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It was recently found that, when linearized in the absence of matter, 58 cases of the general gravitational
theory with quadratic curvature and torsion are (i) free from ghosts and tachyons and (ii) power-counting
renormalizable. We inspect the nonlinear Hamiltonian structure of the eight cases whose primary
constraints do not depend on the curvature tensor. We confirm the particle spectra and unitarity of all
these theories in the linear regime. We uncover qualitative dynamical changes in the nonlinear regimes of
all eight cases, suggesting at least a broken gauge symmetry, and possibly the activation of negative kinetic
energy spin-parity sectors and acausal behavior. Two of the cases propagate a pair of massless modes at the
linear level, and were interesting as candidate theories of gravity. However, we identify these modes with
vector excitations, rather than the tensor polarizations of the graviton. Moreover, we show that these
theories do not support a viable cosmological background.
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I. INTRODUCTION

In light of both theoretical minimalism and experimental
and observational verification, the preferred effective
theory of gravity is that of Einstein and Hilbert:

LT ¼ −
1

2
mp

2Rþ LM: ð1Þ

The gravitational portion, LG ≡ LT − LM, of the total
Lagrangian LT is powered by the scalar part of the
Riemann curvature tensor R≡ Rμν

μν, which is the de facto
gravitational field strength and contains second derivatives
of the metric gravitational potential, R ∼ ∂2gþ ð∂gÞ2. The
matter Lagrangian LM is taken to be minimally coupled.
Two approaches to generalizing (1) have proven espe-

cially popular:
(1) The artificially imposed symmetry of the Levi–

Civita connection could be relaxed.
(2) Higher-order geometric invariants could be added to

the Lagrangian.
The first approach leads to a nonvanishing torsion, T i

jk,
and a corresponding non-Riemann curvature, Ri

jkl. The
Roman indices refer to a local Lorentz basis, which is
mediated by tetrads (vierbein) or equivalent translational
gauge fields, biμ. The now independent spin connection

may likewise be cast as a rotational gauge field,Aij
μ. In terms

of these new potentials, the gravitational field strengths T ∼
∂bþ bA and R ∼ ∂Aþ A2 are closer to the Yang–Mills
form familiar from the strong and electroweak sectors of the
standard model: they are linear in first derivatives and the
structure constants of the Poincaré group. By demanding
positive parity and freedom from Ostrogradsky ghosts1 in
combination with the second approach, one arrives at the
general quadratic LG ∼mp

2RþR2 þmp
2T 2 theory,

LT ¼ −
1

2
α0mp

2Rþmp
2T ijkðβ1T ijk þ β2T jikÞ

þ β3mp
2T iT i þ α1R2 þRijðα2Rij þ α3RjiÞ

þRijklðα4Rijkl þ α5Rikjl þ α6RklijÞ þ LM; ð2Þ

whereRij≡Rl
ilk;R≡Rl

l, and T i ≡ T l
il. These quadratic

terms are added to the scalar curvature invariant for a total of
ten dimensionless couplings in the theory. Note that no scalar
invariant can be formed from the torsion.
The theory (2) has been deeply studied over four

decades. When linearized on a Minkowski background,
the theory is capable of propagating six massive torsion
modes (rotons or tordions) of spin-parity JP ¼ 0�; 1�; 2�,
in addition to the 2þ mode of the massless graviton [1].
Following early studies by Neville [2,3], Sezgin and
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1Note that Ostrogradsky’s theorem forbids all terms quadratic
in the second-order Riemann tensor except for the Gauss–Bonnet
term; this does not apply to the first-order Riemann–Cartan or
torsion tensors.
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van Nieuwenhuizen found 12 cases of the theory whose
propagator poles have positive residues and real masses,
i.e., unitary theories [4,5]. An exhaustive survey by Lin,
Hobson, and Lasenby [6,7] recently found that there are
450 unitary cases in total. Of these, 58 are also power-
counting renormalizable (PCR), such that the graviton and
roton propagators tend to p−4 and p−2, respectively, in the
ultraviolet limit.2

Perhaps surprisingly, the restriction from unitary to PCR-
unitary cases of (2) universally switches off the Einstein–
Hilbert term

α0 ¼ 0: ð3Þ

In the context of (2), this term in isolation constitutes
the Einstein–Cartan theory of gravity. Einstein–Cartan
theory is dynamically equivalent to general relativity
when the spin tensor of the matter sector vanishes; the
linearized theory contains only the 2þ graviton. Usually,
the quadratic R2 þmp

2T 2 terms are viewed as corrections
to the scalar mp

2R, which may be motivated by analogy to
Einstein’s theory at one loop, LG ∼mp

2Rþ R2. A pure
LG ∼R2 þmp

2T 2 theory is hard to reconcile with this
picture, and necessitates a great deal of work since one
cannot appeal to the viable Einstein–Cartan limit at low
energies. In some sense, a purely quadratic gravity is
actually quite natural. Einstein gravity amounts to a R1;3

gauge theory of diffeomorphisms, whose gauge potential is
gμν. However, the fields biμ and Aij

μ additionally gauge
rotations and, by extension, the whole Poincaré group
R1;3 ⋊ SOþð1; 3Þ. The theory (2) is more properly known
as the quadratic, parity-preserving Poincaré gauge theory
(PGTqþ) of gravity, as pioneered by Kibble [8], Utiyama
[9], Sciama [10], and others.3 In this context, a Lagrangian
quadratic in Yang–Mills field strengths would make an
appealing addition to the standard model—should it prove
viable in the nonlinear regime.
The purpose of this series is to test the nonlinear viability

of the 58 novel theories by probing their Hamiltonian
structure. As a higher-spin gauge theory, the PGTqþ (2) is
always singular; this degeneracy of the kinetic Hessian
greatly complicates the Lagrangian analysis, incentivizing
the Hamiltonian approach. By implementing the algorithm
of Dirac and Bergmann, we are guaranteed to obtain all
propagating degrees of freedom (d.o.f.), along with all
constraints [14]. In the linearized theory this is especially
easy, and allows us to verify the particle spectra and
unitarity of the cases obtained in [6,7]. In the nonlinear

case, the algorithm allows us to flag potentially fatal
pathologies which develop under significant departures
from Minkowski spacetime—if this spacetime is taken to
be a vacuum, then the nonlinear regime is equivalent to that
of strong fields. In particular, we rely on the simple “health
indicator” of modified gravity set out by Chen, Nester, and
Yo: the number and type of constraints should not change
in passing from the linear to nonlinear regimes [15,16].
The motivation for this criterion is twofold. Generically,
a decrease in the number of constraints involves the
activation of potentially ghostly fields [16]. Moreover, it
may be that the nonlinear constraint structure is itself field-
dependent; this is thought to be associated with the
propagation of acausal degrees of freedom [15]. Neither
of these qualities is necessarily fatal unless shown to incur a
physical ghostly or acausal d.o.f., but for the purposes of
this particular study we will take the avoidance of them as
being desirable.
In this paper we will test Case 3, Case 17, Case 20,

Case 24, Case �525, Case �626, Case 28, and Case 32 using
the numbering of [7], with the numbering of cases
previously discovered in [6] indicated by (*). These eight
cases are the most conducive to the Hamiltonian analysis.
Specifically, these are the only cases whose primary
constraints are not functions of the curvature. To our
knowledge, this practical restriction does no more than
ease the evaluation of commutators. We therefore tenta-
tively view the eight cases to be a representative sample of
the 58 novel theories.4

All eight cases fail the prescribed strong-field tests. In
some sense, they do so more dramatically than those
“minimal” cases of PGTqþ which were previously tested,
due to the vanishing of mass parameters [16]. Based on
these results, we find no evidence that the simultaneous
imposition of the weak-field PCR and unitarity criteria
remedy the questionable health of the PGTqþ in the strong-
field regime, as observed in [15–17]. If these findings turn
out to be general, it would seem more efficient to perform
future surveys of PGTqþ in the strong-field regime from the
outset.
We are also able to rule the cases out on cosmological

grounds, using the scalar-tensor analog theory which
replicates the background cosmology of the general ten-
parameter PGTqþ [18]. Out of the eight cases, only Case 3
and Case 17 propagate massless modes consistent with
long-range gravitational forces, yet their nonlinear cosmo-
logical equations are nondynamical. However, we do show
that these cases are the degenerate limit of an otherwise
viable and interesting class of torsion theories obtained by
imposing two very simple constraints on the couplings

2With the exception of Case �19, Case �310, Case �411, and
Case �213 (as labeled in [7]), JP sectors propagate which violate
these rules. However, these “bad” modes are understood to
decouple at high energies without producing divergent loops [7].

3For an excellent series on the dynamical structure of the
PGTqþ from the Lagrangian perspective, see [1,11–13].

4We mention that none of the eight cases are PCR in the
conventional sense of [4], i.e., all of them feature a JP propagator
whose momentum power is non-PCR in the IR, and which
decouples in the UV.

BARKER, LASENBY, HOBSON, and HANDLEY PHYS. REV. D 104, 084036 (2021)

084036-2



of (2), whose background cosmology perfectly replicates
that of Einstein’s torsion-free gravity (1), conformally
coupled to a scalar inflaton ξ,

LT ¼ −
1

2
mp

2Rþ 1

12
ξ2Rþ Xξξ −

1

2
mξ

2ξ2 þ LM: ð4Þ

Here, the inflaton has the kinetic term Xξξ ≡ 1
2
∇μξ∇μξ and

mass mξ. The cosmology resulting from (4) is not scale-
invariant due to the mass term, which is fortunate for
minimal coupling to cosmological matter. However, it is an
interesting surprise that the nonminimal coupling should be
exactly scale-invariant. The failure of Case 3 and Case 17
certainly is not a necessary consequence of the linearized
unitarity and power counting. Indeed, one of the 58 cases
has an excellent cosmological background [18,19], though
an analysis of its Hamiltonian structure is deferred to the
companion paper, since its primary constraints depend on
curvature.
Despite our concerns about the strong-field regime, we

are able to confirm the weak-field unitarity of all eight
cases. We also obtain linearized dynamics which are
consistent with the particle spectra found in [6,7]. We
offer tighter bounds on the massless particle spectra,
identifying the massless modes of Case 3 and Case 17
as vector excitations, rather than the expected tensor
polarizations of the graviton.
The remainder of this paper is set out as follows. In

Sec. II we develop the Hamiltonian formulation of the ten-
parameter theory (2). In Secs. III and IV we apply the
Dirac–Bergmann algorithm to each of the linearized cases,
and compare them with the constraint structure of the
nonlinear theories. In Sec. V we use efficient methods to
show that even the cases with massless modes cannot
support any Friedmann-like cosmological equation.
Conclusions follow in Sec. VI. Following the conventions
of [20] we will use Roman and Greek indices from the
middle of the alphabet i; j…μ; ν… to refer to general
Lorentz and coordinate indices running from 0 to three,
while a; b… and α; β… strictly run from one to three. We
use the “West Coast” signature ðþ;−;−;−Þ. Our poten-
tially nonstandard acronyms are detailed in Table I.

II. CONSTRAINED HAMILTONIAN

A. Gauge theory formulation

Recall that in Einstein’s theory, the covariant derivative
acting on a vector Vμ is simply

∇νVμ ≡ ∂νVμ þ Γμ
λνVλ; ð5Þ

where Γμ
νλ ≡ 1

2
gμσð∂νgλσ þ ∂λgνσ − ∂σgνλÞ is the Levi–

Civita connection with respect to some metric, itself
defined by tangent vectors of the coordinate functions
gμν ≡ eμ · eν on a curved manifold M. The Riemann
curvature tensor is then given by

Rαβμ
ν ≡ 2ð∂ ½βΓν

α�μ þ Γλ½αjμΓνjβ�λÞ: ð6Þ

This geometric interpretation of gravity is not strictly
necessary. In generalizing to theories with both curvature
and torsion, we adopt the setup more familiar from the
standardmodel,where the underlyingmanifold is always flat
Minkowski space M̌. The metric for generally curvilinear
coordinates is then γμν ≡ eμ · eν, and we note that this metric
is strictly flat in the sense of (6). Besides the coordinate basis,
we define a Lorentz basis whose inner product always
returns the Minkowski metric components ηij ≡ êi · êj.
Under this condition, the Lorentz basis is completely free
to rotate under the proper, orthochronous Lorentz rotations at
each point in M̌, and is not presumed to follow from any
particular coordinates (i.e., it is nonholonomic). A vector Vi

referred to this basis has a covariant derivative

DjVi ≡ hjμð∂μVi þ Ai
kμVkÞ; ð7Þ

in which the (inverse) translational gauge field, hiμ, and
rotational gauge field, Aij

μ ≡ A½ij�
μ, are introduced to main-

tain invariance under general coordinate transformations on
M̌ (i.e., passively interpreted diffeomorphisms) and rota-
tions of the Lorentz basis. In this way, the Poincaré group is
gauged. The inverse translational gauge field satisfies
biμhiν ≡ δνμ and biμhjμ ≡ δij. The metric components in
the curved space of Einstein’s theory (such as the flat
cosmological metric we will consider in Sec. V) can be
recovered using gμν ≡ ηijbiμbjν and gμν ≡ ηijhiμhjν.

