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In the context of whether a massive compact object recently observed in the GW190814 event is a neutron
star (NS) or not, we study the role of the parameters x and A, of the Eddington-inspired Born-Infeld (EiBI)
gravity theory in the NS mass-radius relation, moment of inertia, and tidal deformability. The results are
compared to recent observational constraints extracted from the analysis of NS observation data. The NS core
equation of state (EoS) is calculated using the relativistic mean-field model with the G3 parameter set. In the
hyperon sector, the SU(3) and hyperon potential depths are used to determine the hyperon coupling constants.
For the inner and outer crusts, we use the crust EoS from Miyatsu et al. [Astrophys. J. 777, 4 (2013)]. We also
maintain the sound speed to not exceed c¢/+/3 at high densities. We find that, in general, the NS mass
significantly depends on the value of x, and the radius R is sensitive to the value of A.. Moreover, as A, is
equal to zero or less than the accepted bound of the cosmological constant, the NS within the EiBI theory is
compatible with observational constraints, including 2.0 M mass, canonical radius R 4 M,» Moment of
inertia, and tidal deformation. Our investigation also reveals that the 2.6 M 5 mass compact object and current
observational constraint of canonical radius R 4 y;, can simultaneously be satisfied only when the A, value is
unphysically too large and negative. Therefore, within the specific EoS employed in this work, we conclude
that the secondary object with 2.6 M, observed in the GW190814 event [1] is not likely a static (or a slow-

rotating) NS within the EiBI gravity theory.
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I. INTRODUCTION

Recently, the most known problem in compact objects is
the nature of 2.50-2.67 M massive secondary objects
detected in the gravitational wave (GW) by the LIGO and
Virgo collaborations in their GW190814 event [1]. These
objects have no measurable signature of tidal deformation,
and there is no electromagnetic counterpart in the gravi-
tational wave front. Considerable discussions have been
published about this object, such as whether it is a light
black hole (BH) [1-4], a fast-rotating neutron star (NS)
[1,5-8], a quark star [9-15], or a hybrid star [16,17].
However, one could not exclude the possibility that the
secondary object of GW190814 can be a supermassive
static or at least a slow-rotating NS [2,18,19]. The latter
possibility has triggered discussions on the appropriate type
of equation of state (EoS) of the supermassive NS that
satisfies observational constraints [18-23]. Furthermore,
studies have discussed the anisotropic pressure to calculate
the upper mass limit [24-26], the possibility of studying
primordial BHs [27], the indication of a dark matter
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candidate called a mirror world [28], and the use of
modified gravity to explain GW events [29-32].

Here, we note some progress related to the observations of
NS properties. The accurate measurements of massive
pulsars, such as PSR J0348 + 0432, PSR J0740 + 6620,
and J6114-2230 [33-37], provide a maximum NS mass limit
of approximately 2.0 M. The x-ray measurements of
emission from the hot spots on the NS surface with the
Neutron star Interior Composition Explorer (NICER) [38]
can simultaneously offer information on the mass and radius
of the selected pulsars. Recently, NICER reported mass and
radius constraints for its first target PSR, i.e., PSR JO030 +
0451 [39-41]. GW observations of NS coalescence by the
LIGO and Virgo collaborations can measure the tidal
deformability of NSs. This novel probe can investigate a
wide range of NS mass and the corresponding central density
[1,42-44]. Two GW signals from the coalescence of binary
NSs have been recently reported, i.e., GW170817 [42,43],
and GW190425 [1]. These results provide a stringent
constraint to the NS EoS and canonical NS mass radius.
Furthermore, some studies have been performed by system-
atically examining these NS observable measurements and
other observable measurements, such as NS moment of
inertia and nuclear properties, to extract accurate information
on the properties of NS EoS [45-50]. Furthermore, one uses
nonrelativistic or relativistic models to describe NS matter.

© 2021 American Physical Society
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Several NS matter models have been proposed, including the
relativistic mean-field (RMF) models. Dutra et al. [51]
reported that only 34 among 263 RMF parameter sets that
the corresponding EoSs satisfy constraints from nuclear
matter. Furthermore, in isotropic NSs without hyperons, only
15 among 35 parameter sets predicted the NS maximum
mass of approximately 2.0 M. However, if hyperons and
other exotic particles are included, then none of them satisfy
the latter constraint." The latter is known in the literature as
“the hyperon puzzle.” To this end, we need to underline that
the apparent tension between nuclear physics presented by
EoS, and observation results of NS EoS models should
relatively stiff to produce an NS maximum mass approx-
imatelly 2.0 M. Moreover, recent NS canonical radii, such
as those predicted by GW170817, have soft EoSs. In
addition, a recent study has shown that by introducing
anisotropic pressure in NSs, this issue, related to simulta-
neously fulfilling high maximum mass and short canonical
NS mass-radius constraints [53], could be resolved [54].
However, if the secondary object of GW190814 is indeed a
static or slow-rotating NS, then the hyperon puzzle problem
still may not be solved.

The Eddington-inspired Born-Infeld (EiBI) theory has
attracted considerable attention due to its distinctive
features as compared to those of general relativity (GR)
[55-63]. The EiBI theory, proposed for the first time by
Banados and Ferreira [56], is a fusion of the Palatini
approach and a gravitational analog of a nonlinear theory
of electrodynamics known as the Born-Infeld theory.2 In
the astrophysical context, the EiBI theory is interesting
because it opens up the possibility to increase the
maximum mass M of a nonrotating compact object, such
as NSs, by increasing the parameter x [66—68]. Another
parameter A in EiBI, corresponding to the cosmological
constant A, by the relation 1 = kA, + 1, is usually set to
unity for most cases for compact object studies, including
NSs. However, the problem with 4 = 1 is that when the
mass increases, the radius R also increases. For the 1 = 1
case, stars” moment of inertia was discussed in Ref. [58].
Furthermore, in Ref. [58] it was discussed that a regular
solution for compact stars with ¥ > 0 always exists, and
the corresponding stars have a maximum compactness of
GTM ~ 0.3, which is roughly independent of «. There is also
a requirement called the collapse constraint, i.e., compact
stars exist if the requirement kA < 0 is satisfied, with

A= (PCK_3KpC _4)(1 +Kpc)

dp(P,)

_K<1_KPC)(PC+/OC> dP.

'See Ref. [52] and the references therein for details.

