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I. INTRODUCTION

Black hole thermodynamics is one of the most interest-
ing recent discoveries of theoretical physics. Bekenstein [1]
argued that the area A of a black hole horizon has the
properties of the entropy S in ordinary thermodynamics
and must be proportional to it (the proportionality factor
was determined later). However, the similarity between
black hole area and thermodynamical entropy did not
make sense initially because it was believed that black
holes are cold objects, until Hawking discovered that the
Schwarzschild black hole emits quantum radiation with a
blackbody spectrum at temperature TH ¼ 1

8πGM (now called
the Hawking temperature), where M is the Schwarzschild
mass of the black hole [2]. Here we use geometrized units
in which the speed of light c, the Boltzmann constant KB,
and the reduced Planck constant ℏ are unity.
Hawking’s discovery of black hole radiation originates

from the application of quantum field theory to curved
spacetime and, by extension, it implies that all black holes
must radiate, making them thermal objects and completing
Bekenstein’s suggestion. The Bekenstein-Hawking entropy
S ¼ A=4 and the Hawking temperature TH allow for the
construction of a self-consistent black hole thermodynam-
ics ([3], see [4–6] for reviews), which is now an important
part of modern theoretical physics. Adding a cosmological
constant, as in the Schwarzschild-de Sitter/Kottler and
Schwarzschild-anti–de Sitter black holes, adds richness
to the thermodynamical behavior of black holes. In addition

to creating multiple horizons which could be viewed as
thermodynamical subsystems, it leads to the possibility of
the Hawking-Page phase transition [7], which was later
interpreted in the context of the AdS/CFT correspondence
as the counterpart of the deconfinement transitions for the
conformal field theory living on the anti–de Sitter boundary
[8,9]. The negative cosmological constant turns out to play
the role of the pressure, to be added to the thermodynamical
picture [10], thus extending the structure of the phase space
and making phase transitions possible. In this context, a
rich literature on “black hole chemistry” has emerged and
black hole thermodynamics has taken a new lease on life
(e.g., [11–19] and references therein).
Originally, it came as a surprise that the Bekenstein-

Hawking entropy is proportional to the black hole area and
not to its volume, as in ordinary thermodynamics where
entropy is an extensive quantity proportional to the mass,
and then to the volume, of a system. This feature largely
remains a mystery [20]. Recent literature has discussed the
possibility of replacing the Bekenstein-Hawking entropy
with other entropy notions based on nonextensive statistics
[20–37], such as the Rényi [38] and Tsallis [39] entropies.
However, changing the entropy notion is risky because
entropy enters many thermodynamical equations and
other quantities need to be modified in order to keep the
whole construction of thermodynamics self-consistent.
While modifying entropy is challenging and many authors
have focused on this task, here we point out the risks
inherent in these modifications for related thermodynamics.
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In particular, it is problematic to modify the Hawking
temperature of blackbody radiation based only on non-
extensive statistics, while there are independent arguments
pointing toward the “correct” choice of thermodynamical
energy and black hole mass. When all these aspects are
considered together, it turns out to be quite difficult to
replace the Bekenstein-Hawking entropy based solely on
the idea of nonextensive statistics while keeping black hole
thermodynamics self-consistent.
In this work we follow the notation of Ref. [5]: the metric

signature is −þþþ and the units are such that the speed of
light c, the Boltzmann constant KB, and the reduced Planck
constant ℏ are unity.

II. STANDARD BLACK HOLE
THERMODYNAMICS

The geometry of the Schwarzschild black hole is
described by the line element [5]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
ð2Þ; fðrÞ≡ 1 −

2GM
r

;

ð2:1Þ

where G is Newton’s constant, M is the black hole mass,
and dΩ2

ð2Þ ¼ dϑ2 þ sin2 ϑdφ2 is the line element on the unit

two-sphere. The black hole event horizon is located at the
Schwarzschild radius

rH ¼ 2GM: ð2:2Þ

By considering quantum field theory on the spacetime with
this horizon, Hawking discovered that the Schwarzschild
black hole radiates with a blackbody spectrum at the
temperature [2]

TH ¼ 1

8πGM
: ð2:3Þ

The Hawking temperature can be also understood geomet-
rically. When r ∼ rH, we define δr by r≡ rH þ δr. Then by
Wick-rotating the time coordinate t → iτ, the line element
(2.1) is recast as

ds2 ≃
δr
rH

dτ2 þ rH
δr

dðδrÞ2 þ r2HdΩ2
ð2Þ: ð2:4Þ

We further define a new radial coordinate ρ by
dρ ¼ dðδrÞ ffiffiffiffiffiffiffiffiffiffiffiffi

rH=δr
p

, that is

ρ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
rHδr

p
or δr ¼ ρ2

4rH
; ð2:5Þ

in terms of which the line element (2.4) becomes

ds2 ≃
ρ2

4r2H
ρ2dτ2 þ dρ2 þ r2HdΩ2

ð2Þ: ð2:6Þ

In order to avoid the conical singularity in the Wick-rotated
Euclidean space around ρ ∼ 0, we require the periodicity of
the Euclidean time coordinate τ

τ

2rH
∼

τ

2rH
þ 2π: ð2:7Þ

Because the inverse of the period t0 of the Euclidean time
coordinate corresponds to the temperature, as in the
Euclidean path integral formulation of the finite temper-
ature field theory for any field ϕ,Z

½Dϕ�e
R

t0
0

dtLðϕÞ ¼ Trðe−t0HÞ ¼ Trðe−H
T Þ; ð2:8Þ

one finds that the Schwarzschild black hole has temperature
T, which is nothing but the Hawking temperature (2.3),

T ¼ 1

4πrH
¼ 1

8πGM
≡ TH: ð2:9Þ

Thus, the Hawking temperature can be obtained solely
from the geometry of the spacetime endowed with the event
horizon.
We can derive also the entropy S from the geometrical

point of view. Eq. (2.8) tells us that the partition function
ZðTÞ and the free energy FðTÞ are given by

e−
FðTÞ
T ¼ ZðTÞ ¼ Trðe−H

T Þ ¼
Z

½Dϕ�eSðϕÞ; ð2:10Þ

with the periodic boundary condition that the Euclidean
time has period 1=T. In Eq. (2.10), SðϕÞ ¼ R t0

