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Cosmological implications of a generalized Rastall theory where the nonconservation equation is
promoted to accept arbitrary functions of the Ricci scalar is considered. We have obtained the model
parameters of the power-law ansatz f ∝ Rη, using H0 and fσ8 datasets, and show that the generalized
Rastall theory could satisfy observational data. The dynamical analysis of the model shows that for
η ∈ ð0; 1Þ, the dust dominated fixed point is lost, and as a result, the parameter range of η should be
restricted to η ≥ 1. We will also show that the generalized Rastall theory will predict a universe with a
stronger accelerating regime with a larger radius, compared to the ΛCDM model.
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I. INTRODUCTION

Einstein theory of general relativity has long been
accepted as a main theory describing gravitational inter-
actions. As an application to cosmology, the assumption
that the geometry of the Universe could be well described
by the Friedmann-Robertson-Walker (FRW) metric is now
supported strongly by observations [1], which indicated
that the Universe undergoes an accelerated expansion.
Noting that the gravitational force in general relativity is
attracting a new form of “dark energy” with negative
pressure and repulsive nature would be needed to explain
late time observational data. The simplest idea of dark
energy comes from Einstein himself, which entails adding a
cosmological constant to the original theory. Together with
the cold dark matter component, accounting for local
observations, the ΛCDM model is now widely accepted
as a general ground of cosmological theories [2].
Apart from its successes, the ΛCDM model suffers from

some phenomenological and theoretical problems, includ-
ing the cosmological constant problem and also the H0=σ08
tensions [3,4]. It is then important to investigate other
possibilities, which we will refer to as modified theories of
gravity [5]. The modified gravity idea has in fact many
branches. One proposal deals with the possibility that
accelerated expansion of the Universe could be produced
via additional degrees of freedom, such as scalar [6], vector
[7], or higher spin fields [8]. Other possibilities would be to
change the gravitational interaction itself, like in massive
gravity theories [9] or using non-Riemannian geometries,
like Weyl and Cartan theories [10].
One of the widely investigated modifications to the

Einstein’s general relativity is to promote the Einstein-
Hilbert Lagrangian to an arbitrary function of the Ricci
scalar, which is well-known as fðRÞ theories of gravity
[11]. Several aspects of this theory are investigated in the

literature including cosmological implications and black
hole solutions. The idea of fðRÞ theory can also be
generalized to include other curvature terms like the
Gauss-Bonnet invariant in fðR;GÞ theories [12] and matter
fields. The last possibility has attracted more attention in
recent years, resulting in modification of general relativity
like fðR; TÞ [13], fðR; LmÞ [14], fðR; T; RμνTμνÞ [15],
derivative matter couplings [16], and energy-momentum
squared type theories [17].
The Einstein general relativity theory is written in such a

way that the matter sector remains conserved. In 1972,
Rastall proposed a theory in which the conservation of the
energy-momentum tensor was relaxed [18] and replaced by
the relation,

∇μTμ
ν ¼ aν; ð1Þ

where the vector aν vanishes in flat space-times. Einstein
assumed minimal substitution as a way to promote special
relativity to curved space-times. The theory proposed by
Rastall has in fact relaxed the proposal of minimal sub-
stitution for writing the conservation equation of matter
fields in curved space-time. As a result, every vector field
that is constructed from the curvature tensor could do the
job. In the original Rastall theory, it is assumed aν ¼ λ∇μR.
Rastall theory has attracted many attentions in recent years
[19], esspecially in cosmology [20]. For example, in [21],
the authors considered the observational constraint on the
Rastall theory and claimed that there is no way that bothH0

and σ08 tensions become better. In fact, making the Hubble
tension better will worsen the σ08 tension and vice versa.
One can also assume more a general form of the vector

aν ¼ ∇μAμν, where Aμν is a symmetric second rank tensor
with the property that the tensor and its derivatives vanish
on flat space-time. For example, in [22], the authors
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obtained charged black hole solutions in the case that Aμν

contains all terms constructed by the Riemann tensor and
its derivatives that produces up to four space-time deriv-
atives. In [23], the authors obtained neutral black holes for
Aμν ¼ fgμν, with an arbitrary function of f. Also, one can
assume a Brans-Dicke-Rastall type theories [24]. In [25],
the authors investigated the cosmic acceleration for a
specific function f ¼ fðR; TÞ.
One of the important debates on the Rastall idea is to

