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One class of competitive candidates for dark matter is ultralight bosons. If they exist, these bosons may
form long-lived bosonic clouds surrounding rotating black holes via superradiant instabilities, acting as
sources of gravity and affecting the propagation of gravitational waves around the host black hole. During
extreme-mass-ratio inspirals, the bosonic clouds will survive the inspiral phase and can affect the
quasinormal-mode frequencies of the perturbed black-hole–bosonic-cloud system. In this work, we
compute the shifts of gravitational quasinormal-mode frequencies of a rotating black hole due to the
presence of a surrounding bosonic cloud. We then perform a mock analysis on simulated Laser
Interferometer Space Antenna observational data containing injected ringdown signals from supermassive
black holes with and without a bosonic cloud. We find that with less than an hour of observational data of
the ringdown phase of nearby supermassive black holes such as Sagittarius A* and M32, we can rule out or
confirm the existence of cloud-forming ultralight bosons of mass ∼10−17 eV.

DOI: 10.1103/PhysRevD.104.084028

I. INTRODUCTION

Ultralight bosons are particles with mass ≪ 1 eV [1–3].
This class of particles has been a promising dark matter
candidate which may address a number of outstanding
problems in fundamental physics ranging from particle
physics [4–7] to cosmology [8–12]. If they exist, they will
form condensates around a rotating black hole of compa-
rable size to their Compton wavelength [13–16]. The
condensate will grow exponentially by extracting rotational
energy from the black hole, settling into a “bosonic cloud.”
Although the cloud will then decay by emitting gravita-
tional radiation, the timescale of such decay is very long,

so bosonic clouds could exist on cosmological time-
scales [17].
Some methods have been proposed to search for ultra-

light bosons around black holes, such as by measuring
the dephasing of binary mergers due to dynamical friction
[18–21], quasimonochromatic radiation from the bosonic
cloud [16,17,22,23], holes in the spin-mass plane of black
hole populations due to the superradiant energy extraction
of bosonic clouds [24,25], and other signatures during the
inspiral phase of binary mergers [26–28].
Most of these methods are concerned with the effects of

ultralight bosons on the inspiral phase of binary black hole
mergers. However, because of the bosonic cloud, the
spacetime around the black hole is no longer vacuum.
Matter effects due to the presence of this cloud have
been demonstrated for the inspiral phase of binary mergers
[29–31], but we demonstrate that the cloud also affects the
ringdown phase, during which a perturbed black hole
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relaxes into a stationary black hole by emitting gravita-
tional waves (GWs) in a discrete set of complex quasi-
normal-mode frequencies (QNMFs).
Gravitational perturbations around a rotating black hole

are governed by the Teukolsky equation. Because of the
gravity of the bosonic cloud around a black hole, an
additional effective potential peaked at r ∼ μ−1 > M arises
in the Teukolsky equation if Mμ < 1. As the ringdown
GWs propagate away from the black hole, it will first reach
the usual effective potential peaked at the angular momen-
tum barrier of the black hole. If a bosonic cloud exists,
as the waves propagate further outward, they will also
encounter the cloud’s potential. This additional effective
potential can modify the quasinormal modes of the system,
resulting in an altered ringdown waveform upon detection.
In this work, we envisage the ringdown GW signals

emitted by the closest supermassive black holes (SMBHs)
as a novel probe for ultralight bosons. Our work consists of
two parts. Firstly, in Sec. II, we demonstrate a new method
to derive the effective potential of GW propagation due to a
scalar field around a black hole from the scalar-field
energy-momentum tensor. By substituting the effective
potential into the equation governing gravitational pertur-
bations, we can compute the shift of QNMFs due to the
scalar field. We obtain the shift of QNMFs as a function
of the mass of ultralight bosons and the cloud with logari-
thmic perturbation theory [32]. Secondly, in Sec. III, we
explore the possibility of searching for ultralight bosons by
measuring the QNMF shift of the ringdown phase of an
extreme-mass-ratio inspiral (EMRI). We find that a single
detection of the ringdown phase of an EMRI occurring at a
nearby SMBH, such as Sagittarius A* (Sgr A*) and M32,
enables us to rule out or confirm the existence of ultralight
bosons of masses down to ∼10−17 eV. At last, in Sec. IV,
we discuss the implications of our results.