0 dtLðϕÞ is
the Euclidean action. In the low-temperature regime when
T is sufficiently small, the path integral (2.10) can be
estimated as Z

½Dϕ�eSðϕÞ ∼ eSðϕclÞ ð2:11Þ

in theWKB approximation, where ϕcl is a classical solution
of the field equations given by the Euclidean action SðϕÞ.
Then Eq. (2.10) allows us to estimate the free energy F
which, in turn, gives the entropy S by using the thermo-
dynamical relations.
In order to estimate the free energy F, we consider the

Schwarzschild-anti–de Sitter geometry

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
ð2Þ; ð2:12Þ

fðrÞ≡ 1 −
2GM
r

þ r2

l2
; ð2:13Þ

NOJIRI, ODINTSOV, and FARAONI PHYS. REV. D 104, 084030 (2021)

084030-2



where Λ ¼ −3=l2 is the cosmological constant (the reason
why we consider the Schwarzschild-anti–de Sitter space-
time instead of the Schwarzschild one with the flat
Minkowski background will be explained later).
We now rewrite the function fðrÞ in the form

fðrÞ ¼ ðr − rHÞðrþ rH
2
þ iaÞðrþ rH

2
− iaÞ

l2r
; ð2:14Þ

rH

�
r2H
4
þ a2

�
¼ 2GMl2; −

3r2H
4

þ a2 ¼ l2: ð2:15Þ

Eliminating a in the last two equations yields

rHðr2H þ l2Þ ¼ 2GMl2: ð2:16Þ

When r ∼ rH, fðrÞ behaves as

fðrÞ ∼
9r2H
4
þ a2

l2rH
ðr − rHÞ ð2:17Þ

and the Hawking temperature is

TH ≃
9r2H
4
þ a2

4πl2rH
¼ 3r2H þ l2

4πl2rH
¼ 1

4πl2

�
3rH þ l2

rH

�
; ð2:18Þ

where we have used the last equation (2.15) to substitute
for a.
After the Wick rotation, the action becomes

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

l2

�

¼ −
3

2Gl2

Z
1=TH

0

dt
Z

L

rH

drr2

¼ r3H − L3

2Gl2TH
; ð2:19Þ

where we have introduced a cutoff L to regulate the
divergence of the action (2.19). It is instructive to consider
the difference between the action of the Schwarzschild-
anti–de Sitter spacetime and that of the pure anti–de Sitter
spacetime. We determine the period of the Euclidean time
1=T̃H in anti–de Sitter space so that the physical length
(between t ¼ 0 and t ¼ 1=T̃H) equals the physical length
(between t ¼ 0 and t ¼ 1=TH) in the Schwarzschild-
anti-de Sitter spacetime:

�
1 −

2GM
L

þ L2

l2

�
1=2 1

TH
¼

�
1þ L2

l2

�
1=2 1

T̃H
; ð2:20Þ

or

1

T̃H
¼ 1

TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GM

Lð1þ L2

l2 Þ

s
∼

1

TH

�
1 −

GMl2

L3

�
: ð2:21Þ

Then, the action SAdS for anti–de Sitter spacetime is

SAdS ¼ −
3

2Gl2

Z
1=T̃H

0

dt
Z

L

0

drr2 ¼ −
L3

2Gl2T̃H

∼ −
L3

2Gl2TH
þ GMl2

2Gl2TH

¼ −
L3

2Gl2TH
þ rhðr2H þ l2Þ

4Gl2TH
; ð2:22Þ

where we have used Eq. (2.16). In the limit L → ∞,
the action SBH for the black hole in anti–de Sitter space
reduces to

SBH ¼ S − SAdS ¼ rHðr2H − l2Þ
4Gl2TH

ð2:23Þ

and the free energy F is

F ¼ −THSBH ¼ −
rHðr2H − l2Þ

4Gl2
: ð2:24Þ

Upon use of the thermodynamical relations

E ¼ F − TH
dF
dTH

; S ¼ E − F
TH

¼ −
dF
dTH

ð2:25Þ

for the thermodynamical energy E and the entropy S, we
find the entropy

S ¼ −
dF=drH
dTH=drH

¼
3r2H−l

2

4Gl2

1
4πl2 ð3 − l2

r2H
Þ ¼

πr2H
G

¼ A
4G

; ð2:26Þ

where A ¼ 4πrH2 is the horizon area. The expression (2.26)
is valid in the limit of a flat Minkowski background
l2 → ∞, thus we obtain the Bekenstein-Hawking entropy
from a geometrical viewpoint. We should note, however,
that the action (2.19) vanishes in the Minkowski back-
ground l2 → ∞, hence, the “Schwarzschild” black hole in
anti–de Sitter space with finite l somehow plays the role of
the regularization of the Schwarzschild black hole in flat
Minkowski background.
Another consideration is in order: restoring the con-

stants, the Hawking temperature and the Bekenstein-
Hawking entropy read

TH ¼ ℏc3

8πGKBM
; S ¼ c2A

4Gℏ
; ð2:27Þ

then the free energy F ¼ E − TS does not contain the
reduced Planck constant ℏ and, in this sense, it is a classical
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quantity like E. Nonextensive black hole entropies that are
inspired by modified uncertainly principles or quantum
gravity corrections should not affect F unless they correct
TH. Then, according to Eq. (2.26), the entropy S is only
affected through corrections to the black hole temperature.
However, if this temperature remains the Hawking
temperature TH, S cannot receive corrections, or else also
Eq. (2.26) must be modified accordingly. Although a bit
hand-waving,1 this argument makes the point that thermo-
dynamics (including black hole thermodynamics) must be a
consistent theory and modifying this or that thermody-
namic quantity ad hoc usually has unwanted consequences
for the rest of the theory.

