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We examine the thermodynamics of a new class of asymptotically anti–de Sitter (AdS) black holes with
nonconstant curvature event horizons in Gauss-Bonnet Lovelock gravity, with the cosmological constant
acting as thermodynamic pressure. We find that nontrivial curvature on the horizon can significantly affect
their thermodynamic behavior. We observe novel triple points in six dimensions between large and small
uncharged black holes and thermal AdS. For charged black holes we find a continuous set of triple points
whose range depends on the parameters in the horizon geometry. We also find new generalizations of
massless and negative mass solutions previously observed in Einstein gravity.
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I. INTRODUCTION

Einstein’s general theory of relativity is an extremely
elegant and successful theory of gravitation, passing all of
its experimental tests since its inception over 100 years ago
[1]. Yet its reconciliation with quantum theory remains
elusive. While there is yet to be a proper full description of
quantum gravity, a key piece of the puzzle is provided by
black holes. Originally thought to be nature’s ultimate
repositories of matter and energy, their behavior drastically
changes once quantum physics is taken into account [2],
leading to the well-known prediction that a black hole
radiates like a thermal blackbody whose temperature is
proportional to its surface gravity and whose entropy is
proportional to its horizon area. In anti–de Sitter spacetime,
they can undergo phase transitions [3] and in fact exhibit a
very broad range of chemical thermodynamics [4].
Another general expectation that emerges from quantum

gravity is the presence of higher curvature terms that correct
the Einstein-Hilbert action [5,6]. The most commonly
discussed is Lovelock gravity [7], which is regarded as a
physically sensible generalization of Einstein gravity to
higher dimensions since its field equations are second order
in all metric components. These theories have the general
feature that the entropy of a black hole is no longer
proportional to the horizon area, and so are of particular
interest in black hole thermodynamics since they provide a
window into how quantum gravitational effects could
modify the radiative behavior of black holes [8].
So far work on black hole thermodynamics in Lovelock

gravity has been limited to black hole solutions that have a

constant curvature manifold as its transverse space.
However, this limitation is not necessary: recently, a more
general class of black hole solutions were found for
Lovelock gravity in which the transverse space is a more
general manifold [9]. Such solutions take the form of a
warped product of a two-dimensional space and an arbi-
trary transverse base manifold [10–15]. There is a gener-
alization of the Birkhoff theorem that implies this base
manifold must be static. Furthermore, the field equations
impose the conditions that all the nontrivial intrinsic
Lovelock tensors of the base manifold are constants that
can be chosen arbitrarily. We shall refer to such objects as
“exotic Lovelock black holes,” or ELBHs.
We investigate here the thermodynamic properties of

ELBHs in Einstein Maxwell Gauss-Bonnet gravity, the
simplest Lovelock gravity theory. ELBHs in this case
depend on two parameters, and in the limit that these
parameters are chosen so that when the base manifold has
constant curvature, we recover thermodynamic phenomena
for both neutral and charged black holes previously
observed in Gauss-Bonnet gravity [8]. We find that
ELBHs exhibit new effects as they increasingly depart
from this special case. For example, we observe a novel
triple point between thermal radiation and large and small
ELBHs in six dimensions. In the d ¼ 6 charged case we
find that the particular features of the large/intermediate/
small triple point depends on the horizon geometry.
We also find an interesting set of massless and negative

mass black hole solutions that generalize those found
previously in Einstein gravity [16–18]. These have a more
interesting structure insofar as two horizons are possible
under some circumstances, and their singularity structure is
more complicated than the corresponding situation in
Einstein gravity.
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We first begin with a review of Lovelock gravity,
discussing black hole solutions whose transverse spaces
are of constant and nonconstant curvature and make a
simple distinction between the two, how to transition
between each and provide a calculation of the
Kretschmann scalar for an arbitrary metric. We follow that
with a discussion of Lovelock black hole thermodynamics.
In Sec. III, we examine Gauss-bonnet gravity, with first a
discussion of vacumm solutions and then five- and six-
dimensional black holes (uncharged then charged). In
Sec. V, we give a summary of our results and future
outlook.

II. EXOTIC LOVELOCK BLACK HOLES

The Lagrangian for a Lovelock theory [7] in d dimen-
sions is

L ¼ 1

16πGN

XK
k¼0

α̂kLðkÞ; ð2:1Þ

where α̂k are the Lovelock coupling constants and LðkÞ are
the Euler densities,

LðkÞ ¼ 1

2k
δa1b1…akbk
c1d1…ckdk

Rc1d1
a1b1

…Rckdk
akbk

: ð2:2Þ

with the contraction occurring over the antisymmetric
generalized Kronecker delta. The dimension of the Euler
densities is 2k, with Lð0Þ being the cosmological constant,
Lð1Þ the Ricci scalar, andLð2Þ the Gauss-Bonnett term. Note
that we must have d > 2K in order to have nontrivial field
equations.
With the lagragnian (2.1) we can write our action for

Lovelock theory as

S ¼
Z

ddx
ffiffiffiffiffiffi
−g

p �
1

16πGN

XK
k¼0

α̂kLðkÞ þ Lmatter

�
: ð2:3Þ

Variation of the action with respect to the metric yields the
field equations

XK
k

α̂kG
ðkÞ
ab ¼ 8πGNTab; ð2:4Þ

where Tab is the stress-energy tensor and GðkÞ
ab are the

Lovelock tensors

GðkÞ
ab ¼ −

1

2ðkþ1Þ gzaδ
zc1d1…ckdk
be1f1…ekfk

Re1f1
c1d1

…Rekfk
ckdk

: ð2:5Þ

We will be examining charged black holes, which means
we will use the following Lagrangian Lmatter ¼
−4πGNFabFab, which will give us our finalized field
equations,

XK
k¼0

α̂ðkÞG
ðkÞ
ab ¼ 8πGN

�
FacFc

b −
1

4
gabFcdFcd

�
: ð2:6Þ

We shall discuss the black hole solutions to these equations
in the next section.