The reviews of the corresponding theory and applications of
the EiBI gravity theory can be found in Refs. [64,65] and the
references therein.

where P. and p,. are the central pressure and density of the
stars, respectively. Hence, if the EoS is thermodynami-
cally consistent, then the onset of the star’s stability
region in the EiBI theory depends only on P, and k. As
regards to the stellar stability of the stars within the EiBI
theory, Sham et al. [69] showed that the standard results
of stellar stability still hold in the EiBI theory, where for a
sequence of stars with the same EoS, the fundamental
mode ®? passes through zero at a central density
corresponding to the maximum-mass configuration,
which is similar to that found in GR. Therefore, the
corresponding point marks the boundary of the onset of
instability, where the stellar models with central densities
less than the corresponding critical points are stable. The
EiBI theory also shows a singularity associated with the
phase transition matter for a negative x due to the
appearance of a discontinuity in the energy density
around the transition region [70]. The curvature singu-
larities appearing at the surface of compact stars within
the EiBI theory for polytropic EoSs have already been
discussed in Refs. [71-74]. There is a discussion related
to the tidal deformation within the EiBI theory in the
literature, i.e., Ref. [75]. There, they used the apparent
EoS formulation of EiBI to simplify the star global
properties calculations. Note that the authors of
Ref. [75] focused on the case of A, = 0. Note also that
comparison study of NSs properties predicted by the EiBI
theory with recent NS constraints [45-50] has not been
performed yet. We also expect that setting A away from
unity might increase M while also decreasing R to
achieve relatively larger compactness. Therefore, in this
study, we further investigate the role of the interplay
between x and A, in the predicted NS properties, such as
mass, radius, moment of inertia, and tidal deformation.
Then, we relate our results with the question of the
tension between nuclear physics and NS property pre-
diction, including the possibility that the secondary
object of GW190814 is indeed a static or slow-rotating
NS. Here, we use the recent G3 RMF parameter set from
Ref. [76] with hyperons as a representation of the EoS
and consider a speed-of-sound restriction at high den-
sities when generating NS EoSs.

This paper is organized as follows. In Sec. II, we
discuss the EoSs predicted by the RMF model in more
detail. In Sec. III, we discuss the theoretical aspect of the
EiBI theory, including the formulation of moments of
inertia and tidal deformation in Secs. III B and IIIC,
respectively. In Sec. IV, we show our numerical results
and the corresponding discussions. Finally, in Sec. V, we
present the conclusions.

II. EQUATION OF STATE OF NS MATTER

A summary of the RMF model description and the
corresponding nuclear matter and NS matter predictions
by some selected RMF parameter sets are presented in
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this section. Here, we show the reason for using the G3
RMF parameter set to describe the EoS of the core of
NSs. In this section, we also show the reason to inves-
tigate the NS property predictions of the EiBI gravity
theory.

The RMF Lagrangian density can be expressed as [77]

L=Lp+ Lgy+Ly+ Ly, (1)

where the free Lagrangian density for baryons (B = N, A,
Z, B)is

Ly=">> Plird, — Ms¥p, (2)
B

where M, is the baryon mass and the Lagrangian density
for meson-baryon couplings is given by

Lpy = Z@B [9030' = YuJwB®"
B

1

- EyyngTB P = Vu9p8?" | ¥, (3)

where the nonstrange mesons that are coupled to all
baryons are o, @, and p. However, the hidden-strangeness
meson ¢ is only coupled to hyperons (H = A, X, E). The
free and self-interaction meson Lagrangian density can be
expressed as

LM:

o*

(0,060'c — m3o?) + % (0,0°0"c* — m2.0*?)

| =

1 1 1 1
- Za)ﬂyw/‘” + zmg,(l)ﬂ(ﬂﬂ - Z¢”U¢ﬂy + Eméqﬁﬂ(j)ﬂ
1 1
__pyu'pﬂy+_m/2)p;¢ pﬂ+[’AN/IL (4)

4 2
The @*¥, ¢p** and p** are the meson tensor fields of the w, ¢,
and p mesons, which are defined as w* = Hw* — ",
P = Mgt — O¢*, and p* = OFp* — O¥p*. The explicit
form of the Lagrangian density for meson self-interactions
LY can be written as

2 2 2 2
K3Gsn1M5 K4GonMe goga)N
ﬁNL - _ 3Yc 3 _ 4 oM 2
w 6my 2and, © T 24 @)
2 2 2
+ M Yonnt, G(UM(U” +w62wﬂw"
ZmN 4mN
n ’ngnNm% o, p' + nlf)gglez) o2p, - pt
2my K 4m12\, "
20N
St 8
N

Equation (5) includes the contribution from the standard
RMF nonlinear self-interaction for ¢ and @ mesons and
additional cross-interaction terms for o, @, and p mesons.
In RMF models, coupling constants and parameters in the
Lagrangian density are determined by fitting the model
predictions to finite nuclei and nuclear matter properties.
The obtained parameter values depend on the chosen
observables and their corresponding weights. The explicit
values of the corresponding parameters of the RMF
parameter sets used in this work can be found in
Refs. [76-79].

The contribution of EoSs in the nucleon sector is
relatively established because the RMF parameter con-
straints in this sector are relatively tight. In Figs. 1 and 2
we show the binding energies and EoSs of symmetric
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FIG. 1. Binding energy predicted by G3, BSP, TMle, and
FSUH RMF parameter sets on SNM (a) and PNM (b). The light
green-shaded area represents the chiral effective theory results
taken from Ref. [83], whereas the pink-shaded area represents a
constraint imposed by the SNM binding energy extracted from
the FOPI experimental data [81]. For comparison, the SNM
binding energy at the saturation value (py~ 0.16 fm~3) from
Ref. [83] is also shown.
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FIG. 2. EoS represented by pressure as a function of the ratio of
the nucleon density to the saturation density (py/po) in (a) SNM
and (b) PNM, respectively. The results are calculated using the
G3, BSP, TMle, and FSUH RMF parameter sets. The gray-
shaded areas are the results extracted from the heavy-ion
experimental data [82]. By contrast, the pink-shaded area in
panel (a) is extracted from the FOPI experimental data [81], and
the green-shaded areas in panels (a) and (b) are the theoretical
binding energy for PNM at low densities obtained from the chiral
effective field theory calculations [83,84].

nuclear matter (SNM) and pure neutron matter (PNM)
predicted by G3 [76], BSP [54,77,80], TM1e [78], and
FSUH [79] parameter sets. The results are compared to
those extracted from experimental data [81,82] and those
obtained from the chiral effective field theory calcula-
tions [83,84]. In general, all parameter sets are compat-
ible with experimental data, but at low densities the G3
results are more compatible with those obtained from the
chiral effective field theory calculations than those from
other parameter sets used in this work. However, it can be
observed that binding energies predicted by all RMF
parameter sets that we use here are not too compatible
with the binding energy constraint from FOPI

experimental data for py < 2p,. On the other hand, the
EoS of the G3 parameter set is compatible with the EoS
constraint from FOPI.? Therefore, we only can argue that
on the RMF calculation side, the binding energy and EoS
results are consistent. To this end, in this work, we decide
to use the G3 parameter set as the representative param-
eter set to study NS properties.