The gauge invariant measures on M and M̌ are, respec-
tively,

ffiffiffiffiffiffi−gp
, where g≡ det gμν, and b≡ h−1 ≡ detbiμ. Two

field strength tensors are motivated by commuting the
derivative (7)

Rij
kl ≡ 2hkμhlνð∂ ½μAij

ν� þ Ai
m½μAmj

β�Þ; ð8aÞ

T i
kl ≡ 2hkμhlνð∂ ½μbiν� þ Ai

m½μbmν�Þ: ð8bÞ

These are theRiemann–Cartan curvature and torsion tensors,
but are not understood to imbue M̌ with any geometry.

TABLE I. Nonstandard abbreviations.

PGTqþ Quadratic, parity-preserving Poincaré
gauge theory

PCR Power-counting renormalizable
d.o.f. Degrees of freedom
PPM Primary Poisson matrix
(P/S/T)iC (primary/secondary/tertiary) if-constraint
(F/S)C (first/second) class
i(P/S/T)(F/S)C (P/S/T)iC which is (F/S)C on the final shell
s(P/S)FC Sure (primary/secondary) constraint,

always FC
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While the “particle physics” picture is consistent with our
earlier treatments on this topic [18,19,21], we concede that it
is far more usual to treat torsion and Riemann–Cartan
curvature as complimentary geometric qualities. In the
geometric picture, the Riemann spacetimeM is generalized
to a Riemann–Cartan spacetime, rather than specialized to a
Minkowski spacetime. The interpretations are dynamically
indistinguishable, and translations between the two are
provided in [20,21].

B. Primary constraints and 3 + 1

In order to transition to the constrained Hamiltonian
picture [14,20,22], we first define the canonical momenta
as follows:

πi
μ ≡ ∂bLG

∂ð∂0biμÞ
; πij

μ ≡ ∂bLG

∂ð∂0Aij
μÞ
: ð9Þ

Following Refs. [6,7], we will consider only the gravita-
tional part of the Lagrangian, i.e., without any matter LM.
Since the field strengths (8a) and (8b) from which (2) is
constructed make no reference to the velocities of bk0 and
Aij

0, the definitions (9) incur 10 primary constraints,

φk
0 ≡ πk

0 ≈ 0; φij
0 ≡ πij

0 ≈ 0; ð10Þ

so that the conjugate fields bk0 and Aij
0 are nonphysical.

Notice that the weak equality is denoted by (≈). The
constraints (10) are a consequence of Poincaré gauge
symmetry; their presence is independent of the couplings,
and they are first class (FC). We refer to them as “sure”
primary first class (sPFC) constraints. In order to system-
atically isolate the “sure” nonphysical fields, we introduce
the 3þ 1 splitting of the spacetime, in which a spacelike
foliation is characterized by the timelike unit normal nk.
Any vector which refers to the local Lorentz basis may be
split into components Vi ¼ V⊥ni þ V ī, which are, respec-
tively, perpendicular and parallel to the foliation; parallel
indices are always denoted with an overbar. In what
follows, it is very useful to note the identities bk̄αhl̄

α ¼
δk̄
l̄
and bk̄αhk̄

β ¼ δβα. The lapse function and shift vector are
defined with reference to the nonphysical part of the
translational gauge field using this normal

N ≡ nkbk0; Nα ≡ hk̄
αbk̄0: ð11Þ

The remaining momenta can be expressed in the “parallel”
forms π̂i

k̄ ≡ πi
αbkα and π̂ij

k̄ ≡ πij
αbkα. In order to reveal

the Hamiltonian structure of the theory as naturally as
possible, the Lagrangian in (2) is best written in the
irreducible form

LT ¼ −
1

2
α0mp

2Rþ
X6
I¼1

α̂IRij
kl
IPij

kl
nm

pqRnm
pq

þmp
2
X3
I¼1

β̂IT i
jk
IPi

jk
l
nmT l

nm þ LM; ð12Þ

where the nine operators IP…
… project out all the irreduc-

ible representations of SOð1; 3Þ, in no particular order, from
the field strengths. For the details of these projections,
including the linear translation between the quadratic
couplings of (2) and (12), see Appendix A. Within the
field strengths, the 3þ 1 splitting is used again to separate
out the fields bk0 and Aij

0 (which are nonphysical) and the
velocities of all fields (which are noncanonical) by

T i
kl ¼ T i

kl þ 2n½kT i⊥l̄�; ð13aÞ

Rij
kl ¼ Rij

kl þ 2n½kRij⊥l̄�; ð13bÞ

where such variables are confined to the second term in
each case. We are concerned with theories of the quadratic
LG ∼R2 þmp

2T 2 form (i.e., α0 ¼ 0), under the source-
free condition LM ¼ 0. Substituting (12) into (9) and using
Eqs. (13a) and (13b), we find that the parallel momenta can
be neatly expressed as functions of the field strengths

π̂i
k̄

J
¼ ∂LT

∂T i⊥k̄
¼ 4mp

2
X3
I¼1

β̂I
IPi

⊥k̄
n
mlT n

ml; ð14aÞ

π̂ij
k̄

J
¼ ∂LT

∂Rij⊥k̄
¼ 8

X6
I¼1

α̂I
IPij

⊥k̄
nm

pqRmn
pq; ð14bÞ

where the measure J ¼ b=N on the foliation is strictly
physical, since bk0 is divided out by N.
Writing the parallel momenta in this form facilitates the

identification of further primary constraints. Beginning
with (14a), we find that the 12 translational parallel
momenta decompose into four irreducible representations
of O(3). Using the spin-parity notation of [16,17], we write
these as

π̂kl̄ ¼ π̂kl þ nkπ̂⊥l̄; ð15aÞ

π̂kl ¼
1

3
ηklπ̂ þ ˆ̂πkl þ π̂

∼

kl: ð15bÞ

In this expansion we identify the 0þ scalar π̂, the anti-
symmetric 1þ vector ˆ̂πkl, the 1− vector π̂⊥k̄, and the

symmetric-traceless 2þ tensor π̂
∼

kl. Applying this decom-
position to (14a) as a whole, we obtain four functions
which, with the aid of (13a), are simultaneously defined
both in terms of canonical and noncanonical variables:
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φ≡ J−1π̂ ¼ −4β̂2mp
2ηklT kl⊥; ð16aÞ

φ̂kl ≡ J−1 ˆ̂πkl −
4

3
ðβ̂1 − β̂3Þmp

2T ⊥kl

¼ − 4

3
ðβ̂1 þ 2β̂3Þmp

2T ½kl�⊥; ð16bÞ

φ⊥k̄ ≡ J−1π̂⊥k̄ −
4

3
ðβ̂1 − β̂2Þmp

2T
⇀

k̄

¼ − 4

3
ð2β̂1 þ β̂2Þmp

2T ⊥k̄⊥; ð16cÞ

φ
∼
kl ≡ J−1π̂

∼

kl ¼ −4β̂1mp
2T hkli⊥; ð16dÞ

where the vector and symmetric-traceless torsion are

T
⇀

k̄ ≡ T ī
ki; T hkli⊥ ≡ T ðklÞ⊥ − 1

3
ηklη

ijT ij⊥: ð17Þ

In each case, if the combination of coupling constants
appearing in the noncanonical RHS definition vanishes, the
canonically defined function on the LHS becomes a
primary “if”-constraint (PiC). An analogous construction
is available for (14b), with the 18 remaining momenta
decomposing as follows:

π̂klm̄ ¼ π̂klm þ 2n½kπ̂⊥l̄�m̄; ð18aÞ

π̂⊥kl ¼
1

3
ηklπ̂⊥ þ ˆ̂π⊥kl þ π̂

∼

⊥kl; ð18bÞ

π̂klm ¼ 1

6
ϵklm⊥Pπ̂ þ π̂

⇀

½k̄ηl̄�m̄ þ 4

3
Tπ̂klm: ð18cÞ

These are the 0þ scalar π̂⊥, the antisymmetric 1þ vector
ˆ̂π⊥kl, the symmetric 2þ tensor π̂

∼

⊥kl, and then the 0−

pseudoscalar Pπ̂, the 1− vector π̂
⇀

k̄, and the 2− tensor
Tπ̂klm. We will use ( P· ) to refer to the pseudoscalar part
of general tensors, and (T·klm) to refer to the tensor part
(with antisymmetry implicit in the first pair of indices, even
if ·klm ≡ ·k̄½lm�). The six PiC functions from (14b) are then

φ⊥ ≡ J−1π̂⊥ þ 2ðα̂4 − α̂6ÞR ¼ 4ðα̂4 þ α̂6ÞR⊥⊥; ð19aÞ

Pφ≡ J−1Pπ̂þ 4ðα̂2− α̂3ÞPR⊥∘ ¼−4ðα̂2þ α̂3ÞPR∘⊥; ð19bÞ

φ̂⊥kl ≡ J−1 ˆ̂π⊥kl − 4ðα̂2 − α̂5ÞR½kl� ¼ −4ðα̂2 þ α̂5ÞR⊥½kl�⊥;

ð19cÞ

φ
⇀

k̄≡ J−1 π̂
⇀

k̄þ 4ðα̂4− α̂5ÞR⊥k̄ ¼−4ðα̂4þ α̂5ÞRk̄⊥; ð19dÞ

φ
∼
⊥kl ≡ J−1π̂

∼

⊥kl þ 4ðα̂1 − α̂4ÞRhkli
¼ −4ðα̂1 þ α̂4ÞR⊥hkli⊥; ð19eÞ

Tφklm ≡ J−1Tπ̂klm − 4ðα̂1 − α̂2ÞTR⊥klm

¼ −4ðα̂1 þ α̂2ÞTRklm⊥; ð19fÞ

where we make further notational definitions

PR⊥∘ ≡ ϵijk⊥Rijk⊥; PR∘⊥ ≡ ϵijk⊥R⊥ijk;

Rkl ≡Rī
kli; R≡Rī

ī: ð20Þ

By this analysis, the possible occurrence of primary
constraints is systematically exhausted.