A. Black hole solutions

We will be focusing on charged anti–de Sitter (AdS)
black hole solutions in this paper, using the ansatz

ds2 ¼ gijdyidyj þ γαβdxαdxβ

¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΣ2
d−2

F ¼ Q
rd−2

dt ∧ dr; ð2:7Þ

for the metric and gauge field strength, that we require to be
solutions to (2.6). The coordinates yi ¼ ðt; rÞ, with
gij ¼ diagð−fðrÞ; 1=fðrÞÞ. The importance of this metric
lies in the nature of the base manifold described by dΣ2

d−2.
The most common approach is to take dΣ2

d−2 to be a
(d − 2)-dimensional compact space of constant curvature
given by ðd − 2Þðd − 3Þκ, with κ ¼ −1; 0;þ1 correspond-
ing to hyperbolic, flat, or spherical curvature respectively.
This yields the polynomial equation [19–23],

XK
k¼0

αk

�
κ − fðrÞ

r2

�
k
¼ 16πGM

ðd − 2ÞΣðκÞ
d−2r

d−1

−
8πGNQ2

ðd − 2Þðd − 3Þ
1

r2d−4
; ð2:8Þ

from (2.6). Here M is the mass of the black hole, ΣðκÞ
d−2 is the

volume of the compact space whose metric is dΣ2
d−2. Q is

the black hole charge given by

Q ¼ 1

2ΣðκÞ
d−2

Z
�F: ð2:9Þ

The αk terms are rescaled Lovelock coupling constants,

α0 ¼
α̂ð0Þ

ðd − 1Þðd − 2Þ ¼ α1 ¼ α̂ð1Þ;

αk ¼ α̂ðkÞ
Y2k
n¼3

ðd − nÞ for k ≥ 2; ð2:10Þ

where the cosmological constant Λ ¼ −α̂ð0Þ=2. In what
follows we will set α1 ¼ 1 to retrieve general relativity in
the low energy limit.
However it is possible to assume that dΣ2

d−2 is the metric
of a more general (d − 2)-dimensional base manifold that
does not have to be of constant curvature. In this case the
field equations (2.6) become
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Gi
j ≡ −

ðd − 2Þðd − 1Þδij
2ðd − 1Þ!rd−2

Xk̄
n¼0

fðd − 2n − 2Þ!L̂ðnÞg
�
d
dr

�
rd−2n−1An

�
−fðrÞ
r2

���
¼ 8πGNTi

j ð2:11Þ

Gα
β ≡ ðd − 1Þðd − 2Þ

ðd − 1Þ!rd−3
Xk̄
n¼0

fðd − 2n − 3Þ!ĜðnÞα
β g

�
d2

dr2

�
rd−2n−1An

�
−fðrÞ
r2

���
¼ 8πGNTα

β; ð2:12Þ

with the polynomial,

An

�
−fðrÞ
r2

�
≡XK

k¼n

αk

�
k

n

��
−fðrÞ
r2

�
k−n

; ð2:13Þ

which satisfies the recurrence relation,

A0
n

�
−fðrÞ
r2

�
¼ ðnþ 1ÞAnþ1

�
−fðrÞ
r2

�
: ð2:14Þ

The quantities L̂ðnÞ and ĜðnÞα
β are respectively the Euler

characteristic and Lovelock tensors of the base manifold,

L̂ðnÞ ¼ ðd − 2Þ!bn
ðd − 2n − 2Þ!

ĜðnÞα
β ¼ −

ðd − 3Þ!bn
2ðd − 2n − 3Þ! δ

α
β; ð2:15Þ

reducing the field equations to

Gi
j ≡

−ðd − 2Þδij
2rd−2

d
dr

XK
n¼0

�
bn

�
rd−2n−1An

�
−fðrÞ
r2

���

¼ 8πGNTi
j ð2:16Þ

Gα
β ≡

−δαβ
2rd−3

d2

dr2
XK
n¼0

�
bn

�
rd−2n−1An

�
−fðrÞ
r2

���

¼ 8πGNTα
β: ð2:17Þ

In this case the polynomial equation in fðrÞ becomes [24]

XK
n¼0

bn
r2n

�XK
k¼n

αk

�
k

n

��
−fðrÞ
r2

�
k−n
�

¼ 16πGNM
ðd − 2ÞΣd−2rd−1

−
8πGNQ2

ðd − 2Þðd − 3Þ
1

r2d−4
; ð2:18Þ

generalizing (2.8). We shall refer to the solutions that
follow from solutions to (2.18) in which fðrÞ vanishes at
least once for some r > 0 as exotic Lovelock black holes, or
ELBHs, where the term bn is introduced and is referred to
as the topological parameter. We can set b0 ¼ 1 without
any loss of generality.
Before proceeding to the thermodynamics we mention a

few more things with regards to the field equations (2.16)

and (2.17). Upon comparing the left-hand sides of
Eqs. (2.8) and (2.18), we obtain

bn ¼ κn; ð2:19Þ

for black holes whose base manifolds have constant
curvature.
We define the mass, using the Hamiltonian formulation,

as the conserved charge corresponding to the time trans-
lational Killing vector of a background spacetime to which
the black hole solutions approach in the asymptotic region.
For black holes with maximally symmetric horizons, this is
usually chosen as a constant curvature spacetime that
solves the field equations [8,25–28]. In our case, we choose
this background solution to have identical geometry of the
base manifold as that of the black hole solution under
consideration while the corresponding metric function f̄ðrÞ
solves the equation,

XK
n¼0

bn
r2n

�XK
k¼n

αk

�
k

n

��
−f̄ðrÞ
r2

�k−n�
¼ 0: ð2:20Þ

One might note an apparent discrepancy in the above
equation while considering the dimension d ¼ 2K þ 1,
since in this case there are K − 1 constants bn character-
izing the geometry of the base manifold. In this particular
dimensionality, bK does not carry any geometric informa-
tion of the base manifold but rather corresponds to the
choice of the integration constant specifying the back-
ground spacetime. This becomes evident if we rewrite the
above equation as

XK−1
n¼0

bn
r2n

�XK
k¼n

αk

�
k

n

��
−f̄ðrÞ
r2

�k−n�
¼ −

bKαK
r2K

: ð2:21Þ

For spherical base manifolds, bK ¼ 1 then corresponds to
the natural choice of a constant curvature spacetime as the
background. We shall adopt the convention that the sum in
(2.18) extends up to K for all d, recognizing that if
d ¼ 2K þ 1 the parameter bK corresponds to a convention
for choosing M and contains no geometric information.
In analyzing the structure of our solutions, we will find it

useful to employ the Kretschmann scalar, which for the
metric (2.7) can be written as
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RabcdRabcd ¼
�
d2fðrÞ
dr2

�
2

þ 2
ðd − 2Þ

r2

�
dfðrÞ
dr

�
2

þ 2
ðd − 2Þðd − 3ÞfðrÞ2

r4

− 4
R½γ�fðrÞ

r4
þK½γ�

r4
; ð2:22Þ

where

K½γ� ¼ RαβμνRαβμν½γ� ð2:23Þ

is the Kretschmann scalar of the base manifold.