II. QUASINORMAL-MODE FREQUENCY SHIFT
DUE TO BOSONIC CLOUDS

A. Assumptions and approximations

We consider a stellar-mass black hole of mass m
spiraling into a host black hole of massM with dimension-
less spin a, surrounded by a cloud of mass Ms formed by
bosons of mass μ, withm ≪ M (an EMRI). We assume that
(A1) ðMμÞ2 ≪ 1 and (A2) the smaller black hole does not
disturb the bosonic cloud throughout the inspiral and
ringdown phase, so the cloud can be described by the
well-known bosonic wave function [see Eq. (5) below]
during the ringdown phase. (A2) is justified by numerical
simulations of massive scalar hair around black holes
[21,27], where it was shown that the cloud depletes only
a negligible fraction of its mass during an EMRI. Because
the peak of the cloud’s density goes as ðMμÞ−2 [33], by
(A1) the black holeþ cloud system’s geometry is well
described by the Kerr metric with the cloud treated as

perturbation to the spacetime. Moreover, we will ignore
frame-draggingwhen computing the cloud’s effective poten-
tial, which introduces corrections of order aðMμÞ2=M to the
leading behavior of the cloud’s effective potential.

B. Effective potential of gravitational-wave
propagation due to bosonic clouds

We consider scalar ultralight bosons described by the
Lagrangian density for a massive scalar field:

L ¼ 1

2
∂αΦ∂αΦþ 1

2
μ2Φ2; ð1Þ

whereΦ is the wave function of the boson and μ is the mass
of the boson. With this Lagrangian, one can obtain the
Klein-Gordon equation governing the evolution of Φ,

□Φðt; r; θ;ϕÞ − μ2Φðt; r; θ;ϕÞ ¼ 0; ð2Þ

where □ ¼ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp
gμν∂μÞ is the d’Alembertian oper-

ator. Since Eq. (2) is a separable partial differential
equation, we consider [34,35]

Φðt; r; θ; tÞ ¼ LnlmðrÞSlmðθ;ϕ;ωÞe−iωnlmt; ð3Þ

where LnlmðrÞ is a function of r, Slmðθ;ϕ;ωÞ is the
spheroidal harmonic function of spin-weight 0, n is the
principal quantum number, l is the azimuthal quantum
number, andm is the magnetic quantum number. Assuming
ðMμÞ2 ≪ 1 and solving Eq. (2) subjected to some physical
boundary conditions [36], one can obtain the characteristic
oscillation frequency of the bosonic field [15,34,36–39]:

ωnlm ∼ μ −
μ

2

�
Mμ

lþ nþ 1

�
2

þ i
γnlmM

�
am
M

− 2μrþ

�
ðMμÞ4lþ5; ð4Þ

where γnlm is a parameter which depends on n, l, and m.
Inspecting Eq. (4), one finds that the imaginary part of ω

will be positive if Mμ ∼ 1 and 0 < ωRe
nlm < mΩH, where

ΩH ¼ a=2rþ is the angular velocity of the event horizon.
This implies that Φ will be exponentially growing within
this parameter space. This phenomenon is known as
superradiant instability [15,34,36–38], through which ultra-
light bosons extract rotational energy of the host black
hole to form a cloud. For the fastest-growing nlm ¼ 011
mode, the cloud is well described by the following wave
function1 [33]:

1By using this function, it is implicitly approximated that
S11 ∼ Y11, where Y11 is the spherical harmonic for l ¼ m ¼ 1.
For our studies, where we assume μ ∼ ω to be small, it should be a
good approximation [40].
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Φðt; r; θ;ϕÞ ¼
�
Ms

πM

�1
2ðMμÞ3μre−1

2
Mμ2r

× sin θ cosðϕ − ωRe
011tÞ: ð5Þ

From Eq. (1), we can also derive the energy-momentum
tensor of the bosonic cloud,

Tμν ¼ −gμν
�
1

2
gαβ∂αΦ∂βΦþ 1

2
μ2Φ2

�
þ ∂μΦ∂νΦ: ð6Þ

Gravitational perturbations around a rotating black hole
are governed by the Teukolsky equation [41–44], and the
effects of a bosonic cloud on GWs propagating around a
black hole can be studied by solving the equation with the
energy-momentum tensor of the cloud entering as the
source term,