C. Secondary constraints and the Hamiltonian

In order to be consistent, a primary constraint should not
have any velocity within the final mass shell, so its commu-
tator with the total Hamiltonian should weakly vanish:

_φðx1Þ≡
Z

d3x2fφðx1Þ;HTðx2Þg ≈ 0: ð21Þ

The total Hamiltonian is related to the canonical
Hamiltonian, the Legendre-transformed Lagrangian, by
the constraints and their multiplier fields:

HT ≡HC þ uk0φk
0 þ 1

2
uij0φij

0 þ ðu · φÞ; ð22Þ

where the last term schematically represents any PiCs
which may arise. The canonical Hamiltonian may generally
be collected into the insightful Dirac form [23,24],

HC ≡ NH⊥ þ NαHα −
1

2
Aij

0Hij þ ∂αD
α; ð23Þ

i.e., as a linear function of the nonphysical fields up to a
surface term. The remaining functions, which appear in
(23), are defined as follows:

H⊥ ≡ π̂i
k̄T i⊥k̄ þ

1

2
π̂ij

k̄Rij⊥k̄ − JL − nkDαπk
α; ð24aÞ

Hα ≡ πi
βTi

αβ þ
1

2
πij

βRij
αβ − bkαDβπk

β; ð24bÞ

Hij ≡ 2π½iαbj�α −Dαπij
α; ð24cÞ

Dα ≡ bi0πiα þ
1

2
Aij

0πij
α: ð24dÞ

It is clear from (21) and the Dirac form (23) that the
consistency of (10) invokes 10 “sure” secondary first class
(sSFC) constraints,
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H⊥ ≈ 0; Hα ≈ 0; Hij ≈ 0: ð25Þ

It is important to note that while the sSFCs in (25) are
always enforced, it does not always follow that 2 × 10
d.o.f. are removed from the theory, as is the case with the
sPFCs in (10). The functions involved are quite compli-
cated, and may degenerately express a reduced number of
FCs, or FCs which only appear at deeper levels in the

consistency chain. Indeed, while this is very rare in the
literature, we will find that it occurs for all eight novel
theories, as a consequence of vanishing mass parameters.
The linear and rotational super-momentaHα andHij are

kinematic generators which do not impinge on the dynam-
ics. Thus, in the evaluation of (21), it is sufficient to work
purely with the super-HamiltonianH⊥, which is, at length,
expanded out using Eqs. (12), (13b), and (13a) to give

H⊥ ¼ mp
2J

X3
I¼1

β̂I½4T i⊥k̄
IPi

⊥k̄
j
⊥l̄T j⊥l̄ − T i

mk
IPi

mk
j
nlT j

nl�

þ J
X6
I¼1

α̂I½4Rip⊥k̄
IPip

⊥k̄
jq

⊥l̄Rjq⊥l̄ −Rip
mk

IPip
mk

jq
nlRjq

nl� − nkDαπk
α;

¼ J
16

�
2φ2

3β̂2mp
2
þ 6φ̂klφ̂

kl

ðβ̂1 þ 2β̂3Þmp
2
þ 6φ⊥k̄φ

⊥k̄

ð2β̂1 þ β̂2Þmp
2
þ 2φ

∼
klφ
∼kl

β̂1mp
2
þ 2φ⊥2

3ðα̂4 þ α̂6Þ
þ

Pφ2

6ðα̂2 þ α̂3Þ
þ 2φ̂⊥klφ̂

⊥kl

α̂2 þ α̂5

þ φ
⇀

k̄φ
⇀k̄

α̂4 þ α̂5
þ 2φ

∼
⊥klφ

∼⊥kl

α̂1 þ α̂4
þ 16Tφklm

Tφklm

9ðα̂1 þ α̂2Þ
�
þ J

�
1

3
ð2β̂1 þ β̂3Þmp

2T ⊥klT
⊥kl þ 1

3
ðβ̂1 þ 2β̂2Þmp

2T
⇀

k̄T
⇀k̄

−
1

6
β̂3mp

2PT 2þ 16

9
β̂1mp

2TT klm
TT klm þ 1

6
ðα̂4 þ α̂6ÞR2 −

1

6
ðα̂2 þ α̂3ÞPR⊥∘2 þ 2ðα̂2 þ α̂5ÞR½kl�R

½kl�

þ ðα̂4 þ α̂5ÞR⊥k̄R
⊥k̄ þ 2ðα̂1 þ α̂4ÞRhkliR

hkli þ 16

9
ðα̂1 þ α̂2ÞTRklm

TRklm

�
− nkDαπk

α: ð26Þ

To arrive at the second equality in (26), the noncanonical
“perpendicular” field strengths appearing in the first equal-
ity are canonicalized at length by the dual PiC definitions in
Eqs. (16a)–(16d) and Eqs. (19a)–(19f), resulting in terms
quadratic in the PiC functions, and in the canonical
“parallel” field strengths. The resulting expression is quite
lengthy, but can be simplified for any given theory by safely
eliminating those PiC functions which become constraints.
The signs of the remaining quadratic PiC terms are then
instrumental in the identification of unconstrained ghosts,
since the PiC functions are schematically of the form φ ∼
π þR or φ ∼ π þ T .
The consistency of the PiCs is less straightforward.

Generally, the PiCs may be FC or second class (SC) within
their own mass shell. In the case that a PiC is FC, (21)
provides a secondary if-constraint (SiC). Possibly, the PiC
and SiC do not commute; in that case both become SC
within the new mass shell and the consistency of the SiC
allows a multiplier to be determined:

_χðx1Þ≡
Z

d3x2ðNfχðx1Þ;H⊥ðx2Þg

þ u · fχðx1Þ;φðx2ÞgÞ ≈ 0: ð27Þ

Otherwise, a tertiary if-constraint (TiC) may be found, and
the process continues until the constraint chain from the
PiC is absorbed by another chain, or by the sSFCs. In the

case that a PiC is already SC within the PiC mass shell, its
chain terminates immediately and two multipliers are
determined. We note that, occasionally, a constraint may
be encountered at some deep level which retroactively
terminates the chain at a shallower point. Only once the
algorithm has terminated is it safe to categorise the if-
constraints as FC or SC.
In the linearized theory [12], the analysis is greatly

simplified by an understanding of the mass spectrum [1].
Only the Oð1Þ parts of the PiC commutators contribute to
the evaluation of the multipliers. Such commutators are
possible only between pairs of PiCs which belong to the
same O(3) irrep, and which are known as conjugate pairs
[25]. Conjugate PiCs will fail to commute in the linear
theory only when their common mass parameter is non-
vanishing. In this case, if only one PiC in a pair is present, it
will still fail to commute with the SiC that maintains its
consistency. Particularly, the rotational Pφ and Tφklm have
no O(3) counterparts in the translational sector, and are
conjugate with their secondaries Pχ and Tχklm a priori. In
the case of vanishingmass parameters, the PiCs are FC, and
a new gauge symmetry is invoked. The PiCs belonging to
various O(3) irreps, along with their kinetic parameters and
linearized mass parameters, are listed in Table II.
Note that up to this point, our discussion has been fully

general, and lays the theoretical foundations and conven-
tions for the forthcoming series. The evaluation of Poisson
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brackets is made tedious by the dependence of various
quantities on the translational gauge field, as illustrated by
the following useful identities:

∂nl
∂bkμ≡−nkhl̄μ;

∂hlν
∂bkμ≡−hkνhlμ;

∂b
∂bkν≡bhkν;

∂J
∂bkν≡Jhk̄

ν;
∂N
∂bkν≡Nnkh⊥ν: ð28Þ

As a crude measure to simplify the calculations, we
artificially restrict our analysis in this paper to theories
whose PiCs among Eqs. (19a)–(19f) do not depend on
Rij

kl. It must be emphasized that this does not (to our

knowledge) translate into any useful restriction on the
physics. Of the 58 novel theories in [6,7], eight satisfy our
criterion: Case 3, Case 17, Case 20, Case 24, Case �525,
Case �626, Case 28 and Case 32. For most of these cases,
we are fortunate that the remaining PiCs among Eqs. (16a)–
(16d) also do not depend on T i

kl. Case 3 and Case 17 are
exceptions to this rule. We detail in Table III our prior
understanding of these theories, as encoded by the saturated
graviton and roton propagators, linearized on Minkowski
spacetime in the absence of matter. Aside from having
torsion-dependent PiCs, Case 3 and Case 17 are particu-
larly interesting as candidate theories of gravity, as they
contain two massless d.o.f. with power in the 2þ part of the
propagator—we will return to this point in Sec. IV.
From our discussion in Sec. II C, we see that the

constraint structure of the theory depends partially on
the commutators between the PiCs, which form the primary
Poisson matrix (PPM). In Secs. III and IV we will use the
structure of the nonlinear PPM as a proxy for the health of
each theory.

III. MASSIVE-ONLY RESULTS

A. Case �626

Conveniently, the PiCs of the massive theories depend on
neither T i

jk norR
ij
kl, so we will have schematically φ ∼ π

for both translational and rotational sectors. By substituting
the definition of Case �626 from Table III into (26) and (22),
the total Hamiltonian is seen to take the form

HT ¼ b
96

�
18φ̂klφ̂

kl

β̂3
−

Pφ2

α̂3

�
þ fields; ð29Þ

TABLE II. Spin-parity sectors and associated PiCs, along with
their kinetic and mass parameters. For completeness, we include
the mp

2R term, mediated by α0.

JP PiC Kinetic parameter Mass parameter

0þ
φ β̂2 α0ð2α0 þ β̂2Þφ⊥ α̂4 þ α̂6

0− Pφ α̂2 þ α̂3 α0 þ 2β̂3

1þ
φ̂kl β̂1 þ 2β̂3 ðα0 þ 2β̂3Þðα0 − β̂1Þφ̂⊥kl α̂2 þ α̂5

1−
φ̂⊥k̄ 2β̂1 þ β̂2 ð2α0 þ β̂2Þðα0 − β̂1Þ
φ
⇀

k̄
α̂4 þ α̂5

2þ
φ
∼
kl

β̂1
α0ðα0 − β̂1Þ

φ
∼
⊥kl

α̂1 þ α̂4

2− Tφklm α̂1 þ α̂2 α0 − β̂1

TABLE III. From the 58 unitary, power-counting renorm alizable cases of (2), we consider the eight cases whose primary constraints
do not depend on the Riemann–Cartan curvature. The numbering follows [7], with the original numbering of cases first identified in [6]
indicated by (*). The definitive constraints on the couplings are given, along with extra conditions which fix the unitarity, separated by a
caret (∧). The methods of [6,7] provide partial information about the particle spectrum. Propagators may be of Aij

μ (blue), or the
antisymmetric (green) or symmetric (red) parts of biμ. Propagator poles are massless (empty circles) or massive (filled circles). Within
each JP sector, Aij

μ and biμ modes may be coupled (multiple colors) or transmuted by gauge transformations (multiple circles).
Ultimately, the propagator spectrum is only indicative of the particle spectrum; the actual number of propagating degrees of freedom are
shown in the final column, but their field character, or JP, is indeterminate in the massless case, because poles from multiple JP sectors
coincide at the origin of momentum-space.

# Criticality equalities Unitary inequalities 0− 0þ 1− 1þ 2− 2þ d.o.f.

Case 3 α̂1 ¼ α̂2 ¼ α̂4 ¼ α̂6 ¼ β̂2 ¼ β̂1 þ 2β̂3 ¼ 0 α̂3 < 0∧ α̂5 < 0∧ β̂1 < 0

Case 17 α̂1 ¼ α̂2 ¼ α̂3 ¼ α̂4 ¼ α̂6 ¼ β̂2 ¼ β̂1þ2β̂3 ¼ 0 α̂5 < 0

Case 20 α̂1 ¼ α̂2 ¼ α̂4 ¼ α̂5 ¼ α̂6 ¼ 0 0 < β̂3 ∧ α̂3 < 0

Case 24 α̂1 ¼ α̂2 ¼ α̂4 ¼ α̂6 ¼ β̂1 ¼ 0 0 < β̂3 ∧ α̂3 < 0

Case �525 α̂1 ¼ α̂2 ¼ α̂4 ¼ α̂5 ¼ α̂6 ¼ β̂1 ¼ 0 0 < β̂3 ∧ α̂3 < 0

Case �626 α̂1 ¼ α̂2 ¼ α̂4 ¼ α̂5 ¼ α̂6 ¼ β̂1 ¼ β̂2 ¼ 0 0 < β̂3 ∧ α̂3 < 0
Case 28 α̂1 ¼ α̂2 ¼ α̂4 ¼ α̂6 ¼ β̂1 ¼ β̂2 ¼ 0 0 < β̂3 ∧ α̂3 < 0
Case 32 α̂1 ¼ α̂2 ¼ α̂4 ¼ α̂5 ¼ α̂6 ¼ β̂2 ¼ 0 0 < β̂3 ∧ α̂3 < 0
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where we include only the part quadratic in the momenta.
The remaining eight PiC functions that do not appear in
(29) are primarily constrained, and give rise to the follow-
ing nonvanishing commutators within the PiC shell:

fφ⊥ī;φ⊥l̄g ≈
2

J2
ˆ̂πilδ

3; ð30aÞ

fφ⊥ī; φ̂⊥lmg ≈ −
1

6J2
ϵilm⊥Pπ̂δ3; ð30bÞ

fφ∼ ij;φ
∼
lmg ≈

1

J2
½ηīðl̄j ˆ̂πj̄jm̄Þ þ ηj̄ðl̄j ˆ̂π ījm̄Þ�δ3; ð30cÞ

fφ∼ij;
Tφlmng ≈

1

24J2
½2ηðījn̄ϵjj̄Þlm⊥ − ηðījl̄ϵjj̄Þmn⊥

þηðījm̄ϵjj̄Þln⊥�Pπ̂δ3; ð30dÞ

where δ3 represents the equal-time Dirac function. The
nonlinear PPM of Case �626 is then written:

ð31Þ

The elements of the matrix schematically represent the
nonlinear Poisson brackets between the PiCs. The PiCs are
labeled, along with their multiplicities, at the edges of the
PPM. They are arranged so as to divide the matrix into
translational and rotational blocks, separated by (þ). All
brackets are restricted to the PiC shell. Commuting PiCs are
dentoted by (·). Noncommuting PiCs denoted as (π̂) are
strictly linear combinations of π̂ijk̄ and π̂i

k̄ as detailed in
Eqs. (30a)–(30d). Generally, these expressions can be quite
lengthy, so henceforth we confine them to Appendix C.
Commutators depending on momenta which (as we shall
shortly show) propagate in the final linear theory are
denoted by (π̂!). These are significant as they are presumed
to persist even when the full nonlinear Dirac–Bergmann
algorithm is terminated, except possibly on any strongly
coupled spacetimes which might be found away from
Minkowski spacetime. Constant terms only arise in brack-
ets between conjugate PiCs ( ), and then only if both PiCs
have nonvanishing mass parameters. Since all the PiC mass
parameters vanish in Case �626, no constant terms can arise.
The linearized theory is sensitive only to these constant
terms, but we see from (31) that the conjugate PiCs also
commute in the nonlinear Case �626.