construct a fully covariant action, which leads to the Rastall
equations of motion. For example, a relationship between
Rastall theory and fðR; LmÞ theory is considered in [26],
where the authors constrain the Rastall parameter to lie in
the range λ ≤ 0 and λ ≥ 1 using energy conditions. Also,
the relation between Rastall theory and k-essence model is
considered in [27], where the authors claimed that both
theories produce same solutions. The most successful of
these attempts is done with the fðR; TÞ theory in which the
Lagrangian fðR; TÞ ¼ Rþ αT is considered as a Rastall
Lagrangian [28]. It should be noted that there were some
other debates that claimed that the Rastall theory is in fact
equivalent to the standard Einstein’s theory [29]. In [30],
the authors tried to answer the debate. However, the
equivalence of Rastall and general relativity is a very
controversial problem and is one of these days
research lines.
In this paper, we consider a generalization of the Rastall

theory in which the tensor Aμν can be written as a general
function of the Ricci scalar, i.e., Aμν ¼ fðRÞgμν. The
energy-momentum conservation equation in this case is
modified as

∇μTμν ¼ 2κ2∇νfðRÞ: ð2Þ

One can see that the modified Einstein equation would be

Gμν þ ðΛþ fðRÞÞgμν ¼
1

2κ2
Tμν; ð3Þ

where Λ is the cosmological constant. It should be noted
that in the case fðRÞ ¼ λR, we recover the standard Rastall
theory. As was mentioned before, the same generalization
is used to obtain the black hole solutions in Rastall theory.
In this paper, we will examine cosmological implications of
the model and try to obtain the best fit values of the model
parameters using observational data on the Hubble param-
eter and the fσ8 function. We will restrict ourselves to a
specific function of the form f ¼ ξRη for better comparison
with observations. We will show that for positive values of
the parameter η, the value of ξ up to 2σ confidence level
should also be positive. We will also show that the values of
0 < η < 1 are not fully appropriate cosmologically since
the matter dominated era could not occur in this case.
The paper is organized as follows. In the next section, we

will consider the background cosmology of the theory and

show that the theory can satisfy observational data at late
times. The Universe is, however, larger in size compared to
the ΛCDM model due to the presence of the nonconserva-
tive term in the theory. In Sec. III, we will consider the
dynamical system analysis of the model and prove that the
theory does not have a dust fixed point for 0 < η < 1. In
Sec. IV, we will analyze matter perturbations of the theory
and find the evolution equation of the matter density
contrast. We will then use the dynamical equations to find
the best fit values of the model parameters using the
observational data on the Hubble parameter and fσ8
functions. In the last section, we will conclude the paper.

II. COSMOLOGY

Now, let us consider a homogeneous and isotropic space-
time with the conformal FRW line element of the form,

ds2 ¼ aðtÞ2ð−dt2 þ dx⃗2Þ; ð4Þ

where aðtÞ is the scale factor, and t represents the
conformal time. We also assume that the Universe is filled
with a perfect fluid with energy-momentum of the form,

Tμ
ν ¼ diagð−ρ; p; p; pÞ; ð5Þ

where ρ, p are the energy density and thermodynamic
pressure, respectively.
The Friedmann and Raychaudhuri equations can be

obtained from (3) as

3H2 þ a2ðΛþ fÞ ¼ 1

2κ2
a2ρ; ð6Þ

H2 þ 2 _H − a2ðΛþ fÞ ¼ −
1

2κ2
a2p: ð7Þ

Here, H ¼ _a=a is the Hubble parameter. Also, f ¼ fðRÞ,
where R is the Ricci scalar, which is equal to

R ¼ 6

a2
ð _H þH2Þ;

in flat FRW universe. The conservation equation (2) can
also be written as

_ρþ 3Hðρþ pÞ ¼ 12κ2

a2
ð2H3 − ḦÞfR; ð8Þ

where fR ¼ df=dR.
Now let us assume a special form fðRÞ ¼ ϵRη for the

function f, where η is a dimensionless constant, and ϵ is an
arbitrary constant with mass dimension 2ð1 − ηÞ. In this
case, the Friedmann, Raychaudhuri, and conservation
equations reduce to
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3H2 − ϵa2
�
6

a2
ðH2 þ _HÞ

�
η

¼ 1

2κ2
a2ðρþ 2κ2ΛÞ; ð9Þ

H2 þ 2 _H − ϵa2
�
6

a2
ðH2 þ _HÞ

�
η

¼ −
1

2κ2
a2ðp − 2κ2ΛÞ;

ð10Þ

and

_ρþ 3Hðρþ pÞ ¼ 12ϵκ2η

a2
ð2H3 − ḦÞ

�
6

a2
ðH2 þ _HÞ

�
η−1

:

ð11Þ

It is worth mentioning that the above set of field equations
reduce to the standard Einstein equation with cosmological
constant in the case ϵ ¼ 0.
Let us assume that the matter sector of the Universe

consists of dust with equation of state p ¼ 0 and radiation
with p ¼ ρ=3 so that

ρ ¼ ρm þ ρr; p ¼ 1

3
ρr: ð12Þ

Considering Eq. (11), one can see that the combination of
dust and radiation are not conserved in general. However,
as we know from the late time observations, the radiation
abundance of the Universe is significantly lower than dust,
and one could expect that the radiation part of the matter
content does not contribute much to the nonconservation
equation. As a result, we assume in this paper that the
radiation part of the Universe is conserved, and all the
nonconservation factors in (11) are carried by dust.
Defining the following dimensionless variables as

τ ¼ H0t; H ¼ H0h; ξ ¼ 6ηϵH2ðη−1Þ
0 ; ð13Þ

ρ̄i ¼
ρi

6κ2H2
0

; ΩΛ ¼ Λ
3H2

0

; ð14Þ

where i ¼ m, r correspond to dust and radiation,
respectively, and H0 is the current value of the Hubble
parameter, one can obtain the dimensionless Friedmann,
Raychaudhuri, and conservation equations as

h2 ¼ a2
�
ρ̄m þ ρ̄r þ ΩΛ0 þ

1

3
ξ

�
h2 þ h0

a2

�
η
�
; ð15Þ

h2 þ 2h0 ¼ a2
�
−ρ̄r þ 3ΩΛ0 þ ξ

�
h2 þ h0

a2

�
η
�
; ð16Þ

ρ̄0r þ 4hρ̄r ¼ 0; ð17Þ

ρ̄0m þ 3hρ̄m ¼ ηξ

3a2
ð2h3 − h00Þ

�
h2 þ h0

a2

�
η−1

; ð18Þ

where prime denotes derivative with respect to the dimen-
sionless time τ.
For the evolution of the radiation density, one can see

from (17) that

ρ̄r ¼
Ωr0

a4
; ð19Þ

where Ωr0 ¼ 5.3 × 10−5 is the current abundance of the
radiation [31].
In order to compare the theory with observational data, it

is more convenient to work with redshift coordinates,
defined as

1þ z ¼ 1

a
: ð20Þ

One can then rewrite the Friedman and Raychaudhuri
equations in the redshift coordinates as

h2 ¼ ð1þ zÞ2Ωr0 þ ð1þ zÞ−2ðΩm þ ΩΛÞ

þ 1

3
ξð1þ zÞ2ðη−1Þhη1; ð21Þ

and

h2 − 2ð1þ zÞhh0 ¼ −ð1þ zÞ2Ωr0 þ 3ð1þ zÞ−2ΩΛ

þ ξð1þ zÞ2ðη−1Þhη1; ð22Þ

where we have defined

h1 ¼ h2 − ð1þ zÞhh0: ð23Þ

Also, we have used the conservation equation of radiation
(19). We should note that prime denotes derivative with
respect to the redshift coordinate, wherever we work on
redshift coordinates. The (non)conservation equation of the
dust fluid can be written in the redshift coordinates as

ð1þ zÞΩ0
m − 3Ωm ¼ −

1

3
ξηð1þ zÞ2ηð2h1 þ ð1þ zÞh01Þ:

ð24Þ

It should be mentioned that the value of the cosmological
constant abundance ΩΛ could be obtained from other
constant parameters by noting that hðz ¼ 0Þ ¼ 1. As a
result, one can obtain from the Friedman and Raychaudhuri
equations that

ΩΛ ¼ 1 −Ωm0 −Ωr0 −
1

3
ξ

�
2 −

3

2
Ωm0 − 2Ωr0

�
η

; ð25Þ

where Ωm0 ¼ 0.305 is the current value of the dust fluid
abundance [31].