Generally, hyperons and other exotic particle coupling
constants are experimentally difficult to constrain.
Therefore, the contribution of EoSs in the hyperon sector
is uncertain. The inclusion of hyperons and other exotic
particles tends to soften the corresponding EoS of the NS
core. Therefore, the corresponding predicted maximum
mass is always smaller than that obtained without hyperons
and other exotics.” Following Ref. [79], here, we take the
SU(3) prescription and experimental value of potential
depths at the nuclear matter saturation density to determine
the hyperon coupling constants while neglecting the con-
tribution from other exotics. The SU(3) prescription yields
a relatively stiffer EoS compared to that of SU(6) [54]. For
leptons, we use the free Lagrangian density. To describe the
NSs’ crusts, we use the inner and outer crust EoSs based on
the Hartree-Fock Thomas-Fermi model used by Miyatsu
et al. [85].5 The f stability is assumed to be satisfied in the
NS matter. Therefore, the potential chemical balance,
charge neutrality, and baryon density conservation con-
ditions can be used to determine the constituents’ compo-
sition in NSs. Here, we also generate the EoSs of NSs
constrained by the speed of sound bound at high densities

v, <c/ V3 (G3 WoutHSS and G3 WHSS), where c is the
speed of light.6

The NS EoSs and the corresponding speed of sound for
the case of NS matter without hyperons (G3 WoutH) and
with a hyperon (G3 WH) and those with the speed-of-sound
constraint (G3 WoutHSS and G3 WHSS) are shown in
Fig. 3. Simultaneously, the corresponding mass-radius
relations within GR are shown in Fig. 4. In Fig. 3, the
recent EoS constraints [43,45,46] are more compatible with
the NS EoS without hyperons (G3 WoutH), and the

Note that we made the following attempts to check whether
our results are “correct” or not. First, to avoid false data
extractions, we have already rechecked and compared the
extracted binding energy and the EoS data with the ones from
Ref. [81]. They are now precisely matched. Second, we have also
rechecked the RMF binding energy and EOS subroutines in our
code. It seems that we have made no mistakes because, in the
RMF code, we solved the equations self-consistently. If we make
a mistake in one quantity, the error will truncate to all quantities
because they are strongly correlated. Third, we compared the
results with other people’s published calculation results using
RMF models [76-79], and the results are pretty compatible.

See, for example, Ref. [79] and the references therein for
related hyperon puzzle discussion.

3See Ref. [54] and the references therein for the detailed
discussion about the uncertainty of these crust EoSs.

Some recent progress about the constraints of speed of sound
on NS matter can be seen in Ref. [86] and the references therein
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FIG. 3. EoS without a hyperon (G3-Hyp) and with a hyperon

(G3 + Hyp) is calculated using the G3 parameter set. We also
show the EoSs if the speed of sound at high densities is constrained
by v, < c/\/§ (G3-Hyp + SS and G3 + Hyp + SS). In panel (a),
we show pressure as a function of the ratio of py to py, and in panel
(b), we show the speed of sound as a function of the ratio of density
to saturation density. For comparison, some constraints are given as
follows. (1) The lightblue and lightgreen shaded areas are from
GW170817 data analysis in Ref. [43]. (2) The data points for
particular densities are taken from the GW170817 data [43], some
recent nonparametric analysis data [45], and a dataset from the
joint analysis on PSR J0030 + 0451 data, GW170817 data, and
the nuclear data Ref. [46].

constraint of speed of sound, which is applied on high-
densities, slightly increases the stiffness of the correspond-
ing EoSs. However, for EoSs with hyperons (G3
WoutHSS), the effect is insufficient to reach the EoS
constraint from GW170817 at high densities. The impacts
of hyperons and the speed-of-sound constraint on the mass-
radius relation within the GR theory are shown in Fig. 4.
The data from the GW190814 event were obtained from
Ref. [1], and the others were from Refs. [45,46]. We also
show the results from the pulsar-binary system analysis
(PSR) J1614-2230 from Refs. [33-35] and JO740 + 6620
from Refs. [35,36]. The boundaries where the ultracompact

e -0 GW190814
J0740+6620

- J1614-2230
Landry et al 2020

—- = Buchdahl limit
— — Ultra-compact

L TOV GR 7
m— (33 WoutH
e G3 WH 3
=== G3 WoutHSS = oe=llii.....
0 R G.3 WHSS . .
10 12 14 16

R (km)

FIG. 4. Mass-radius relation predicted by the G3 parameter set
for the cases of matter without a hyperon (WoutH) and with a
hyperon (WH) using the GR framework. We also show the
relations if the sound speed is constrained at high densities
(WoutHSS and WHSS).

limit and Buchdahl limit are located are also shown. The
figure clearly shows that the hyperon’s contribution lowers
the mass, and constraining the sound speed increases the
mass. All EoSs are compatible with radius constraints from
Refs. [45,46]. However, the hyperons’ contribution to the
EoS lowers the NS maximum mass significantly below the
2 M pulsar mass constraints. Considering the requirement
that the speed of sound should be less than v, < ¢/+/3 in
EoSs slightly increases the NS maximum mass. However,
the corresponding maximum mass is still less than the
2 M pulsar mass constraint. If the second object with
mass 2.6 M detected by the LIGO Collaboration (GW
190814) is a nonrotating NS, then all maximum masses
predicted by all EoSs used in this work are less than this
constraint. Recent studies [2,19] have shown that if the
hyperons are excluded in the NS matter, then 2.6 M, and
canonical NS radius constraints can simultaneously be
satisfied using a particular RMF EoS (Big Apple), which
is compatible with finite nuclei and nuclear matter con-
straints. However, the corresponding nuclear matter EoS
prediction is not compatible with those obtained from
heavy-ion collision constraints [82]. Therefore, Fattoyev
et al. [2] concluded that, in GR theory, the 2.6 M compact
object is not likely an NS. To this end, it is worth noting that
the EiBI gravity can have maximum NSs with an accept-
able EoS larger than 2 M without reaching the Buchdahl
limit [66]. However, according to the EiBI theory, as the
maximum mass increases, the radius also increases.
Therefore, in the next sections, we will systematically
examine the tension between relatively small recent radius
constraints and recent considerable maximum mass con-
straints within the EiBI theory.
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III. EiBI THEORY

In this section, we briefly review the EiBI theory and
discuss the moment of inertia and tidal deformation
derivation within it. We start by reviewing the formulas
following the treatment proposed in Refs. [60,66]. The
EiBI theory has the following equations of motion:

q" = t(1g" — 8zGkT"(g)). (6)
Qw = G + KR;w(q)’ (7)

where 7 = \/9/.\/q, 9 = —det(q/w), g = —det(g,,). [Itisa
usual practice to use 7= y/det(g,,)det(¢"") =
[det(48, — 8x#GkT%)]~'/2.] Here, 4 and k are the para-
meters of EiB, different from the functions A(r) and &(r),
which we shall define below. x has dimension (length)?,
and A is dimensionless. The cosmological constant A, is
related to both of them by

A=kA, + 1. (8)

Here R,,(q)" and T"(g) means that each tensors use
different metric to raise or lower their indices. For
instance, R} = R,,¢"* and T % = T"g,5. These equations
are products of the EiBI action:

! 4x[y/—de K
S = Gatie oy, @500 BT
— 2/ —det(g,,)], )

where the Palatini formalism has been used, i.e., the Ricci
tensor is dependent not on the physical metric but on the
connection 1'%, which is dependent on the apparent

metric,

1
I, = Eq“”(ayqﬂo + 0py5 — 054, )- (10)
To make them similar to the FEinstein field equation

(EFE), we can manipulate them into

1
Ri(q) =5 R30:(q) = 87G T, (8). (11)
by [Telg) 1=
o) =1t - |2 2 o)

For brevity, we shall not write the arguments of the Ricci
tensor R,, and stress tensor 7,.