III. IMPOSSIBILITY OF NONAREA
LAW ENTROPY

In the previous section, we have summarized the
derivation of both the Hawking temperature and the
Bekenstein-Hawking entropy from the viewpoint of
the geometry. As is well known, the area law for the
Bekenstein-Hawking entropy [1] can always be obtained if
we identify the thermodynamical energy E with the black
hole mass M, E ¼ M, and the temperature of the system
with the Hawking temperature (2.3) [2], T ¼ TH. In fact,
the thermodynamical relation dE ¼ TdS yields

dS ¼ dE
T

¼ 8πGMdM ¼ dð4πGM2Þ; ð3:1Þ

that is,

S ¼ 4πGM2 þ S0; ð3:2Þ

where S0 is an integration constant. If we assume S ¼ 0
when M ¼ 0, that is, in the absence of the black hole, then
S0 ¼ 0 and

S ¼ πrH2

G
¼ A

4G
ð3:3Þ

where A≡ 4πrH2 is the horizon area. Thus, we have shown
that the Bekenstein-Hawking entropy (i.e., the area law
for the black hole entropy) can be obtained by assuming
E ¼ M and T ¼ TH by using the thermodynamical rela-
tion dS ¼ dE=T.
Two questions arise naturally:
(1) Can we identify the thermodynamical energy E with

the black hole mass M (i.e., E ¼ M)? Furthermore,
if the black hole is not Schwarzschild nor isolated,
there is no Arnowitt-Deser-Misner mass: should
then M be the quasilocal mass contained in the
horizon sphere, or the “black hole part” of it? If so,

which quasilocal mass? Several quasilocal mass
prescriptions exist in the literature (see Ref. [40]
for a review).

(2) Is the temperature of the black hole given by the
Hawking temperature, T ¼ TH?

To answer the first question, consider the following
gedankenexperiment: assume that there is an infalling
spherically symmetric shell of dust with massM and initial
radius sufficiently large. By virtue of the Birkhoff theorem
[5], the spacetime outside the shell is the Schwarzschild
one (2.1), where M in (2.1) is the mass of the shell. Inside
the shell, spacetime is empty and flat. The shell collapses,
its radius becoming smaller and smaller. When the shell
crosses its Schwarzschild radius (2.2), a black hole is
formed. The geometry is always asymptotically flat and the
shell mass M appearing in the Schwarzschild line element
is surely the energy E of the system, E ¼ M. This energy is
conserved during the collapse of the shell because, due to
the Birkhoff theorem, the geometry outside of it does not
change during the collapse: the energy of the final black
hole must be the mass of the shell.2 Therefore, the
thermodynamical energy E is the black hole mass E ¼ M.
Regarding the mass concept used, the answer is easy for

the Schwarzschild black hole: the Schwarzschild mass
appearing in the line element is the obvious choice. It
coincides with the Misner-Sharp-Hernandez quasilocal
mass MMSH defined in any spherically symmetric space-
time by [41,42]

1 −
2GMMSH

R
¼ ∇cR∇cR; ð3:4Þ

where R is the areal radius [which coincides with r in the
Schwarzschild case (2.1)]. Other quasilocal masses do not
reproduce the standard Hawking temperature and the
Bekenstein-Hawking entropy. For example, consider the
Brown-York quasilocal energy [43] as a possible candidate
to the role of thermodynamical energy. For a spherically
symmetric metric of the form

ds2 ¼ −N2ðt; rÞdt2 þ dr2

fðt; rÞ þ r2dΩ2
ð2Þ; ð3:5Þ

the Brown-York energy is [40,43]

EBY ¼ r
G
½1 − fðt; rÞ�: ð3:6Þ

For the Schwarzschild metric, the Brown-York energy is
radius-dependent:

1In the sense that quantum gravity is expected to correct the
Hawking temperature at some level.

2Due to spherical symmetry, gravitational waves (which are
quadrupole to lowest order) are not emitted during the collapse
and cannot carry away energy.
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EBY ¼ r
G

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �
; ð3:7Þ

at the Schwarzschild horizon r ¼ rH, we have EBY ¼ 2M.
If we identify the thermodynamical energy with the Brown-
York energy and the black hole temperature with the
Hawking temperature, the relation TdS ¼ dE yields

dSBY ¼ dEBY

TH
¼ 16πGMdM ð3:8Þ

and, integrating,

SBY ¼ 8πM2 ¼ A
2G

; ð3:9Þ

which is unphysical. The only way to reconcile the Brown-
York energy prescription [43] with the relation TdS ¼ dE
is by introducing the Brown-York temperature TBY ¼ 2TH,
which disagrees with Hawking’s fundamental result [2].
One does not see how (or why) Hawking’s derivation
of the black hole temperature should be modified to
make it agree with the Brown-York mass prescription in
thermodynamics.
Let us consider now the Schwarzschild-anti–de

Sitter black hole (parallel considerations apply to the
Schwarzschild-de Sitter case). For the Schwarzschild-
anti–de Sitter black hole, the Misner-Sharp-Hernandez
mass is3

MMSH ¼ M −
r2

2Gl2
; ð3:10Þ

where it is easy to isolate the black hole contribution from
the one due to the negative cosmological constant, and the
Hawking temperature and the Bekenstein-Hawking entropy
should refer to these contributions (at least in the limit of
small black holes). This happens also for more general black
holes embedded in a cosmological “background” described
by the time-dependent McVittie metric [44] (this geometry
contains the Schwarschild-de Sitter/Kottler metric as a
special case) [45,46]. However, this is not the case for other
cosmological black holes, for example for the Sultana-Dyer
black hole [47] for which the Misner-Sharp-Hernandez/
Hawking-Hayward mass includes a third term coupling the
black hole and the cosmological energies [46]. However it
can be argued that, at least for the Sultana solution, the
time-dependence of both black hole and cosmological
horizons precludes a discussion with equilibrium thermo-
dynamics while, in general, an adiabatic expansion for

dynamical black holes should recover the Schwarzschild
thermodynamics.
It is interesting that the thermodynamics of dynamical

