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In the context of whether a massive compact object recently observed in the GW190814 event is a neutron
star (NS) or not, we study the role of the parameters κ and Λc of the Eddington-inspired Born-Infeld (EiBI)
gravity theory in the NS mass-radius relation, moment of inertia, and tidal deformability. The results are
compared to recent observational constraints extracted from the analysis of NS observation data. The NS core
equation of state (EoS) is calculated using the relativistic mean-field model with the G3 parameter set. In the
hyperon sector, the SU(3) and hyperon potential depths are used to determine the hyperon coupling constants.
For the inner and outer crusts, we use the crust EoS fromMiyatsu et al. [Astrophys. J. 777, 4 (2013)]. We also

maintain the sound speed to not exceed c=
ffiffiffi
3

p
at high densities. We find that, in general, the NS mass

significantly depends on the value of κ, and the radius R is sensitive to the value of Λc. Moreover, as Λc is
equal to zero or less than the accepted bound of the cosmological constant, the NS within the EiBI theory is
compatible with observational constraints, including 2.0 M⊙ mass, canonical radius R1.4 M⊙

, moment of
inertia, and tidal deformation. Our investigation also reveals that the 2.6 M⊙ mass compact object and current
observational constraint of canonical radiusR1.4 M⊙

can simultaneously be satisfied only when theΛc value is
unphysically too large and negative. Therefore, within the specific EoS employed in this work, we conclude
that the secondary object with 2.6 M⊙ observed in the GW190814 event [1] is not likely a static (or a slow-
rotating) NS within the EiBI gravity theory.

DOI: 10.1103/PhysRevD.104.084029

I. INTRODUCTION

Recently, the most known problem in compact objects is
the nature of 2.50–2.67 M⊙ massive secondary objects
detected in the gravitational wave (GW) by the LIGO and
Virgo collaborations in their GW190814 event [1]. These
objects have no measurable signature of tidal deformation,
and there is no electromagnetic counterpart in the gravi-
tational wave front. Considerable discussions have been
published about this object, such as whether it is a light
black hole (BH) [1–4], a fast-rotating neutron star (NS)
[1,5–8], a quark star [9–15], or a hybrid star [16,17].
However, one could not exclude the possibility that the
secondary object of GW190814 can be a supermassive
static or at least a slow-rotating NS [2,18,19]. The latter
possibility has triggered discussions on the appropriate type
of equation of state (EoS) of the supermassive NS that
satisfies observational constraints [18–23]. Furthermore,
studies have discussed the anisotropic pressure to calculate
the upper mass limit [24–26], the possibility of studying
primordial BHs [27], the indication of a dark matter

candidate called a mirror world [28], and the use of
modified gravity to explain GW events [29–32].
Here, we note some progress related to the observations of

NS properties. The accurate measurements of massive
pulsars, such as PSR J0348þ 0432, PSR J0740þ 6620,
and J6114-2230 [33–37], provide a maximumNSmass limit
of approximately 2.0 M⊙. The x-ray measurements of
emission from the hot spots on the NS surface with the
Neutron star Interior Composition Explorer (NICER) [38]
can simultaneously offer information on the mass and radius
of the selected pulsars. Recently, NICER reported mass and
radius constraints for its first target PSR, i.e., PSR J0030þ
0451 [39–41]. GW observations of NS coalescence by the
LIGO and Virgo collaborations can measure the tidal
deformability of NSs. This novel probe can investigate a
wide range of NSmass and the corresponding central density
[1,42–44]. Two GW signals from the coalescence of binary
NSs have been recently reported, i.e., GW170817 [42,43],
and GW190425 [1]. These results provide a stringent
constraint to the NS EoS and canonical NS mass radius.
Furthermore, some studies have been performed by system-
atically examining these NS observable measurements and
other observable measurements, such as NS moment of
inertia and nuclear properties, to extract accurate information
on the properties of NS EoS [45–50]. Furthermore, one uses
nonrelativistic or relativistic models to describe NS matter.
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Several NS matter models have been proposed, including the
relativistic mean-field (RMF) models. Dutra et al. [51]
reported that only 34 among 263 RMF parameter sets that
the corresponding EoSs satisfy constraints from nuclear
matter. Furthermore, in isotropic NSs without hyperons, only
15 among 35 parameter sets predicted the NS maximum
mass of approximately 2.0 M⊙. However, if hyperons and
other exotic particles are included, then none of them satisfy
the latter constraint.1 The latter is known in the literature as
“the hyperon puzzle.” To this end, we need to underline that
the apparent tension between nuclear physics presented by
EoS, and observation results of NS EoS models should
relatively stiff to produce an NS maximum mass approx-
imatelly 2.0 M⊙. Moreover, recent NS canonical radii, such
as those predicted by GW170817, have soft EoSs. In
addition, a recent study has shown that by introducing
anisotropic pressure in NSs, this issue, related to simulta-
neously fulfilling high maximum mass and short canonical
NS mass-radius constraints [53], could be resolved [54].
However, if the secondary object of GW190814 is indeed a
static or slow-rotating NS, then the hyperon puzzle problem
still may not be solved.
The Eddington-inspired Born-Infeld (EiBI) theory has

attracted considerable attention due to its distinctive
features as compared to those of general relativity (GR)
[55–63]. The EiBI theory, proposed for the first time by
Bañados and Ferreira [56], is a fusion of the Palatini
approach and a gravitational analog of a nonlinear theory
of electrodynamics known as the Born-Infeld theory.2 In
the astrophysical context, the EiBI theory is interesting
because it opens up the possibility to increase the
maximum mass M of a nonrotating compact object, such
as NSs, by increasing the parameter κ [66–68]. Another
parameter λ in EiBI, corresponding to the cosmological
constant Λc by the relation λ ¼ κΛc þ 1, is usually set to
unity for most cases for compact object studies, including
NSs. However, the problem with λ ¼ 1 is that when the
mass increases, the radius R also increases. For the λ ¼ 1
case, stars’ moment of inertia was discussed in Ref. [58].
Furthermore, in Ref. [58] it was discussed that a regular
solution for compact stars with κ > 0 always exists, and
the corresponding stars have a maximum compactness of
GM
R ∼ 0.3, which is roughly independent of κ. There is also
a requirement called the collapse constraint, i.e., compact
stars exist if the requirement κΔ < 0 is satisfied, with

Δ ¼ ðPcκ − 3κρc − 4Þð1þ κρcÞ

− κð1 − κPcÞðPc þ ρcÞ
dρðPcÞ
dPc

;

where Pc and ρc are the central pressure and density of the
stars, respectively. Hence, if the EoS is thermodynami-
cally consistent, then the onset of the star’s stability
region in the EiBI theory depends only on Pc and κ. As
regards to the stellar stability of the stars within the EiBI
theory, Sham et al. [69] showed that the standard results
of stellar stability still hold in the EiBI theory, where for a
sequence of stars with the same EoS, the fundamental
mode ω2 passes through zero at a central density
corresponding to the maximum-mass configuration,
which is similar to that found in GR. Therefore, the
corresponding point marks the boundary of the onset of
instability, where the stellar models with central densities
less than the corresponding critical points are stable. The
EiBI theory also shows a singularity associated with the
phase transition matter for a negative κ due to the
appearance of a discontinuity in the energy density
around the transition region [70]. The curvature singu-
larities appearing at the surface of compact stars within
the EiBI theory for polytropic EoSs have already been
discussed in Refs. [71–74]. There is a discussion related
to the tidal deformation within the EiBI theory in the
literature, i.e., Ref. [75]. There, they used the apparent
EoS formulation of EiBI to simplify the star global
properties calculations. Note that the authors of
Ref. [75] focused on the case of Λc ¼ 0. Note also that
comparison study of NSs properties predicted by the EiBI
theory with recent NS constraints [45–50] has not been
performed yet. We also expect that setting λ away from
unity might increase M while also decreasing R to
achieve relatively larger compactness. Therefore, in this
study, we further investigate the role of the interplay
between κ and Λc in the predicted NS properties, such as
mass, radius, moment of inertia, and tidal deformation.
Then, we relate our results with the question of the
tension between nuclear physics and NS property pre-
diction, including the possibility that the secondary
object of GW190814 is indeed a static or slow-rotating
NS. Here, we use the recent G3 RMF parameter set from
Ref. [76] with hyperons as a representation of the EoS
and consider a speed-of-sound restriction at high den-
sities when generating NS EoSs.
This paper is organized as follows. In Sec. II, we

discuss the EoSs predicted by the RMF model in more
detail. In Sec. III, we discuss the theoretical aspect of the
EiBI theory, including the formulation of moments of
inertia and tidal deformation in Secs. III B and III C,
respectively. In Sec. IV, we show our numerical results
and the corresponding discussions. Finally, in Sec. V, we
present the conclusions.