COSMOLOGICAL IMPLICATIONS OF RASTALL-fðRÞ … PHYS. REV. D 104, 084033 (2021)

084033-3



In Sec. IV, we will obtain the best estimation
of the parameter ξ and the current value of the Hubble
parameter, using observational data on H and also fσ8. In
Table II, we have summarized the best fit values together
with its 1σ and 2σ confidence intervals of the parameters
h0 ≡H0=70 and ξ for three different values of the
parameter η ¼ 0.6, 1, 1.3. In Fig. 1, we have plotted
the evolution of the Hubble parameter and the deceler-
ation parameter q defined as

q ¼ ð1þ zÞ h
0

h
; ð26Þ

as a function of the redshift for η ¼ 0.6, 1, 1.3. The red
solid line indicates theΛCDM result. The case η ¼ 1 is the
original Rastall theory. To plot the figures, we have used
the best fit values of Table II. One can see from the figures
that all cases can satisfy the observational data on the
Hubble parameter. For redshifts smaller than z ≈ 1, the
generalized Rastall theory is identical to the ΛCDM
theory. For larger redshifts, the generalized Rastall theory
predicts smaller Hubble parameter, which results in a
larger size of the Universe compared to the ΛCDMmodel.
It can be seen from the figure that as η increases, the
Hubble parameter decreases, leading to the larger universe
for larger η values. Also, the deceleration parameter would
be smaller than the ΛCDMmodel for z > 0.2. This implies
that the generalized Rastall theory predicts a more accel-
erating universe compared to the ΛCDM model at these
redshifts. This is however compatible with the Hubble
diagram of the theory.
The evolution of the matter density abundance Ωm ¼

ρ̄ma2=h2 is depicted in Fig. 2 for different values of the
parameter η ¼ 0.6, 1, 1.3. It should be noted that the dust is
not conserved in the generalized Rastall theory. The red
solid curve in the figure corresponds to the conservative
ΛCDM theory, where the dust density abundance behaves

like ρ̄m ∝ ð1þ zÞ3. One can see from the figure that the
dust density abundance is lower than the ΛCDM case. This
can be explained by the fact that the matter field converted
to geometry due to the nonconservative nature of the matter
field. For large enough values of the redshift, the matter
density abundance of the generalized Rastall theory could
become higher than the ΛCDM value. This is in fact
compatible with the evolution of the deceleration param-
eter, which we have depicted above. From Eq. (24), one can
see that the right-hand side of the equation is always
negative. This means that larger values ofΩ0

m correspond to
smaller values of matter converted to the curvature, which
means lower attraction and more acceleration.
In the next section, we will consider the dynamical

system analysis of the model for a better understanding of
the evolution of the Universe in generalized Rastall
theory.

0.5 1.0 1.5 2.0 2.5 3.0
z

1

2

3

4

h

0.5 1.0 1.5 2.0 2.5 3.0
z

–0.4

–0.2

0.2

0.4

q

FIG. 1. The evolution of Hubble parameter h (left) and the deceleration parameter q (right) as a function of redshift for different values
of η ¼ 0.6 (dotted), 1 (dashed), 1.3 (dot-dashed). The solid red line corresponds to the ΛCDM theory. The error bars indicate the
observational values [32].
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FIG. 2. The evolution of the dust abundanceΩm as a function of
redshift for different values of η ¼ 0.6 (dotted), 1 (dashed), 1.3
(dot-dashed). The solid red line corresponds to the conservative
ΛCDM theory.
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III. DYNAMICAL SYSTEM ANALYSIS

Defining the following matter density abundance,

Ωi ¼
ρ̄ia2

h2
; ΩΛ ¼ ΩΛ0a2

h2
; Ωh ¼

h2

a2
; ð27Þ

where i ¼ r, m, one can write the Friedman Eqs. (15) and
(16) as

1 ¼ Ωm þ Ωr þΩΛ −
1

3
ξΩη−1

h ½3ð4 − 3Ωm − 4ΩrÞ�η: ð28Þ

The dynamical variableΩh could be considered as a density
abundance of the curvature, which is the characteristic of
generalized Rastall theory.
By obtaining ΩΛ from Eq. (28), one can deduce that we

have three independent dynamical variables, Ωm, Ωr, and
Ωh, with dynamical equations,

Ω0
m ¼ Ωm

�
3Ωm þ 4Ωr − 4

þ 1

1þ 3ξηΩη−1
h ð3ð4 − 3Ωm − 4ΩrÞÞη−1

�
; ð29Þ

Ω0
r ¼ Ωrð3Ωm þ 4Ωr − 4Þ; ð30Þ

Ω0
h ¼ −Ωhð3Ωm þ 4ΩrÞ; ð31Þ

where here, prime denotes derivative with respect to ln a.
The effective equation of state parameter can also be
defined as

ωeff ≡ −
1

3
−
1

2

h0

h2
¼ −1þΩm þ 4

3
Ωr: ð32Þ

The fixed points of the above system are collected in
Table I.

