJADM þ ΔJj; ð45Þ

with ΔJ being that obtained with (19). Again, JFRoch
is

defined as in (44). As JADM is not the same for all the
simulations, it is not trivial to expect a linear correlation of
JF and JRoch. Whereas a linear correlation is the desired
result between both different formalisms, the reader should
be aware that the methods for calculating the absolute value
are different in each formalism. Indeed, (45) is the absolute
value of a vector, while (44) is the Kerr angular momentum
formula obtained by matching the numerical evolution with
a Kerr metric and its associated parameters.

V. FINAL COMMENTS AND CONCLUSIONS

We have numerically calculated the time evolution for
the center of mass and intrinsic angular momentum for the
777 cases of black hole coalescing binaries available in the
Rochester repository. Since the final outcome of the process
is a single black hole, the behavior of Ri and Sj directly
gives the position and spin of the final black hole.
To perform the numerical evolution we first derived a

one-to-one correspondence between the spin weighted
spherical harmonics of the gravitational radiation at the
repository and the tensorial harmonics that are present in
the equations of motion for Ri and Sj.
We then addressed the issue of the unwanted traveling

waves that are present in any initial data and removed them
from the equations of motion for the 777 cases. This is done
by first finding the relaxation time where the traveling wave
is no longer present (amplitude smaller than the numerical
error in the calculations). We then obtain the velocity of the
center of mass at that time and perform a boost to a new
Bondi frame whose origin coincides with the center of mass
and is initially at rest. For small traveling waves this
translates into a time translation resetting the initial time
to the relaxation time.
Using the equations of motion for the global variables

available for asymptotically flat spacetimes we numerically
obtain the time evolution for D, J, M, and P, and then use
these variables to compute R and S.

FIG. 14. Correlation between ΔJ and ΔJRoch.

FIG. 15. Correlation between the magnitude of final angular
momenta.

FIG. 13. Correlation between ΔM and ΔMRoch.
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The outcomes have been divided into two classes for the
masses, EM or NEM, and three subclasses for the spins:
NS, spinning but aligned with the initial orbital angular
momentum, and nonaligned spins.
Some interesting cases are obtained and discussed. In

particular, the subclass P of precessing cases exhibit a wide
range of different outcomes for the final velocities whereas
the NS and A subclasses do not. These appears to be related
to the chaotic behavior of the P subclass although a more
thorough study is in order. Likewise, the tilting angles of
the P subclass have a nonergodic distribution reaching up to
50. This could also be attributed to the chaotic behavior of
spinning black holes [22–24]. The FR is defined and
obtained for the 777 cases. Although none of the resulting
black holes here analyzed have relativistic speeds, one
could easily give a relativistic definition by simply adding a
gamma factor to the equation. A quantitative description of

the trajectories is also given for representative members of
each subclass.
Finally, the change in the Bondi mass and angular

momentum are compared between our approach and
those from the Rochester catalog. By doing so we single
out the gravitational radiation contribution and thus
introduce less potential sources of errors. The graphics
show a clear correlation between the two approaches with
a slope of 1.2 in both graphs. We leave for future work to
understand the source of this 20% departure from the
ideal correlation.
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