B. Lovelock black hole thermodynamics

Lovelock black holes of massM, entropy S, temperature
T, and charge Q obey the extended first law and Smarr
relations [29,30]

δM ¼ TδS −
1

16πGN

X
h

Ψ̂ðkÞδα̂ðkÞ þΦδQ ð2:24Þ

ðd − 3ÞM ¼ ðd − 2ÞTSþ
X
k

2ðk − 1Þ Ψ̂
ðkÞα̂ðkÞ

16πGN

þ ðd − 3ÞΦQ; ð2:25Þ

where we regard the α̂ðkÞ as thermodynamic parameters.

The Ψ̂ðkÞ are their respective conjugate thermodynamic
potentials, given by

Ψ̂ðkÞ ¼ 4πTAðkÞ þ BðkÞ þ ΘðkÞ; ð2:26Þ

with

BðkÞ ¼ −
16πkGNMðd − 1Þ!
bðd − 2k − 1Þ!

�
−

1

l2

�
k−1

;

b ¼
X
k

α̂kkðd − 1Þ!
ðd − 2k − 1Þ!

�
−

1

l2

�
k−1

ΘðkÞ ¼
Z
Σ

ffiffiffiffiffiffi
−g

p
LðkÞ½s� −

Z
ΣAdS

ffiffiffiffiffiffiffiffiffiffiffiffi
−gAdS

p
LðkÞ½sAdS�; ð2:27Þ

where l2 ¼ 1=αð0Þ is the “AdS” radius. The spatial hyper-
surface Σ, with timelike unit normal na and induced metric
sab ¼ gab þ nanb, extends from the horizon to infinity.
Black holes in Lovelock gravity no longer obey the area

relation S ¼ AH
4
but instead have entropy given by [29]

S ¼ 1

4GN

X
k

α̂kAðkÞ; AðkÞ ¼ k
Z
H

ffiffiffi
σ

p
Lðk−1Þ; ð2:28Þ

where σ is the determinant of the induced metric on the
horizon, and Lðk−1Þ are the corresponding Euler densities.

We will be treating the (negative) cosmological constant
as the thermodynamic pressure,

P ¼ −
Λ

8πGN
¼ α̂0

16πGN
; V ¼ −Ψ̂ð0Þ; ð2:29Þ

with V the conjugate thermodynamic volume of the
black hole.

1. ELBH thermodynamics

We wish to solve (2.7) to obtain AdS black hole
solutions, solutions for which fðrÞ grows quadratically
with r for large r and has r ¼ rþ > 0 as its largest linear
zero. Although we could explicitly solve (2.7) in the K ¼ 2
Gauss-Bonnet case, this is not necessary as we can employ
the Hamiltonian formalism [20,30,31]. We can find the
thermodynamic parameters of the black hole without an
explicit solution of fðrÞ for any value of K.
Setting fðrþÞ ¼ 0, we find

M¼Σd−2ðd−2Þ
16πGN

XK
k¼0

αkbkrd−1−2kþ þ Σd−2

2ðd−3Þ
Q2

rd−3þ
: ð2:30Þ

T ¼ f0ðrþÞ
4π

¼ 1

4πrþDðrþÞ
�XK
k¼0

bkαkðd − 2k − 1Þr−2ðk−1Þþ

−
8πGNQ2

ðd − 2Þr2ðd−3Þþ

�
; ð2:31Þ

where DðrþÞ is

DðrþÞ ¼
XK
k¼1

kαkbk−1r
−2ðk−1Þ
þ : ð2:32Þ

The entropy is given by

S ¼ Σd−2ðd − 2Þ
4GN

XK
k¼0

kbk−1αkrd−2kþ
d − 2k

; ð2:33Þ

and through the first law it is easy to identify the conjugate
potentials,

ΨðkÞ ¼ Σd−2ðd − 2Þ
16πGN

rd−2kþ

�
bk
rþ

−
4bk−1πkT
d − 2k

�
: ð2:34Þ

The thermodynamic volume is

V ¼ −Ψ̂ð0Þ ¼ 16πGNΨð0Þ

ðd − 1Þðd − 2Þ ¼
Σd−2rd−1þ
d − 1

: ð2:35Þ

Using (2.29) and (2.31) we obtain the equation of state,
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P ¼ d − 2

16πGN

XK
k¼1

αk
r2þ

r−2ðk−1Þþ ½4πkbk−1rþT − bkðd − 2k − 1Þ�

þ Q2

2r2ðd−2Þþ
; ð2:36Þ

where rþ is a function of the thermodynamic volume
from (2.35).
We note the nontrivial dependence of the various

thermodynamic parameters on the topological constants
bk. This implies that we might expect new phase behavior
for ELBHs as compared to their constant curvature counter-
parts. To investigate this we shall study the Gibbs free
energy [4],

GðP; T;QÞ ¼ M − TS; ð2:37Þ

which characterizes the canonical ensemble. A thermody-
namically stable state is given by the global minimum of G
for any given choice of the parameters. To observe phase
transitions, it is most useful to plot G as a function of T,
fixing the other parameters.

This, however, is not sufficient to determine a physically
acceptable black hole thermodynamic state. We shall also
require that

XK
k¼0

kbk−1αkrd−2kþ
d − 2k

≥ 0; ð2:38Þ

so that the entropy is not negative. Likewise, we shall only
consider T ≥ 0 in (2.31). However we shall not require that
M > 0, since it is known that, for example, topological
black holes can have negative masses that are bounded
from below [16].

III. ELBHS IN GAUSS-BONNET GRAVITY

We now specialize our considerations to the K ¼ 2
Gauss-Bonnet case.