A. Radiation fixed point: Pr

The first fixed point of the dynamical system (29)–(31) is

Pr ¼ ðΩm;Ωr;ΩhÞ ¼ ð0; 1; 0Þ: ð33Þ

The effective equation of state parameter can be calculated
as ωeff ¼ 1=3, showing that this fixed point is a radiation
dominated point. The eigenvalues associated with this fixed
point is

ð−4; 0; 5Þ; ð34Þ

indicating that the radiation fixed point is saddle. This fixed
point exists for η ≥ 1 and η ¼ 0.

B. Dust fixed point: Pm

For this fixed point, we have

Pm ¼ ðΩm;Ωr;ΩhÞ ¼ ð1; 0; 0Þ; ð35Þ

and we have ωeff ¼ 0, showing that Pm describes a dust
dominated universe. The eigenvalues of this fixed point are

ð−3; 3;−1Þ; ð36Þ

implying that the dust dominated fixed point is also a
saddle point. This fixed point exists only for η > 1
and η ¼ 0.

C. De Sitter fixed point: PΛ

This fixed point corresponds to

PΛ ¼ ðΩm;Ωr;ΩhÞ ¼ ð0; 0; yÞ; ð37Þ

where y is an arbitrary constant for η ≥ 1 and an arbitrary
nonvanishing constant for η < 1. For this fixed point, we
have ωeff ¼ −1, implying that this fixed point describes a
de Sitter expanding phase. The eigenvalues of this fixed
point is

�
0;−4;−4þ 1

1 − 3ξηð12 − yÞη−1
�
: ð38Þ

In order to have a stable de Sitter fixed point, the constant y
should satisfy the relation,

ð12 − yÞη−1 < ð4ξηÞ−1: ð39Þ

D. The fixed point: P1

This fixed point only exists for η ¼ 1, which is the
original Rastall theory. This fixed point corresponds to

P1 ¼ ðΩm;Ωr;ΩhÞ ¼
�
1 − 4ξ

1 − 3ξ
; 0; 0

�
; ð40Þ

with the equation of state parameter ωeff ¼ ξ=ð3ξ − 1Þ. The
eigenvalues of this fixed point is

TABLE I. Fixed points of the dynamical system (29)–(31).

Fixed point ωeff Condition Stability

Pr Radiation 1=3 η ¼ 0 and η ≥ 1 Saddle
Pm Dust 0 η ¼ 0 and η > 1 Saddle
PΛ de Sitter −1 all η Stable

P1

de Sitter −1 η ¼ 1, ξ ¼ 1=4 Stable
Stiff matter 1 η ¼ 1, ξ ¼ 1=2 Saddle

Dust 0 η ¼ 1, ξ → 0 Saddle
Radiation 1=3 η ¼ 1, ξ → ∞ Saddle
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�
1

3ξ − 1
;
5 − 12ξ

3ξ − 1
;
12ξ − 3

3ξ − 1

�
: ð41Þ

In the case ξ ¼ 1=4, we have ωeff ¼ −1, corresponding to
the de Sitter expanding universe. In this case, the eigen-
values are ð−4; 0; 0Þ, and we can show that the de Sitter
fixed point is stable. In the case ξ ¼ 1=2, we have ωeff ¼ 1
with eigenvalues ð2; 6;−6Þ, which corresponds to a saddle
stiff matter phase. For very large values of ξ, we have
ωeff → 1=3 with eigenvalues ð0;−4; 4Þ, which is a saddle
radiation dominated fixed point. At last, for ξ → 0, we have
ωeff → 0 with eigenvalues ð−1;−3; 3Þ, indicating a saddle
dust dominated fixed point.
In summary, one can see from the above calculations that

for η < 1, there exists only one fixed point, and it behaves
as a stable de Sitter expanding universe. As a result, the
η < 1 case could not fully address the history of the
Universe.
In the case of Rastall theory η ¼ 1, there are three fixed

points; one of them is de Sitter expanding, and the other is a
radiation dominated fixed point. The third one can be de
Sitter, dust, or radiation dominated, depending on a specific
value of the parameter ξ. The original Rastall theory could
then explain the history of the Universe. The Universe
could start from the radiation dominated fixed point, which
will go to the dust dominated point, which corresponds to
very small values of ξ. At the end, the Universe will stay at
the stable de Sitter fixed point PΛ.
In the case η > 1, there are three fixed points corre-

sponding to a saddle dust, saddle radiation, and stable de
Sitter. In this case, we do not have any constraint on the
value of ξ. As a result, in this case, the history of the
Universe could be obtained consistently for all values of
the parameter ξ. In this sense, the generalized Rastall theory
with η > 1 would be more preferable.
It should be noted that for η > 1 and η ¼ 0, the Universe

has its standard radiation, matter, and de Sitter phase. So,
qualitatively astrophysical considerations should be satis-
factory in this model. However, early time behaviors as
well as structure formation should be analyzed separately to
make more precise conclusions.