Lψ ¼ Tsource; ð7Þ

where L is a linear second-order partial differential operator
[41–44],

L ¼
�ðr2 þM2a2Þ2

Δ
−M2a2sin2θ

� ∂2

∂t2 þ
4M2ar

Δ
∂2

∂t∂ϕ
þ
�
M2a2

Δ
−

1

sin2θ

� ∂2

∂ϕ2
− Δ−s ∂

∂r
�
Δsþ1

∂
∂r

�

−
1

sin θ
∂
∂θ

�
sin θ

∂
∂θ

�
− 2s

�
Maðr −MÞ

Δ
þ i cos θ

sin2θ

� ∂
∂ϕ

− 2s

�
Mðr2 −M2a2Þ

Δ
− r − iMa cos θ

� ∂
∂t

þ ðs2cot2θ − sÞ; ð8Þ

whereΔ ¼ ðr − rþÞðr − r−Þ, rþ and r− are, respectively, the
outer and inner event horizon, ψ ¼ ρ−4ψ4 is a perturbation
function, ρ−1 ¼ r − iMa cos θ, ψ4 is the fourth Weyl scalar,
and Tsource is the source term due to the bosonic cloud which
acts as an external source that drives the gravitational
perturbations. In the far-field limit, the gravitational pertur-
bations are encoded asψ4 ∝ ḧþ − iḧ×.We assume separable
solutions such that ψlm ¼ RnlmðrÞSlmðθ;ϕÞe−iω̃nlmt, where
Slmðθ;ϕÞ is the spheroidal function, RnlmðrÞ is the radial
part of the perturbation function, and ω̃nlm is the QNMF of
the nlmth mode.2 If a matter field such as a bosonic cloud
surrounds the black hole, RnlmðrÞ satisfies the radial master
equation

Δ2
d
dr

�
Δ−1 dRnlm

dr

�
þ VnlmðrÞRnlm ¼ T̂nlm:

VnlmðrÞ ¼
�
K2 þ 4iðr −MÞK

Δ
þ 8iω̃nlmrþ −2λnlm

�
; ð9Þ

where VnlmðrÞ is the effective potential for GW propaga-
tion, K ¼ ðr2þM2a2Þω̃nlm−Mam, −2λnlm ≔ −2Anlm þ
M2a2ω̃2

nlm − 2Mamω̃nlm is the separation constant of the
radial part [45], and Anlm is the eigenvalue of the separated
equation for Snlm. T̂nlm is the projected source term of the
radial master equation, given by [46]

T̂nlm ¼ 4

Z
R

dtffiffiffiffiffiffi
2π

p
Z
S2

dΩSnlmðθÞeiω̃nlmt−imϕ T̃ðt; r;ΩÞ
ρ5ρ�

;

ð10Þ

where

T̃ðt; r;ΩÞ ¼ T̃nn þ T̃nm þ T̃m̄ m̄; ð11Þ

and

T̃m̄ m̄ ¼ −
1

4
ρ8ρ̄Δ2Ĵ þ½ρ−4Ĵ þðρ−2ρ̄Tm̄ m̄Þ�;

T̃nn ¼ −
1

2
ρ8ρ̄L̂−1½ρ−4L̂0ðρ−2ρ̄−1TnnÞ�

T̃nm ¼ −
1

2
ffiffiffi
2

p ρ8ρ̄Δ2L̂−1½ρ−4ρ̄2Ĵ þðρ−2ρ̄−2Δ−1Tm̄nÞ�

−
1

2
ffiffiffi
2

p ρ8ρ̄Δ2Ĵ þ½ρ−4ρ̄2Δ−1L̂−1ðρ−2ρ̄−2Tm̄nÞ�;

Tnn ≔ Tμνnμnν;

Tm̄n ≔ Tμνnμm̄ν;

Tm̄ m̄ ≔ Tμνm̄μm̄ν;

nμ ≔
1

2Σ
ðr2 þM2a2;−Δ; 0;MaÞ;

mμ ≔
ρ�ffiffiffi
2

p ðiMa sin θ; 0; 1; i csc θÞ;

Σ ¼ r2 þM2a2cos2θ;

L̂s ≔ ∂θ − i csc θ∂ϕ − ia sin θ∂t þ s cot θ:

Ĵ þ ≔ ∂r − Δ−1½ðr2 þM2a2Þ∂t þMa∂ϕ�: ð12Þ

At spatial infinity, mμ approaches the limit

mμ →
1ffiffiffi
2

p ðθ̂μ þ iϕ̂μÞ: ð13Þ

As the host black hole is subject to gravitational
perturbations, due to both the capture of a less massive