A. Vacuum solution

In this paper, we will discuss the effect of the nonzero
cosmological constant A, on the EiBI theory. Before we

proceed, it is necessary to discuss the vacuum solution.
Suppose we have the apparent metric and physical metric in
the static and spherically symmetric form

q = q,dx*dx* = —C*(r)di* + D*(r)dr*

+ r*[d0* + sin’0dg?], (13)
g = gudxtdx’ = —A%(r)df* + B?(r)dr?
+ F2(r)[d&? + sin*0d¢?], (14)

and we have no matter at all (i.e., T = 0). From Eq. (6), we
have

F?=1r?/2, (15)
A? = C?/2, (16)
B> = D?/A. (17)

Substituting these into Eq. (7), we have

DC —D3C+rCD' + rDC' + r*D'C’
C! = +r . +r +r , (18)
r°D
(o 1 1 r r D’

—=- ———4—|D* +—, 19
C r * (r K +l</1> * D (19)

D 1 1 r r
= - -4+ ———|D?, 20
D 2r+( 2r+2K 2101) (20)

where the primes denote the differentiation with respect to
r. The solutions that satisfy these equations are

2GM AP

CP=D?=1- —.
r 31

(21)

The apparent metric without the presence of matter
indicates an “apparent” Minkowski—de Sitter space with
the cosmological constant A./A. This factor will be crucial
for our metric ansatz with the presence of an ideal
isotropic fluid so that we can obtain suitable equations
of motion.

B. Moment of inertia

In this subsection, first, we set the apparent and physical
metrics in the following forms:

q = q,dx'dx" = —ePNd? + e dr? 4+ 12 [d&?

+ sin20(dg — w(r)dt)*] + O(Q?), (22)
g = gudxtdy’ = —e*")di* + P dr? + d(r)[d6?
+ sin?0(dg — v(r)dt)?] + O(Q?). (23)
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Our apparent metric is the Hartle-Thorne metric [87] and
the physical metric is its generalization. Both describe a
spherically symmetric massive body with radius R with
angular momentum w ~ Q (and v ~ Q. ) as r — R. If
is defined as the Kepler angular velocity, then it is assumed
that Q/Q; < 1 and Q,, /€ < 1. This is known in the
literature as a slow-rotating approximation [87]. We con-
struct the physical metric whose 2-sphere has radius
\/d(r). The boundary condition for the metrics is that
both of them have the same exterior region, so both should
coincide at r > R.

The massive body is assumed to be an ideal fluid, such
that

T, = e + plu'u, + pdy, (24)
ut :[_<gtt + 2Qphygnp + 'Q‘ghyg(p(p)}_l/z’ (25)
u? = Qup ', u"=u’ =0. (26)

In its explicit form, the components in the physical stress
tensor are as follows:

Ti=—e T, =T)=T,=p, (27)
T!, = (e + p)(Qpny — v)e *dsin®6), (28)
T;p = _(€ + p)Qphy- (29)

Then, after neglecting O(Qy), the explicit form of 7
becomes

= 1/(ab®), (30)
a =V A+ 8nGrke, (31)

b = /A — 8xGxkp. (32)

From Eq. (6), we have the diagonal components from
both metrics related by

e’ = éla/b?, et = e%/(ab), d = r*/(ab). (33)
We assume that the effective stress tensor also has a similar
form as the physical stress tensor but with the additional

subscript “eff”, i.e.,

Tege , = —€efrs (34)
Tl = Peft = Tsz 0= Tg]ff v (35)
Tl , =(€ctr + Perr) (Q — w)e ) r%sin%0. (36)

Then, we obtain

a? = 3b* 4 2ab?

= ——— 3 37
Cefl 1672Gxab’ (37)
a’ + b* = 2ab’
_a Ty mLar 38
Pett = T 6 xGrab® (38)
b2
(@) =@y~ ) 5. (39)
a

The last equation was derived from Tl , = T',/ab’.
Because (Q — ) ~ (Q,,y — v) at r — R, we can demand
that the constants Q and Q,, satisfy

Q=0Q,,. (40)

This constraint is actually justified because it came
from T%. . = T%,/abc?.

The components of the Ricci tensor can be obtained in a
straightforward manner. By defining the mass function
m(r) to replace a metric function a(r), i.e.,

2Gm(r) A.r?

—a__ A 41
¢ p 3] (41)
we obtain
P” /2 3 a
(= (2242 42
m'(r) 4G1<</1 ab+b3> (42)
31 de 1
() = —2p/(r) [22GK [ = + = &€ .43
P = =200 oG (4 90 ) 4| @)
/(r)—_ 1 L L_’_ﬁ_z +2G_m+Acr
P = 406k |2k \ab " b2 2 3
(43 Lde)T
a’>—b* b* d*dp
2Gm(r)  AH\7!
-2 44
X( ) (44)

from #¢, the rr components of the EFE, and the (contracted)
Bianchi identity V,T%; . = 0, respectively. The boundary
conditions are m(0) =0, m(R) =M, p(R)=0, and
B(R) =In(1 —2GM/R — A.R?/(31)). Clearly, transform-
ing f — p + k (where k is a constant) does not change the
equation of motion, so we can easily obtain the actual value
of (0) = Ponew as follows: set an arbitrary real number
p(0) = Py, .- then calculate B(r) numerically to obtain
Pr = P(R), then f ., is obtained from:
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ﬂO,new :ﬁO,old - LHR —In (l - ZGM/R - ACR2/<3/1>)]
(45)

To obtain an equation for the moment of inertia, we
calculate the equation of motion of @ from the f¢
component of the EFE. To have this, we use the following
formula:

1

Ry =
- det(Qaﬂ)

@ aﬂ( - det(Qaﬂ)Fl}jlﬂqw) . (46)

With Eq. (46) and ignoring O(w?), we obtain

e~ (B+a)/2
0, (e"P+a2p4in300,w).  (47)

R =-S5 —
¢ 2rsing "

From before, we have Tiy , = (€ + Petr)(Q — )

e P r2sin%0. Now, we define @ = (Q — w)/Q. Then,
R,/(87G) = T}y , becomes

8r(€_(ﬁ+a>/2r48r5)) = 162Gr* (ecqr + peff)e(a_ﬁ)/zd)' (48)

In the exterior region, the right-hand side vanishes, so

2GI
r
which is the boundary condition to calculate the moment of

inertia /. From Eq. (48), we have

o 6el'? & (50
AT vemy iy TV WA
E./(,.) _ 87[G7’4 (€eff + peff)‘e_/}/2 (51)

3 (1=2Gm/r—A.?/(34)"/? o

whose boundary conditions are @(R) = 1-2GI/R?, and
K(R) = GI. Because the boundary condition at the center
is unknown, we pay attention to Egs. (50) and (51). Notice
that both are invariant from replacing @(r) — {@(r) and
k(r) = Ck(r). Suppose that the results of the numerical
calculations give us @(R) = (1 —2GI/R*)/¢{ with
k(R) = GI/{, and with { as a constant, from initial values
@(0) = @, and k(0) = K,. Then, to satisfy both boundary
conditions, we can set the initial values to be @(0) = @y¢
and &(0) = kKo with

1
@(R) + 2&(R)/R*"

{= (52)

However, recalculating is unnecessary because we already
obtained the moment of inertia / from &(R) by
I =&k(R){/G. Following Refs. [57,58], we have
v(R) = w(R) = 2IQ/R* from the boundary condition.