II. EQUATION OF STATE OF NS MATTER

A summary of the RMF model description and the
corresponding nuclear matter and NS matter predictions
by some selected RMF parameter sets are presented in

1See Ref. [52] and the references therein for details.
2The reviews of the corresponding theory and applications of

the EiBI gravity theory can be found in Refs. [64,65] and the
references therein.
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this section. Here, we show the reason for using the G3
RMF parameter set to describe the EoS of the core of
NSs. In this section, we also show the reason to inves-
tigate the NS property predictions of the EiBI gravity
theory.
The RMF Lagrangian density can be expressed as [77]

L ¼ LB þ LBM þ LM þ LL; ð1Þ

where the free Lagrangian density for baryons (B ¼ N, Λ,
Σ, Ξ) is

LB ¼
X
B

Ψ̄B½iγμ∂μ −MB�ΨB; ð2Þ

where MB is the baryon mass and the Lagrangian density
for meson-baryon couplings is given by

LBM ¼
X
B

Ψ̄B

�
gσBσ − γμgωBωμ

−
1

2
γμgρBτB · ρμ − γμgϕBϕμ

�
ΨB; ð3Þ

where the nonstrange mesons that are coupled to all
baryons are σ, ω, and ρ. However, the hidden-strangeness
meson ϕ is only coupled to hyperons (H ¼ Λ, Σ, Ξ). The
free and self-interaction meson Lagrangian density can be
expressed as

LM ¼ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ þ 1

2
ð∂μσ

�∂μσ� −m2
σ�σ

�2Þ

−
1

4
ωμνω

μν þ 1

2
m2

ωωμω
μ −

1

4
ϕμνϕ

μν þ 1

2
m2

ϕϕμϕ
μ

−
1

4
ρμν · ρμν þ

1

2
m2

ρρμ · ρμ þ LNL
M : ð4Þ

Theωμν, ϕμν and ρμν are the meson tensor fields of the ω, ϕ,
and ρ mesons, which are defined as ωμν ¼ ∂μων − ∂νωμ,
ϕμν ¼ ∂μϕν − ∂νϕμ, and ρμν ¼ ∂μρν − ∂νρμ. The explicit
form of the Lagrangian density for meson self-interactions
LNL
M can be written as

LNL
M ¼ −

κ3gσNm2
σ

6mN
σ3 −

κ4g2σNm
2
σ

24m2
N

σ4 þ ζ0g2ωN
24

ðωμω
μÞ2

þ η1gσNm2
ω

2mN
σωμω

μ þ η2g2σNm
2
ω

4m2
N

σ2ωμω
μ

þ ηρgσNm2
ρ

2mN
σρμ · ρμ þ

η1ρg2σNm
2
ρ

4m2
N

σ2ρμ · ρμ

þ η2ρg2ωNm
2
ρ

4m2
N

ωμω
μρν · ρν: ð5Þ

Equation (5) includes the contribution from the standard
RMF nonlinear self-interaction for σ and ω mesons and
additional cross-interaction terms for σ, ω, and ρ mesons.
In RMF models, coupling constants and parameters in the
Lagrangian density are determined by fitting the model
predictions to finite nuclei and nuclear matter properties.
The obtained parameter values depend on the chosen
observables and their corresponding weights. The explicit
values of the corresponding parameters of the RMF
parameter sets used in this work can be found in
Refs. [76–79].
The contribution of EoSs in the nucleon sector is

relatively established because the RMF parameter con-
straints in this sector are relatively tight. In Figs. 1 and 2
we show the binding energies and EoSs of symmetric
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FIG. 1. Binding energy predicted by G3, BSP, TM1e, and
FSUH RMF parameter sets on SNM (a) and PNM (b). The light
green-shaded area represents the chiral effective theory results
taken from Ref. [83], whereas the pink-shaded area represents a
constraint imposed by the SNM binding energy extracted from
the FOPI experimental data [81]. For comparison, the SNM
binding energy at the saturation value (ρ0 ≈ 0.16 fm−3) from
Ref. [83] is also shown.
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nuclear matter (SNM) and pure neutron matter (PNM)
predicted by G3 [76], BSP [54,77,80], TM1e [78], and
FSUH [79] parameter sets. The results are compared to
those extracted from experimental data [81,82] and those
obtained from the chiral effective field theory calcula-
tions [83,84]. In general, all parameter sets are compat-
ible with experimental data, but at low densities the G3
results are more compatible with those obtained from the
chiral effective field theory calculations than those from
other parameter sets used in this work. However, it can be
observed that binding energies predicted by all RMF
parameter sets that we use here are not too compatible
with the binding energy constraint from FOPI

experimental data for ρN ≤ 2ρ0. On the other hand, the
EoS of the G3 parameter set is compatible with the EoS
constraint from FOPI.3 Therefore, we only can argue that
on the RMF calculation side, the binding energy and EoS
results are consistent. To this end, in this work, we decide
to use the G3 parameter set as the representative param-
eter set to study NS properties.
Generally, hyperons and other exotic particle coupling

constants are experimentally difficult to constrain.
Therefore, the contribution of EoSs in the hyperon sector
is uncertain. The inclusion of hyperons and other exotic
particles tends to soften the corresponding EoS of the NS
core. Therefore, the corresponding predicted maximum
mass is always smaller than that obtained without hyperons
and other exotics.4 Following Ref. [79], here, we take the
SU(3) prescription and experimental value of potential
depths at the nuclear matter saturation density to determine
the hyperon coupling constants while neglecting the con-
tribution from other exotics. The SU(3) prescription yields
a relatively stiffer EoS compared to that of SU(6) [54]. For
leptons, we use the free Lagrangian density. To describe the
NSs’ crusts, we use the inner and outer crust EoSs based on
the Hartree-Fock Thomas-Fermi model used by Miyatsu
et al. [85].5 The β stability is assumed to be satisfied in the
NS matter. Therefore, the potential chemical balance,
charge neutrality, and baryon density conservation con-
ditions can be used to determine the constituents’ compo-
sition in NSs. Here, we also generate the EoSs of NSs
constrained by the speed of sound bound at high densities
vs ≤ c=

ffiffiffi
3

p
(G3 WoutHSS and G3 WHSS), where c is the

speed of light.6

The NS EoSs and the corresponding speed of sound for
the case of NS matter without hyperons (G3 WoutH) and
with a hyperon (G3WH) and those with the speed-of-sound
constraint (G3 WoutHSS and G3 WHSS) are shown in
Fig. 3. Simultaneously, the corresponding mass-radius
relations within GR are shown in Fig. 4. In Fig. 3, the
recent EoS constraints [43,45,46] are more compatible with
the NS EoS without hyperons (G3 WoutH), and the
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FIG. 2. EoS represented by pressure as a function of the ratio of
the nucleon density to the saturation density (ρN=ρ0) in (a) SNM
and (b) PNM, respectively. The results are calculated using the
G3, BSP, TM1e, and FSUH RMF parameter sets. The gray-
shaded areas are the results extracted from the heavy-ion
experimental data [82]. By contrast, the pink-shaded area in
panel (a) is extracted from the FOPI experimental data [81], and
the green-shaded areas in panels (a) and (b) are the theoretical
binding energy for PNM at low densities obtained from the chiral
effective field theory calculations [83,84].

3Note that we made the following attempts to check whether
our results are “correct” or not. First, to avoid false data
extractions, we have already rechecked and compared the
extracted binding energy and the EoS data with the ones from
Ref. [81]. They are now precisely matched. Second, we have also
rechecked the RMF binding energy and EOS subroutines in our
code. It seems that we have made no mistakes because, in the
RMF code, we solved the equations self-consistently. If we make
a mistake in one quantity, the error will truncate to all quantities
because they are strongly correlated. Third, we compared the
results with other people’s published calculation results using
RMF models [76–79], and the results are pretty compatible.

4See, for example, Ref. [79] and the references therein for
related hyperon puzzle discussion.

5See Ref. [54] and the references therein for the detailed
discussion about the uncertainty of these crust EoSs.