apparent horizons (as opposed to static null event horizons)
employs the Hawking-Hayward quasilocal energy as the
thermodynamical energy of a black hole, which reduces to
the Misner-Sharp-Hernandez mass in spherical symmetry
[48]. Due to the time-dependence, the first law of thermo-
dynamics must be generalized to include an energy supply
vector [49,50]. In spherical symmetry, the Clausius defi-
nition of entropy coincides with the entropy obtained from
Wald’s Noether charge method [51,52] supplemented by
the Kodama flow [49], and the Kodama temperature (which
reduces to TH in the static case) [53]. Now, both of these
prescriptions give back the Bekenstein-Hawking entropy in
the static case [49,50], which receives support from the
more involved discussion of dynamical black hole hori-
zons. Another indication of the privileged role of the
Misner-Sharp-Hernandez mass among the spectrum of
quasilocal masses available in the literature [40] comes
from the fact that it is the Noether charge associated with
the conservation of the Kodama current [48] (which always
holds in spherical symmetry [53]). It is the Misner-Sharp-
Hernandez mass that is used as thermodynamical energy in
the thermodynamics of dynamical apparent horizons: this is
a self-consistent thermodynamical picture that uses in an
essential way the Kodama time, in the absence of a timelike
Killing vector (see Ref. [54] for a review of the relevant
tunneling formalism). Replacing the black hole mass used
in the thermodynamics of static black hole event horizons
with another energy (quasilocal or not) would imply the
same replacement in the thermodynamics of apparent
horizons and would make it inconsistent.
Regarding the second question about the temperature,

note that the Hawking radiation is obtained if the geometry
with horizon is prescribed and the standard Hawking
temperature is the parameter appearing in the thermal
distribution of the emitted Hawking radiation. If we place
the black hole in a heat bath at temperature T, thermal
equilibrium between the black hole radiation and the heat
bath occurs when the radiation temperature equals the
temperature of the heat bath, T ¼ TH. Therefore, we can
use the heat bath as a thermometer. The temperature
measured by the heat bath must be the standard
Hawking temperature of the Hawking radiation and, there-
fore, we identify the latter with the black hole temperature.
Entropy constructs other than the Bekenstein-Hawking

one are often considered in the literature, for example the
Rényi entropy [25,31–33]

SR ¼ 1

α
ln ð1þ αSÞ; ð3:11Þ

where α is a parameter and S is the Bekenstein-Hawking
entropy (3.3), which is recovered in the limit α → 0. In this
case, Eq. (3.2) with S0 ¼ 0 gives

3For the Schwarzschild-anti–de Sitter black hole, the Brown-
York energy gives again an unphysical result, i.e., EBY ¼
2M − r3

Gl2.
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SR ¼ 1

α
ln ð1þ 4παGM2Þ: ð3:12Þ

If the mass M coincides with the energy E of the system
due to the energy conservation as in [25,31–33], in order
for this system to be consistent with the thermodynamical
equation dS ¼ dE=T, one needs to define the “Rényi
temperature” TR by

1

TR
≡ dSR

dM
¼ 8πGM

1þ 4παGM2
; ð3:13Þ

that is,

TR ¼ 1

8πGM
þ αM

2
¼ TH þ α

16πGTH
ð3:14Þ

which is, of course, quite different from the Hawking
temperature TH. Therefore, this “Rényi temperature” TR is
not the temperature perceived by any observer detecting
Hawking radiation, which is the concept that started the
research area of black hole thermodynamics. This fact tells
us that the “Rényi temperature” TR is likely physically
irrelevant for black hole thermodynamics.
In Eq. (3.13), we assumed that the thermodynamical

energy E is the black hole mass M and we obtained an
unphysical result. One wonders what the result would be if
we assumed that the thermodynamical temperature T
coincides with the Hawking temperature TH, instead of
assuming E ¼ M.
Under the assumptions T ¼ TH and S ¼ SR, using

dE ¼ TdS we find the corresponding thermodynamical
energy ER:

dER ¼ THdSR ¼ 1

8πGM
8πGMdM

1þ 4παGM2
ð3:15Þ

¼ dM
1þ 4παGM2

ð3:16Þ

and, integrating,

ER¼
arctanð ffiffiffiffiffiffiffiffiffiffiffiffi

4παG
p

MÞffiffiffiffiffiffiffiffiffiffiffiffi
4παG

p ¼M−
4παGM2

3
þOðα2Þ; ð3:17Þ

where we have fixed the integration constant so that ER ¼ 0

when M ¼ 0. Due to the correction − 4παGM2

3
þOðα2Þ, the

expression (3.17) of the thermodynamical energy ER
obtained differs from the black hole mass M, ER ≠ E, in
a way that has no obvious physical interpretation. More
important, if the spherically symmetric dust shell collapses
to a Schwarzschild black hole, the result obtained above
seems to conflict with energy conservation.

Another entropy notion encountered frequently in the
literature and motivated by nonextensive statistics is the
Tsallis entropy [39], which suggests as a potential alter-
native to the Bekenstein-Hawking entropy for black holes
the quantity

ST ¼ A0

4G

�
A
A0

�
δ

ð3:18Þ

instead of the Rényi-like entropy (3.11) ([34], see also
[55]). Here A0 is a constant with the dimensions of a length
squared and δ is a parameter that quantifies the nonex-
tensivity. In the case δ ¼ 1, we obtain the standard
Bekenstein-Hawking entropy (2.26) or (3.3).
In Ref. [55], cosmology with the Tsallis-type entropy

(3.18) has been studied. The corresponding late-time
universe contains an effective dark energy, which could
be phantom or quintessence, without an effective cosmo-
logical constant. One obtains an effective cosmological
constant from the generalized nonextensive Tsallis type
entropy also in the inflationary era of the early universe.
As done in Eq. (3.13), assuming that the thermodynam-

ical energy E is given by the black hole mass M, we find
A ¼ 4πð2GMÞ2 ¼ 16πG2E2 and the corresponding Tsallis
entropy

ST ¼ A0

4G

�
16πG2E2

A0

�
δ

: ð3:19Þ

We may define also the “Tsallis temperature”