Thus, we already obtain [ as the physical moment of
inertia.

The numerical procedure for the moment of inertia is
as follows. First, we calculate p'(r), m'(r) and /(r)
[Egs. (42)—(44)]. We employ the Runge-Kutta fourth-order
algorithm using a FORTRAN77 code. The initial data at the
center r=r.—0 are p(r.)=p. m(r.)=0, and
B(r.) = 0. We run the code up to r = R, where the pressure
becomes zero p(R) =0. At this point, we obtain R,
m(R) = M and B(R) = Bg. Because in general the value
of A(R) is not equal to In(1 —2GM/R — A.R*/(32)), we
use a new initial value B(r.) = Ponew using Eq. (45).
Second, we calculate p'(r), m/(r), V(r), & (r), and
®/(r). The initial values at r=r, are p(r.)= p.
m(r.) =0, p(r.) =p(rc)pews and a(r.) =&(r.) = 0.
The new results are @(R) and K(R). The moment of inertia
I is determined by I = k(R){/G with ¢ from Eq. (52).

C. Tidal deformation

In this subsection, we focus only on tidal deformation for
the electric type. We start with the following unperturbed
metrics:

Nudxtdx? = —e!Nde + ) dr? + d(r)dQ?,  (53)
Cpdxtdy? = —ePDdi? 4 e dr? + r2dQ?,  (54)
where dQ? is the surface element of the 2-sphere.

Following the Regge-Wheeler metric, the perturbed metrics
are

9w = Nuw + hyw (55)
quw = Z:m/ + f/wv (56)
with
—Hoe” Hl O 0
H] [{26;1 0 0
h,, — Y, (0,¢), (57
u 0 0 Kr2 0 l ( ¢) ( )
0 0 0 Kr*sin’
—Foeb Fl 0 0
Fl er;l O O
v = _ Yi.(0,¢). (58
e A PR ORI REY
0 0 0 Gr*sin’6

Hy, H,, Hy, K, Fyy, F,, F5, and G are all functions of r.

1. Vacuum case

To determine the Love number, first, we investigate the
vacuum case. From Eq. (6) with T% = 0, one obtains
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d=r*A e =éljh, e =e*2  (59)
HOZ—szH, FOZ—F2:F, (60)
H=F, K =G/ (61)

From evaluating Eq. (7) in order, the following solutions
and equations are obtained:

2GM  A.r?
ﬂ: —0:1_ — 62
¢ ¢ r 317 (62)
Fi o el@ )2, (63)
1 I(I+ Dk
H =F(-——"2), 64
=315 (64)
1 A.r 1 A,
F// 2% — — c F/_2 o ,a ¢ F
e <r z) <r2 ¢ ,1)
I—1)([+2
+ e“%(} =0. (65)

r

After some algebraic manipulations, the last line above
becomes

1! |:l a(l_ACr>:| /
F'+|-+e — | |F
r ro 2

de Sitter space is not asymptotically flat. To remedy this
limitation, we assume that |A,| is sufficiently small such
that |(GM)?A. /2| < 1. Thus, the solution F is assumed to
have the following form:

F(x):iF,-(x)ei, 827(;]‘;[1/\6,
(67)

Assuming that the series rapidly converges, we consider the
series only up to the first order:

F(x) = Fo(x) + €F;(x). (68)
From A, = 0, we have the following usual solution:
F()(X) = CI’IQZZ(X) + CQ,[Plz(X), (69)

where Q7 and P? are the associated Legendre polynomials
of the second and first kinds, respectively. The constants
C,, and C,, will be determined later. Substituting this into
Eq. (66), we obtain

’F,(x X
(1 —x2)<d 512( >+D(x)) —2x7dFd‘)E )

X

I(I+1) 2A
—[e“<(t )+ C>+ﬂ’2}F—O. (66) 4
r A + (1(1+ 1) - 2>F1(x) =0, (70)
— X
Now, we come to the tricky part. To calculate the tidal
deformation, the calculation is performed at r — oo, but with
|
1 (x+1)\2 dF(x) 6x% —20x + 22
D(x)=—= 2(x =2 (l+1)————|F . 71
0 =-3(557) -2 4 (104 1) - 22 r )
Then, we solve this equation with [ = 2, 3, 4 case by case.
In general, the obtained solution has the following form:
Fi(x) = C3,07(x) + C4 P7(x) + Cp S} (x) + €1, T7(x) (72)
with
Jru(x)
SHx) =37 + (¢ = Df2(x), (73)
f3a(x) fau(x) x+1
T?(x) = = —In(x—1 — 1 1 21 .
l(x) (x+1)(x_1)2+x+1 n(x )+f5.l(x) x—1 n(x+ )+(X )f6,l(x)
(74)
For [ = 2, we have
8x6 xt 50x%  46x%  2lx
A T R (75)
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far = 53—6(11310g(x — 1)+ 15log(x + 1)),

8x°  389x% 2057x* 1987x% 1469x> 1357x 235

fa2= =+ 5 T gs 84 84 56 56
Fay= 4x5  25x% 1743 n 1712 n 153x 25
427y 7 14 14 14 14’

4x*  13x3 93xr 34x 25

fo=g T Ty T

Fon = %(—24) (2Li2 (1 ;x) tln (x Z 1) In(x — 1)).

207 2005 375¢ 2206 | 185¢°
=T oo - 2P
A B

For [ = 3, we have

+ 20x,

25
fa3 = %x(127log(x —1) +log(x + 1)),

20x7 n 8195x° n 5225x%  35845x*  9977x3 n 7305x>  8941x

—_ 32,
f33 3 168 72 252 84 56 168
10x°  70x° 925x* 3425x3 195x* 845x 635
faz=— - - + + - -,
3 3 42 42 2 42 21
fon 10x° N 40x*  1315%3 N 20x2 N 135x N 5
3373 3 42 7 14 217
1 [1—x x4+ 1
f6,3 = ? (—200)X (2L12 ( 3 ) + ln( 4 ) ln(x - 1)) .
For [ = 4, we have
595x8 o 277315x° 14305x5  202325x*  14405x°  342515x*  1225x 615
fia= +175x7 — - - + + - -
22 4928 32 4928 48 4928 32
Fru= 25(7x* = 1)(7613log(x — 1) + 67 log(x + 1))
24— 4928 ’
foam 595x8 N 1159715x7 N 14823115x°  8024815x° 3123931x* N 7841513x3  169207x2
S Y) 6336 44352 14784 4928 14784
_ 7430627x 2160637
44352 44352
505x7  4445x° 38235x5  113875x* 154025x3 42865x> 6715x 3735
faa=—" - - + + - e T

595x° n 665x>  34285x*  4540x° N 30455x2 n 535x 3735
44 11 308 77 308 77 308 °

fou= % (=1500)(7x% — 1) <2Li2 <1;x> +1n (x : 1) In(x — 1)> :

Here, Li,(z) is the polylogarithm function.