6Some recent progress about the constraints of speed of sound
on NS matter can be seen in Ref. [86] and the references therein
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constraint of speed of sound, which is applied on high-
densities, slightly increases the stiffness of the correspond-
ing EoSs. However, for EoSs with hyperons (G3
WoutHSS), the effect is insufficient to reach the EoS
constraint from GW170817 at high densities. The impacts
of hyperons and the speed-of-sound constraint on the mass-
radius relation within the GR theory are shown in Fig. 4.
The data from the GW190814 event were obtained from
Ref. [1], and the others were from Refs. [45,46]. We also
show the results from the pulsar-binary system analysis
(PSR) J1614-2230 from Refs. [33–35] and J0740þ 6620
from Refs. [35,36]. The boundaries where the ultracompact

limit and Buchdahl limit are located are also shown. The
figure clearly shows that the hyperon’s contribution lowers
the mass, and constraining the sound speed increases the
mass. All EoSs are compatible with radius constraints from
Refs. [45,46]. However, the hyperons’ contribution to the
EoS lowers the NS maximum mass significantly below the
2 M⊙ pulsar mass constraints. Considering the requirement
that the speed of sound should be less than vs ≤ c=

ffiffiffi
3

p
in

EoSs slightly increases the NS maximum mass. However,
the corresponding maximum mass is still less than the
2 M⊙ pulsar mass constraint. If the second object with
mass 2.6 M⊙ detected by the LIGO Collaboration (GW
190814) is a nonrotating NS, then all maximum masses
predicted by all EoSs used in this work are less than this
constraint. Recent studies [2,19] have shown that if the
hyperons are excluded in the NS matter, then 2.6 M⊙ and
canonical NS radius constraints can simultaneously be
satisfied using a particular RMF EoS (Big Apple), which
is compatible with finite nuclei and nuclear matter con-
straints. However, the corresponding nuclear matter EoS
prediction is not compatible with those obtained from
heavy-ion collision constraints [82]. Therefore, Fattoyev
et al. [2] concluded that, in GR theory, the 2.6 M⊙ compact
object is not likely an NS. To this end, it is worth noting that
the EiBI gravity can have maximum NSs with an accept-
able EoS larger than 2 M⊙ without reaching the Buchdahl
limit [66]. However, according to the EiBI theory, as the
maximum mass increases, the radius also increases.
Therefore, in the next sections, we will systematically
examine the tension between relatively small recent radius
constraints and recent considerable maximum mass con-
straints within the EiBI theory.
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FIG. 3. EoS without a hyperon (G3-Hyp) and with a hyperon
(G3þ Hyp) is calculated using the G3 parameter set. We also
show the EoSs if the speed of sound at high densities is constrained
by vs ≤ c=

ffiffiffi
3

p
(G3-Hypþ SS and G3þ Hypþ SS). In panel (a),

we show pressure as a function of the ratio of ρN to ρ0, and in panel
(b), we show the speed of sound as a function of the ratio of density
to saturation density. For comparison, some constraints are given as
follows. (1) The lightblue and lightgreen shaded areas are from
GW170817 data analysis in Ref. [43]. (2) The data points for
particular densities are taken from the GW170817 data [43], some
recent nonparametric analysis data [45], and a dataset from the
joint analysis on PSR J0030þ 0451 data, GW170817 data, and
the nuclear data Ref. [46].

FIG. 4. Mass-radius relation predicted by the G3 parameter set
for the cases of matter without a hyperon (WoutH) and with a
hyperon (WH) using the GR framework. We also show the
relations if the sound speed is constrained at high densities
(WoutHSS and WHSS).
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III. EiBI THEORY

In this section, we briefly review the EiBI theory and
discuss the moment of inertia and tidal deformation
derivation within it. We start by reviewing the formulas
following the treatment proposed in Refs. [60,66]. The
EiBI theory has the following equations of motion:

qμν ¼ τðλgμν − 8πGκTμνðgÞÞ; ð6Þ

qμν ¼ gμν þ κRμνðqÞ; ð7Þ

where τ ¼ ffiffiffi
g

p
=

ffiffiffi
q

p
, q ¼ − detðqμνÞ, g ¼ − detðgμνÞ. [It is a

usual practice to use τ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgσνÞ detðqμσÞ

p ¼
½detðλδμν − 8πGκTμ

νÞ�−1=2.] Here, λ and κ are the para-
meters of EiBI, different from the functions λ̄ðrÞ and κ̃ðrÞ,
which we shall define below. κ has dimension ðlengthÞ2,
and λ is dimensionless. The cosmological constant Λc is
related to both of them by

λ ¼ κΛc þ 1: ð8Þ

Here RμνðqÞ" and TμνðgÞ means that each tensors use
different metric to raise or lower their indices. For
instance, Rα

ν ¼ Rμνqμα and Tμ
β ¼ Tμνgνβ. These equations

are products of the EiBI action:

S ¼ 1

8πGκ

Z
ðM;gÞ

d4x½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμν þ κRμνðΓÞÞ

q

− λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

q
�; ð9Þ

where the Palatini formalism has been used, i.e., the Ricci
tensor is dependent not on the physical metric but on the
connection Γα

βγ, which is dependent on the apparent
metric,

Γα
βγ ¼

1

2
qασð∂γqβσ þ ∂βqγσ − ∂σqβγÞ: ð10Þ

To make them similar to the Einstein field equation
(EFE), we can manipulate them into

Rμ
νðqÞ − 1

2
Rσ
σδ

μ
νðqÞ ¼ 8πGTμ

eff νðgÞ; ð11Þ

Tμ
eff νðgÞ ¼ τTμ

νðgÞ −
�
τTσ

σðgÞ
2

þ 1 − τλ

8πGκ

�
δμν : ð12Þ

For brevity, we shall not write the arguments of the Ricci
tensor Rμν and stress tensor Tμν.

A. Vacuum solution

In this paper, we will discuss the effect of the nonzero
cosmological constant Λc on the EiBI theory. Before we

proceed, it is necessary to discuss the vacuum solution.
Suppose we have the apparent metric and physical metric in
the static and spherically symmetric form

q ¼ qμνdxμdxν ¼ −C2ðrÞdt2 þD2ðrÞdr2
þ r2½dθ2 þ sin2θdφ2�; ð13Þ

g ¼ gμνdxμdxν ¼ −A2ðrÞdt2 þ B2ðrÞdr2
þ F2ðrÞ½dθ2 þ sin2θdφ2�; ð14Þ

and we have no matter at all (i.e., Tμ
ν ¼ 0). From Eq. (6), we

have

F2 ¼ r2=λ; ð15Þ

A2 ¼ C2=λ; ð16Þ

B2 ¼ D2=λ: ð17Þ

Substituting these into Eq. (7), we have

C00 ¼ DC −D3Cþ rCD0 þ rDC0 þ r2D0C0

r2D
; ð18Þ

C0

C
¼ −

1

r
þ
�
1

r
−
r
κ
þ r
κλ

�
D2 þD0

D
; ð19Þ

D0

D
¼ 1

2r
þ
�
−

1

2r
þ r
2κ

−
r
2κλ

�
D2; ð20Þ

where the primes denote the differentiation with respect to
r. The solutions that satisfy these equations are

C2 ¼ D−2 ¼ 1 −
2GM
r

−
Λcr2

3λ
: ð21Þ

The apparent metric without the presence of matter
indicates an “apparent” Minkowski–de Sitter space with
the cosmological constant Λc=λ. This factor will be crucial
for our metric ansatz with the presence of an ideal
isotropic fluid so that we can obtain suitable equations
of motion.

B. Moment of inertia

In this subsection, first, we set the apparent and physical
metrics in the following forms:

q ¼ qμνdxμdxν ¼ −eβðrÞdt2 þ eαðrÞdr2 þ r2½dθ2
þ sin2θðdφ − ωðrÞdtÞ2� þOðΩ2Þ; ð22Þ

g ¼ gμνdxμdxν ¼ −eνðrÞdt2 þ eλ̄ðrÞdr2 þ dðrÞ½dθ2
þ sin2θðdφ − vðrÞdtÞ2� þOðΩ2Þ: ð23Þ
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Our apparent metric is the Hartle-Thorne metric [87] and
the physical metric is its generalization. Both describe a
spherically symmetric massive body with radius R with
angular momentum ω ∼Ω (and v ∼ Ωphy) as r → R. If Ωk

is defined as the Kepler angular velocity, then it is assumed
that Ω=Ωk ≪ 1 and Ωphy=Ωk ≪ 1. This is known in the
literature as a slow-rotating approximation [87]. We con-
struct the physical metric whose 2-sphere has radiusffiffiffiffiffiffiffiffiffi
dðrÞp