A. Solutions

Setting K ¼ 2, in (2.18) we obtain the polynomial
equation for fðrÞ≡ f in Gauss-Bonnet-Lovelock gravity
(where we recall b0 ¼ 1 and α1 ¼ 1),

α2f2

r4
þ
�
−

1

r2
−
2b1α2
r4

�
f þ α0 þ

b1
r2

þ b2α2
r4

¼ 16πM
ðd − 2ÞΣd−2rd−1

−
8πQ2

ðd − 2Þðd − 3Þr2d−4 ; ð3:1Þ

whose solutions are

f ¼ f�ðm; qÞ≡ r2 þ 2b1α2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb21 − b2Þ4α22 þ r4ð1 − 4α2α0Þ þ 8mα2

rd−5
− 4q2α2

r2ðd−4Þ

q
2α2

; ð3:2Þ

where

m≡ 8πM
ðd − 2ÞΣd−2

q2 ≡ 8πQ2

ðd − 2Þðd − 3Þ : ð3:3Þ

The solution f−ðm; qÞ has the limit,

lim
α2→0

f−ðm; qÞ ¼ α0r2 þ b1 −
2m
rd−3

þ q2

r2ðd−3Þ
; ð3:4Þ

recovering the solution in Einstein gravity for b1 ¼ κ.
We also require that f�ðm; qÞ → r2 for large r. This

implies

1 − 4α2α0 ≥ 0; ð3:5Þ

independent of the bk. Equation (3.5) implies from (2.29)
that there is a maximum pressure [8],

P ≤ Pmax ¼
ðd − 1Þðd − 2Þ

64πα2
; ð3:6Þ

such that if this bound is violated the spacetime is no longer
asymptotically AdS.
The horizons are located at

r2�ðm; qÞ ¼ −
1

2ðα0 − 2m
rd−5�

− q2

r2ðd−4Þ�
Þ

�
b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 − 4b2α2α0 þ b2α2

�
8m
rd−5�

−
4q2

r2ðd−4Þ�

�s �
; ð3:7Þ
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which implicitly defines r�. We note from this that
solutions with m ¼ q ¼ 0

f�ð0; 0Þ ¼
r2 þ 2b1α2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb21 − b2Þ4α22 þ r4ð1 − 4α2α0Þ

p
2α2

ð3:8Þ

have horizons at

r2�ð0; 0Þ ¼
1

2α0

	
−b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 − 4b2α2α0

q 

; ð3:9Þ

provided either

ðaÞ b2 < 0 and b1 > 0 ⇒ rþð0; 0Þ is the only horizon;

ð3:10Þ

or, if b2 > 0,

ðbÞ b21 > 4b2α2α0 and 0 > b1 > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2ð1 − 2α2α0Þ

s

⇒ r�ð0; 0Þ are both horizons; ð3:11Þ

or

ðcÞ b21 > 4b2α2α0 and −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2ð1 − 2α2α0Þ

s
> b1

⇒ rþð0; 0Þ is the only horizon; ð3:12Þ

where the inequalities (3.11) ensure that r−ð0; 0Þ is real and
larger than the location of the spacetime singularity.
If any of these conditions do not hold then the solution

has a naked singularity.
The solutions (3.8) are generalizations of massless topo-

logical black holes in Einstein gravity [16–18], with α2 ¼ 0
and b1 ¼ −1, with appropriate identifications made on the
transverse base space [17,32]. Here we have a richer set of
possibilities insofar as two horizons are possible, as long as
b2α2 > 0. Negative mass solutions are likewise possible.

An evaluation of the Kretschmann scalar (2.22) for the solution (3.8) yields

RabcdRabcd ¼
1

α2
þ −48ðb12 − b2Þr2α0α23 þ 12r2ð4r4α02=3þ b12 − b2Þα22 − 8α0α2r6

α2ððb21 − b2Þ4α22 þ r4ð1 − 4α2α0ÞÞ3=2

− 2
ðd − 2Þð−4α0α2r2 þ r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb21 − b2Þ4α22 þ r4ð1 − 4α2α0Þ

p
Þ2

α22ððb21 − b2Þ4α22 þ r4ð1 − 4α2α0ÞÞ

þ ðd − 2Þðd − 3Þðr2 þ 2b1α2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb21 − b2Þ4α22 þ r4ð1 − 4α2α0Þ

p
Þ2

2r4α22

− 2
R½γ�ðr2 þ 2b1α2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb21 − b2Þ4α22 þ r4ð1 − 4α2α0Þ

p
Þ

α2r4
þ K½γ�

r4
; ð3:13Þ

which clearly has singularities at r ¼ 0 and at

rs ¼
�ðb2 − b21Þ4α22

1 − 4α2α0

�1
4

: ð3:14Þ

Imposing the condition (3.5), it is straightforward to
show that the inner horizon r−ð0; 0Þ > rs provided
(3.11) holds; otherwise rþð0; 0Þ > rs if either of (3.10)
or (3.12) hold. If b2 < b21 the singularity in (3.14) is absent,
but the r ¼ 0 singularity in general remains. If b2 ¼ b21 the
spacetime is of constant curvature and all singularities are
absent.

B. Equation of state

The equation of state (2.36) for K ¼ 2 is

P ¼ ðd − 2ÞT
4rþ

−
ðd − 2Þðd − 3Þb1

16πr2þ
þ ðd − 2Þα2b1T

2r3þ

−
ðd − 2Þðd − 5Þα2b2

16πr4þ
þ Q2

2r2ðd−2Þþ
ð3:15Þ

and becomes

p ¼ t
v
−
ðd − 2Þðd − 3Þb1

4πv2
þ 2b1t

v3
−
ðd − 2Þðd − 5Þb2

4πv4

þ q2

v2ðd − 2Þ ; ð3:16Þ
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upon introducing the dimensionless variables ðv; t; m; q; pÞ
[8],

rþ ¼ vα
1
2

2; T ¼ tα
−1
2

2

d − 2
; m ¼ 16πM

ðd − 2ÞΣd−2
α

d−3
2

2 ;

Q ¼ qffiffiffi
2

p α
d−3
2

2 ; P ¼ p
4α2

; ð3:17Þ

and recalling (3.6) it becomes

p ≤ pmax ¼
ðd − 1Þðd − 2Þ

16π
: ð3:18Þ

Critical points are obtained by solving

∂p
∂v ¼ 0;

∂2p
∂v2 ¼ 0; ð3:19Þ

where the first equation determines critical temperature and
the latter yields the critical volume. We obtain

tc ¼
ð−4v8−2dc q2π þ b1ðd − 3Þv2c þ 2b2ðd − 5ÞÞðd − 2Þ

2πðv2c þ 6b1Þvc
;

ð3:20Þ

and

ð48v8−2dc πdb1 þ 8v10−2dc πd − 168v8−2dc πb1 − 20v10−2dc πÞq2
þ ð−db1 þ 3b1Þv4c þ ð6db21 − 6b2d − 18b21 þ 30b2Þv2c
− 12db1b2 þ 60b1b2 ¼ 0: ð3:21Þ