fsa=
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To obtain C, ;, C;, C5,, and Cy ;, we follow the method
illustrated in Ref. [88]. The general results have the
following pattern:

Cy1 = Ay + 4By, (96)

Here, 4, is related to the Love number k;. The constants
also have the following pattern: A;; « &,,(GM)" and
B x &,(GM)™=! (i =1, 2, 3, 4), where &,, is related

Cii=Au+A4B . (93) . A
to the static external quadrupolar tidal field produced by
Cy)= Ay, + 4By, (94) an external gravitational potential. Subjected to this
' ' ' gravitational potential, the star responds through its
Cs, = As, + 4Bs,, (95) own quadrupole moment, which is recorded by 4,.
- > ' To obtain 4; and get rid of &,, we define y(R) =
RF'(R)/F(R) and ¢ = GM/R. By substituting
F(x) = (Cyy +€C3) Q7 (x) + (Coy + €Cy ) PF(x) + £Cy ST (x) + €Cy  Th (x) (97)

into y, we obtain

(A1 +eA3)O"(R) + (Ay; + €Ay ) )P*(R) + (A, T*(R) + A ;S(R))

A =— , 98
! (Bi;+eB3;)Q*(R) + (By; + €By ) P*(R) + (B, T*(R) + By,;S*(R)) ©8)
|
where Then, we can obtain the Love number through
0*(R) = yQ;(c) + c[dQ;(c)/dc], (99)
(21— 1)1
P*(R) = yP(c) + c[dP?(c)/dc), (100) ki = A (103)
T'(R) =3T3 (c) + cldT3(e)/del,  (101)
. ) ) Notice that because 4; « a;;/b;; o« (GM)**1, it follows
§*(R) = ySi(c) + c[dS}(c)/dc]. (102) " that 4,R"" & ¢**!. Thus, we can redefine k; with

kl:

(ar; +eay;)P*(R) +e(a; ; T*(R) + a,,;S*(R))

_(21=1)"(ay, +eaz,)Q*(R) +

2 (b +eb3 )0 (R) +
where a;; and b, ; are just functions of c. We use Eq. (104)
because the form is more straightforward to write in code

than Eq. (98). In explicit form, the constants are shown
below:

151
al,z = 0, b1’2 = gg, (105)
1
arn = 56’27 by, =0, (106)
113 1787 1
“a=Tgr e he=sg (107

(Do + &by )P*(R) + £(by  T*(R) + by,;S*(R))’

(104)

13, 572 3305 151n2(2)\ 1
U= be=-\Tr gt e
(108)
351
(l1’3 = O, b1‘3 = gg, (109)
1 3
02’3 = EC s b2.3 = O, (1 10)
127 24805 1
=203, Y 111
43 =756 ¢ 3379512 4 (111)
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158 2572
a4,3:—c3, b4,3:—( + =

13795, 25In*(2)\ 1
945 9 576 3

C
(112)
735 1
ayg = 0, b1’4 = 6—45, (113)
[
aj 4 :@C s b2'4 :0, (114)
7613, 469685 1
— 0 A — 0 115
9347 465696 € 34775808 & (115)
200077,
444710866240
8757% 14680085 2625In%(2)\ 1
—_ . (11
bas ( 88 ' 202752 | 88 )5 (116)

2. Nonvacuum case
From Eq. (104), we need y(R), M = m(R),and r = R as
inputs to obtain the Love number. Thus, we need to run the
calculation of F(r) in the interior.
From Eq. (6), we obtain the following metric relations:
d=r*/(ab), €' =ela/b,

et =e*/(ab),  (117)

H2:—H612/b2, F():—FZZF. (118)

We also need to define the perturbed stress tensor as
T, =Tq,+ 617, (119)

where 77 , is the usual ideal fluid and

d
oT) = diag <—d—€, 1,1, 1>5pY1m(9, ¢). (120)
p

After evaluating Eq. (7) order by order and using
identities of the spherical harmonics, one can arrive at
the following relations:

_ 16nGkép

= (121)
G 477.'GK 1 1 de
K= ————|0p, 122
ab ' ab <b2 azdp) P (122)
4 3 1 de

Then, by eliminating dp, we have the following equations:

4 4 3 1 de\!
H= SN TR (124
a2—b2<a2—b2+b2+a2dp> (124)

= Cela=P)/2 (125)
a I+ 1k
Last, we have
F" + e* ——4+—= +3 F'
2 v ab
( (-5
2 2 2e*
( )H) —>G+K<e>:0.
r? abk K
(127)

After some algebraic manipulations, the equation becomes
F'+ f(r)F' + g(r)F =0, (128)

with

re®) (1 e
p— ——1 —
f(r) K <ab ) Tt
olr) = 2ea2 4 4 +1d€+3 -1
r _ %, 2
k b3 (a*> = b)) \a*-b* a*dp D?

~ <l(lt21)e“+26 e >

(129)

(130)

Defining y(r) = rF'(r)/F(r), we thus obtain the first-
order equation

) = rgtr) -2 1.

y(r) = "

(131)

The boundary condition is y(0) = [. Usually, k, [using
Eq. (104)] is only evaluated as the so-called dimensionless
tidal deformability A,

2k,

because |k,| < |k;| < |ky|-

The numerical procedure for the tidal calculation is as
follows. First, we calculate p'(r), m/(r), and y'(r)
[Egs. (44), (42) and (131), respectively]. We employ the
Runge-Kutta fourth-order algorithm using a FORTRAN77
code. The initial data at the center r=r. — 0 are
p(r.) = pe, m(r.) =0 and y(r.) = 1. We run the code
up to r = R where the pressure becomes zero p(R) = 0. At
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this point, we obtain R, m(R) = M, and y(R). The three
numbers are then used to calculate k; using Eq. (98).

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we show the numerical results. The EoS
used here is the G3 parameter set. We include the hyperon
contribution in the EoS with the speed of sound at high
densities constrained by v, < ¢/v/3 (denoted by WHSS).
We mainly use WHSS in this work, but we also compare
the corresponding results with those with no-hyperon EoS
(WoutHSS). We use the one hyperon contribution because
we suspect that hyperon matter exists in heavy NSs, i.e.,
M = 2.0 M. We use the speed-of-sound constraint at high
densities because it stiffens the matter and thus increases
the maximum mass. This effect can slightly reduce the
impact of hyperon contributions. The hyperon contribution
softens the EoS quite significantly, thus decreasing the
maximum mass. Furthermore, the known constraints from
some analysis results are shown as a comparison to restrict
the range of x and A.. The role of « for controlling the mass
and radius of NS was studied previously in Ref. [66].
However, here, we revisit this matter using more refined
EoSs and use more recent constraints of NS properties.
Then, we investigate the role of A,.

First, we consider the case when A, = (0. The mass-
radius relations are shown in Fig. 5, where the G3 WHSS
EoS is presented in panel (a) and WoutHSS EoS in panel
(b). In Fig. 5, we show that by increasing k, the M and R of
NSs simultaneously increase. The impact of increasing x on
increasing M and R is significant not only for the G3
WoutHSS EoS but also for the G3 WHSS EoS. The M ~
2.6 My can be easily reached by the maximum mass
predicted by both EoSs without crossing the Buchdahl
limit. The results show that the G3 WHSS EoS needs a
larger value of x to reach M ~ 2.6 M, due to a relatively
softer EoS. It is also evident that for EoSs with and without
hyperons, the 2.1 My maximum mass constraint and the
radius canonical mass constraints from Refs. [45,46] can be
fulfilled simultaneously. However, when the maximum
mass M, = 2.3 Mg, the radius of the canonical mass
NS predicted by the EiBI theory is already larger than the
other constraints [45,46].