. The boundary condition for the metrics is that
both of them have the same exterior region, so both should
coincide at r ≥ R.
The massive body is assumed to be an ideal fluid, such

that

Tμ
ν ¼ ½ϵþ p�uμuν þ pδμν ; ð24Þ

ut ¼½−ðgtt þ 2Ωphygtφ þ Ω2
phygφφÞ�−1=2; ð25Þ

uφ ¼ Ωphyut; ur ¼ uθ ¼ 0: ð26Þ

In its explicit form, the components in the physical stress
tensor are as follows:

Tt
t ¼ −ϵ; Tr

r ¼ Tθ
θ ¼ Tφ

φ ¼ p; ð27Þ

Tt
φ ¼ ðϵþ pÞðΩphy − vÞe−νdsin2θ; ð28Þ

Tφ
t ¼ −ðϵþ pÞΩphy: ð29Þ

Then, after neglecting OðΩphyÞ, the explicit form of τ
becomes

τ ¼ 1=ðab3Þ; ð30Þ

a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 8πGκϵ

p
; ð31Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − 8πGκp

p
: ð32Þ

From Eq. (6), we have the diagonal components from
both metrics related by

eν ¼ eβa=b3; eλ̄ ¼ eα=ðabÞ; d ¼ r2=ðabÞ: ð33Þ

We assume that the effective stress tensor also has a similar
form as the physical stress tensor but with the additional
subscript “eff”, i.e.,

Tt
eff t ¼ −ϵeff ; ð34Þ

Tr
eff r ¼ peff ¼ Tθ

eff θ ¼ Tφ
eff φ; ð35Þ

Tt
eff φ ¼ðϵeff þ peffÞðΩ − ωÞe−βðrÞr2sin2θ: ð36Þ

Then, we obtain

ϵeff ¼
a2 − 3b2 þ 2ab3

16πGκab3
; ð37Þ

peff ¼
a2 þ b2 − 2ab3

16πGκab3
; ð38Þ

ðΩ − ωÞ ¼ðΩphy − vÞ b
2

a2
: ð39Þ

The last equation was derived from Tt
eff φ ¼ Tt

φ=ab3.
Because ðΩ − ωÞ ∼ ðΩphy − vÞ at r → R, we can demand
that the constants Ω and Ωphy satisfy

Ω ¼ Ωphy: ð40Þ

This constraint is actually justified because it came
from Tφ

eff t ¼ Tφ
t=abc2.

The components of the Ricci tensor can be obtained in a
straightforward manner. By defining the mass function
mðrÞ to replace a metric function αðrÞ, i.e.,

e−α ¼ 1 −
2GmðrÞ

r
−
Λcr2

3λ
; ð41Þ

we obtain

m0ðrÞ ¼ r2

4Gκ

�
2

λ
−

3

ab
þ a
b3

�
; ð42Þ

β0ðrÞ ¼ −2p0ðrÞ
�
2πGκ

�
3

b2
þ 1

a2
dϵ
dp

�
þ 1

ϵþ p

�
; ð43Þ

p0ðrÞ ¼ −
1

4πGκ

�
r
2κ

�
1

ab
þ a
b3

− 2

�
þ 2Gm

r2
þ Λcr

3λ

�

×

�
4

a2 − b2
þ 3

b2
þ 1

a2
dϵ
dp

�
−1

×

�
1 −

2GmðrÞ
r

−
Λcr2

3λ

�−1
; ð44Þ

from tt, the rr components of the EFE, and the (contracted)
Bianchi identity ∇μT

μ
eff r ¼ 0, respectively. The boundary

conditions are mð0Þ ¼ 0, mðRÞ ¼ M, pðRÞ ¼ 0, and
βðRÞ ¼ ln ð1 − 2GM=R − ΛcR2=ð3λÞÞ. Clearly, transform-
ing β → β þ k (where k is a constant) does not change the
equation of motion, so we can easily obtain the actual value
of βð0Þ ¼ β0;new as follows: set an arbitrary real number
βð0Þ ¼ ββ0;old , then calculate βðrÞ numerically to obtain
βR ¼ βðRÞ, then β0;new is obtained from:
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β0;new ¼ β0;old− ½βR − lnð1− 2GM=R−ΛcR2=ð3λÞÞ�:
ð45Þ

To obtain an equation for the moment of inertia, we
calculate the equation of motion of ω from the tφ
component of the EFE. To have this, we use the following
formula:

Rt
φ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− detðqαβÞ
p ∂μð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðqαβÞ

q
Γμ
νφqtνÞ: ð46Þ

With Eq. (46) and ignoring Oðω2Þ, we obtain

Rt
φ ¼ −

e−ðβþαÞ=2

2r2 sin θ
∂rðe−ðβþαÞ=2r4sin3θ∂rωÞ: ð47Þ

From before, we have Tt
eff φ ¼ ðϵeff þ peffÞðΩ − ωÞ

e−βðrÞr2sin2θ. Now, we define ω̃ ¼ ðΩ − ωÞ=Ω. Then,
Rt
φ=ð8πGÞ ¼ Tt

eff φ becomes

∂rðe−ðβþαÞ=2r4∂rω̃Þ ¼ 16πGr4ðϵeff þ peffÞeðα−βÞ=2ω̃: ð48Þ

In the exterior region, the right-hand side vanishes, so

ω̃ðr ≥ RÞ ¼ 1 −
2GI
r3

; ð49Þ

which is the boundary condition to calculate the moment of
inertia I. From Eq. (48), we have

ω̃0ðrÞ ¼ 6eβ=2

r4ð1 − 2Gm=r − Λcr2=ð3λÞÞ1=2
κ̃; ð50Þ

κ̃0ðrÞ ¼ 8πGr4

3

ðϵeff þ peffÞe−β=2
ð1 − 2Gm=r − Λcr2=ð3λÞÞ1=2

ω̃; ð51Þ

whose boundary conditions are ω̃ðRÞ ¼ 1–2GI=R3, and
κ̃ðRÞ ¼ GI. Because the boundary condition at the center
is unknown, we pay attention to Eqs. (50) and (51). Notice
that both are invariant from replacing ω̃ðrÞ → ζω̃ðrÞ and
κ̃ðrÞ → ζκ̃ðrÞ. Suppose that the results of the numerical
calculations give us ω̃ðRÞ ¼ ð1 − 2GI=R3Þ=ζ with
κ̃ðRÞ ¼ GI=ζ, and with ζ as a constant, from initial values
ω̃ð0Þ ¼ ω̃0 and κ̃ð0Þ ¼ κ̃0. Then, to satisfy both boundary
conditions, we can set the initial values to be ω̃ð0Þ ¼ ω̃0ζ
and κ̃ð0Þ ¼ κ̃0ζ with

ζ ¼ 1

ω̃ðRÞ þ 2κ̃ðRÞ=R3
: ð52Þ

However, recalculating is unnecessary because we already
obtained the moment of inertia I from κ̃ðRÞ by
I ¼ κ̃ðRÞζ=G. Following Refs. [57,58], we have
vðRÞ ¼ ωðRÞ ¼ 2IΩ=R2 from the boundary condition.

Thus, we already obtain I as the physical moment of
inertia.
The numerical procedure for the moment of inertia is

as follows. First, we calculate p0ðrÞ, m0ðrÞ and ν0ðrÞ
[Eqs. (42)–(44)]. We employ the Runge-Kutta fourth-order
algorithm using a FORTRAN77 code. The initial data at the
center r ¼ rc → 0 are pðrcÞ ¼ pc, mðrcÞ ¼ 0, and
βðrcÞ ¼ 0. We run the code up to r ¼ R, where the pressure
becomes zero pðRÞ ¼ 0. At this point, we obtain R,
mðRÞ ¼ M and βðRÞ ¼ βR. Because in general the value
of βðRÞ is not equal to lnð1 − 2GM=R − ΛcR2=ð3λÞÞ, we
use a new initial value βðrcÞ ¼ β0;new using Eq. (45).
Second, we calculate p0ðrÞ, m0ðrÞ, ν0ðrÞ, ω̃0ðrÞ, and
κ̃0ðrÞ. The initial values at r ¼ rc are pðrcÞ ¼ pc,
mðrcÞ ¼ 0, βðrcÞ ¼ βðrcÞnew, and ω̃ðrcÞ ¼ κ̃ðrcÞ ¼ 0.
The new results are ω̃ðRÞ and κ̃ðRÞ. The moment of inertia
I is determined by I ¼ κ̃ðRÞζ=G with ζ from Eq. (52).