The Gibbs free energy can also be written in dimensionless
form using (3.17) as

g ¼ 1

ΣðκÞ
d−2

α
3−d
2

2 G; ð3:22Þ

yielding

g¼ðd−2Þðvd−2d−2þ 2b1vd−4

d−4 Þð4πpv2d−2 þðd−3Þb1þðd−5Þb2
v2 Þ

16πvð1þ 2b1
v2 Þ

þ
ðd−2Þð 4πpvd−1

ðd−1Þðd−2Þþb1vd−3þb2vd−5Þ
16π

þq2ðð2d−5Þðd−4Þv2þ2b1ðd−2Þð2d−7ÞÞ
4ðd−4Þðd−2Þðd−3Þðv2þ2b1Þvd−3

; ð3:23Þ

from (2.37).
The positive entropy condition (2.38) for K ¼ 2 is

rd−2þ
d − 2

þ 2α2b1rd−4þ
d − 4

≥ 0 ⇒
vd−2

d − 2
þ 2b1vd−4

d − 4
≥ 0; ð3:24Þ

which is always satisfied for b1 > 0. For b1 < 0,

v ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
jb1jðd − 2Þ

d − 4

r
; ð3:25Þ

implying that the size of the black hole must be sufficiently
large for it to have positive entropy.
Finally, we note that the vacuum horizon equation (3.9)

becomes

v2�ð0;0Þ¼
ðd−1Þðd−2Þ

8πp

 
−b1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21−

16πpb2
ðd−1Þðd−2Þ

s !
;

ð3:26Þ

using the dimensionless variables (3.17).

C. Five dimensions

In light of our discussion in Sec. II A, in five dimensions
we must obey certain conditions in order to have compat-
ibility with the constant curvature case. The conditions are
b2 ¼ b21, where b1 ¼ −1, 0, 1. We shall consider only
b1 ¼ �1 in what follows.
With this, we no longer have the possibility of a

singularity outside of the origin in vacuum spacetime
[which we can see in (3.14) with the b2 ¼ b21 condition].
Our fðrÞ solution for the vacuum is given by

f�ð0; 0Þ ¼
r2 þ 2b1α2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4ð1 − 4α2α0Þ

p
2α2

; ð3:27Þ

yielding

r2�ð0; 0Þ ¼
ð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4α2α0
p

− 1Þb1
2α0

; ð3:28Þ

for the horizons. Note that since 1 > 1 − 4α0α2 > 0, there
will be two horizons provided b1 < 0. For 1 − 4α0α2 ¼ 0,
there are two coincident horizons,

r2þ ¼ r2− ¼ −b1
2α0

; ð3:29Þ

which corresponds to be being at maximum AdS pressure,
where b1 < 0 or else there will be no horizons. As α0 → 0,
the only horizon is

lim
α0→0

r2þð0; 0Þ ¼ −b1α2 ð3:30Þ

for b1 < 0, or else no horizons are present. While the
former horizon corresponds to a maximum AdS pressure
the later corresponds to zero AdS pressure, which shows
that as we turn off the cosmological constant we will still
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maintain a vacuum singularity as long as we properly
choose our topological term b1.
For nonzero M and Q we obtain (3.2)

f¼
r2þ2b1α2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4ð1−4α2α0Þþ8mα2−

4q2α2
r2

q
2α2

; ð3:31Þ

from (3.2). For Q ¼ 0 there is a bound on the mass,

m ≥ −
b21ð1 − 4α0α2Þ

8α0
; ð3:32Þ

which provides a lower (negative) bound for the mass,
below which uncharged black hole solutions do not exist.

1. Uncharged ELBH thermodynamics

The five-dimensional uncharged equation of state is
given by

p ¼ t
v
−

3b1
2πv2

þ 2tb1
v3

; ð3:33Þ

where

pmax ¼
3

4π
≈ 0.2387324146 ð3:34Þ

is the maximum dimensionless pressure. The Gibbs free
energy is

g ¼ −
3ð1

3
v3 þ 2b1vÞð4πpv

2

3
þ 2b1Þ

16πvð1þ 2b1
v2 Þ

þ 3ð1
3
πpv4 þ b1v2 þ b2Þ

16π
: ð3:35Þ

The critical temperature and volume are obtained from
(3.20) and (3.21),

tc ¼
3b1vc

πðv2c þ 6b1Þ
; v2c − 6b1 ¼ 0; ð3:36Þ

whose solutions are

vc ¼
ffiffiffiffiffiffiffi
6b1

p
; tc ¼

ffiffiffiffiffiffiffi
6b1

p
4π

; pc ¼
1

12π
¼pmax

9
: ð3:37Þ

We see that we must have positive values of b1 in order to
have real critical points; this in turn ensures the positive
entropy condition holds for all black hole sizes.
With the condition that b21 ¼ b2 we can first begin with

the constant curvature case, b1 ¼ b2 ¼ 1. We see the
standard Van der Waals behavior [8] shown in Fig. 1.
Seen in the center image there is an intersection between
large and small black hole branches, indicating a large/
small first order phase transition. However these black
holes are unstable since their free energy is greater than that
of g ¼ 0 which corresponds to AdS radiation. Instead,
when the large black hole branch crosses the g ¼ 0 axis it
will undergo a Hawking/Page transition into thermal AdS
radiation [3]. The phase diagram for this first order
transition is displayed in the right image of Fig. 1. The
apparent sharp corner occurs at the critical point p ¼ pc for
the unstable black hole branch. It is actually smooth but
corresponds to a very steep rise in pressure as a function of
temperature for pc < p < pmax from the equation of state,
as shown in Fig. 2.
It is interesting to compare the phase behavior of

uncharged d ¼ 5 Gauss-Bonnet black holes considered
previously with the present case. As shown in Fig. 3, the
coexistence line between the radiation/large black hole
phases is very close to that of the small/large black hole

FIG. 1. Phase behavior for d ¼ 5, q ¼ 0, b1 ¼ b2 ¼ 1 black holes. Left: p − v diagram with constant temperature slices of the
unstable BH showing the oscillation for t < tc. Center: g − t diagram with constant pressure slices around pc again, of unstable BHs
showing swallowtail structure with intersection between large and small black holes. Right: Phase diagram of the black hole / radiation
showing the termination at the maximum pressure.
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phases. Approaching the diagram from the right, it is clear
that as the temperature decreases, the large black hole will
undergo a phase transition to radiation before that for a
small black hole.