We can estimate the upper bound of A, = 2.08 x
1072 m~2 from the observed cosmological constant in
Refs. [89-92]

A jo-s 12

— e 1
PA = 872G cm? (133)

This A, value is too small to impact the gravity on the scale
of the solar system. For example, when we use
A 21022 m™2, A=1, set M =1M, and r =1 AU
in Eq. (41), the cosmological constant term will dominate,
and Newtonian gravity will break down in the solar system.
Second, we calculate the M-R relation, moment of inertia,

3.0 — T — T
P - @
L _ - - Ac=0 J
2.5 = s ~ G3 WHSS
- - ~..,~\~. \\.
2.0 F \, b
@ ~,
E = \\ \
~— 1.5 \\ * T
= \ \
1.0 f— TOV \
e g = —4 km? 1
Kk = —2 km? l
0.5 == r =5 km? .
=== ;=11 km?
- 5 =19 km?
0.0 1 1 1
10 12 14 16
R (km)
3.0 — T — T
. P (b)
| P3e— S, Ae=0 |
2.5 - .\ \G3 WoutHSS
- NN
-7 .
2.0 F r—a, \‘ \ ]
© 3 ’
= Voo
S 15t \ S
= \
1
! 1
1.0 r | i
GW190814 - N
[ ] Landry et al 2!)20
0.5 rm Jiang et al 2019
- = Buchdahl limit '~
— — Ultra-compact
0.0 1 1 1
10 12 14 16
R (km)

FIG. 5. M-R relation results by varying x with A, = 0. In panel
(a), we use G3 EoS with a hyperon and sound-of-speed constraint
(WHSS), whereas in panel (b), we use G3 EoS without considering
hyperons but still use speed of sound constraint at high densities
(WoutHSS). We can see that increasing « will increase M and R.
Similar to Ref. [66], we find that x can have a negative value, and
the solutions exist if k > —5 km?.

and tidal deformability using this A. value. The results are
almost indistinguishable compared to those obtained using
A, = 0. We vary « and show the M-R relation, moment of
inertia, and tidal deformation results in Figs. 6-8. Clearly,
the data from NSs with canonical mass (1.4 M), such as
the moment of inertia and tidal deformation, are not in
agreement with our results when «x is much larger than
5 km?. It is known that there is no direct measurement of
both the moment of inertia and tidal deformation other than
GW170817 for the latter. The data from Kumar and Landry
[47] was obtained by assuming some relations established
in GR, and thus the data may be inappropriate to be used to
test EiBI theory since the relations may be different in EiBI
theory. On the other hand, the data from Landry et al. [45]
and Jiang et al. [46] comes directly from gravitational-
wave observations and thus is still valid in EiBI theory.
Moreover, when the cosmological constant is set to this
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EoS G3 WHSS'
A=2.08%10"% m"

o ———

g/ \“~\ 3

= | L m=23km’ S L GWI9081A
s o= 20 km’ Y W J074046620,
------ k=17 km® v T6142230
----- k=5km’ “~~~@_Landry et al 2020 |
—== k=1m’ 1 B Jiang et al 2019~

8 10 12 14 16
R (km)
FIG. 6. M-R relation from the realistic case A, =

2.08 x 1072 m~? is compared to the data from Landry et al.
[45], Jiang et al. [46], and pulsar-binary systems (PSRs) J1614-
2230 [33-35] and JO740 + 6620 [35,36]. The GW190814 data
were obtained from Ref. [1].

value and x ~ 5 km?, the 2.1 Mg maximum mass con-
straint can be reached due to our choice of EoS. To this end,
if we use only the EoS from G3 RMF parameter set, that by
setting k~ 5 km? and |A.| <2.08 x 10°2 m?, the NS
properties predicted by the EiBI theory are compatible
with the recent constraints from Refs. [35,36,45-48].

We note that Sham et al. [75] had investigated the
moment inertia and tidal deformability of compact
objects in EiBI. The authors of Ref. [75] employed the
apparent EoS formulation in their calculation. This
formulation makes the equations easier to derive because
we can derive them just like the ones in GR but by
replacing the energy density and pressure with the
apparent energy density and apparent pressure
[Egs. (37) and (38)]. Here, we check the consistency
of our results by comparing these results with the ones
obtained by using the apparent EoS formulation. We
show the comparison of both numerical results in Fig. 9,
where we use the case of the G3 WHSS EoS,
A, =208 x102 m™2, and x =5 km®. To make the
difference more clear, we also show in the inset figure
in the lower part of each panel in Fig. 9 the discrepancy of
both formulations in A, I, and M plots. Note that the
lower index “ap” in each corresponding quantity means
that the result was obtained using the apparent EOS
formulation. It is evident from Fig. 9 that both formu-
lations are compatible.

One tempting question is whether it is possible to reach
the maximum mass of approximately 2.6 M while keep-
ing the results still in agreement with the canonical mass
observation data. After systematically studying all pos-
sible combinations of x and A., we have found that the
case is only possible if we take the unphysical value of A_,
i.e., it should be negative and the A absolute value should
be much larger than 10752 m™. The reasons are as
follows. Increasing (decreasing) the value of A, affects
the “tail,” corresponding to the M-R curve on the lower

4 bNS l](umair&ﬂandr;/ ZOIb N
MSP Kumar & Landry 2019 =
[ LMXB Kumar & Landry 2044~
N’é\ 3L o } —
Q
o0 |
2
S 2 y
= | & ]
1 o
L o
ot
@ | L
0.5 1.0 1.5 20 2.5
M M)
T I T I T I T I
4 — =23 km’
| e =20 km” i
— ==== k=17 km
o oap x=5 km’ 4
5 ——k=1m’
o0 |
ook < e -
= | A" ]
S B Landry et al 2020
1= 4 )\)’ @ Jiang ct al 2019 —|
(b, f" | | ®Limetal2019
0.5 1.0 1.5 20 2.5
M M)
T T N T N
0.45 *(C)
’ EoS G3 WHSS52 2
| A, =2.08%x10""m’
“m 04 -
S |
[
035
r Lattimer & Schutz (2005)
| & 1 Breu §z RezzollaI (2016)
0.1 0.15 0.2 0.25 03
C

FIG. 7. Moment of inertia / from the realistic case
A, =2.08 x 102 m~2. In panel (a), we compare them with
data from Kumar and Landry [47]. DNS, MSP, and LMXB
correspond to different astrophysical systems. In panel (b), we
use Landry et al. [45], Jiang et al. [46], and Lim et al. [48], whose
error bars are quite narrow. In panel (c), we compare I/ MR? with
the upper and lower bounds from Lattimer and Schutz [49] and
Breu and Rezolla [50].