C. Tidal deformation

In this subsection, we focus only on tidal deformation for
the electric type. We start with the following unperturbed
metrics:

ημνdxμdxν ¼ −eνðrÞdt2 þ eλ̄ðrÞdr2 þ dðrÞdΩ2; ð53Þ

ζμνdxμdxν ¼ −eβðrÞdt2 þ eαðrÞdr2 þ r2dΩ2; ð54Þ

where dΩ2 is the surface element of the 2-sphere.
Following the Regge-Wheeler metric, the perturbed metrics
are

gμν ¼ ημν þ hμν; ð55Þ

qμν ¼ ζμν þ fμν; ð56Þ

with

hμν ¼

0
BBBB@

−H0eν H1 0 0

H1 H2eλ̄ 0 0

0 0 Kr2 0

0 0 0 Kr2sin2θ

1
CCCCAYlmðθ;ϕÞ; ð57Þ

fμν ¼

0
BBBB@

−F0eν F1 0 0

F1 F2eλ̄ 0 0

0 0 Ḡr2 0

0 0 0 Ḡr2 sin2 θ

1
CCCCAYlmðθ;ϕÞ: ð58Þ

H0, H1, H2, K, F0, F1, F2, and Ḡ are all functions of r.

1. Vacuum case

To determine the Love number, first, we investigate the
vacuum case. From Eq. (6) with Tμ

ν ¼ 0, one obtains
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d ¼ r2=λ; eν ¼ eβ=λ; eλ̄ ¼ eα=λ; ð59Þ

H0 ¼ −H2 ¼ H; F0 ¼ −F2 ¼ F; ð60Þ

H ¼ F; K ¼ Ḡ=λ: ð61Þ

From evaluating Eq. (7) in order, the following solutions
and equations are obtained:

eβ ¼ e−α ¼ 1 −
2GM
r

−
Λcr2

3λ
; ð62Þ

F1 ∝ eðα−βÞ=2; ð63Þ

H1 ¼ F1

�
1

λ
−
lðlþ 1Þκ

2r2

�
; ð64Þ

F00 þ 2eα
�
1

r
−
Λcr
λ

�
F0 − 2

�
1

r2
− eα

Λc

λ

�
F

þ eα
ðl − 1Þðlþ 2Þ

r2
G ¼ 0: ð65Þ

After some algebraic manipulations, the last line above
becomes

F00 þ
�
1

r
þ eα

�
1

r
−
Λcr
λ

��
F0

−
�
ea
�
lðlþ 1Þ

r2
þ 2Λc

λ

�
þ β02

�
F ¼ 0: ð66Þ

Now, we come to the tricky part. To calculate the tidal
deformation, the calculation is performed at r → ∞, but

de Sitter space is not asymptotically flat. To remedy this
limitation, we assume that jΛcj is sufficiently small such
that jðGMÞ2Λc=λj ≪ 1. Thus, the solution F is assumed to
have the following form:

FðxÞ ¼
X∞
i¼0

FiðxÞεi; ε ¼ G2M2Λc

λ
;

x ¼ r
GM

− 1: ð67Þ

Assuming that the series rapidly converges, we consider the
series only up to the first order:

FðxÞ ¼ F0ðxÞ þ εF1ðxÞ: ð68Þ

From Λc ¼ 0, we have the following usual solution:

F0ðxÞ ¼ C1;lQ2
l ðxÞ þ C2;lP2

l ðxÞ; ð69Þ

where Q2
l and P2

l are the associated Legendre polynomials
of the second and first kinds, respectively. The constants
C1;l and C2;l will be determined later. Substituting this into
Eq. (66), we obtain

ð1 − x2Þ
�
d2F1ðxÞ
dx2

þDðxÞ
�
− 2x

dF1ðxÞ
dx

þ
�
lðlþ 1Þ − 4

1 − x2

�
F1ðxÞ ¼ 0; ð70Þ

with

DðxÞ ¼ −
1

3

�
xþ 1

x − 1

�
2
�
2ðx − 2Þ dF0ðxÞ

dx
þ
�
lðlþ 1Þ − 6x2 − 20xþ 22

1 − x2

�
F0ðxÞ

�
: ð71Þ

Then, we solve this equation with l ¼ 2, 3, 4 case by case.
In general, the obtained solution has the following form:

F1ðxÞ ¼ C3;lQ2
l ðxÞ þ C4;lP2

l ðxÞ þ C2;lS2l ðxÞ þ C1;lT2
l ðxÞ ð72Þ

with

S2l ðxÞ ¼
f1;lðxÞ
x2 − 1

þ ðx2 − 1Þf2;lðxÞ; ð73Þ

T2
l ðxÞ ¼

f3;lðxÞ
ðxþ 1Þðx − 1Þ2 þ

f4;lðxÞ
xþ 1

lnðx − 1Þ þ f5;lðxÞ
�
xþ 1

x − 1

�
lnðxþ 1Þ þ ðx2 − 1Þf6;lðxÞ:

ð74Þ
For l ¼ 2, we have

f1;2 ¼
8x6

7
þ 6x5 −

x4

7
−
59x3

4
−
46x2

7
þ 21x

4
þ 1; ð75Þ
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f2;2 ¼
3

56
ð113 logðx − 1Þ þ 15 logðxþ 1ÞÞ; ð76Þ

f3;2 ¼ −
8x6

7
þ 389x5

56
þ 2057x4

168
−
1987x3

84
−
1469x2

84
þ 1357x

56
þ 235

56
; ð77Þ

f4;2 ¼ −
4x5

7
−
25x4

7
−
17x3

14
þ 171x2

14
þ 153x

14
−
25

14
; ð78Þ

f5;2 ¼
4x4

7
þ 13x3

7
−
93x2

14
þ 34x

7
−
25

14
; ð79Þ

f6;2 ¼
1

7
ð−24Þ

�
2Li2

�
1 − x
2

�
þ ln

�
xþ 1

4

�
lnðx − 1Þ

�
: ð80Þ

For l ¼ 3, we have

f1;3 ¼
20x7

3
þ 40x6 −

20x5

7
−
375x4

4
−
220x3

7
þ 185x2

4
þ 20x; ð81Þ

f2;3 ¼
25

56
xð127 logðx − 1Þ þ logðxþ 1ÞÞ; ð82Þ

f3;3 ¼ −
20x7

3
þ 8195x6

168
þ 5225x5

72
−
35845x4

252
−
9977x3

84
þ 7305x2

56
þ 8941x

168
− 32; ð83Þ

f4;3 ¼ −
10x6

3
−
70x5

3
−
925x4

42
þ 3425x3

42
þ 195x2

2
−
845x
42

−
635

21
; ð84Þ

f5;3 ¼
10x5

3
þ 40x4

3
−
1315x3

42
þ 20x2

7
þ 135x

14
þ 5

21
; ð85Þ

f6;3 ¼
1

7
ð−200Þx

�
2Li2

�
1 − x
2

�
þ ln

�
xþ 1

4

�
lnðx − 1Þ

�
: ð86Þ

For l ¼ 4, we have

f1;4 ¼
595x8

22
þ 175x7 −

277315x6

4928
−
14305x5

32
−
202325x4

4928
þ 14405x3

48
þ 342515x2

4928
−
1225x
32

−
615

64
; ð87Þ

f2;4 ¼
25ð7x2 − 1Þð7613 logðx − 1Þ þ 67 logðxþ 1ÞÞ

4928
; ð88Þ

f3;4 ¼ −
595x8

22
þ 1159715x7

6336
þ 14823115x6

44352
−
8024815x5

14784
−
3123931x4

4928
þ 7841513x3

14784
þ 169207x2

448

−
7430627x
44352

−
2160637

44352
; ð89Þ

f4;4 ¼ −
595x7

44
−
4445x6

44
−
38235x5

308
þ 113875x4

308
þ 154025x3

308
−
42865x2

308
−
6715x
28

−
3735

308
; ð90Þ

f5;4 ¼
595x6

44
þ 665x5

11
−
34285x4

308
−
4540x3

77
þ 30455x2

308
þ 535x

77
−
3735

308
; ð91Þ

f6;4 ¼
1

77
ð−1500Þð7x2 − 1Þ

�
2Li2

�
1 − x
2

�
þ ln

�
xþ 1

4

�
lnðx − 1Þ

�
: ð92Þ

Here, LinðzÞ is the polylogarithm function.
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To obtain C1;l, C2;l, C3;l, and C4;l, we follow the method
illustrated in Ref. [88]. The general results have the
following pattern:

C1;l ¼ A1;l þ λlB1;l; ð93Þ

C2;l ¼ A2;l þ λlB2;l; ð94Þ

C3;l ¼ A3;l þ λlB3;l; ð95Þ

C4;l ¼ A4;l þ λlB4;l: ð96Þ

Here, λl is related to the Love number kl. The constants
also have the following pattern: Ai;l ∝ EmðGMÞl and
Bi;l ∝ EmðGMÞ−l−1 (i ¼ 1, 2, 3, 4), where Em is related
to the static external quadrupolar tidal field produced by
an external gravitational potential. Subjected to this
gravitational potential, the star responds through its
own quadrupole moment, which is recorded by λl.
To obtain λl and get rid of Em, we define yðRÞ ¼

RF0ðRÞ=FðRÞ and c ¼ GM=R. By substituting

FðxÞ ¼ ðC1;l þ εC3;lÞQ2
l ðxÞ þ ðC2;l þ εC4;lÞP2

l ðxÞ þ εC2;lS2l ðxÞ þ εC1;lT2
l ðxÞ ð97Þ

into y, we obtain

λl ¼ −
ðA1;l þ εA3;lÞQ�ðRÞ þ ðA2;l þ εA4;lÞP�ðRÞ þ εðA1;lT�ðRÞ þ A2;lS�ðRÞÞ
ðB1;l þ εB3;lÞQ�ðRÞ þ ðB2;l þ εB4;lÞP�ðRÞ þ εðB1;lT�ðRÞ þ B2;lS�ðRÞÞ

; ð98Þ

where

Q�ðRÞ ¼ yQ2
l ðcÞ þ c½dQ2

l ðcÞ=dc�; ð99Þ

P�ðRÞ ¼ yP2
l ðcÞ þ c½dP2

l ðcÞ=dc�; ð100Þ

T�ðRÞ ¼ yT2
l ðcÞ þ c½dT2

l ðcÞ=dc�; ð101Þ

S�ðRÞ ¼ yS2l ðcÞ þ c½dS2l ðcÞ=dc�: ð102Þ

Then, we can obtain the Love number through

kl ¼
ð2l − 1Þ!!
2R2lþ1

λl: ð103Þ

Notice that because λl ∝ ai;l=bi;l ∝ ðGMÞ2lþ1, it follows
that λlR−2l−1 ∝ c2lþ1. Thus, we can redefine kl with

kl ¼ −
ð2l − 1Þ!!

2

ða1;l þ εa3;lÞQ�ðRÞ þ ða2;l þ εa4;lÞP�ðRÞ þ εða1;lT�ðRÞ þ a2;lS�ðRÞÞ
ðb1;l þ εb3;lÞQ�ðRÞ þ ðb2;l þ εb4;lÞP�ðRÞ þ εðb1;lT�ðRÞ þ b2;lS�ðRÞÞ

; ð104Þ

where ai;l and bi;l are just functions of c. We use Eq. (104)
because the form is more straightforward to write in code
than Eq. (98). In explicit form, the constants are shown
below:

a1;2 ¼ 0; b1;2 ¼
15

8

1

c3
; ð105Þ

a2;2 ¼
1

3
c2; b2;2 ¼ 0; ð106Þ

a3;2 ¼
113

84
c2; b3;2 ¼

1787

392

1

c3
; ð107Þ

a4;2 ¼
13

9
c2; b4;2 ¼−

�
5π2

7
þ 3305

448
þ 15ln2ð2Þ

7

�
1

c3
;

ð108Þ

a1;3 ¼ 0; b1;3 ¼
35

8

1

c4
; ð109Þ

a2;3 ¼
1

45
c3; b2;3 ¼ 0; ð110Þ

a3;3 ¼
127

756
c3; b3;3 ¼

24805

1512

1

c4
; ð111Þ
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a4;3¼
158

945
c3; b4;3¼−

�
25π2

9
þ13795

576
þ25ln2ð2Þ

3

�
1

c4
;

ð112Þ

a1;4 ¼ 0; b1;4 ¼
735
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1
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; ð113Þ

a2;4 ¼
1
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c4; b2;4 ¼ 0; ð114Þ

a3;4 ¼
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465696
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469685

5808

1

c5
; ð115Þ

a4;4¼
200077

10866240
c4;

b4;4¼−
�
875π2

88
þ14680085

202752
þ2625ln2ð2Þ

88

�
1

c5
: ð116Þ

2. Nonvacuum case

From Eq. (104), we need yðRÞ,M ¼ mðRÞ, and r ¼ R as
inputs to obtain the Love number. Thus, we need to run the
calculation of FðrÞ in the interior.
From Eq. (6), we obtain the following metric relations:

d¼ r2=ðabÞ; eν ¼ eβa=b3; eλ̄ ¼ eα=ðabÞ; ð117Þ

H0 ¼H; H2 ¼−Ha2=b2; F0 ¼−F2 ¼F: ð118Þ

We also need to define the perturbed stress tensor as

Tμ
ν ¼ Tμ

0 ν þ δTμ
ν ; ð119Þ

where Tμ
0 ν is the usual ideal fluid and

δTμ
ν ¼ diag

�
−
dϵ
dp

; 1; 1; 1

�
δpYlmðθ;ϕÞ: ð120Þ

After evaluating Eq. (7) order by order and using
identities of the spherical harmonics, one can arrive at
the following relations:

H ¼ 16πGκδp
b2 − a2

; ð121Þ

K ¼ Ḡ
ab

þ 4πGκ
ab

�
1

b2
−

1

a2
dϵ
dp

�
δp; ð122Þ

F ¼ 4πGκ

�
4

b2 − a2
−

3

b2
−

1

a2
dϵ
dp

�
δp: ð123Þ

Then, by eliminating δp, we have the following equations:

H ¼ 4

a2 − b2

�
4

a2 − b2
þ 3

b2
þ 1

a2
dϵ
dp

�
−1
F; ð124Þ

F1 ¼ Ceðα−βÞ=2; ð125Þ

H1 ¼ F1

�
a
b3

−
lðlþ 1Þκ

2r2

�
: ð126Þ

Last, we have

F00 þ eα
�
2

r
þ r
2κ

�
−4þ a

b3
þ 3

ab

��
F0

−
�
2

r2
−
eα

κ

�
2 −

3a
b3

þ 1

ab

��
F

þ eα
�ðl − 1Þðlþ 2Þ

r2
−

2

abκ

�
Gþ K

�
2eα

κ

�
¼ 0:

ð127Þ

After some algebraic manipulations, the equation becomes

F00 þ fðrÞF0 þ gðrÞF ¼ 0; ð128Þ

with

fðrÞ ¼ reαðrÞ

κ

�
1

ab
− 1

�
þ eαðrÞ

r
þ 1

r
; ð129Þ

gðrÞ ¼ 2eα

κ

a
b3

�
2 −

4

ða2 − b2Þ
�

4

a2 − b2
þ 1

a2
dϵ
dp

þ 3

b2

�
−1
�

−
�
lðlþ 1Þeα

r2
þ 2eα

κ
þ β0ðrÞ2

�
: ð130Þ

Defining yðrÞ ¼ rF0ðrÞ=FðrÞ, we thus obtain the first-
order equation

y0ðrÞ ¼ −fðrÞyðrÞ − rgðrÞ − yðrÞ2
r

þ yðrÞ
r

: ð131Þ

The boundary condition is yð0Þ ¼ l. Usually, k2 [using
Eq. (104)] is only evaluated as the so-called dimensionless
tidal deformability Λ,

Λ ¼ 2k2
3c5

; ð132Þ

because jk4j ≪ jk3j ≪ jk2j.
The numerical procedure for the tidal calculation is as

follows. First, we calculate p0ðrÞ, m0ðrÞ, and y0ðrÞ
[Eqs. (44), (42) and (131), respectively]. We employ the
Runge-Kutta fourth-order algorithm using a FORTRAN77
code. The initial data at the center r ¼ rc → 0 are
pðrcÞ ¼ pc, mðrcÞ ¼ 0 and yðrcÞ ¼ l. We run the code
up to r ¼ Rwhere the pressure becomes zero pðRÞ ¼ 0. At
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this point, we obtain R, mðRÞ ¼ M, and yðRÞ. The three
numbers are then used to calculate kl using Eq. (98).

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we show the numerical results. The EoS
used here is the G3 parameter set. We include the hyperon
contribution in the EoS with the speed of sound at high
densities constrained by vs ≤ c=

ffiffiffi
3

p
(denoted by WHSS).