TT ≡ dE
dST

¼ 2G
δA0E2δ−1

�
A0

16πG2

�
δ

¼ 2G
δA0M2δ−1

�
A0

16πG2

�
δ

ð3:20Þ

which is, of course, different from the Hawking temper-
ature (2.9) unless δ ¼ 1. Then, instead of identifying
the black hole mass M with the thermodynamical energy
E, we could assume that the temperature is the Hawking
temperature (2.9). Then, since A ¼ 4πð4πTHÞ−2 ¼ 1

4πTH
2,

we would find

ST ¼ A0
1−δ

4Gð4πTH
2Þδ ð3:21Þ

and then we may define the “Tsallis energy” ET by

dET ¼ THdST ¼ −
δA0

1−δdTH

2Gð4πÞδTH
2δ ð3:22Þ

or, integrating,
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ET ¼ δA0
1−δ

2ð2δ − 1ÞGð4πÞδTH
2δ−1 ¼

δA0
1−δð8πGMÞ2δ−1

2ð2δ − 1ÞGð4πÞδ ;

ð3:23Þ

where we have again fixed the integration constant by
imposing ET ¼ 0 atM ¼ 0. The standard relation ET ¼ M
is reproduced for δ ¼ 1, but ET ≠ M otherwise.
In order to build a thermodynamic theory one needs to

identify, in addition to the entropy, the thermodynamical
energy E and the temperature T. If we choose as entropy
any quantity different from the Bekenstein-Hawking
entropy, then we lack physical grounds and we can choose
the thermodynamical energy E and/or the temperature T as
we wish. Not surprisingly, this procedure leads to an
unphysical outcome, i.e., it conflicts with energy conser-
vation and/or with the established physics of the Hawking
radiation process. To conclude, the assumed Rényi entropy
(3.11) cannot be the black hole entropy, although it might
be the entropy of a system different from the black hole
(see, for example, Ref. [26]), as in the case of the Tsallis
entropy. The Tsallis entropy is obtained as a result of
the Fermi, Bose, or Boltzmann statistics for the system with
long-range forces by the standard statistical mechanics
procedure of using the Hamiltonian and counting the
number of states. In this sense, there is no physical
counterpart that could be the Rényi statistics. The Rényi
entropy could be an index specifying the information, with
no relation with the statistics of any physical system.

IV. DISCUSSION AND CONCLUSIONS

The idea of replacing the standard Boltzmann-Gibbs
statistics with nonextensive statistics has led to the Rényi
[38] and Tsallis [39] entropies. Since the Bekenstein-
Hawking black hole entropy is nonextensive, several
authors have considered the possibility of replacing the
Bekenstein-Hawking entropy with the Rényi or the Tsallis
one. This proposal has somehow mixed with the parallel
idea of correcting the Bekenstein-Hawking entropy with
modifications due to the Generalized Uncertainty Principle,
or with other ideas. We have pointed out the fact that
changing the entropy goes hand in hand with changing
other thermodynamical quantities, or else the entire ther-
modynamical theory may become inconsistent, but this
creates more problems of principle.
For spherical black holes, one could think of reconciling

the Hawking temperature TH with some entropy notion
different from the Bekenstein-Hawking entropy by adopt-
ing as thermodynamical energy some quasilocal energy Ex,
for which various prescriptions can be found in the
literature [40]. We have discussed the Brown-York energy
as an example. However, already at first sight, this task
appears very difficult to say the least (and, even if it was
logically possible, very contrived from the physical point of
view). The explicit forms of the Rényi and Tsallis entropies

make it practically impossible to match TH, Ex, and SR
(or ST) while satisfying the relation TdSR;T ¼ dEx even for
the simple Schwarzschild black hole, which is static and
isolated. Indeed, the case for the Bekenstein-Hawking
entropy seems rather compelling at this point.
Let us examine now possible loopholes to the area law

for entropy. In the previous sections, we have shown that
the area law of the Bekenstein-Hawking entropy can
always be obtained if we assume that the thermodynamical
energy E is identified with the mass M, E ¼ M, and the
temperature of the system is the Hawking temperature.
Moreover, other forms of the entropy such as the Rényi and
the Tsallis entropies lead to unphysical results.
In order to show that E ¼ M, we have used the argument

of the dust shell collapse in conjunction with energy
conservation. This argumentmight not carry over to theories
of modified gravity, especially higher derivative theories
such asFðRÞ gravity. In the Einstein gravity, the falling shell
of the dust constitutes an exact solution of the field
equations. In higher derivative gravity, the junction con-
ditions between the matter and the vacuum at the shell
becomes more complex and more restrictive [56–65].
Therefore, whether the infalling dust shell constitutes an
exact solution of the field equations remains to be deter-
mined and the previous argument may not apply. What, is
more the gravitational constantG becomes a scalar degree of
freedom ϕ ∼G−1, the Brans-Dicke-like scalar field [66],
already in scalar-tensor gravity (which includes FðRÞ
theories as a subclass [67–69]). Then, the area law for the
entropy becomes S ¼ ϕA=4 and the scalar ϕ gives a
contribution to the differential dS in TdS ¼ dE. While it
is true that all vacuum black holes of scalar-tensor gravity
that are spherical, asymptotically flat, static, and sit in a
minimum of the potential VðϕÞ for ϕ reduce to the
Schwarzschild black hole [70–73], the discussion becomes
more complicated already for asymptotically de Sitter
black holes.
Even in Einstein gravity, if we include quantum correc-

tions there might be modifications to the reasoning above.
For example, quantum fluctuations of the horizon have
been discussed in [74]. The quantum fluctuation may
effectively increase the area of the horizon, changing the
entropy. In the arguments following Eq. (2.11) we have
used the WKB approximation, which is valid at low
temperature. But at high temperature the correction given
by the 1=TH expansion becomes large and there could be a
violation of the entropy area law. The 1=TH correction may
be also regarded as a quantum corrections because if we
include ℏ, the factor t0 ¼ 1=TH in front of the Hamiltonian
H in (2.8) becomes t0