Let us now consider the consistency of the PiCs, and
implement the Dirac–Bergmann algorithm for the linear-
ized theory [26–28]. Within the PiC shell, we encounter the
following SiCs:

χ♭⊥k̄ ≈ −2η♭mlD♭
m̄
ˆ̂π♭kl; ð32aÞ

χ̂♭⊥kl ≈ 2 ˆ̂π♭kl −
1

6
ϵ♭klm⊥η♭mnD♭

n̄
Pπ̂♭; ð32bÞ

where quantities linearized on the Minkowski background5

are denoted with (♭). Also within this shell, we find H♭⊥k̄

and H♭⊥k̄ already vanish weakly, while the linear super-
momentum and vector part of the rotational super-momen-
tum give further sSFCs:

H♭
α ≈ −h♭α j̄η♭klD♭

k̄
ˆ̂π♭jl; ð33aÞ

H♭
kl ≈ 2 ˆ̂π♭kl −

1

6
ϵ♭klm⊥η♭mnD♭

n̄
Pπ̂♭: ð33bÞ

The SiCs clearly vanish in the sSFC subshell, terminat-
ing the algorithm immediately. We find that H♭

α is already
implied by H♭

kl, which constitutes a total of three sSFCs.
The PiCs are all FC, and the total number of PiCs which are
FC on the final shell (iPFCs) can be read off from (31).
Recalling also the 10 sPFCs, and counting all FCs twice,
we find that there is only one propagating d.o.f., as
expected from Table III:

1 ¼ 1

2
ð80 − 2 × 10½sPFC� − 2 × 3½sSFC�

− 2 × ð1þ 3þ 5þ 1þ 3þ 3þ 5þ 5Þ½iPFC�Þ: ð34Þ

So, what is this d.o.f.? We know that there are 26
undetermined multipliers, to match each of the iPFCs.
Generically, this makes it very difficult to make sense of the
equations of motion. However, we can make an educated
guess by noticing that the functions φ̂kl and

Pφ are not PiCs
and in the end, it turns out to be the 0− torsion which is
propagating. Two applications of (21) produce the accel-
eration of a quantity. Accordingly (and assuming some
solution and gauge in which spatial gradients and multi-
pliers vanish) the pseudoscalar torsion PT ♭ can be cast as a
harmonic oscillator with mass

m≡ 2

ffiffiffiffiffiffiffiffi
jβ̂3j
jα̂3j

s
mp; ð35Þ

5Note also that we use the linearized gauge covariant derivative
D♭

ī, even to replace the nonlinear coordinate derivative h♭ ī
μ∂μ.
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if β̂3=α̂3 > 0. The unitarity conditions in Table III can now
be decoded. The condition α̂3 < 0 clearly wards off a 0−

ghost by inspection of (29), whereas β̂3 < 0 then prevents
the 0− from becoming tachyonic.
In the nonlinear theory, the PPM is no longer empty as

shown in (31). We anticipate that the emergent commuta-
tors will ultimately result in a fundamentally different
particle spectrum. Particularly, we see from Eqs. (30c)
and (30d) that φ⊥k̄, φ

∼
kl, φ̂⊥kl, and

Tφklm are all demoted
from iPFCs to PiCs which are SC on the final shell (iPSCs)
so long as 0− is activated. Possibly, 0− becomes strongly
coupled on some other privileged surface within the final
shell, but since the converse is unlikely to be true we
conclude that an iPFC generally becomes an iPSC in the
nonlinear theory. According to Dirac’s conjecture, the FCs
are associated with gauge symmetries. More correctly,
every primary FC constraint can be used to construct a
nontrivial gauge generator using the Castellani algorithm
[29]. We therefore expect that a generator is generally
broken.
To see one way in which this might affect the outcome,

imagine that none of the sSFCs are degenerate in the full
nonlinear theory, but that they still encode the iSFCs
(which therefore need not appear in the final count). The
nonlinear theory would then be expected to propagate two
d.o.f.,

2 ¼ðe:g:Þ 1
2
ð80 − 2 × 10½sPFC� − 2 × 10½sSFC�

− 2 × ð1þ 1þ 3þ 5Þ½iPFC�
− ð3þ 5þ 3þ 5Þ½iPSC�Þ; ð36Þ

suggesting that somehow one d.o.f. from the 1þ sector (i.e.,
the only JP other than 0− which is not primarily con-
strained), is generally activated, but becomes strongly
coupled on Minkowski spacetime. It is not clear what this
would look like, and we emphasize that the specific
scenario in (36) is unlikely to be the one which is realized.
The full picture can only be revealed by performing the
nonlinear Dirac–Bergmann analysis, beginning from (31).
Following treatments of simpler cases of PGTqþ in [16], we
will not go this far. However, we think it likely that any
activation of the 1þ sector will damage the unitarity of the

theory, since we see from (29) that ˆ̂πkl
ˆ̂πkl has a negative

contribution to the energy by the same condition β̂3 < 0
that upholds the unitarity of the 0− mode. For further
discussion of the “positive energy test,” we direct the reader
to Appendix B.
Finally, (31) may also indicate that the nonlinear theory

violates causality. We refer to the test based on the
tachyonic shock in the nonlinear Proca theory [15], which
was also implemented in [16], whereby the PPM rank is not
required to depend on the values of the fields and their
momenta. The motivation for this requirement is as follows.

It is easy to see from (21) that the multipliers Au and Bu of a
pair of PiCs Aφ and Bφ can be determined in the case that
fAφ; Bφg ≉ 0 on the final shell. Moreover, Au will be
nonvanishing if fHC; Bφg ≉ 0. Imagine that a dynamical
trajectory intersected a surface Σ on which fAφ; Bφg → 0.
The multiplier Au had better not have any physical
interpretation in that case, since it would diverge.6

Unfortunately in the case of PGTqþ, the multipliers can
be written in terms of the noncanonical velocities7 through
the dual definitions of the PiC functions in Eqs. (16a)–
(16d) and Eqs. (19a)–(19f). The interpretation is then that a
tachyonic excitation develops on the approach to Σ. In the
case at hand, the nonlinear PPM in (31) is populated by
momenta, and the linearized PPM is empty. Thus,
Minkowski spacetime is just such a surface Σ. More
generally, when the linearized PPM is populated by
constant mass parameters, the requirement becomes that
the nonlinear PPM pseudodeterminant should be positive-
definite within the final shell.

B. Case 28

Since Case 28 has fewer PiCs than Case �626, the kinetic
part of the Hamiltonian is more extensive.

HT ¼ b
96

�
6ðφ⇀k̄φ

⇀k̄ þ 2φ̂⊥klφ̂
⊥klÞ

α̂5

þ 18φ̂klφ̂
kl

β̂3
−

Pφ2

α̂3

�
þ fields; ð37Þ

while the PPM has fewer dimensions:

ð38Þ

Within the PiC shell, we find that φ♭ and φ
∼♭

kl already
weakly vanish, leaving the following SiCs:

6The problem is somewhat analogous to one of strong
coupling. If the prefactor to the kinetic term of a field vanishes
(i.e., its mass becomes infinite) on some Σ, the Heisenberg
principle suggests that quantum fluctuations will diverge on the
approach to Σ.

7We note a caveat here, that this interpretation is strictly true
for theories with nonvanishing mass parameters; more careful
investigation of the multiplier interpretation may be warranted for
the cases at hand.
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χ♭⊥k̄ ≈ −2η♭mlD♭
m̄
ˆ̂π♭kl; ð39aÞ

χ♭⊥ ≈ −η♭mlD♭
m̄ π̂
⇀♭

l̄; ð39bÞ

χ
∼♭

⊥kl ≈
1

2
D♭hk̄ π̂

⇀♭

l̄i; ð39cÞ

Tχ♭klm ≈
1

2
D♭

m̄
ˆ̂π♭⊥kl þ

1

2
D♭½l̄ ˆ̂π

♭⊥k̄�m̄

þ 3

4
η♭m̄½k̄jη♭ījD♭

ī
ˆ̂π♭⊥jl̄�j̄; ð39dÞ

which do not give rise to any TiCs. Also within the PiC
shell, the following sSFCs appear:

H♭
α ≈ −h♭α j̄η♭klD♭

k̄
ˆ̂π♭jl; ð40aÞ

H♭
kl ≈ 2 ˆ̂π♭kl −

1

6
ϵ♭klm⊥η♭mnD♭

n̄
Pπ̂♭ þD♭½k̄ π̂

⇀♭

l̄�; ð40bÞ

H♭⊥k̄ ≈ η♭jlD♭
j̄
ˆ̂π♭⊥kl: ð40cÞ

In this case, it is easiest to restrict to subshells using the
SiCs and sSFCs simultaneously. We first note that H♭⊥k̄

restricts ˆ̂π♭⊥kl to be solenoidal, dual to the gradient of a
scalar, and thus eliminates two d.o.f. The remaining d.o.f. is

eliminated by Tχ♭klm. Similarly, χ♭⊥ restricts π̂
⇀♭

k̄ to a
solenoidal axial vector, removing one d.o.f. A further
d.o.f. is removed by substituting H♭

kl into H♭
α, and a

final d.o.f. is removed by χ
∼♭

⊥kl. Separately, H
♭
kl removes

three d.o.f. All the PiCs and SiCs are FC, and one d.o.f.
remains, as expected from Table III:

1 ¼ 1

2
ð80 − 2 × 10½sPFC� − 2 × ð1þ 3þ 2Þ½sSFC�

− 2 × ð1þ 3þ 5þ 1þ 5þ 5Þ½iPFC�
− 2 × ð1þ 1þ 1Þ½iSFC�Þ: ð41Þ

As with Case �626, the no-ghost condition, α̂3 < 0, protects
the 0− mode in (37). However, we note that the linearly
propagating Pπ̂ again emerges at the nonlinear level in (38),
so that a linear gauge symmetry is broken and (41) is not
valid sufficiently far from Minkowski spacetime. Whether
or not an increase in the propagating d.o.f. results in a ghost
is not so clear in Case 28 as it was in Case �626. From (37),
we see that an activation of ˆ̂πkl would endanger nonlinear
unitarity by the linear no-tachyon condition β̂3 < 0.