2. Charged ELBH thermodynamics

Including charge, the equation of state and Gibbs free
energy are now

p ¼ t
v
−

3b1
2πv2

þ 2tb1
v3

þ q2

v6
ð3:38Þ

g¼−
3ð1

3
v3þ 2b1vÞð4πpv

2

3
þ 2b1Þ

16πvð1þ 2b1
v2 Þ

þ 3ð1
3
πpv4þb1v2þb2Þ

16π

þq2ð5v2þ 18b1Þ
24ðv2þ 2b1Þv2

; ð3:39Þ

and the critical temperature equation and critical volume
relations (3.20) and (3.21) become

tc ¼
3ðb1v4c − 2πq2Þ
πv3cðv2c þ 6b1Þ

;

3v6cb1 − 18v4cb21 − ð30πv2c þ 108πb1Þq2 ¼ 0: ð3:40Þ

Since the latter is a cubic equation in v2c, analytic solutions
are possible for arbitrary values of b1 and q. All roots of the
cubic will be positive and real only if its coefficients
alternate in sign, which is not possible for any values of b1
or q. Hence there can be at most two admissible solutions
for vc from (3.40).
Plotting in Fig. 4 the critical volume solutions for

specific choices of q, we see that negative values of b1
are permitted as well as positive ones, unlike the uncharged
case. For any given charge there is a negative value of b1
below which there are no longer any real solutions for vc
from (3.40); for q ¼ 1 this is approximately b1 ¼ −1.5. As
we decrease the charge, the magnitude of the most negative
allowed value of b1 also decreases, as expected since only
positive values of b1 are permitted for q ¼ 0.

FIG. 3. Left: Phase diagram showing the first-order coexistence line of the unstable large/small transition (red) and the coexistence line
of the Hawking-Page transition (black). Right: Close-up version of the left diagram. The unstable small black hole phase is between the
red and black lines.

FIG. 2. g − t plots for two constant pressure slices: pcrit of the
unstable black hole and pmax of the spacetime.
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For b1 > 0, there is always a positive root to the cubic, so
all positive values of b1 yield a positive critical volume.
We first begin with q ¼ 1, b1 ¼ b2 ¼ 1, illustrating the

results in Fig. 5. In this configuration they exhibit the
standard Van der Waals behavior of a large/small black
hole phase transition [8]. There is no transition into
radiation (thermal AdS) due to conservation of charge.
This behavior is qualitatively the same for all possible
values of b1 > 0.
We illustrate the situation for b1 ¼ −1 (and b2 ¼ 1) in

Fig. 6. In this case there is no Van der Waals type behavior
for p < pmax and no interesting phase behavior.

D. Six dimensions

In six dimensions we are free to choose our own
values of b1 and b2. In this case a vacuum singularity
could occur at

v ¼
�
4ðb2 − b21Þ
1 − 4pπ

5

�1
4

; ð3:41Þ

provided b2−b21>0, since p<pmax¼ 5
4π¼0.3978873576.

The vacuum horizon equation (3.9) can be rewritten as

v2�ð0; 0Þ ¼
5

2πp

�
−b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 −

4πpb2
5

r �
; ð3:42Þ

using the dimensionless variables (3.17).
Now we can re-write the vacuum horizon conditions into

dimensionless form as follows:

ðaÞ b2 < 0 and b1 > 0⇒ vþð0; 0Þ is the only horizon;

ð3:43Þ

FIG. 5. Phase behavior for d ¼ 5, q ¼ 1, b1 ¼ b2 ¼ 1 black holes. Left: p − v diagram with constant temperature values mimicking
the uncharged case with Van der Waals oscillation. Bottom: g − t diagram with constant pressure slices showing large/small branch
intersection. Right: phase diagram displaying first order transition terminating at the critical point.

(a) q = 0 .1 (b) q = 0 .5 (c) q = 1

FIG. 4. Critical volume solutions vs b1 for varying values of q, the topological parameter b2 does not play a role in these solutions.
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or, if b2 > 0,

ðbÞ b21 >
4πpb2

5
and 0 > b1 > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2ð1 − 2πp
5
Þ

s
⇒ v�ð0; 0Þ are both horizons; ð3:44Þ

or

ðcÞ b21 >
4πpb2

5
and −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2ð1 − 2πp
5
Þ

s
> b1 ⇒ vþð0; 0Þ is the only horizon: ð3:45Þ

For nonzero M and Q we have

f ¼
r2 þ 2b1α2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4ð1 − 4α2α0Þ þ 8mα2

r − 4q2α2
r4

q
2α2

; ð3:46Þ

from (3.2). For Q ¼ 0 we obtain

m ≥ m� ≡ −

ffiffiffiffiffi
10

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α0ð3b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−20α0α2b2 þ 9b21

p
Þ

q
ð−3b21 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9b21 − 20α0α2b2

p
þ 20α0α2b2Þ

500α20
; ð3:47Þ

as a lower (negative) bound for the mass, below which
uncharged black hole solutions do not exist, with mþ
corresponding to b1 > 0 and m− to b1 < 0. Note that
mþ > m− (solutions with b1 < 0 can have more negative
mass) and that b2α2α0 < 9b21=20 for such solutions to exist.
If b2α2 > 0 then only m− < 0.

1. Uncharged ELBHs

The equation of state and Gibbs free energy for d ¼ 6
and q ¼ 0 are

p ¼ t
v
−
3b1
πv2

þ 2tb1
v3

−
b2
πv4

ð3:48Þ

FIG. 6. Phase behavior for d ¼ 5, q ¼ 1, b1 ¼ −1, b2 ¼ 1 black holes. Left: p − v diagram for constant temperature slices. Right:
g − t diagram for constant pressure slices beginning with maximum pressure and decreasing. Solid lines represent black holes with
positive entropy while dotted lines correspond to negative entropy.
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g ¼ −
ð1
4
v4 þ b1v2Þðπpv2 þ 3b1 þ b2

v2Þ
4πvð1þ 2b1

v2 Þ

þ
1
5
πpv5 þ b1v3 þ b2v

4π
: ð3:49Þ

The critical temperature relation (3.20) is now

tc ¼
2ð3b1v2c þ 2b2Þ
πvcðv2c þ 6b1Þ

; ð3:50Þ

and the critical volume relation is (3.21) is

6v4cb1 þ ð−36b21 þ 12b2Þv2c þ 24b1b2 ¼ 0; ð3:51Þ
whose solutions are

v2c� ¼ ð3b21 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9b21 − b2Þðb21 − b2Þ

p
− b2Þ

b1
: ð3:52Þ

If b1 > 0 then we must have b2 ≤ b21 in order that vc be
real and positive. If b2 > 0, then both vc� are valid critical

solutions. Conversely, if b1 < 0 then we must have either
b2 < 0 or b2 > 9b21; if the latter holds both vc� are valid
critical solutions.
To examine the phase behavior of the uncharged sol-

utions, we first set b1 ¼ 1, with the results displayed in
Fig. 7. For b2 ¼ 1, corresponding to the standard horizon
geometries [8], we get a cusp structure for the g − t diagram
and a maximal pressure in the p − v diagram. There is also
a minimum, temperature-dependent volume for which
p ¼ 0. As in the five-dimensional case, the black hole
will undergo a Hawking/Page transition from a large black
hole into thermal AdS.
Things become more interesting as the value of b2

changes. As b2 decreases, we recover standard Van der
Waals behavior with a single oscillation in the p − v
diagram and the familiar swallowtail structure in the
Gibbs free energy diagram.
Unlike the five-dimensional case, this intersection of the

swallowtail occurs below the g ¼ 0 axis and therefore is a
genuine first order large/small first order phase transition
between stable black holes—this transition is generally not