IV. MATTER PERTURBATIONS

In this section, we will consider the evolution of the
matter density perturbations for Rastall-fðRÞ theory. The
scalar perturbation of the metric in Newtonian gauge
(B ¼ 0 ¼ E) can be written as

ds2 ¼ a2½−ð1þ 2φÞdt2 þ ð1 − 2ψÞdx⃗2�; ð42Þ

where φ and ψ are the Bardeen potentials. The
scalar perturbation of the energy momentum tensor can
be written as

δT0
0 ¼ −δρ≡ −ρδ;

δT0
i ¼ ð1þ wÞρ∂iv; δTi

j ¼ δijδp: ð43Þ

Here, δ is the matter density contrast defined as δ ¼ δρ=ρ, v
is the scalar mode of the velocity perturbation of the fluid,
and δp is the pressure perturbation. Also, w is the
unperturbed equation of state parameter, w ¼ p=ρ. In this
paper, we will assume that the unperturbed matter content
of the Universe are of dust form w ¼ 0.
The first order perturbation of (i ≠ j) components of the

Einstein field equation (3) can be obtained as

φ ¼ ψ : ð44Þ

This implies that in the generalized Rastall theory, the
anisotropy factor ηa ≡ φ=ψ is equal to unity, which is
similar to the standard Einstein theory. The (00), ð0iÞ, and
ðiiÞ components of the Einstein field equation can be
written as

a2ρδm þ 4κ2ðk2 þ 3H2Þφþ 4κ2½3H _φ

− ðk2φþ 6H2φþ 6 _Hφþ 12H _φþ 3φ̈Þf0� ¼ 0 ð45Þ

ρθ − 4κ2
k2

a2
ð _φþHφÞ ¼ 0; ð46Þ

and

φ̈þ3H _φþð2 _HþH2Þφ

−3f0
�
φ̈þ4Hφþ2ðH2þ _HÞφþ1

3
k2φ

�
¼ a2δp

4κ2
: ð47Þ

In obtaining the above perturbed equations, we have
Fourier transformed the perturbed fields. Also, we have
defined the Fourier transformed velocity divergence
as θ ¼ −k2v.
The Fourier transformed first order perturbations of the

conservation equation (2) can be simplified to

a4ρ_δþ3a4Hδpþa4½_ρδþρð3Hδþθ−3 _φÞ�
þ4κ2a2½12H3φ−ðk2−18ðH2þ _HÞÞ _φ−6Ḧφ−6Hφ̈− ⃛φ�f0
þ24κ2ð2H3−ḦÞ½ðk2þ6ðH2þ _HÞÞφþ12H _φþ3φ̈�f00 ¼0;

ð48Þ

_ρθþρð4Hθ−k2ϕþ _θÞ−k2δp

−4κ2
k2

a2
½ðk2þ6ð _HþH2ÞÞφþ12H _φþ3φ̈�f0 ¼ 0: ð49Þ

Now, let us consider the subhorizon limit of the theory
where k ≫ aH and where k is the wavenumber. The (00)
component of the metric field equation (45) becomes
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a2ρδþ 4κ2k2ð1 − f0Þφ ¼ 0: ð50Þ

It should be noted that in the subhorizon limit, the
expansion of the Universe can be neglected. As a result,
only the term proportional to δ, θ, δp, and k2 survive in the
field equation. From the ðiiÞ component of the metric field
equation (47) at subhorizon limit, one obtains

δp ¼ −
4κ2

a2
k2f0φ: ð51Þ

The ð0iÞ component of the metric equation (46) is not
independent and can be obtained from (50) and (49).
By solving Eq. (48) for θ, substituting the result in (49),

using (51), and performing the subhorizon limit, one can
obtain the dynamical evolution equation of the matter
density contrast in the subhorizon limit as

δ̈þ
�
7H þ 2

_ρ

ρ

�
_δþ

�
12H2 þ 3 _H þ 7H

_ρ

ρ
þ ρ̈

ρ

�
δ

þ 8κ2

a2ρ
k2½ðk2 þ 3H2 þ 3 _HÞφþ 5H _φþ φ̈�f0

−
24κ2

a4ρ
k2½2ðḦ − 2H3Þ _φþ 2ð⃛H − 6H2 _HÞφ�f00

þ k2φ

�
1 −

144κ2

a6ρ
ð2H3 − ḦÞ2f000

�
¼ 0: ð52Þ

Now, substituting φ from Eq. (50) and using background
field Eqs. (11) and (15) to substitute ρ and derivatives of H
in terms of the Ricci scalar R, one can obtain the dynamical
evolution equation for matter density perturbation as