However, if either of the vector torsions π̂
⇀

k̄ or ˆ̂π⊥kl were
to propagate, positive-definite contributions toHT could be
ensured by respectively fixing α̂5 < 0 or α̂5 > 0, since α̂5

does not serve to shore up the linearized unitarity. The key
point here, as discussed in Appendix B, is that with our
“West Coast” signature every contraction on parallel
indices introduces a factor of −1. Therefore, if both vector
torsions propagate in the nonlinear theory, it would seem
that negative kinetic energy contributions to HT are
unavoidable. Whatever the status of ghosts, we observe
that the nonlinear PPM has field-dependent rank.

C. Case �525

The structure of Case �525 has many similarities with that
of Case 28. The Hamiltonian takes the form

HT ¼ b
96

�
4ðφ2 þ 9φ⊥k̄φ

⊥k̄Þ
β̂2

þ 18φ̂klφ̂
kl

β̂3
−

Pφ2

α̂3

�
þ fields; ð42Þ

while the nonlinear PPM is more sparsely populated:

ð43Þ

Within the PiC shell, we have

χ̃♭kl ≈ −D♭hk̄π̂♭⊥l̄i; ð44aÞ

χ♭⊥ ≈ π̂♭; ð44bÞ

χ̂♭⊥kl ≈ 2 ˆ̂π♭kl −
1

6
ϵ♭klm ⊥η♭mnD♭

n̄
Pπ̂♭; ð44cÞ

χ
⇀♭

k̄ ≈ 2π̂♭⊥k̄; ð44dÞ

and this time, all 10 sSFCs persist in the PiC shell,

H♭⊥ ≈ −η♭klD♭
k̄π̂

♭⊥l̄; ð45aÞ

H♭
α ≈ −

1

3
h♭αk̄D♭

k̄π̂
♭ − h♭αk̄η♭jlD♭

j̄
ˆ̂π♭kl; ð45bÞ

H♭
kl ≈ 2 ˆ̂π♭kl −

1

6
ϵ♭klm⊥η♭mnD♭

n̄
Pπ̂♭; ð45cÞ

H♭⊥k̄ ≈ π̂♭⊥k̄: ð45dÞ
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We find thatH♭⊥k̄ andH
♭
kl each remove three d.o.f., while

χ♭⊥ removes one d.o.f.; the remaining sSFCs and SiCs are
then implied, and the PiCs and SiCs are FC. Once again,
one d.o.f. remains as expected from Table III,

1 ¼ 1

2
ð80 − 2 × 10½sPFC� − 2 × ð3þ 3Þ½sSFC�

− 2 × ð5þ 1þ 3þ 3þ 5þ 5Þ½iPFC�
− 2 × 1½iSFC�Þ: ð46Þ

The discussion now proceeds in much the sameway as with
Case 28, since PiC commutators linear in the propagating
Pπ̂ emerge away fromMinkowski spacetime. This time, it is
the tetrad momenta π̂ and π̂⊥k̄ which introduce extra
uncertainty regarding ghosts. If only one of these momenta
becomes activated, β̂2 may be used to ensure it has a
positive contribution toHT. Again, the nonlinear PPM rank
is field-dependent.

D. Case 24

Case 24 has only 16 PiCs, the fewest out of all the cases
we consider. The kinetic part of the Hamiltonian is propor-
tionally more complicated,

HT ¼ b
96

�
6ðφ⇀k̄φ

⇀k̄2 þ 2φ̂⊥klφ̂
⊥klÞ

α̂5
þ 18φ̂klφ̂

kl

β̂3

þ 4ðφ2 þ 9φ⊥k̄φ
⊥k̄Þ

β̂2
−

Pφ2

α̂3

�
þ fields; ð47Þ

while the PPM is extremely small:

ð48Þ

Within the PiC shell, we have the following SiCs:

χ̃♭kl ≈ −D♭hk̄ π̂
⇀♭

⊥l̄i; ð49aÞ

χ♭⊥ ≈ π̂♭ − η♭klD♭
k̄ π̂
⇀♭

l̄; ð49bÞ

χ̃♭⊥kl ≈
1

2
D♭hk̄ π̂

⇀♭

l̄i; ð49cÞ

Tχ♭klm ≈
1

2
D♭

m̄
ˆ̂π♭⊥kl þ

1

2
D♭½l̄ ˆ̂π

♭⊥k̄�m̄

þ 3

4
η♭m̄½k̄�η♭ijD♭

ī
ˆ̂π♭⊥jl̄�j̄; ð49dÞ

and the following sPFCs:

H♭⊥ ≈ −η♭klD♭
k̄π̂

♭⊥l̄; ð50aÞ

H♭
α ≈ −

1

3
h♭αk̄D♭

k̄π̂
♭ − h♭αk̄η♭jlD♭

j̄
ˆ̂π♭kl; ð50bÞ

H♭
kl ≈ 2 ˆ̂π♭kl −

1

6
ϵ♭klm⊥η♭mnD♭

n̄
Pπ̂♭ þD♭½k̄ π̂

⇀♭

l̄�; ð50cÞ

H♭⊥k̄ ≈ π̂♭⊥k̄ þ η♭jlD♭
j̄
ˆ̂π♭⊥kl: ð50dÞ

It is clear from the PiC shell that Case 24 has much in
common with Case 28, and again we will implement the
SiCs and sSFCs simultaneously. First, we find that Tχ♭klm
constitutes an over-determined system in ˆ̂π♭⊥kl, which
vanishes and takes with it three d.o.f. Consequently, from
H♭⊥k̄, we see that π̂♭⊥k̄ must vanish along with another
three d.o.f., such that H♭⊥ and χ̃♭kl vanish automatically.
Similarly, χ̃♭⊥kl is an over-determined system in ˆ̂π♭⊥kl,
which vanishes with another three d.o.f.; χ♭⊥ then causes π̂♭

to vanish with one d.o.f. As before, one d.o.f. propagates in
accordance with Table III,

1 ¼ 1

2
ð80 − 2 × 10½sPFC� − 2 × ð3þ 3Þ½sSFC�

− 2 × ð5þ 1þ 5þ 5Þ½iPFC�
− 2 × ð1þ 3þ 3Þ½iSFC�Þ: ð51Þ

It is clear from (47) that any inference of the nonlinear
unitarity will just combine the discussions of Case 28 and
Case �525, while the PPM rank is again field-dependent.

E. Case 32

For the first time, we encounter nonvanishing mass
parameters between the PiCs, specifically in φ̂♭⊥kl
and Tφ♭

klm. We anticipate the nonvanishing commutators
even at the linear level fφ̂♭⊥kl; χ̂

♭⊥ijg ≈Oð1Þ (noting

that the natural conjugate φ̂♭
kl is not a PiC) and

fTφ♭
klm;

Tχ♭ijng ≈Oð1Þ. These PiCs and SiCs will be
SC, allowing for the determination of their multipliers.
The kinetic part of the Hamiltonian is

HT ¼ b
96

�
6ð3φ⊥k̄φ

⊥k̄ þ 2φ̃klφ̃
klÞ

β̂1

þ 36φ̂klφ̂
kl

β̂1 þ 2β̂3
−

Pφ2

α̂3

�
þ fields: ð52Þ

In the PPM, we label the PiCs associated with nonvanishing
mass parameters by (↓), producing
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ð53Þ

Thus, the PPM of this theory is remarkable, since it remains
empty even in the nonlinear regime. Within the PiC shell,
we find the following SiCs:

χ♭ ≈ −η♭klD♭
k̄π̂

♭⊥l̄; ð54aÞ

χ̂♭⊥kl ≈ −
β̂1 þ 2β̂3
β̂1 − β̂3

ˆ̂π♭kl −
1

6
ϵ♭klm⊥η♭mnD♭

n̄
Pπ̂♭

þ 9β̂1β̂3
ðβ̂1 − β̂3Þðβ̂1 þ 2β̂3Þ

φ̂♭
kl; ð54bÞ

χ
⇀♭

k̄ ≈ −π̂♭⊥k̄; ð54cÞ

χ̃♭⊥kl ≈ ˜̂π♭kl; ð54dÞ
Tχ♭klm ≈ 4β̂1mp

2TT ♭
klm: ð54eÞ

Note the appearance of field strengths, specifically the
torsion in φ̂♭

kl and
TT ♭

klm. While these somewhat compli-
cate the analysis, they naturally appear with the mass
parameters. We also mark the first apparent instance of a
TiC accompanying χ̃♭⊥kl. Using the notation ζ≡ _χ, this
may be written as

ζ̂♭⊥kl ≈
4

3
η♭ijD♭

ī
Tχ♭hk̄jj̄jl̄i; ð55Þ

which then vanishes in the SiC shell. The PiC shell contains
the following sSFCs:

H♭⊥ ≈ −η♭klD♭
k̄π̂

♭⊥l̄; ð56aÞ

H♭
α ≈ −h♭αk̄η♭jlD♭

j̄
ˆ̂π♭kl − h♭αk̄η♭jlD♭

j̄π̂
∼♭

kl; ð56bÞ

H♭
kl ≈ 2 ˆ̂π♭kl −

1

6
ε♭klm⊥η♭mnD♭

n̄
Pπ̂♭; ð56cÞ

H♭⊥k̄ ≈ π̂♭⊥k̄: ð56dÞ

Since two of the PiC chains are known to be self-
terminating, the algorithm concludes quite quickly. As
with Case �525, H♭⊥k̄ and H♭

kl each eliminate three

d.o.f. Another five d.o.f. are then removed by χ̃♭⊥kl,
with the remaining SiCs and sSFCs automatically
satisfied. The one remaining d.o.f. is again expected from
Table III,

1 ¼ 1

2
ð80 − 2 × 10½sPFC� − 2 × ð3þ 3Þ½sSFC�

− 2 × ð1þ 1þ 3þ 5Þ½iPFC� − ð3þ 5Þ½iPSC�
− 2 × 5½iSFC� − ð3þ 5Þ½iSSC�Þ: ð57Þ

On the whole, the outlook for Case 32 appears more
promising than for the previous cases, because the PPM
retains its empty structure (and rank) when passing to the
nonlinear regime. This is just the first hurdle, as the full
nonlinear algorithm would still be required to determine
whether further fields become activated. The implications
of field activation are slightly relaxed, compared to
Case �525 or Case 28. The linear tachyon condition
β̂3 < 0 need not imply that a propagating ˆ̂πkl contributes
negative kinetic energy if β̂1 þ 2β̂3 > 0. This can be

realized even if π̂
∼

kl is simultaneously activated. However,
for positive kinetic energy it seems π̂⊥k̄ must be activated
on its own or not at all, since β̂1 < 0 would then be
required.

F. Case 20

The analysis of Case 20 is quite similar to Case 32.
Mass parameters again accompany the PiCs, and we
expect φ̂♭⊥kl, φ

⇀♭
k̄, and

Tφ♭
klm to not commute with their

respective SiCs on the final shell. The kinetic part of the
Hamiltonian is

HT ¼ b
96

�
4φ2

β̂2
þ 12φ̃klφ̃

kl

β̂1

þ 36φ̂klφ̂
kl

β̂1 þ 2β̂3
þ 36φ⊥k̄φ

⊥k̄

2β̂1 þ β̂2
−

Pφ2

α̂3

�
þ fields; ð58Þ

and once again the PPM is empty both before and after
linearization:

ð59Þ

Within the PiC shell, we first note the following SiCs:
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χ♭⊥ ≈ π̂♭; ð60aÞ

χ̂♭⊥kl ≈ −
β̂1 þ 2β̂3
β̂1 − β̂3

ˆ̂π♭kl −
1

6
ε♭klm⊥η♭mnD♭

n̄
Pπ̂♭

þ 9β̂1β̂3
ðβ̂1 − β̂3Þðβ̂1 þ 2β̂3Þ

φ̂♭
kl; ð60bÞ

χ
⇀♭

k̄≈−
β̂1þ2β̂2
β̂1− β̂2

π̂♭⊥k̄þ
9β̂1β̂2

ðβ̂1− β̂2Þð2β̂1þ β̂2Þ
φ♭⊥k̄; ð60cÞ

χ̃♭⊥kl ≈ π̂
∼♭

kl; ð60dÞ
Tχ♭klm ≈ 4β̂1mp

2TT ♭
klm: ð60eÞ

This time, two TiCs appear, but upon rearranging, both
may eventually be written in terms of the SiCs which are
SC on the final shell (iSSCs), and are therefore satisfied
automatically:

ζ♭⊥ ≈ η♭ijD♭
ī χ
⇀♭

j̄; ð61aÞ

ζ
∼♭

⊥kl ≈
4

3
η♭ijD♭

ī
Tχ♭hk̄jj̄jl̄i −

1

2
D♭hk̄ χ

⇀♭
l̄i: ð61bÞ

The sSFC content in the PiC shell is largely the same as that
of Case 32, with the only difference marked in the linear
super-momentum

H♭
α ≈ −

1

3
h♭αk̄D♭

k̄π̂
♭ − h♭αk̄η♭jlD♭

j̄
ˆ̂π♭kl

− h♭αk̄η♭jlD♭
j̄π̂
∼♭

kl: ð62aÞ
Aided by the additional conjugate pair of constraints, the
algorithm terminates even faster than with Case 32: we see
that one and five d.o.f. are removed by each χ♭⊥ and φ

∼♭
⊥kl.