(a) b2 = 1 (b) b2 = 0 (c) b2 = −1

FIG. 7. Phase behavior for d ¼ 6, q ¼ 0, b1 ¼ 1 black holes. Top: Three p − v diagrams for varying values of b2 at constant
temperature slices. Bottom: Corresponding g − t plots of constant pressure with b2 values displayed below. The images on the left
display critical temperature/pressure pressures for a nonstable black hole.
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observed for uncharged black holes. As b2 becomes
negative, no further qualitative changes in phase behavior
are seen.
The phase diagrams are depicted in Fig. 8. Here we can

see that when we have b2 ¼ 1 we observe a Hawking/Page
transition between a large black hole and thermal AdS,
whereas for b2 ¼ −1 we have the standard Van der Waals
transition from a large black hole to a small one.
We can notice something between the phase diagram

displayed on the right of Fig. 8 and that of the right of
Fig. 1. In the five-dimensional case there is a sharp but
smooth bend in the diagram, which corresponds to the
critical point of the unstable black hole; however in the six-
dimensional case the change after this point is not as
dramatic. This can be easily explained with reference to the
g − t diagram. In the six-dimensional case there is no
swallowtail behavior for b1 ¼ b2 ¼ 1; instead we only
observe a cusp. The coexistence curve is correspondingly
less sharp, although we still observe a steep slope as pmax is
approached. In the g − t diagram, the curves for pc [the
only value that is a solution to (3.19)] and pmax are close
together, with only a small difference in temperature
between them.
For 1 > b2 > 0 swallowtail behavior occurs and the

possibility of new phenomenon emerges—that of a new
kind of black hole triple point. In Fig. 9 we see (for b1 ¼ 1
and b2 ¼ 0.5) that for p < pc we can have a large black
hole undergoing a first order phase transition into a small
black hole that in turn undergoes a transition to thermal
AdS as the temperature is lowered further. If we decrease
the pressure even further, we arrive at Fig. 10, in which we
have the large/small transition occurring on the g ¼ 0 axis.

This implies a novel triple point where we have the
coexistence of large and small black holes with thermal
AdS. The phase diagram displaying this novel triple point
can be found in Fig. 11. For sufficiently low pressures,
there are only two phases, thermal AdS and the large black
hole. As the pressure increases, the triple point emerges
where the small black hole phase coexists with the other
two. At pressures above the novel triple point pressure we
observe the three distinct phases as the temperature varies.
There is a further critical pressure at which small and large
black holes are no longer distinct phases; above this
pressure we again have just a single Hawking/Page trans-
tion between thermal AdS and a black hole.
Although within the range of 0 < b2 < 1 swallowtail

behavior is observed, not all values of b2 in that range yield
a novel-triple point. For b1 ¼ 1 we find only the range
0 < b2 < 2

3
for which the novel triple point occurs. This can

be obtained by solving for the critical volume and temper-
ature, in turn yielding the constraint

ð−3b2þ12Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22−10b2þ9

p
−3b22þ31b2−36

πð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22−10b2þ9

p
þb2−3Þ2ðb2−9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22−10b2þ9

p
Þ<0;

ð3:53Þ

that must be satisfied in order to obtain the critical pressure;
its solutions are 0 < b2 <

2
3
. If b2 ¼ 2=3, we only have one

degenerate critical pressure, at which the novel triple point
terminates at the critical point of the black hole, pushing
the small branch out and only leaving a large/radiation
transition.

FIG. 8. Coexistence curves for d ¼ 6, q ¼ 0, b1 ¼ 1 black holes. Left: p − t phase diagram for b2 ¼ −1 displaying first order
transition between small/large BH, which terminates at the critical point. Right: p − t phase diagram for b2 ¼ 1 here we have a transition
between Large BH and AdS radiation which terminates at the maximum pressure.
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While the above conditions provide the information
needed to know if a triple point is possible, we can also
gain information on this from the g − t diagram. In Fig. 12
we see that moving rightward from the cusp on the lower
branch, there is a discontinuity in the first derivative of g,
indicative of a small/large critical point. If this point is
above the g ¼ 0 axis no triple point will occur, whereas if it
is below then we find the novel triple point. If this point
intersects the g ¼ 0 axis then the novel triple point merges
with the small/large critical point.

Turning to b1 < 0, we must have either b2 < 0 or b2 ≥
9b21 in order to have a real and positive critical volume.
However the latter case yields a negative critical temper-
ature, and so critical behavior can take place only for
b2 < 0. The only phase behavior we observe in the range
9b21 > b2 > 0 is that of a Hawking-Page transition.
We close by noting that throughout this subsection we

have chosen b2 − b1 ≤ 0. Hence none of the black holes we

FIG. 9. Phase behavior for d ¼ 6, q ¼ 0, b1 ¼ 1, b2 ¼ 0.5 black holes. Left: p − v diagram for constant temperature slices dislaying
Van der Waals oscillations. Right: g − t diagram for constant pressure slices.

FIG. 10. Novel triple point for d ¼ 6, b1 ¼ 1, b2 ¼ 0.5. Gibbs
temperature diagram showing the two-branch intersection occur-
ring along the g ¼ 0 axis.

FIG. 11. Coexistence curves for d ¼ 6, b1 ¼ 1, b2 ¼ 0.5,
q ¼ 0 black holes. The p − t phase transition diagram displays
the novel triple point. The large/small BH transition terminates at
the critical point while the small/radiation coexistence line
extends up to the maximum pressure.
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consider will possess a vacuum singularity outside the
origin.