δ̈þ Bδ
_δþ Cδδ ¼ 0; ð53Þ

where we have defined

Bδ ¼
ð2 − F0Þ2 þ 6F00ðRþ 4FÞ

3F0ðF0 − 2Þ H; ð54Þ

Cδ

a2
¼ Fð4F þ RÞ2

3ðF0 − 2ÞF02 F
000 þ Fð4F þ RÞ2ð2 − 3F0Þ

3ð2 − F0Þ2F03 F002

−
ð4F þ RÞð4FðF0 − 1Þ þ ð10F þ RÞF02Þ

6ð2 − F0ÞF03 F00

þ 1

18

�
14F þ Rþ 12

�
1þ 1

F0

�
k2

a2

þ 2

F02 ðð1þ 2F0ÞF − RF0Þ
�
; ð55Þ

where

F ¼ 3ðΛþ fÞ − R: ð56Þ

As before, in the following, we will consider the special
case f ¼ ϵRη, where ϵ and η are constants. Also, from now
on, we will transform the above equations to redshift
coordinates and analyze the dynamics of the system as a
function redshift z.
In order to compare the model with the observational

data, we use the data on fσ8 [33] defined as

fσ8ðzÞ ¼ σ8ðzÞ
d ln δðzÞ
d ln a

; σ8ðzÞ ¼ σ08
δðzÞ
δð0Þ ; ð57Þ

and the H0 data set [32] in the redshift range 0 < z < 2.
We will numerically solve the set of Eqs. (21), (24), and
(53) with the initial conditions hð0Þ ¼ 1, Ωmð0Þ ¼
Ωm0 ¼ 0.305, δð0Þ ¼ 1 and δ0ð0Þ ¼ ζδ0, where δ0 ¼
−0.517 is the ΛCDM value of the current derivative of
the matter density contrast, and ζ is a constant, which
indicates deviations from the ΛCDM value. In the follow-
ing, we will estimate the best fit values of the parameters ξ,
H0, σ08, and ζ. In order to do this, we use the likelihood
analysis of the model based on the data on H0 and fσ8.
In the case of independent data points, the likelihood

function can be defined as

L ¼ L0e−χ
2=2; ð58Þ

where L0 is the normalization constant, and the quantity χ2

is defined as

χ2 ¼
X
i

�
Oi − Ti

σi

�
2

: ð59Þ

Here, i counts the data points,Oi is the observational value,
Ti are the theoretical values, and σi is the error associated
with the ith data from observation. For the generalized
Rastall theory, the likelihood function can be defined as

L ¼ L0 exp

�
−
1

2

X
i

�
Oi − σ08Ti

σi

�
2
�
: ð60Þ

By maximizing the likelihood function, one can find the
best fit values of the parameters. In Table II, we have
summarized the result of the maximum likelihood estima-
tion on the parameters ξ, h0 ¼ H0=70, σ08, and ζ for
different values of η ¼ 0.6, 1, 1.3, together with their 1σ
and 2σ confidence interval. It should be noted that the value
of ξ is positive up to 2σ level for all values of η. In Fig. 3,
we have plotted the evolution of fσ8 as a function of the
redshift. The red solid line denotes the ΛCDM curve. One
can see that the generalized Rastall theory could explain the
observational data especially for small values of the redshift
where we have more data. For larger values of the redshift,
the evolution of the fσ8 function differs from its ΛCDM
counterpart. The smaller values of the η parameter leads to
the smaller values of fσ8 at larger redshifts. This suggests
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that more data on the fσ8 quantity on redshifts z > 1would
be needed to fully decide which theory could satisfy the
observations better. In Table II, we have also reported
χ2=d.o.f. of the σ08 estimation. One can also deduce from
the value of this quantity that more observational data
would be needed to make a good decision about the
generalized Rastall theory.