ℏ ¼ 1
ℏTH

. Such corrections are consid-
ered in [75]. Then, if we assume E ¼ M as in (3.13), the
Hawking temperature might not be modified and the
thermal distribution of the radiation might be changed
from that of blackbody radiation. Such a correction
might appear as the shift from α → 0 in the Rényi-type
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entropy (3.11) or the shift from δ ¼ 1 in the Tsallis-like
entropy (3.18).
In general, entropy corresponds to the number of

physical degrees of freedom of a thermodynamical system.
The renormalization of a quantum theory implies that the
number of degrees of freedom depends on the scale. In
standard field theory massive modes decouple in the low-
energy regime and, therefore, the number of degrees of
freedom decreases. The situation is more complicated in the
case of gravity: if gravity is described by string theory, an
infinite tower of massive modes appears at high tempera-
ture, which introduces the upper bound to the temperature
called Hagedorn temperature. Even from a naive point of
view, if the spacetime fluctuations become large in the
high temperature regime, the number of degrees of freedom
may increase. If, instead, gravity becomes topological,
the number of degrees of freedom will decrease, which
could be consistent with holography. In the case of the
Bekenstein-Hawking entropy (3.3) or (2.26), because the
area is given by A ¼ 1

4πTH
2, in the high temperature regime

of large TH, the entropy decreases. This happens, of course,
because the smaller black hole has higher Hawking temper-
ature. The decrease in the entropy corresponds to the loss of
physical degrees of freedom due to Hawking radiation.
In the case of the Rényi-type entropy (3.11), if the

parameter α is positive, the deviation from the Bekenstein-
Hawking entropy S (3.3) becomes large in the low-
temperature region where S becomes large, which might
contradict the above speculations in which this deviation
becomes large in the high-temperature region instead. If
α < 0, we may further modify the Rényi-like entropy as

SR ¼ 1

α
ln j1þ αSj; ð4:1Þ

then there is a singularity when 1þ αS ¼ 0, or

TH ¼ Tc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

α

16πG

r
: ð4:2Þ

If we start at temperature higher than Tc, the critical
temperature Tc gives a lower bound on the Hawking
temperature. If, instead, we start at temperature lower than
Tc, then Tc sets an upper bound that might correspond to
the Hagedorn temperature. Therefore, it might be interest-
ing to consider a model in which α depends on the
temperature and becomes negative at high temperature.
In the case of the Tsallis-like entropy (3.18), if the
parameter δ is larger than unity, δ > 1, the Tsallis entropy
(3.18) becomes smaller than the Bekenstein-Hawking
entropy at high temperature. If δ < 1, the Tsallis type
entropy becomes larger than the Bekenstein-Hawking
entropy at high temperatures. Then, it might be interesting
to consider a model in which the parameter δ depends on
the temperature. If δ > 1 at high temperatures, this model
might correspond to the model becoming topological at

high T. If, instead, δ < 1 in the high-temperature regime,
the model might correspond to a violent fluctuation of
spacetime or to string theory.
If the Rényi entropy (3.11) comes from a quantum

correction, we may express its parameter as α ¼ α0ℏ and
expand Eq. (3.11) with respect to ℏ as

SR ¼ 1

α0ℏ
ln ð1þ α0ℏSÞ ¼ S −

α0ℏ
2

S2 þ α20ℏ
2

3
S3 þ � � �

ð4:3Þ

If α is positive, the leading correction is negative, which
could hint at gravity becoming topological by quantum
effects, whereas if α < 0 the leading correction is positive,
possibly saying that the number of degrees of freedom
increases as in string theory. Similarly, by writing
δ ¼ 1þ δ0ℏ, we may expand the Tsallis entropy (3.18) as

ST ¼ A0

4G

�
A
A0

�
1þδ0ℏ

¼ A
4G

�
1þ δ0ℏ ln

A
A0

þ δ20ℏ
2

2!

�
ln

A
A0

�
2

þ � � �
�
: ð4:4Þ

Then, if δ > 0 the number of degrees of freedom increases
for large black holes where A > A0 and decreases for small
black holes with A < A0. If δ < 0, the number of degrees of
freedom increases for small black holes and decreases for
large ones. We should also note that the logarithmic
correction in Eq. (4.4) often appears at the first loop in
quantum field theory.
Another possible loophole might be the case in which

there are two horizons, as discussed in Ref. [76], where the
entropies of the Reissner-Nordström and of the Kerr black
holes have been investigated, and it is claimed that there
might be contributions to the entropy from the correlation
of the two horizons. As another example, we may consider
the Schwarzschild-de Sitter/Kottler spacetime, where two
horizons (the black hole and the cosmological horizon)
appear. The line element is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
ð2Þ; ð4:5Þ

fðrÞ ¼ 1 −
2GM
r

−
r2

l2
; ð4:6Þ

if we assume l2 > 0, we can rewrite fðrÞ as

fðrÞ ¼ −
ðr − r−Þðr − rþÞðrþ rþ þ r−Þ

l2r
; ð4:7Þ

rþr−ðrþ þ r−Þ ¼ 2GMl2; ð4:8Þ

r2þ þ r2− þ rþr− ¼ l2; ð4:9Þ
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where we assume rþ > r−. Then, rþ and r− are the radii of
the cosmological and black hole horizons, respectively.
When r ∼ r−, fðrÞ behaves as

fðrÞ ∼ ðrþ − r−Þð2r− þ rþÞ
l2r−

ðr − r−Þ; ð4:10Þ

and the Hawking temperature TðbhÞ
H of the black hole

horizon is

TðbhÞ
H ¼ ðrþ − r−Þð2r− þ rþÞ

4πl2r−

¼ 1

4πl2
−2r2− þ r−rþ þ r2þ

r−
¼ 1

4πl2
l2 − 3r2−

r−

¼ 1

4πl2

�
l2

r−
− 3r−

�
: ð4:11Þ

Similarly, the Gibbons-Hawking temperature of the cos-
mological horizon is [77]