As before, the one propagating d.o.f. is confirmed from
Table III:

1 ¼ 1

2
ð80 − 2 × 10½sPFC� − 2 × ð3þ 3Þ½sSFC�

− 2 × ð1þ 5Þ½iPFC� − ð3þ 3þ 5Þ½iPSC�
− 2 × ð1þ 5Þ½iSFC� − ð3þ 3þ 5Þ½iSSC�Þ: ð63Þ

If positive kinetic energy is a requirement, it seems that the

momenta π̂ and π̂⊥k̄, in combination with one or more of π̂
∼

kl

or ˆ̂πkl, should not all be activated at the same time.

IV. MASSLESS RESULTS

A. Case 17

Two theories in Table III—Case 17 and Case 3—admit a
pair of massless modes according to the linearized analysis.

Beginning with Case 17, we find the Hamiltonian to have
the structure

HT ¼ b
32

�
2ðφ⇀k̄φ

⇀k̄ þ 2φ̂⊥klφ̂
⊥klÞ

α̂5

−
3φ⊥k̄φ

⊥k̄ þ 2φ̃klφ̃
kl

β̂3

�
þ fields: ð64Þ

As mentioned in Sec. II C, the evaluation of the PPM is
complicated by the appearance of torsion in PiC φ̂kl
belonging to the translational sector. In general, commu-
tators between field strengths generate derivatives of the
Dirac function. In many cases, these derivatives either
happen to cancel, or they may be discarded up to a surface
term within the PiC shell. In any case, we find that the full
nonlinear PPM can be written purely in terms of the parallel
momenta, as before:

ð65Þ

Due to the appearance of mass parameters, we will expect
φ̂♭

kl,
Pφ♭, and Tφ♭

klm not to commute with their SiCs in the
final shell. Within the PiC shell, we find the following SiCs:

χ♭ ≈ −η♭klD♭
k̄π̂

♭⊥l̄; ð66aÞ

χ̂♭kl ≈ −
2β̂3
α̂5

mp
2 ˆ̂π♭⊥kl −D♭½k̄χ̂♭⊥l̄�

− 8β̂3mp
2D♭½k̄T

⇀♭

l̄�; ð66bÞ

χ♭⊥ ≈ −η♭klD♭
k̄ π̂
⇀♭

l̄; ð66cÞ

Pχ♭ ≈ 2ε♭jkl⊥D♭
j̄
ˆ̂π♭⊥kl þ 8β̂3mp

2PT ♭; ð66dÞ

χ
∼♭

⊥kl ≈ π̂
∼♭

kl þ
1

2
D♭hk̄ π̂

⇀♭

l̄; ð66eÞ

Tχ♭klm ≈
1

2
D♭

m̄
ˆ̂π♭⊥kl þ

1

2
D♭½l̄ ˆ̂π

♭⊥k̄�m̄

þ 3

4
η♭m̄½k̄jη♭ijD♭

ī
ˆ̂π♭⊥jl̄�j̄

− 8β̂3mp
2T ♭

klm: ð66fÞ
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Among these, we note that a TiC accompanies χ̃♭⊥kl, but
may be expressed in terms of Tχ♭klm by precisely (55).
Within the PiC shell, the sSFCs are

H♭⊥ ≈ −η♭klD♭
k̄π̂

♭⊥l̄; ð67aÞ

H♭
α ≈ −h♭αk̄η♭jlD♭

j̄
ˆ̂π♭kl − h♭αk̄η♭jlD♭

j̄π̂
∼♭

kl; ð67bÞ

H♭
kl ≈ 2 ˆ̂π♭kl þD♭½k̄ π̂

⇀♭

l̄�; ð67cÞ

H♭⊥k̄ ≈ π̂♭⊥k̄ þ η♭jlD♭
j̄
ˆ̂π♭⊥kl: ð67dÞ

The conjugate pairs together eliminate six, two, and 10

d.o.f. before terminating. As with Case 28, π̂
⇀♭

k̄ becomes
solenoidal due to χ♭⊥ and loses one d.o.f., while three d.o.f.
are lost by each H♭

kl and H♭⊥k̄. In total, two propagating
d.o.f. remain, as expected from Table III:

2 ¼ 1

2
ð80 − 2 × 10½sPFC� − 2 × ð3þ 3Þ½sSFC�

− 2 × ð1þ 1þ 5Þ½iPFC� − ð3þ 1þ 5Þ½iPSC�
− 2 × ð1þ 5Þ½iSFC� − ð3þ 1þ 5Þ½iSSC�Þ: ð68Þ

According to Table III, these two d.o.f. should be
massless, and the power in the 2þ sector of the propagator
invites speculation as to whether they constitute a graviton.
In Sec. III A, we were able to show that the one d.o.f. of
Case �626 belonged unambiguously to the 0− sector, but our
method cannot be so straightforwardly applied to Case 17.
This is ultimately related to the fact that the dependence of
the PiC φ̂kl on the parallel torsion T i

kl in (16b) survives,
even when the defining constraints of Case 17 are imposed
on the couplings. In the linear theory, this results in a
conjugate SiC χ̂♭kl which depends on the gradient of the

torsion D♭½k̄T
⇀♭

l̄�. This is problematic when it comes to

determining the linear multiplier û♭kl through the consis-
tency condition (27). The result is a partial differential
equation in the multiplier whose inhomogeneous part
results from a second-order Euler–Lagrange variation in
the Poisson bracket.
The ambiguity of û♭kl is problematic, as this multiplier

lingers in the equations of motion. Even worse, the eight
indeterminate multipliers u♭, Pu♭, and u

∼♭
kl associated with

the iPFCs also feature prominently. In order to discover the
JP character of the propagating modes using Hamiltonian
methods, one would have to fix the gauge.
We can draw some tentative conclusions just from the

kinetic part of the Hamiltonian, however. We see from
Table III that the linear theory is unitary only if α̂5 < 0. If

unitarity is to be associated with the positive energy test,
then the appearance of α̂5 in (64) would suggest that α̂5 < 0
serves to prevent the 1− mode from becoming a ghost. By
the same arguments, the 1þ mode should be strongly
coupled within the final shell of the linearized theory,
since it would otherwise enter with negative kinetic energy.
It is reassuring to see from Table III that the massless
propagator does indeed have power in the 1−, but not the 1þ

sectors. However, it also has power in the 2þ sector,
possibly inviting speculation that the theory may contain

a spin-two graviton akin to that of Einstein. While π̂
∼

kl does
feature in (64), it seems unlikely that this mode would
independently propagate, since the unitarity of the theory
does not depend on β̂3. We reiterate that these conclusions
may ultimately depend on the gauge choice.
Finally, without a definite understanding of the propa-

gating JP, we are unable to say concretely whether fields
will be activated or if the PPM rank will be be field-
dependent in the nonlinear theory. It is quite likely that
these phenomena will occur, since we find in Appendix C

that the commutator of φ̂kl and
Tφklm depends on π̂

⇀

k̄. This
has precedent, since the 2− commutator has spoiled all the
theories in Sec. III, but due to the lingering gauge
ambiguity we denote it with (π̂) rather than (π̂!) in (65).

B. Case 3

It should come as no surprise that Case 3 is a relaxation of
Case 17, which admits an extra d.o.f. The kinetic part of the
Hamiltonian is given by (64), in addition to the pseudo-
scalar term encountered in all the cases of Sec. III. This is
the usual massive 0− mode, and it comes with the no-ghost
condition α̂3 < 0. The extra condition, β̂1, will prevent this
mode from being tachyonic. The nonlinear PPM is

ð69Þ

It is clear that Pφ♭ is no longer primarily constrained. The
only change to the remaining SiCs of Case 17 is

H♭
kl ≈ 2 ˆ̂π♭kl −

1

6
ϵ♭klm⊥η♭mnD♭

n̄
Pπ̂♭ þD♭½k̄ π̂

⇀♭

l̄�; ð70Þ

butH♭
α is still satisfied. Overall, only the conjugate Pφ♭ and

Pχ♭ pair are removed, leaving three propagating d.o.f. as
expected from Table III:
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3 ¼ 1

2
ð80 − 2 × 10½sPFC� − 2 × ð3þ 3Þ½sSFC�

− 2 × ð1þ 1þ 5Þ½iPFC� − ð3þ 5Þ½iPSC�
− 2 × ð1þ 5Þ½iSFC� − ð3þ 5Þ½iSSC�Þ: ð71Þ

We draw the same conclusions from Case 3 as from Case 17
regarding the vector nature of the gravitational particle. This
time however, we note the presence of Pπ̂ in the nonlinear
PPM, indicating that whatever the massless JP, at least one
gauge symmetry does not survive in the nonlinear regime.

V. PHENOMENOLOGY

The results of Sec. IV cast serious doubts on the health of
even the massless theories considered here, on quite general
grounds. We can, in fact, rule these theories out more
conclusively on the basis of their cosmology. In general,
this would be quite an arduous task, requiring a dedicated
examination of all four equations of motion. However, we
recently developed a mapping between the general quad-
ratic torsion theory (2) and a torsion-free biscalar-tensor
theory, which immediately reveals the cosmological back-
ground [18]. We begin with the spatially flat Friedmann-
Robertson-Walker (FRW) line element

ds2 ¼ dt2 − a2dx2; ð72Þ

where a is the scale factor normalized to the contemporary
epoch from which we define the Hubble number,H ≡ _a=a.
We now align the unit timelike normal nk to be
perpendicular to the spatially flat slicing. Cosmological
isotropy at the background level restricts only the 0þ and 0−

torsion modes to propagate. From these modes, respec-
tively, we define a pair of scalar fields:

ϕ≡ 2

3
T k̄⊥k̄ − 2H; ψ ≡ 1

6
ϵī

⊥jkT ī
jk: ð73Þ

These fields transform, homogeneously and with the
correct weight, ϕ ↦ Ω−1ϕ and ψ ↦ Ω−1ψ , under changes
of physical scale, biμ ↦ Ωbiμ. In the usual second-order
formulation of gravity on the curved spacetime M, it can
be shown that the theory,

LG ≃
�
β̂2mp

2 þ 1

4
ðα̂4 þ α̂6Þϕ2 −

1

4
ðα̂2 þ α̂3Þψ2

�
R

þ 3ðα̂4 þ α̂6ÞXϕϕ − 3ðα̂2 þ α̂3ÞXψψ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
jJμJμj

q
þ 3

4
ðα0 þ 2β̂2Þmp

2ϕ2 −
3

4
ðα0 þ 8β̂3Þmp

2ψ2

þ 3

8
ðα̂4 þ α̂6Þϕ4 þ 3

8
ðα̂4 þ α̂6Þψ4

−
3

4
ððα̂4 þ α̂6Þ þ 2ðα̂2 þ α̂3ÞÞϕ2ψ2; ð74aÞ

Jμ ≡ ½ðα̂2 − α̂3Þ − ðα̂4 − α̂6Þ�ψ3∇μðϕ=ψÞ
− ðα0 þ 2β̂2Þmp

2∇μϕ; ð74bÞ

perfectly replicates the dynamics of the FRW background.
We note that the Ricci scalar R is derived from the Riemann
curvature as defined in (6), and while the biscalar-tensor
theory is strictly torsion free, the behavior of the 0þ and 0−

modes is accurately replicated by the scalars. The theory
(76) is known as the metrical analog (MA) of (2), and we
have translated it here into the dimensionless couplings
(A3) of (12).
We will restrict our attention to the massless theories.