We mainly use WHSS in this work, but we also compare
the corresponding results with those with no-hyperon EoS
(WoutHSS). We use the one hyperon contribution because
we suspect that hyperon matter exists in heavy NSs, i.e.,
M ≳ 2.0 M⊙. We use the speed-of-sound constraint at high
densities because it stiffens the matter and thus increases
the maximum mass. This effect can slightly reduce the
impact of hyperon contributions. The hyperon contribution
softens the EoS quite significantly, thus decreasing the
maximum mass. Furthermore, the known constraints from
some analysis results are shown as a comparison to restrict
the range of κ and Λc. The role of κ for controlling the mass
and radius of NS was studied previously in Ref. [66].
However, here, we revisit this matter using more refined
EoSs and use more recent constraints of NS properties.
Then, we investigate the role of Λc.
First, we consider the case when Λc ¼ 0. The mass-

radius relations are shown in Fig. 5, where the G3 WHSS
EoS is presented in panel (a) and WoutHSS EoS in panel
(b). In Fig. 5, we show that by increasing κ, theM and R of
NSs simultaneously increase. The impact of increasing κ on
increasing M and R is significant not only for the G3
WoutHSS EoS but also for the G3 WHSS EoS. The M ∼
2.6 M⊙ can be easily reached by the maximum mass
predicted by both EoSs without crossing the Buchdahl
limit. The results show that the G3 WHSS EoS needs a
larger value of κ to reach M ∼ 2.6 M⊙ due to a relatively
softer EoS. It is also evident that for EoSs with and without
hyperons, the 2.1 M⊙ maximum mass constraint and the
radius canonical mass constraints from Refs. [45,46] can be
fulfilled simultaneously. However, when the maximum
mass Mmax ≳ 2.3 M⊙, the radius of the canonical mass
NS predicted by the EiBI theory is already larger than the
other constraints [45,46].
We can estimate the upper bound of Λc ¼ 2.08 ×

10−52 m−2 from the observed cosmological constant in
Refs. [89–92]

ρΛc
¼ Λc

8πG
∼ 10−8

erg
cm3

: ð133Þ

This Λc value is too small to impact the gravity on the scale
of the solar system. For example, when we use
jΛcj ≥ 10−22 m−2, λ ¼ 1, set M ¼ 1 M⊙ and r ¼ 1 AU
in Eq. (41), the cosmological constant term will dominate,
and Newtonian gravity will break down in the solar system.
Second, we calculate the M-R relation, moment of inertia,

and tidal deformability using this Λc value. The results are
almost indistinguishable compared to those obtained using
Λc ¼ 0. We vary κ and show the M-R relation, moment of
inertia, and tidal deformation results in Figs. 6–8. Clearly,
the data from NSs with canonical mass (1.4 M⊙), such as
the moment of inertia and tidal deformation, are not in
agreement with our results when κ is much larger than
5 km2. It is known that there is no direct measurement of
both the moment of inertia and tidal deformation other than
GW170817 for the latter. The data from Kumar and Landry
[47] was obtained by assuming some relations established
in GR, and thus the data may be inappropriate to be used to
test EiBI theory since the relations may be different in EiBI
theory. On the other hand, the data from Landry et al. [45]
and Jiang et al. [46] comes directly from gravitational-
wave observations and thus is still valid in EiBI theory.
Moreover, when the cosmological constant is set to this

(a)

(b)

FIG. 5. M-R relation results by varying κ with Λc ¼ 0. In panel
(a), we use G3 EoS with a hyperon and sound-of-speed constraint
(WHSS), whereas in panel (b), we use G3 EoS without considering
hyperons but still use speed of sound constraint at high densities
(WoutHSS). We can see that increasing κ will increase M and R.
Similar to Ref. [66], we find that κ can have a negative value, and
the solutions exist if κ > −5 km2.
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value and κ ≈ 5 km2, the 2.1 M⊙ maximum mass con-
straint can be reached due to our choice of EoS. To this end,
if we use only the EoS from G3 RMF parameter set, that by
setting κ≈ 5 km2 and jΛcj ≤ 2.08 × 1052 m2, the NS
properties predicted by the EiBI theory are compatible
with the recent constraints from Refs. [35,36,45–48].
We note that Sham et al. [75] had investigated the

moment inertia and tidal deformability of compact
objects in EiBI. The authors of Ref. [75] employed the
apparent EoS formulation in their calculation. This
formulation makes the equations easier to derive because
we can derive them just like the ones in GR but by
replacing the energy density and pressure with the
apparent energy density and apparent pressure
[Eqs. (37) and (38)]. Here, we check the consistency
of our results by comparing these results with the ones
obtained by using the apparent EoS formulation. We
show the comparison of both numerical results in Fig. 9,
where we use the case of the G3 WHSS EoS,
Λc ¼ 2.08 × 10−52 m−2, and κ ¼ 5 km2. To make the
difference more clear, we also show in the inset figure
in the lower part of each panel in Fig. 9 the discrepancy of
both formulations in Λ, I, and M plots. Note that the
lower index “ap” in each corresponding quantity means
that the result was obtained using the apparent EOS
formulation. It is evident from Fig. 9 that both formu-
lations are compatible.
One tempting question is whether it is possible to reach

the maximum mass of approximately 2.6 M⊙ while keep-
ing the results still in agreement with the canonical mass
observation data. After systematically studying all pos-
sible combinations of κ and Λc, we have found that the
case is only possible if we take the unphysical value of Λc,
i.e., it should be negative and the Λc absolute value should
be much larger than 10−52 m−2. The reasons are as
follows. Increasing (decreasing) the value of Λc affects
the “tail,” corresponding to the M-R curve on the lower

right. If Λc > 0, then the tail goes to the right. If Λc < 0,
then the tail goes to the left. For κ ¼ 1 m2 and κ ¼ 5 km2

cases and for both EoSs (WHSS and WoutHSS), the
results of varying Λc are shown in Fig. 10. Clearly, the
impact of varying Λc on the radius is greater than that of
the κ variation, except when near the maximum mass. A
positive value of Λc tends to increase the radius, whereas a
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Λc ¼ 2.08 × 10−52 m−2. In panel (a), we compare them with
data from Kumar and Landry [47]. DNS, MSP, and LMXB
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were obtained from Ref. [1].
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negative value of Λc tends to decrease the radius. We
compare the EoSs G3 WHSS and G3 WoutHSS by
comparing the plots in the upper and lower panels of
Fig. 10. When we increase Λc, R and M increase and vice
versa. The plots show that for κ ¼ 1 m2 and κ ¼ 5 km2

cases, the range of Λc of the G3 WHSS and G3 WoutHSS
EoSs can be constrained with NSs of approximately M ∼
2.0 M⊙ and canonical mass radius observational con-
straints [33–36,45,46]. The range for κ ¼ 1 m2 is quite
wide, i.e., −10−7 < Λc=ðm−2Þ < 10−8, and this range is
relatively wider than that of κ ¼ 5 km2, i.e.,
−10−9 ≤ Λc=ðm−2Þ ≤ 10−10. Thus, it is possible to have
a relatively large maximum mass, but the radius is still
kept small by increasing κ value and decreasing Λc.
However, for large κ values, the range of the Λc value
becomes narrower. As a result, we can obtain the maxi-
mum mass of approximately 2.6 M⊙ and satisfy the radius
constraint for 1.4 M⊙ NSs from the observations if we set
κ ¼ 26 km2 and κ ¼ 13 km2 for the G3 WHSS EoS and
G3 WoutHSS EoS, respectively, with an unavoidably
large and negative Λc but with a narrow range, i.e.,
Λc ¼ −ð2.4–3.2Þ × 10−9 m−2. Their M-R curves are
shown in Fig. 11. Of course, the combination of κ and

Λc values can be chosen quite arbitrarily, but canonical
mass radii and maximum mass constraints cannot be
satisfied simultaneously when Λc ≥ 0. Note that the
WHSS EoS yields a more significant radius shifting by
varying Λc than that of the WoutHSS EoS. The reason is
that Λc is usually not by itself in the equations but rather in
the form of λ ¼ κΛc þ 1. In Fig. 12, we show the
sensitivity of κ and Λc variations around the narrow
region where the M-R curves satisfy the radius constraint
for 1.4 M⊙ NSs from the observations [45,46] and M ∼
2.6 M⊙ from GW190814 [1], respectively. Evidently,
from the lower panel of Fig. 12, the radius is quite
sensitive to the Λc variation. For completeness, we show
the impact of the κ variation on the moment of inertia and
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tidal deformation in Figs. 13 and 14. For this case, varying
κ does not significantly change both the moment of inertia
and the tidal deformability, and the results are quite
compatible with the NS results of the tidal deformability
observations from Refs. [1,42,43,45–47].
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To this end, we must consider very carefully the results
from using large and negative valued Λc. The requirement
that the maximum mass should be approximately 2.6 M⊙
and the radius constraint from the canonical NS R1.4 M⊙

should be 11 km≲ R1.4 M⊙
≲ 13 km can only be satisfied

by the EiBI gravity theory if the absolute value of the
cosmological constant is unphysically large and the sign is
negative. However, our Universe has a positive and tiny
cosmological constant [89–92]. Therefore, restricted to the
EoS from the G3 RMF parameter set, we conclude that the
secondary object with 2.6 M⊙ observed in the GW190814
event [1] is not likely a static NS or a slow-rotating NS
within the EiBI theory.