TðcÞ
H ¼ ðrþ − r−Þðr− þ 2rþÞ

4πl2rþ
ð4:12Þ

and we should note that

TðbhÞ
H − TðcÞ

H ¼ ðrþ − r−Þ2ðrþ þ r−Þ
4πl2rþr−

≥ 0; ð4:13Þ

which implies that there could be heat flow from the black
hole to the cosmological horizon.
In Eq. (4.13), the equality “¼” holds if and only if

rþ ¼ r−, that is, in the extremal case corresponding to the

Nariai spacetime. Because TðbhÞ
H ≠ TðcÞ

H in general, even if
we Wick-rotate the spacetime into the Euclidean signature,
we cannot remove both conical singularities corresponding
to the black hole and the cosmological horizons and
the calculation of the free energy performed for the
Schwarzschild-anti–de Sitter spacetime could not be
applied. In the following, we consider the case in which
only the conical singularity of the black hole horizon is
removed by assuming the period of the Euclidean time

1=TðbhÞ
H , but the conical singularity of the cosmological

horizon remains.
The equations (4.8), (4.9) tell us that

r−ð2rþ þ r−Þ
drþ
dM

þ rþðrþ þ 2r−Þ
dr−
dM

¼ 2Gl2; ð4:14Þ

ð2rþ þ r−Þ
drþ
dM

þ ðrþ þ 2r−Þ
dr−
dM

¼ 0; ð4:15Þ

which give

drþ
dM

¼ −
2Gl2

ðr− − rþÞð2rþ þ r−Þ
; ð4:16Þ

dr−
dM

¼ −
2Gl2

ðrþ − r−Þðrþ þ 2r−Þ
¼ −

2Gl2

r2þ þ rþr− − 2r2−

¼ −
2Gl2

l2 − 3r2−
: ð4:17Þ

Then the action is

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

6

l2

�
ð4:18Þ

¼ 3

2Gl2

Z
1=TðbhÞ

H

0

dt
Z

rþ

r−

drr2 ¼ r3þ − r3−
2Gl2TH

¼ ðrþ − r−Þðr2þ þ r2− þ rþr−Þ
2Gl2Tbh

H
¼ rþ − r−

2GTbh
H

ð4:19Þ

and the free energy F reads

F ¼ TðbhÞ
H S ¼ rþ − r−

2G
: ð4:20Þ

By using the thermodynamical relations for the thermo-
dynamical energy E and the entropy S in (2.24), we then
find

S ¼ −
1

2G

− 2Gl2
ðr−−rþÞð2rþþr−Þ þ 2Gl2

ðrþ−r−Þðrþþ2r−Þ
− 1

4πl2 ð− l2

r2−
− 3Þ 2Gl2

l2−3r2−

¼ −
2πl2r2−
G

2r− þ rþ þ 2rþ þ r−
ðrþ − r−Þðrþ þ 2r−Þð2rþ þ r−Þ

l2 − 3r2−
l2 þ 3r2−

¼ −
6πl2r2−
G

rþ þ r−
ð2rþ þ r−Þðl2 þ 3r2−Þ

; ð4:21Þ

which is negative and, as a result, the quantity S given by
Eq. (4.21) cannot be identified with the entropy. We cannot
obtain the area law entropy for the Schwarzschild-de Sitter
spacetime, which might be due to the correlation between
the two horizons.
A possible way to avoid the above problem of the

Schwarzschild-de Sitter spacetime could be to analytically
continue the results (2.24) and (2.26) to the Schwarzschild-
anti–de Sitter spacetime by replacing l2 → −l2, obtaining

F ¼ −
rHðr−2 þ l2Þ

4Gl2
; S ¼ − 3r−2þl2

4Gl2

− 1
4πl2 ð3þ l2

r−2Þ
¼ A

4G
;

ð4:22Þ

which could be the standard result. The differences between
Eqs. (4.21) and (4.22) originate from the integration region
of the action, as we find by comparing Eqs. (2.19)
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and (4.18) and also come from the subtraction of the
background in (2.23). This fact tells us that, if we can use
the analytic continuation l2 → −l2, the domain of integra-
tion should include the region outside the cosmological
horizon L ≫ rþ, which could induce a conceptual problem
in black hole physics. Anyway, the existence of two
horizons makes it difficult to judge what could be the
correct prescription to evaluate the entropy.
In [55], the holographic dark energy model based on the

Tsallis-type entropy or its generalization associated with
the cosmological horizon was proposed. We may consider
the creation of a black hole in the holographic dark energy.
If the holographic dark energy has a higher temperature
than the black hole temperature, there could occur an
energy flow to the black hole and the black hole may
consequently grow, which may signal an instability of the
holographic dark energy. Black hole seeds may be gen-
erated by fluctuations of the energy density, which could be
the density of the holographic dark energy. If we regard the
holographic dark energy as a kind of effective perfect fluid,
however, it should have a negative effective pressure. This
negative pressure generates a repulsion in the fluid, which
protects a fluctuation from growing and becoming a black
hole. In this sense, the collapse of the holographic dark
energy to black holes could be avoided and the holographic
dark energy could be stable.

The flow of heat energy onto a black hole, if it occurs due
to the temperature difference between black hole and
surrounding dark energy, is difficult to model. Ref. [78]
models the spherical accretion of phantom dark energy onto
a black hole in the test fluid approximation but, realistically,
the backreaction is not described and the same will be true
for radial heat flow. It may be possible to describe the
net heat transferred in an event occurring between two
stationary phases, but this would probably require a
cosmological evolution that is completely ad hoc.
To conclude, the entropy area law is physically well

motivated, unlike its Rényi and Tsallis potential compet-
itors, and solid motivations seem to be needed before
departures from it can be taken too seriously. In particular,
replacing the Bekenstein-Hawking entropy with the Rényi,
Tsallis, or another entropy is premature and rather arbitrary
at the current stage of knowledge.

ACKNOWLEDGMENTS

This work was also partially supported by the Kazan
Federal University Strategic Academic Leadership
Program (S. D. O), by JSPS Grant-in-Aid for Scientific
Research (C) No. 18K03615 (S. N.), and by the Natural
Sciences & Engineering Research Council of Canada,
Grant No. 2016-03803 (V. F.).