Following a reparametrization to the weightless scalar
ζ ¼ ffiffiffi

2
p

ϕ=ψ , we find that the MA of Case 3 becomes

LG ≃ −3α̂3Xψψ −
1

4
α̂3ψ

2Rþ 3β̂1mp
2ψ2

þ α̂3ψ
3

ffiffiffiffiffiffiffiffiffiffi
jXζζj

q
−
3

4
α̂3ζ

2ψ4: ð75Þ

In this frame, we see that the MA can be partitioned in two.
The first three terms in (75) describe a massive, but
conformally coupled, scalar ψ. The fourth and fifth terms
describe a quadratic cuscuton ζ, which is conformally
coupled by multiplication with the appropriate powers of ψ .
The quadratic cuscuton is itself remarkable for replicat-

ing the cosmological background of the Einstein–Hilbert
term [30],

c1mp
3

ffiffiffiffiffiffiffiffiffiffi
jXζζj

q
− c2mp

4ζ2 ≃
3c12

16c2
mp

2R: ð76Þ

This unlikely looking relation may be verified by substitut-
ing the ζ-equation into the gμν-equation on the LHS of (76),
and comparing with the Friedmann equations that follow
from the gμν-equation on the RHS. We find that the bizarre
characteristics of the cuscuton can be taken further—when
we replace the Planck mass with a dynamical scalar to
obtain the conformally coupled quadratic cuscuton, we
replicate the cosmological background of the same scalar,
conformally coupled to gravity,

c1ψ3

ffiffiffiffiffiffiffiffiffiffi
jXζζj

q
− c2ψ4ζ2 ≃

9c12

4c2

�
Xψψ þ 1

12
ψ2R

�
: ð77Þ

This result is very satisfying, but has fatal implications for
the massless theories under consideration. By applying
(77), we see that the fourth and fifth terms in (75)
dynamically cancel with the first and second terms: the
whole kinetic structure of the analog theory vanishes. The
same problem arises in Case 17, since the extra condition
α̂3 ¼ 0 prevents the cancelling terms from appearing even
at the level of (75). In both cases, the gravitational
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Lagrangian responsible for the cosmological background is
a pure 0− mass, and so the theories are not viable.
Notwithstanding the complete failure of the cases at

hand, the result (77) suggests an interesting class of
theories, of which Case 3 is a degenerate special case.
From the general quadratic torsion theory (12), we impose

α0 þ 2β̂2 ¼ α̂4 þ α̂6 ¼ 0; ð78Þ

noting from (19a) that the second constraint in (78) results
in the single 0þ PiC φ⊥ ≈ 0. The cosmological analog then
becomes

LG ≃ −
1

2
α0mp

2R − 3ðα̂2 þ α̂3Þ
�
Xψψ þ 1

12
ψ2R

�

þ ½ðα̂2 − α̂3Þ − ðα̂4 − α̂6Þ�ψ3

ffiffiffiffiffiffiffiffiffiffi
jXζζj

q
−
3

4
ðα̂2 þ α̂3Þζ2ψ4 −

3

4
ðα0 þ 8β̂3Þmp

2ψ2: ð79Þ

The interpretation of the first equality of (78) is now clear:
it forces the Einstein–Hilbert term to appear equally both
in the torsion theory and the cosmological background
analog.8 We can then set α0 ¼ 1 to view these theories as
additive modifications to the Einstein–Cartan or Einstein–
Hilbert theories, respectively. In order to apply (77), wewill
strictly require that α̂2 þ α̂3 ≠ 0, i.e., that the 0− mode is
not primarily constrained according to (19b). Under an
appropriate rescaling of ψ to ξ, the cosmological back-
ground becomes

LG ≃ −
1

2
mp

2Rþ 1

12
ξ2Rþ Xξξ −

1

2
mξ

2ξ2; ð80Þ

i.e., Einstein’s gravity conformally coupled to a scalar ξ,
whose mass is

m2
ξ ≡ −

ð1þ 8β̂3Þðα̂2 þ α̂3Þ
8ðα̂3 þ α̂4Þðα̂2 þ α̂6Þ

mp
2: ð81Þ

The theory (80) is, of course, widely studied in the context
of inflation [31,32]. In Einstein’s theory, a nonminimal
scalar coupling will tend to run, with the conformal value of
1=12 being a fixed point in the IR. This value is also used to
preserve causality in a curved background, since it prevents
a massive scalar from propagating along the light cone. We
have shown that the cosmological background of the
conformal scalar emerges as a consequence of the minimal
constraints (78) on the quadratic torsion theory, where the
scalar is interpreted as the 0− part of the torsion, and the 0þ
part is primarily constrained.

We see also from (81) that the effect of the conformally
coupled 0− can be removed from the expansion history
altogether. By setting α̂3 þ α̂4 ¼ 0 or α̂2 þ α̂6 ¼ 0, the
mass mξ becomes infinite and one is left with the
cosmological background of the pure Einstein gravity in
(1). By inspecting Eqs. (19a)–(19f), we see that these
choices can be imposed without primarily constraining the
torsion modes in the general theory, including the 0− mode.
This raises the interesting question of whether torsion
theories allow the cosmological background to be altered
independently of the perturbations. Note that Case 3 has
just such a divergent mass, though the Einstein–Hilbert
term never appears in the background analog because of the
universal constraint (3) that appears to be required for
power-counting renormalizability.

VI. CONCLUSIONS

It was recently shown that among all parity-preserving
theories of the form LG ∼mp

2RþR2 þmp
2T 2, there are

58 cases which are unitary and power-counting renorma-
lizable when linearized in the absence of source currents
[6,7]. The linearization was done around a presumed
Minkowski vacuum, since even a cosmological constant
is excluded as a source. In this work we have considered
Case 3, Case 17, Case 20, Case 24, Case �525, Case �626,
Case 28, and Case 32—as detailed in Table III. We have
inspected their Hamiltonian structure under the same
conditions, but in both the linear and nonlinear regimes.
Our principal findings may be summarized as follows:

1. All eight cases (and indeed all the cases proposed in
[6,7]) feature vanishing mass parameters. This
greatly complicates the Hamiltonian analysis, com-
pared to the “minimal” cases previously treated in
the literature.

2. The number of linear, propagating degrees of free-
dom are confirmed from [6,7] for all eight cases.

3. With the exception of Case 17, all eight cases
linearly propagate a massive pseudoscalar mode,
and the unitarity conditions from [6,7] correspond to
the no-ghost and no-tachyon conditions on this
mode.

4. The two massless modes propagated by Case 3 and
Case 17 are identified with vector, rather than the
hoped-for tensor modes.

5. With the possible exception of Case 20 and Case 32,
all eight cases feature primary constraints which
transition from first- to second-class when moving to
the nonlinear regime. This signals at least a broken
gauge symmetry, and possibly acausal behavior and/
or activation of any of the primarily unconstrained
spin-parity sectors.

6. These primarily unconstrained spin-parity sectors
include ghosts in all eight cases, according to the
same conditions that ensure linearized unitarity.

8Note that this is not generally guaranteed for general choices
of the coupling constants, as discussed in [18].
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7. Case 3 and Case 17 are not viable theories of gravity
despite their massless modes, because they do not
support a dynamical FRW background.

These findings come with various caveats. Principally,
while we implement the linearized Dirac–Bergmann algo-
rithm to completion in all cases, we do not prosecute the
nonlinear algorithm beyond the second set of links in
the constraint chains. This level of analysis at least matches
the earlier treatment of less complicated theories, in which
all couplings are set to zero except those absolutely
necessary to propagate whichever mode is under inves-
tigation [16]. Consequently, we cannot say for certain if the
strongly coupled sectors and the ghost sectors coincide.
Separately, our definition of ghost sectors as set out in

Appendix B is based on the relevant quadratic momenta
appearing as negative contributions to the Hamiltonian. We
do not go so far as to quantize the theory and confirm that
there are corresponding physical states which violate the
unitarity of the S-matrix. Additional stepswould presumably
be required to draw completely safe conclusions, such as
adding terms to fix the Poincaré gauge (and any other case-
specific symmetries), and good ghosts to cancel the anoma-
lies [14]. Meanwhile at the classical level, we mention that
negative kinetic energy does not always imply instability.
We have also interpreted acausal behavior, which is

linked to the phenomenon of constraint bifurcation or field-
dependent constraint structure [15], as a pathology. This
need not always follow, as has been demonstrated for some
special theories in recent decades [33]. For example, the
characteristic surface of a degree of freedom is allowed to
lie outside the light cone if it can be shown that the field
does not carry information [34].
Even bearing these caveats in mind, the outlook for the

remaining new torsion theories is not substantially
improved by our results. Of the 58 novel theories in
[6,7], only 19 propagate the two massless degrees of
freedom. Four of these additionally propagate a massive
0− mode, while three instead propagate a massive 2−

mode. Of the remaining theories, 23 propagate only a
massive 0− mode. The selection in Table III thus appears
reasonably representative of the linearized particle spectra.
Since fundamental changes to the constraint structure are
observed throughout most of the sample, we do not find
new cause for optimism in the current study. Possibly,
the admission of primary constraints dependent on the
Riemann–Cartan curvature will miraculously remedy the
various problems. Certainly, such constraints will compli-
cate the analysis. We have already seen in Sec. IV that field-
dependent primary constraints can invoke derivatives of the
equal-time Dirac function. Ultimately, our findings are
consistent with the predictions of Yo and Nester, who
anticipate that generalizing the quadratic torsion theory (2)
beyond very minimal test cases (most of which also fail)
serves only to protract the calculations [16,17]. Even so, it
might seem prudent to attempt to quantify the chances of

future success: we provide a heuristic discussion along
these lines in Appendix D.
The tentative vector nature of the massless modes in

Case 3 and Case 17 is potentially problematic. We recall
that Poincaré invariance prohibits a matter amplitude
involving soft gravitons of spin J > 2, while J ¼ 0
gravitons are ruled out by matter coupling [35]. Odd J
are supposed to give rise to repulsive long-range forces,
leading to the expectation of a tensor graviton [20].
Plausibly, the JP character will be gauge dependent, but
it is difficult to see how this might change the sign of the
Green’s function. We will not speculate as to whether this
troubling feature is generic to the remaining massless cases.
Finally, we observed that the theories with massless

modes could be written off instantly using the scalar-tensor
analog theory which replicates the background cosmology.
As a by-product, our analysis suggested an interesting new
class of quadratic torsion theories which mimic the back-
ground of the conformal inflaton, though not motivated by
unitarity or renormalizability. It must be emphasized that
the catastrophic failure of Case 3 and Case 17 is not
common to the remaining theories in [6,7]. We mention in
particular Case 2, which propagates two massless modes
and the massive pseudoscalar, and Case 16, a special case
in which the pseudoscalar is nondynamical. These theories
form a complementary pair to Case 3 and Case 17 in many
respects, but they have an excellent cosmological back-
ground. Not only does the cuscuton force the evolution
towards a flat Friedmann solution, but the option exists to
tune the early expansion history through an effective dark
radiation component [19]. Moreover, in Case 2 the mass of
the propagating pseudoscalar acts as a dark energy term
(albeit hierarchical, i.e., not resolving the cosmological
constant problem) [18]. Other exact solutions to Case 2 and
Case 16 include the Schwarzschild vacuum and plane
gravitational waves. These cases call for a more dedicated
Hamiltonian analysis, and will be among the remaining
theories to be addressed in the companion paper.
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APPENDIX A: IRREDUCIBLE DECOMPOSITION
OF THE FIELDS

It is necessary to construct a complete set of idempotent
and orthogonal projection operators for the irreducible
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parts of the field strengths. For general tensors, this
can be done with the appropriate O(3) Young tableaux,
following the methods of [36]. The three projections of the
torsion are