V. CONCLUSIONS

In conclusion, motivated by the assumption that the
secondary compact object with 2.6 M⊙ observed in the
GW190814 event could be an NS, we have systematically
investigated the role of the parameters κ and Λc of the EiBI
gravity theory in the NS mass-radius relation, moment of
inertia, and tidal deformability in the slow-rotating limit. The
EoS of the core of an NS was calculated using the RMF
model with the G3 parameter set [76], where the SU(3)
prescription and hyperon potential depths [79] were used to
determine the hyperon coupling constants. For the inner and
outer crusts, we used the crust EoS obtained by Miyatsu
et al. [85]. We also ensured that the speed of sound in the
matter does not exceed c=

ffiffiffi
3

p
at high densities. The results of

G3 parameter set are shown in comparison with the data
from nuclear matter experiments and NS data analysis. We
have found that the NS massM significantly depends on the
value of κ. For a positive κ value, the NS maximum mass
tends to increase when the κ value increases, whereas for a
negative κ value, the NS maximum mass tends to decrease
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when the absolute κ value increases. Furthermore, the NS
radius R depends significantly on the value of Λc. For a
positive Λc value, the NS radius tends to increase when the
Λc value increases, whereas for a negative Λc value, the NS
radius tends to decrease when the absolute Λc value
increases. We also have found that by using G3 EoS with
hyperons and speed of sound constraint at high densities (G3
WHSS) and setting κ ≈ 5km2 and jΛcj ≤ 2.08 × 1052 m2,
the massradius relation satisfies the 2.0M⊙ mass constraint
and the massradius observation constraints from canonical
NS, respectively [33–36,45,46]. If we use EoSs without
hyperons (G3 WoutHSS), the constraints can be satisfied
even with a smaller κ value. Furthermore, G3WHSS and G3
WoutHSS EoSs can satisfy the maximum mass requirement
of approximately M ∼ 2.6 M⊙ and recent observation
analysis results [1,42,43,45–47], respectively. However,
for the latter case, the κ value is relatively large and the

Λc value is unphysically large and negative. In conclusion, if
our Universe is gravitationally governed by EiBI gravity, the
NS matter in its core is described by the EoS from the G3
RMF parameter set, and the accepted value of a physical
cosmological constant value is very small and positive, then
the secondary object with 2.6 M⊙ observed in the
GW190814 event [1] is not likely a static NS or a slow-
rotating NS. We do not, however, rule out the possibility that
such an object is either described by other EoSs than the G3
parameter set, a fast-rotating NS, or in other modified gravity
frameworks. They indeed deserve more investigation.
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[81] A. Le Févre, Y. Leifels, W. Reisdorf, J. Eichelin, and

C. Hartnack, Nucl. Phys. A945, 112 (2016).
[82] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298,

1592 (2002).
[83] C. Drischler, K. Hebeler, and A. Schwenk, Phys. Rev. C 93,

054314 (2016).
[84] I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, Astrophys. J.

860, 149 (2018).
[85] T. Miyatsu, S. Yammamuro, and K. Nakazaki, Astrophys. J.

777, 4 (2013).
[86] C. Margaritis, P. S. Koliogiannis, and C. C. Moustakidis,

Phys. Rev. D 101, 043023 (2020).
[87] J. B. Hartle, Astrophys. J. 150, 1005 (1967).
[88] T. Hinderer, Astrophys. J. 677, 1216 (2008).
[89] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[90] S. M. Carroll, Living Rev. Relativity 4, 1 (2001).
[91] T. Padmanabhan, Phys. Rep. 380, 235 (2003).
[92] J. Frieman, M. Turner, and D. Huterer, Annu. Rev. Astron.

Astrophys. 46, 385 (2008).

2.6 M⊙ COMPACT OBJECT AND NEUTRON … PHYS. REV. D 104, 084029 (2021)

084029-19

https://doi.org/10.3847/2041-8213/ab53eb
https://doi.org/10.3847/2041-8213/ab5968
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.1103/PhysRevD.101.123007
https://doi.org/10.1103/PhysRevD.101.123007
https://doi.org/10.3847/1538-4357/ab7914
https://doi.org/10.1103/PhysRevD.99.123026
https://doi.org/10.1103/PhysRevC.100.035802
https://doi.org/10.1103/PhysRevC.100.035802
https://doi.org/10.1086/431543
https://doi.org/10.1086/431543
https://doi.org/10.1093/mnras/stw575
https://doi.org/10.1093/mnras/stw575
https://doi.org/10.1103/PhysRevC.90.055203
https://doi.org/10.1103/PhysRevC.99.045202
https://doi.org/10.1103/PhysRevD.103.103015
https://doi.org/10.1103/PhysRevD.103.103015
https://doi.org/10.1140/epjc/s10052-020-8361-4
https://doi.org/10.1103/PhysRevD.69.064030
https://doi.org/10.1103/PhysRevLett.105.011101
https://doi.org/10.1103/PhysRevLett.105.011101
https://doi.org/10.1103/PhysRevLett.113.119901
https://doi.org/10.1103/PhysRevLett.107.031101
https://doi.org/10.1103/PhysRevLett.107.031101
https://doi.org/10.1103/PhysRevD.85.084020
https://doi.org/10.1103/PhysRevD.85.084020
https://doi.org/10.1103/PhysRevLett.109.021101
https://doi.org/10.1103/PhysRevLett.109.021101
https://doi.org/10.1103/PhysRevD.88.044032
https://doi.org/10.1142/S0218271818500517
https://doi.org/10.1142/S0218271818500517
https://doi.org/10.1103/PhysRevD.100.064042
https://doi.org/10.1103/PhysRevD.100.064042
https://doi.org/10.1140/epjc/s10052-019-7560-3
https://doi.org/10.1016/j.physrep.2017.11.001
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1103/PhysRevD.93.104056
https://doi.org/10.1088/1475-7516/2018/01/027
https://doi.org/10.1088/1475-7516/2018/01/027
https://arXiv.org/abs/1710.03988
https://doi.org/10.1103/PhysRevD.86.064015
https://doi.org/10.1103/PhysRevD.86.064015
https://doi.org/10.1103/PhysRevD.87.061503
https://doi.org/10.1103/PhysRevD.87.061503
https://doi.org/10.1088/0264-9381/25/6/062001
https://doi.org/10.1088/0264-9381/25/6/062001
https://doi.org/10.1103/PhysRevLett.109.251102
https://doi.org/10.1103/PhysRevLett.109.251102
https://doi.org/10.1103/PhysRevD.88.121502
https://doi.org/10.1103/PhysRevD.88.121502
https://doi.org/10.1103/PhysRevD.89.064001
https://doi.org/10.1088/0004-637X/781/2/66
https://doi.org/10.1088/0004-637X/781/2/66
https://doi.org/10.1016/j.nuclphysa.2017.07.001
https://doi.org/10.1016/j.nuclphysa.2012.03.004
https://doi.org/10.1016/j.nuclphysa.2012.03.004
https://doi.org/10.3847/1538-4357/ab72fd
https://doi.org/10.3847/1538-4357/ab72fd
https://doi.org/10.3847/1538-4357/834/1/3
https://doi.org/10.3847/1538-4357/834/1/3
https://doi.org/10.1016/j.nuclphysa.2012.09.006
https://doi.org/10.1016/j.nuclphysa.2012.09.006
https://doi.org/10.1016/j.nuclphysa.2015.09.015
https://doi.org/10.1126/science.1078070
https://doi.org/10.1126/science.1078070
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.1103/PhysRevC.93.054314
https://doi.org/10.3847/1538-4357/aac267
https://doi.org/10.3847/1538-4357/aac267
https://doi.org/10.1088/0004-637X/777/1/4
https://doi.org/10.1088/0004-637X/777/1/4
https://doi.org/10.1103/PhysRevD.101.043023
https://doi.org/10.1086/149400
https://doi.org/10.1086/533487
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.12942/lrr-2001-1
https://doi.org/10.1016/S0370-1573(03)00120-0
https://doi.org/10.1146/annurev.astro.46.060407.145243
https://doi.org/10.1146/annurev.astro.46.060407.145243