2. Charged ELBHs

Including charge, the equation of state is now

p ¼ t
v
−
3b1
πv2

þ 2tb1
v3

þ q2

v8
−

b2
πv4

; ð3:54Þ

with Gibbs free energy,

g ¼ −
ð1
4
v4 þ b1v2Þðπpv2 þ 3b1 þ b2

v2Þ
4πvð1þ 2b1

v2 Þ

þ
1
5
πpv5 þ b1v3 þ b2v

4π
þ q2ð14v2 þ 40b1Þ

96ðv2 þ 2b1Þv3
: ð3:55Þ

(a) b2 = 0.7 (b) b2 = 0.4

FIG. 12. Comparing the two g − t diagrams with two different values of b2 and showing the position of the sharp “corner” being above
and below the g ¼ 0 axis.

(a) q = 0.01 (b) q = 0.02

FIG. 13. Plots of w1 (red) and w2 (blue) in six dimensions for constant charge, showing three intersection between the two functions,
giving the possibility of a triple point. Here b1 ¼ 0.8 and b2 ¼ 0.5.
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The critical temperature and critical volume relations (3.20)
and (3.21) are now

tc ¼
6b1v6c þ 4b2v4c − 8πq2

πv5cðv2c þ 6b1Þ
ð3:56Þ

6v8cb1 − ð36b21 − 12b2Þv6c þ 24v4cb1b2

þ ð−56πv2c − 240πb1Þq2 ¼ 0: ð3:57Þ

This latter equation is a quartic polynomial in v2c; analytic
solutions can be obtained, but they are cumbersome, and so
we will not display them.
If b1 ¼ b2 ¼ 1, which corresponds the constant curva-

ture case [8], standard Van der Waals behavior is observed,
with a large/small first order transition occurring for

q > 0.1. This was seen in the five-dimensional case as
well, so we shall not display any phase diagrams for this
case. Only one critical point is present for q ≥ 0.1. More
interesting behavior occurs for values of q < 0.1. We find
that more then one critical volume/temperature/pressure is
possible, leading to the existence of triple points, previ-
ously observed for charged black holes in d ¼ 6 Lovelock
gravity [8].
To see what happens to the triple point if the horizon

curvature is not constant, it is useful to rewrite the critical
volume equation (3.57) as

w1≡ ð56πv2c þ 240πb1Þq2
¼ 6v8cb1− ð36b21 − 12b2Þv6cþ 24v4cb1b2≡w2; ð3:58Þ

(a) p = 0.06687 (b) p = 0.06127 (c) p = 0.05987

FIG. 14. Phase b for d ¼ 6, q ¼ 0.02, b1 ¼ 0.8, b2 ¼ 0.5 black holes. Top: The p − v diagram for three constant temperature slices
located around the tricritical temperature. We can see in the blue line two oscillations, similar to the constant curvature case. Bottom:
Three g − t plots for constant pressure slices are shown. As we decrease the pressure from left to right we see the presence of two
swallow tails, which eventually intersect, then separate again.
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and search for the intersection points. A necessary con-
dition for a triple point to occur is that there are three
intersection points for vc > 0. This will indeed occur as
long as the signs of the coefficients in w2 alternate—the
rule of signs then indicates there are three positive real roots
for v2c (and hence for vc), in turn implying two distinct
regions where w2 > 0 for vc > 0, one of which has a
maximum. Since w1 is a quadratic in vc with coefficient q2,
there will be three intersection points for sufficiently small
q > 0 and b1 > 0. An example is given in Fig. 13 for b1 ¼
0.8 and b2 ¼ 0.5. The emergence of the triple point for
increasing pressure is shown in Fig. 14, with the phase
diagram given in Fig. 15.
We find that for a given value of b1, the triple point in

Fig. 15 moves to the right as b2 increases. For sufficiently
large b2, the triple point merges with the large/intermediate
critical point. Conversely, fixing b2 and increasing b1
moves the triple point to the left. This illustrates how
changing the horizon geometry of exotic black holes
modifies their phase behavior.

IV. SUMMARY AND CONCLUSION

Our investigation of thermodynamic behavior for exotic
black holes has uncovered a number of interesting results.
First, concerning the generality of our results, we note that

the existence of a formal solution to the field equations for
arbitrary values of b1 and b2 does not ensure that a base
manifold satisfying (2.15) exists for such values. In general
the existence of solutions to (2.15) for given ðb1; b2Þ is an

open question. However it is possible to reverse the roles of
our parameters and treatb1 as a continuous parameter (easily
incorporated by adding in a globalmonopole)while keeping
b2 fixed, which is consistentwith the approach considered in
[10]. In that case the Bohm ðp; qÞ2m metric was found to be a
base manifold satisfying (2.15), and a set of allowed values
of b2 (denoted θ in [10]) were obtained as a function of the
integer q. The smallest value q ¼ 2 yields b2 ¼ 12. It is
straightforward to show that values of 4 < b1 < 4.24 exhibit
the radiation/large black hole transition, and for b1 > 4.24
the novel triple point occurs. We expect that other base
manifolds can likewise be found whose associated black
holes display the features we have observed.
Our most interesting result is that of a novel triple point

between thermal AdS (radiation), and uncharged large and
small black holes in six dimensions. This phase behavior
was overlooked in previous studies [8] and arises as a
consequence of the exotic geometry of the horizon. We
likewise observe a range of large/intermediate/small black
hole triple point behavior in the charged case in d ¼ 6 as
we adjust the parameters of the horizon geometry.
Another interesting result is the generalization (3.8) of

massless topological black holes in Einstein gravity [16–18].
For these exotic Gauss-Bonnet black holes two horizons are
possible, yielding a richer set of possibilities warranting
further study. Negative mass solutions generalizing those in
Einstein gravity [16,18] are also possible. We leave a more
detailed study of these objects for future investigations.
A study of third order Lovelock gravity, with the

possibility of finding a quadruple point, would be interest-
ing. There are two possibilities for a quadruple point. One
is that of a novel uncharged quadruple point where we have
two swallowtails intersecting each other on the g ¼ 0 axis,
giving large/intermediate/small/radiation coexistence point.
Another would be that in the charged case, where four
black holes of distinct size merge at a single point in the
phase diagram.
More ambitious endeavours include promoting the

topological parameter to a thermodynamic variable itself,
generalizations to de Sitter spacetime, and obtaining rotat-
ing solutions. Work on these areas is in progress.
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Note added.—Recently, we became aware of a similar
study in third order Lovelock gravity [33]. This study
considers only uncharged black holes. We do not agree with
some of their findings, particularly the failure to notice the
presence of Hawking-Page transitions when relevant.

FIG. 15. Coexistence curves for d ¼ 6, b1 ¼ 0.8, b2 ¼ 0.5,
q ¼ 0.02 black holes. We observe the triple point at the
intersection of the curves.
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