1Pijk
mnqT mnq ¼

2

3
T ijk þ

2

3
T ½jjijk� þ

2

3
ηi½jT k�; ðA1aÞ

2Pijk
mnqT mnq ¼ −

2

3
ηi½jT k�; ðA1bÞ

3Pijk
mnqT mnq ¼

1

6
ϵijklϵ

lmnqT mnq: ðA1cÞ

The six projections of the Riemann–Cartan curvature are

1Pijkl
mnqpRmnqp ¼ 1

3
Rijkl þ

1

3
Rklij þ

2

3
R½ik½kjkj�jl�

− η½ij½kkRjj�kl� − η½ij½kkRjl�kj�

þ 1

3
ηi½kjηjjl�R; ðA2aÞ

2Pijkl
mnqpRmnqp ¼ 1

2
Rijkl −

1

2
Rklij − η½ij½kkRjj�kl�

þ η½ij½kkRjl�kj�; ðA2bÞ

3Pijkl
mnqpRmnqp ¼ −

1

24
ϵijklϵ

mnopRmnop; ðA2cÞ

4Pijkl
mnqpRmnqp ¼ η½ij½kkRjj�kl� þ η½ij½kkRjl�kj�

−
1

2
ηi½kjηjjl�R; ðA2dÞ

5Pijkl
mnqpRmnqp ¼ η½ij½kkRjj�kl� − η½ij½kkRjl�kj�; ðA2eÞ

6Pijkl
mnqpRmnqp ¼ 1

6
ηi½kjηjjl�R: ðA2fÞ

Replicating the numbering used in [16,17], our original
naïve couplings in (2) are expressible in terms of their more
meaningful irreducible counterparts according to

α1 ≡ α̂4 þ
1

2
α̂5 þ α̂6; α2 ≡ α̂4 − α̂6;

α3 ≡ α̂4 − α̂5 þ α̂6;

α4 ≡ 1

2
α̂2 þ

1

2
α̂3 þ α̂4 þ

1

2
α̂5 þ α̂6;

α5 ≡ 1

2
α̂2 −

1

2
α̂3 þ α̂4 − α̂6;

α6 ≡ 6α̂1 þ
3

2
α̂2 þ

3

2
α̂3 þ α̂4 þ

1

2
α̂5 þ α̂6;

β1 ≡ β̂1 þ
1

2
β̂2; β2 ≡ β̂1 þ

1

2
β̂2 þ

3

2
β̂3;

β3 ≡ β̂1 − β̂2; ðA3Þ

where α̂I and β̂I multiply the Ith irreducible quadratic
invariants of curvature and torsion in (12).

APPENDIX B: GHOSTS, RANKS
AND SIGNATURES

In this Appendix, we attempt to elaborate on the
motivation of the “positive kinetic energy test,” which
was tacitly employed in the previous Hamiltonian treatment
of Poincaré gauge theories [16].
Consider the free vector U(1) theory on M̌, without any

coupling to gravity (and with Cartesian coordinates
γμν ≡ ημν), fixed to the Feynman gauge

L ¼ −
1

4
FμνFμν −

1

2
ð∂μAμÞ2; ðB1Þ

where we have Fμν ≡ 2∂ ½μAν�. Up to a surface term, (B1) is,
of course, equivalent to

L ¼ −
1

2
∂μAν∂μAν; ðB2Þ

which safely propagates four massless polarizations, with-
out developing any classical instability

□Aμ ¼ 0: ðB3Þ

Notwithstanding this reasonable behavior, we see that the
Hamiltonian of (B2) is unbounded from below,

H ¼ −
1

2
πμπ

μ þ 1

2
∂αAμ∂αAμ; ðB4Þ

where the momentum is πμ ≡ −∂0Aμ, since the indepen-
dent timelike polarization will have a strictly negative
contribution. This is naturally revealed in the 3þ 1 picture,
which we construct by defining a constant unit timelike
normal nμnμ ≡ 1, and (extending our previous overbar
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notation to holonomic indices) decomposing quantities into
the 0þ and 1− irreps

Aμ ≡ A⊥nμ þ Aμ̄; πμ ≡ π⊥nμ þ πμ̄: ðB5Þ

The Hamiltonian then separates into

H ¼ −
1

2
π2⊥ þ 1

2
∂αA⊥∂αA⊥

−
1

2
πμ̄π

μ̄ þ 1

2
∂αAμ̄∂αAμ̄; ðB6Þ

where the first and last pairs of terms are respectively
negative- and positive-definite on the null shell defined by
(B3). The physical consequence is a loss of unitary: the
timelike states have a negative norm. In the U(1) theory,
this is usually fixed by imposing a Gupta–Bleuler condition
on the physical states, which is acceptable since the gauge-
fixing term in (B1) was added by hand anyway. However,
in the theories of gravity under consideration, the validity of
a Gupta–Bleuler condition is not certain. We note that in the
kinetic Hamiltonian of Eqs. (29), (37), (42), (47), (52), (58),
and (64), we encounter mixed quadratic forms in the
momenta, just as we do with the first and third terms of
(B6). If such terms are negative-definite and propagating,
we tentatively identify them with a loss of unitarity.
We note that without full knowledge of both the nonlinear
shell and the remaining field parts of the Hamiltonian
[c.f. second and fourth terms in (B6)], this is quite
dangerous. Moreover, as is evident from (B3), such
negative-energy sectors do not necessarily correspond to
classical ghosts.
We also mention that the sign of quadratic momenta in

the 3þ 1 formulation is robust against the choice of
signature (as indeed it should be). Recall that throughout
this article we have used the “West Coast” signature
ðþ;−;−;−Þ. The sign of each such term may then be
inferred by the tensor rank of the momentum irrep, since
every contraction on parallel indices introduces a factor
of −1. Had we chosen the “East Coast” signature
ð−;þ;þ;þÞ, these factors would not arise. Instead, we
would have nμnμ ≡ −1, whose powers would conspire in
the O(3) decomposition of momenta to have the same
effect up to an overall sign in the kinetic Hamiltonian. This
final sign is changed by hand in the kinetic part of the
Lagrangian, as is customary when changing signature.

APPENDIX C: NONLINEAR
POISSON BRACKETS

Case 28 In Eqs. (30a)–(30d) we provide the nonlinear
commutators of Case �626. In this Appendix we list the
emergent commutators of the other seven theories under
consideration. The commutators of Case 28 read

fφ⊥ī;φ⊥l̄g ≈ RHSof ð30aÞ; ðC1aÞ

fφ⊥ī;φ⊥g ≈ −
1

J2
π̂
⇀

īδ
3; ðC1bÞ

fφ⊥ī;φ
∼
⊥lmg ≈

1

2J2
ηīhl̄ π̂

⇀

m̄iδ3; ðC1cÞ

fφ⊥ī;
Tφlmng ≈

1

2J2

�
ηin

ˆ̂π⊥lm −
1

2
ηī½l̄j ˆ̂π⊥jm̄�n̄

−
3

4
η½l̄jn̄ ˆ̂π⊥ījm̄�

�
δ3; ðC1dÞ

fφ∼ij;φ
∼
lmg ≈ RHSof ð30cÞ; ðC1eÞ

fφ∼ ij;φ
∼
⊥lmg ≈ RHSof ð30cÞ; ðC1fÞ

fφ∼ ij;
Tφlmng ≈

1

J2

�
1

12
ϵhīj½l̄kn̄⊥ηjj̄ikm̄�Pπ̂

þ 1

12
ϵhījlm⊥ηjj̄in̄Pπ̂ þ 3

8
ηhīj½l̄ηm̄�n̄ π̂

⇀

jj̄i

−
3

4
ηhījn̄ηjj̄i½l̄ π̂

⇀

m̄�

�
δ3: ðC1gÞ

In the RHS of (C1g), we see that the linearly propagating Pπ̂
appears, signaling a definite change in the constraint
structure when passing from linear to nonlinear regimes.
Case �525 The nonlinear commutators of Case �525 have

been encountered before:

fφ∼ij;φ
∼
lmg ≈ RHSof ð30cÞ; ðC2aÞ

fφ∼ij;
Tφlmng ≈ RHSof ð30dÞ: ðC2bÞ

Again we see that at least (C2b) is expected to persist on the
final shell.
Case 24 Similarly for Case 24 we find

fφ∼ij;φ
∼
lmg ≈ RHSof ð30cÞ; ðC3aÞ

fφ∼ij;φ
∼
⊥lmg ≈

1

J2
ηðīkðl̄j ˆ̂πkj̄Þjm̄Þδ3 ; ðC3bÞ

fφ∼ ij;
Tφlmng ≈ RHSof ðC1gÞ; ðC3cÞ

Again we see that at least (C3c) is expected to persist on
the final shell.
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Case 3 The nonlinear commutators of Case 3 are all new:

fφ; φ̂lmg ≈
1

J2
ˆ̂πlmδ

3; ðC4aÞ

fφ̂ij;φ⊥g ≈
1

J2
ˆ̂π⊥ijδ

3; ðC4bÞ

fφ̂ij;φ
∼
⊥lmg ≈

1

J2
η½īkhl̄j ˆ̂π⊥kj̄�jm̄iδ3; ðC4cÞ

fφ̂ij;
Tφlmng ≈

1

J2

�
1

12
ϵ½īj½l̄kn̄⊥ηjj̄�km̄�Pπ̂ þ 1

12
ϵ½ījlm⊥ηjj̄�n̄Pπ̂

−
1

8
ϵij½l̄⊥ηm̄�n̄Pπ̂ −

3

8
η½īj½l̄ηm̄�n̄ π̂

⇀

jj̄�

−
1

4
η½ījn̄ηjj̄�½l̄ π̂

⇀

m̄� þ
1

4
ηī½l̄ηm̄�j̄ π̂

⇀

n̄

�
δ3: ðC4dÞ

Since (C4d) also depends on Pπ̂, we believe that it will also
persist on the final shell. Note that (C4d) is also linear in

π̂
⇀

k̄, which we suspect will contribute the massless modes in
the linear theory.
Case 17 The nonlinear commutators of Case 17 are, of

course, mostly the same as Case 3:

fφ; φ̂lmg ≈ RHSof ðC4aÞ; ðC5aÞ

fφ̂ij;φ⊥g ≈ RHSof ðC4bÞ; ðC5bÞ

fφ̂ij;
Pφg ≈ −

1

J2
ηklϵijk⊥ π̂

⇀

l̄δ
3; ðC5cÞ

fφ̂ij;φ
∼
⊥lmg ≈ RHSof ðC4cÞ; ðC5dÞ

fφ̂ij;
Tφlmng ≈ −

1

J2

�
3

8
η½īj½l̄ηm̄�n̄ π̂

⇀

jj̄�

þ 1

4
η½ījn̄ηjj̄�½l̄ π̂

⇀

m̄� −
1

4
ηī½l̄ηm̄�j̄ π̂

⇀

n̄

�
δ3: ðC5eÞ

Note that (C5e) is linear in π̂
⇀

k̄, the momentum of the
vector graviton.

APPENDIX D: HEURISTIC OUTLOOK

In this Appendix we attempt to quantify the chances of
future success, in light of our present results. Let k viable
theories be found in a sample of n ¼ 8, drawn from a
population of N ¼ 58 theories. We may model the prob-
ability of there being a grand total of K viable theories in
the parent population as

PðKjk; n; NÞ≡ nþ 1

N þ 1
PhypðkjK; n; NÞ; ðD1Þ

where the probability PhypðkjK; n; NÞ of drawing k given K
follows the standard hypergeometric distribution is

PhypðkjK; n; NÞ≡ ðKkÞðN−K
n−k Þ

ðNnÞ
: ðD2Þ

Note that we have assumed a uniform prior on K,
PðKjNÞ≡ ðN þ 1Þ−1, which may or may not be justified.
The pessimistic interpretation of our study would be k ¼ 0,
but in that case the probability that K ¼ 0 is found to be
only 0.15 according to (D1). Rather, we would expect
K ¼ 5� 4.9. Moreover, the pessimistic interpretation is
not necessarily the most conservative, since Case 20 and
Case 32 are not ruled out at the level of the PPM: we would
expect K ¼ 11� 6.6 and K ¼ 17� 7.6 for k ¼ 1 and
k ¼ 2, respectively. This outlook is more promising, but
still assumes a uniform prior which might be improved by
considering the methods used to obtain the cases, from a
theoretical perspective. In any case, it is clear that further
study of the remaining theories will be necessary to draw
firm conclusions.
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