2Not to be confused with the mode number of the bosonic
cloud. m is also not to be confused with mμ, one of the tetrad
vectors.
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black hole as well as the monochromatic GWs generated by
the bosonic cloud, we need to replace gμν in Eq. (6) by

gμν ¼ gð0Þμν þ hμν;

hμν ¼ hðRDÞμν þ hðULBÞμν ; ð14Þ

where gð0Þμν is the Kerr metric describing the spacetime

around the host black hole, hðULBÞμν represents GWs emitted

by the boson cloud, and hðRDÞμν represents GWs during the
ringdown phase due to the black hole merger. Then we can
split T̃ðt; r;ΩÞ into three parts,

T̃ðt; r;ΩÞ ¼ T̃ðULBÞ
1 þ T̃ðULBÞ

2 þ T̃ðRDÞ;

T̃ðULBÞ
1 ¼ T̃ðULBÞ

1 ½gð0Þμν ∂αΦ∂αΦ;Φgð0Þμν Φ�;
T̃ðULBÞ
2 ¼ T̃ðULBÞ

2 ½hðULBÞμν ∂αΦ∂αΦ;ΦhðULBÞμν Φ�;
T̃ðRDÞ ¼ T̃ðRDÞ½hðRDÞμν ∂αΦ∂αΦ;ΦhðRDÞμν Φ�; ð15Þ

where T̃ðULBÞ
1 ½gð0Þμν ∂αΦ∂αΦ;Φgð0Þμν Φ� is obtained by projec-

ting the terms in Tμν containing gð0Þμν ∂αΦ∂αΦ and Φgð0Þμν Φ
onto nν and mν according to Eq. (12), and similarly for

T̃ðULBÞ
2 and T̃ðRDÞ.
Each of the above terms has its own effects on GW

generation. To see this, we split ψ into three parts,

ψ ¼ ψ ðULBÞ
1 þ ψ ðULBÞ

2 þ ψ ðRDÞ; ð16Þ

and each of these terms satisfy their own Teukolsky
equation with the corresponding source term. For

ψ ðULBÞ
1 , we have

Lψ ðULBÞ
1 ¼ T̃ðULBÞ

1 ½gð0Þμν ∂αΦ∂αΦ;Φgð0Þμν Φ�: ð17Þ

This equation represents the quasimonochromatic emission
of GWs of frequency ∼2μ by the bosonic cloud, which
slowly dissipates the cloud on timescales significantly
greater than that of a ringdown detection. Coherent
searches could identify these waves in the stochastic
GW background (see, e.g., [47]). The next term leading
to quasimonochromatic GWs is given by

Lψ ðULBÞ
2 ¼ T̃ðULBÞ

2 ½hðULBÞμν ∂αΦ∂αΦ;ΦhðULBÞμν Φ�: ð18Þ

This represents the generation of the next-leading order
long-lived GWs, of the frequency of ∼4μ, by the bosonic
cloud. Similarly, these waves could be detected using
coherent analysis. Finally, we have

Lψ ðRDÞ ¼ T̃ðRDÞ½hðRDÞμν ∂αΦ∂αΦ;ΦhðRDÞμν Φ�: ð19Þ

This equation does not depend on ψ ðULBÞ
1 , ψ ðULBÞ

2 , and

hðULBÞμν . Therefore, this is an equation decoupled from
the previous two. Equation (19) shows that metric pertur-
bations around the black hole, corresponding to ringdown
GWs, interact with the surrounding bosonic cloud. In this

work, we focus on the effects by hðRDÞμν as it can modify the
ringdown waveform and can be measured independently

from the continuous emission hðULBÞμν .
Focusing on Eqs. (12) and (19), we find that Tm̄ m̄ in the

far field can be expressed in terms of ψ4. We start with

Tm̄ m̄ ¼ m̄βm̄γTβγ

¼ 1

2
m̄βm̄γ½−gβγð∂αΦ∂αΦþ μ2Φ2Þ þ ∂βΦ∂γΦ�

¼ 1

2
m̄βm̄γ½−ðgð0Þβγ þ hβγÞð∂αΦ∂αΦþ μ2Φ2Þ� þ ðδ̄ΦÞ2;