right. If A, > 0, then the tail goes to the right. If A, <0,
then the tail goes to the left. For k = 1 m? and x = 5 km?
cases and for both EoSs (WHSS and WoutHSS), the
results of varying A, are shown in Fig. 10. Clearly, the
impact of varying A. on the radius is greater than that of
the « variation, except when near the maximum mass. A
positive value of A, tends to increase the radius, whereas a
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FIG. 8. Dimensionless tidal deformability A from G3 WHSS
EoS with « varied for A, = 2.08 x 1072 m~2. In panel (a), we
compare them with Kumar and Landry [47]. In panel (b), we use
Landry et al. [45] and Jiang et al. [46].

negative value of A, tends to decrease the radius. We
compare the EoSs G3 WHSS and G3 WoutHSS by
comparing the plots in the upper and lower panels of
Fig. 10. When we increase A., R and M increase and vice
versa. The plots show that for k = 1 m”> and x = 5 km?
cases, the range of A, of the G3 WHSS and G3 WoutHSS
EoSs can be constrained with NSs of approximately M ~
2.0 My and canonical mass radius observational con-
straints [33-36,45,46]. The range for k = 1 m? is quite
wide, i.e., —1077 < A./(m™?) < 1078, and this range is
relatively wider than that of x=35km? ie,
—107 < A./(m™2) < 107'°, Thus, it is possible to have
a relatively large maximum mass, but the radius is still
kept small by increasing x value and decreasing A..
However, for large x values, the range of the A, value
becomes narrower. As a result, we can obtain the maxi-
mum mass of approximately 2.6 M and satisfy the radius
constraint for 1.4 Mg NSs from the observations if we set
x = 26 km? and k = 13 km? for the G3 WHSS EoS and
G3 WoutHSS EoS, respectively, with an unavoidably
large and negative A, but with a narrow range, i.e.,
A, = —(24-32)x 10 m=2. Their M-R curves are
shown in Fig. 11. Of course, the combination of x and
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FIG. 9. Here we compare the results from our calculations (our
eqs.) versus the ones from employing the apparent EoS formu-
lation (apparent eqgs.) [75].

A, values can be chosen quite arbitrarily, but canonical
mass radii and maximum mass constraints cannot be
satisfied simultaneously when A, > 0. Note that the
WHSS EoS yields a more significant radius shifting by
varying A. than that of the WoutHSS EoS. The reason is
that A, is usually not by itself in the equations but rather in
the form of 1 =«xA.+ 1. In Fig. 12, we show the
sensitivity of x and A, variations around the narrow
region where the M-R curves satisfy the radius constraint
for 1.4 Mg NSs from the observations [45,46] and M ~
2.6 My from GW190814 [1], respectively. Evidently,
from the lower panel of Fig. 12, the radius is quite
sensitive to the A, variation. For completeness, we show
the impact of the x variation on the moment of inertia and
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FIG. 10. M-R relation results by varying A.. In panels (a) and
(b), we use small k (x=1m?) and large x (k =5 km?),
respectively, from the G3 WHSS EoS. Panels (c) and (d) contain
the same thing except for the EoS, which is WoutHSS.

tidal deformation in Figs. 13 and 14. For this case, varying
k does not significantly change both the moment of inertia
and the tidal deformability, and the results are quite
compatible with the NS results of the tidal deformability
observations from Refs. [1,42,43,45-47].
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the data from Landry et al. and Jiang et al. are chosen, whose
maximum mass also satisfies the GW190814 data. In panels (a) and
(b), we use the EoS from G3 with and without hyperons, respectively,
alongside the speed-of-sound constraint (WHSS and WoutHSS).
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FIG. 12.  M-R curves from G3 WHSS with variations of k or A..
These parameters’ values are chosen to satisfy the data from
Landry et al. and Jiang et al. while also maintaining their
maximum mass at the range provided by the GW190814 data.
In panels (a) and (b), we vary x and A, respectively.
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FIG. 13. Moment of inertia within the EiBI gravity theory
obtained from the G3 WHSS EoS and very large and negative A,
by varying «.

To this end, we must consider very carefully the results
from using large and negative valued A.. The requirement
that the maximum mass should be approximately 2.6 M
and the radius constraint from the canonical NS Ry 4 5,
should be 11 km < Ry 4y, < 13 km can only be satisfied
by the FiBI gravity theory if the absolute value of the
cosmological constant is unphysically large and the sign is
negative. However, our Universe has a positive and tiny
cosmological constant [89-92]. Therefore, restricted to the
EoS from the G3 RMF parameter set, we conclude that the
secondary object with 2.6 M, observed in the GW190814
event [1] is not likely a static NS or a slow-rotating NS
within the EiBI theory.
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FIG. 14. Tidal deformation with negative and very large values
of A, and «.

V. CONCLUSIONS

In conclusion, motivated by the assumption that the
secondary compact object with 2.6 M, observed in the
GW190814 event could be an NS, we have systematically
investigated the role of the parameters « and A, of the EiBI
gravity theory in the NS mass-radius relation, moment of
inertia, and tidal deformability in the slow-rotating limit. The
EoS of the core of an NS was calculated using the RMF
model with the G3 parameter set [76], where the SU(3)
prescription and hyperon potential depths [79] were used to
determine the hyperon coupling constants. For the inner and
outer crusts, we used the crust EoS obtained by Miyatsu
et al. [85]. We also ensured that the speed of sound in the
matter does not exceed ¢/+/3 at high densities. The results of
G3 parameter set are shown in comparison with the data
from nuclear matter experiments and NS data analysis. We
have found that the NS mass M significantly depends on the
value of k. For a positive x value, the NS maximum mass
tends to increase when the x value increases, whereas for a
negative k value, the NS maximum mass tends to decrease
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when the absolute « value increases. Furthermore, the NS
radius R depends significantly on the value of A,.. For a
positive A, value, the NS radius tends to increase when the
A, value increases, whereas for a negative A. value, the NS
radius tends to decrease when the absolute A, value
increases. We also have found that by using G3 EoS with
hyperons and speed of sound constraint at high densities (G3
WHSS) and setting k ~ 5km? and |A,| < 2.08 x 10°% m?,
the massradius relation satisfies the 2.0M ; mass constraint
and the massradius observation constraints from canonical
NS, respectively [33-36,45,46]. If we use EoSs without
hyperons (G3 WoutHSS), the constraints can be satisfied
even with a smaller « value. Furthermore, G3 WHSS and G3
WoutHSS EoSs can satisfy the maximum mass requirement
of approximately M ~2.6 M and recent observation
analysis results [1,42,43,45-47], respectively. However,
for the latter case, the x value is relatively large and the

A, value is unphysically large and negative. In conclusion, if
our Universe is gravitationally governed by EiBI gravity, the
NS matter in its core is described by the EoS from the G3
RMF parameter set, and the accepted value of a physical
cosmological constant value is very small and positive, then
the secondary object with 2.6 M, observed in the
GW190814 event [1] is not likely a static NS or a slow-
rotating NS. We do not, however, rule out the possibility that
such an object is either described by other EoSs than the G3
parameter set, a fast-rotating NS, or in other modified gravity
frameworks. They indeed deserve more investigation.
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