V. CONCLUSION

In this paper, we have considered the cosmological
implications of the generalized Rastall theory, where the
Ricci scalar in the (non)conservation equation is substituted
by an arbitrary function of the Ricci scalar fðRÞ. In order to
make quantitative arguments, we have assumed that the
function f has a power-law form as f ¼ ϵRη. The cosmo-
logical equations has been obtained, and we have shown
that the generalized Rastall theory could explain the
observational data on the Hubble parameter. The larger
values of η imply smaller values of the Hubble parameterH
for larger redshift. It should be noted that the η ¼ 0 case is
identical to the standard ΛCDMmodel. As a result, one can

obtain a series of models with varying η ≥ 0; the upper
curve in the Hubble plot corresponds to the smallest value
of η. The evolution of the deceleration parameter also
shows that the Universe described by the generalized
Rastall theory would predict more acceleration for the
redshift range z > 0.2 compared to the ΛCDM theory.
Larger values for η would imply more acceleration of the
Universe.
We have also considered the dynamical system analysis

of the theory. In this way, we have found that there are two
classes of fixed points, one for the original Rastall theory
with η ¼ 1 and the other class is for arbitrary values of η.
For general η, we have always a Stable de Sitter and
unstable radiation fixed points. However, the dust domi-
nated fixed point does not exist for 0 < η < 1. It should be
noted that for the case η ¼ 0, which is identical to
Einstein’s gravity, we have three standard dust, radiation,
and de Sitter fixed points. For the case of Rastall theory
η ¼ 1, beyond stable de Sitter and unstable radiation fixed
points, there is another fixed point with equation of state
parameter ωeff ¼ ξ=ð3ξ − 1Þ. Depending on the value of ξ,
this fixed point can behave as dust, radiation, de Sitter, and
stiff matter node. In summary, for η ≥ 1 and η ¼ 0, the
history of the Universe can be explained satisfactorily in
this model. However, for 0 < η < 1, the dust dominated
fixed point is absent from the system, and the Universe will
not stay enough time in that stage. As a result, the case
0 < η < 1 should be eliminated from the parameter space
of the theory.
In this paper, we have also considered the growth of

matter perturbations in the generalized Rastall theory. We
have found that the anisotropic stress in this theory is equal
to unity, which is the same as Einstein general relativity.
Also, due to the nonconservative nature of the theory, the
evolution equation of the matter density contrast is modi-
fied in this model. In order to compare the theory with
observational data, we have considered the evolution of fσ8
and find the best fit values of the model parameters ξ and ζ
and cosmological parameters H0 and σ08 using the maxi-
mum likelihood analysis on the H0 and fσ8 datasets. One
can see from the evolution plot of fσ8 that for redshifts
smaller than unity where we have more data, the

TABLE II. Best fit values of the model parameters h0 ¼ H0=70, ξ, ζ, and σ08, together with their 1σ and 2σ confidence intervals for
three different values of η ¼ 0.6, 1, 1.3.

η ξ 1σ=2σ intervals σ08 1σ=2σ intervals h0 1σ=2σ intervals ζ 1σ=2σ intervals χ2=d:o:f:

0.6 0.435
�0.156

0.800
�0.019

0.968
�0.020

0.920
�0.009

0.44�0.307 �0.038 �0.039 �0.018

1 0.269
�0.0.082

0.719
�0.017

0.977
�0.020

1.006
�0.010

0.47�0.161 �0.034 �0.040 �0.019

1.3 0.263
�0.032 0.669 �0.016 1.003 �0.021

1.092
�0.013

0.45�0.063 �0.031 �0.041 �0.025

η ¼ 0 (ΛCDM) � � � � � � 0.81
�0.0061

1.04
�1.7 � � � � � � 0.7�0.012 �2.8

0.5 1.0 1.5 2.0
z

0.2

0.3

0.4

0.5

0.6

f 8

FIG. 3. The evolution of the quantity fσ8 as a function of
redshift for different values of η ¼ 0.6 (dotted), 1 (dashed),
1.3 (dot-dashed). The solid red line corresponds to the
conservative ΛCDM theory. The error bars indicate the obser-
vational values [33]. In plotting the figures, we have assumed that
γ ≡ k=H0 ¼ 1.4.
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generalized Rastall theory predicts the same evolution of
fσ8 as ΛCDM theory. For larger redshifts, the evolution of
fσ8 will differ from the ΛCDM value. The value of
χ2=d:o:f: for various η’s suggests that more data would
be needed in order to decide which theory satisfies the
observations better. Finally, it should be noted that in this
paper, we have used local observational data [32,33]. As
one can see from Table II, the σ08 value is roughly 0.7, so the
model could not make the σ8 tension better. Also, from the
table, one can see that the Hubble parameter is around 70.

This shows that model can alleviate the H0 tension.
However, for a precise statement about this issue, one
needs a full set of observational data, which is in the scope
of the future works.
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