[1] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[2] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975); 46,

206(E) (1976).
[3] J. M. Bardeen, B. Carter, and S. W. Hawking, Commun.

Math. Phys. 31, 161 (1973).
[4] R. M. Wald, Living Rev. Relativity 4, 6 (2001).
[5] R. M. Wald, General Relativity (Chicago University Press,

Chicago, 1984).
[6] S. Carlip, Int. J. Mod. Phys. D 23, 1430023 (2014).
[7] S. W. Hawking and D. N. Page, Commun. Math. Phys. 87,

577 (1983).
[8] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[9] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).

[10] D. Kastor, S. Ray, and J. Traschen, Classical Quantum
Gravity 26, 195011 (2009).

[11] D. Kubiznak and R. B. Mann, Can. J. Phys. 93, 999 (2015).
[12] A. Karch and B. Robinson, J. High Energy Phys. 12 (2015)

073.
[13] D. Kubiznak and F. Simovic, Classical Quantum Gravity 33,

245001 (2016).
[14] D. Kubiznak, R. B. Mann, and M. Teo, Classical Quantum

Gravity 34, 063001 (2017).
[15] M. Sinamuli and R. B. Mann, Phys. Rev. D 96, 086008

(2017).
[16] A. G. Tzikas, Phys. Lett. B 788, 219 (2019).

[17] D. Astefanesei, R. B. Mann, and R. Rojas, J. High Energy
Phys. 11 (2019) 043.

[18] M. Mir, R. A. Hennigar, J. Ahmed, and R. B. Mann, J. High
Energy Phys. 08 (2019) 068.

[19] A. Kumar, S. G. Ghosh, and S. D. Maharaj, Phys. Dark
Universe 30, 100634 (2020).

[20] C. Tsallis and L. J. L. Cirto, Eur. Phys. J. C 73, 2487 (2013).
[21] A. Bialas and W. Czyz, Europhys. Lett. 83, 60009 (2008).
[22] X. Huang and Y. Zhou, J. High Energy Phys. 02 (2015) 068.
[23] R. Brustein and A. J. M. Medved, Phys. Rev. D 91, 084062

(2015).
[24] T. Nishioka, J. High Energy Phys. 07 (2014) 061.
[25] V. G. Czinner and H. Iguchi, Phys. Lett. B 752, 306 (2016).
[26] X. Dong, Nat. Commun. 7, 12472 (2016).
[27] W. Y. Wen, Int. J. Mod. Phys. D 26, 1750106 (2017).
[28] V. G. Czinner and H. Iguchi, Eur. Phys. J. C 77, 892 (2017).
[29] C. V. Johnson, Int. J. Mod. Phys. D 28, 1950091 (2019).
[30] S. Qolibikloo and A. Ghodsi, Eur. Phys. J. C 79, 406 (2019).
[31] L. Tannukij, P. Wongjun, E. Hirunsirisawat, T. Deesuwan,

and C. Promsiri, Eur. Phys. J. Plus 135, 500 (2020).
[32] C. Promsiri, E. Hirunsirisawat, and W. Liewrian, Phys. Rev.

D 102, 064014 (2020).
[33] D. Samart and P. Channuie, arXiv:2012.14828 [Phys. Rev. D

(to be published)].
[34] J. Ren, J. High Energy Phys. 05 (2021) 080.

NOJIRI, ODINTSOV, and FARAONI PHYS. REV. D 104, 084030 (2021)

084030-10

https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF01608497
https://doi.org/10.1007/BF01608497
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.12942/lrr-2001-6
https://doi.org/10.1142/S0218271814300237
https://doi.org/10.1007/BF01208266
https://doi.org/10.1007/BF01208266
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1139/cjp-2014-0465
https://doi.org/10.1007/JHEP12(2015)073
https://doi.org/10.1007/JHEP12(2015)073
https://doi.org/10.1088/0264-9381/33/24/245001
https://doi.org/10.1088/0264-9381/33/24/245001
https://doi.org/10.1088/1361-6382/aa5c69
https://doi.org/10.1088/1361-6382/aa5c69
https://doi.org/10.1103/PhysRevD.96.086008
https://doi.org/10.1103/PhysRevD.96.086008
https://doi.org/10.1016/j.physletb.2018.11.036
https://doi.org/10.1007/JHEP11(2019)043
https://doi.org/10.1007/JHEP11(2019)043
https://doi.org/10.1007/JHEP08(2019)068
https://doi.org/10.1007/JHEP08(2019)068
https://doi.org/10.1016/j.dark.2020.100634
https://doi.org/10.1016/j.dark.2020.100634
https://doi.org/10.1140/epjc/s10052-013-2487-6
https://doi.org/10.1209/0295-5075/83/60009
https://doi.org/10.1007/JHEP02(2015)068
https://doi.org/10.1103/PhysRevD.91.084062
https://doi.org/10.1103/PhysRevD.91.084062
https://doi.org/10.1007/JHEP07(2014)061
https://doi.org/10.1016/j.physletb.2015.11.061
https://doi.org/10.1038/ncomms12472
https://doi.org/10.1142/S0218271817501061
https://doi.org/10.1140/epjc/s10052-017-5453-x
https://doi.org/10.1142/S0218271819500913
https://doi.org/10.1140/epjc/s10052-019-6927-9
https://doi.org/10.1140/epjp/s13360-020-00517-2
https://doi.org/10.1103/PhysRevD.102.064014
https://doi.org/10.1103/PhysRevD.102.064014
https://arXiv.org/abs/2012.14828
https://doi.org/10.1007/JHEP05(2021)080


[35] K. Mejrhit and R. Hajji, Eur. Phys. J. C 80, 1060 (2020).
[36] R. Nakarachinda, E. Hirunsirisawat, L. Tannukij, and P.

Wongjun, Phys. Rev. D 104, 064003 (2021).
[37] E. M. C. Abreu and J. Ananias Neto, Europhys. Lett. 133,

49001 (2021).
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