ð20Þ

where hβγ ¼ hðRDÞβγ [from now on we suppress the

superscript “(RD)”] and δ̄Φ ¼ m̄β∂βΦ. By the null-cross

normalization condition, we have gð0Þαβ m̄
αm̄β ¼ 0 [48–50],

thus

Tm̄ m̄ ¼ −
1

2
m̄βm̄γ½hβγð∂αΦ∂αΦþ μ2Φ2Þ� þ ðδ̄ΦÞ2: ð21Þ

Since single-mode ringdown waves can be expressed in
terms of damped sinusoidal waves, the perturbation hβγ of a
particular quasinormal mode can be written as

hβγ ¼ Aβγðr; θ;ϕÞe−iωt; ð22Þ

where Aβγ is a tensorial function of position and ω is a
complex frequency. Hence, we can write

hβγ ≈ −
1

ω2
ḧβγ: ð23Þ

By (A1), the most important region for gravitational
interaction between ringdown waves and the bosonic cloud
is in the far field. The far-field limit of the definition of the
fourth Weyl scalar gives [49,50]

ψ4ðr → þ∞Þ ¼ 1

2
ðḧþ − iḧ×Þ

¼ 1

4
ðḧθθ − ḧϕϕÞ −

1

2
iḧθϕ

¼ 1

2
m̄βm̄γḧβγ

¼ −
1

2
ω2m̄βm̄γhβγ: ð24Þ
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As ðδ̄ΦÞ2 has no explicit dependence on ψ4, it will not
contribute as an additional effective potential, but only as
an extra excitation of quasinormal modes, Thus, we can
suppress it from Tm̄ m̄ if we only want to calculate the shifts
in the QNMFs. Focusing on Tm̄ m̄, we have

Tm̄ m̄ ≈
1

ω2
ψ4½∂αΦ∂αΦþ μ2Φ2�

¼ 1

ω2
ρ4ψ ½∂αΦ∂αΦþ μ2Φ2�; ð25Þ

indicating that Tm̄ m̄ carries a factor of the GW waveform ψ
and can thus be considered as a term contributing to the
effective potential of wave propagation. We note that Tnm
and Tnn contain no such factors of ψ4, so they neither affect
the effective potential of wave propagation nor shift the
QNMFs. Effectively, we consider

T̃ðt; r; θ;ϕÞ

¼ −
1

4ω2
ρ8ρ̄Δ2Ĵ þfρ−4Ĵ þ½ρ2ρ̄ð∂αΦ∂αΦþ μ2Φ2Þρ4ψ �g;

ð26Þ

where terms that do not contain ψ4 have been suppressed.
We then calculate T̂nlm of Eq. (9) from Eq. (26) using

Eq. (10) and then expressing T̂nlm in terms of RnlmðrÞ,

T̂nlm ¼ RnlmðrÞVðULBÞ
nlm ðrÞ: ð27Þ

As the ringdown phase of an EMRI is dominated by the
nlm ¼ 022 and 021 modes (see later discussion), we focus
on calculating the shifts of these two modes. We choose to
use two modes instead of one to reduce potential degen-
eracy introduced by the addition of the Mμ parameter
during Bayesian inference in Sec. III. Note that these
modes are not to be confused with the dominant excitation
mode of the bosonic cloud.
By (A1), the gravitational interaction between the cloud

and GWs should be the most important when r ≫ rþ where
rotational frame dragging is negligible. Thus, we can set
a ¼ 0 to reflect negligible frame dragging in the far field.3

Then we have, for a boson cloud of n ¼ 0, l ¼ m ¼ 1, and
ringdown waves of n ¼ 0, l ¼ 2, and m ¼ 1, 2,

VðULBÞ
02m ðrÞ ¼ ðr2 þM2a2Þ2

Δ
4Msμ̃

8e−r̃μ̃
2

7πM3k̃2r̃6
X2
n¼0

μ̃nC02m
n ðr̃; k̃Þ;

ð28Þ

where k̃ ¼ iMω, μ̃ ¼ Mμ, and r̃ ¼ r=M. C02m
n withm ¼ 1,

2 are polynomial functions with explicit forms given in
Appendix A. Thus Eq. (9) becomes

Δ2
d
dr

�
Δ−1 dRnlm

dr

�
þ ½VnlmðrÞ þ VðULBÞ

nlm ðrÞ�Rnlm ¼ 0:

ð29Þ

Figure 1 plots the effective potential VðULBÞ
022 ðrÞ for the

GW propagation built up by a bosonic cloud ofMs ¼ 0.05,
μ ¼ 0.1=M ¼ 0.1 around a black hole of M ¼ 1, a ¼ 0.4.
This value of a is close to that of the measured spin of
Sagittarius A* [51]. This potential barrier affects the
ω ¼ ω̃022 mode, the dominant quasinormal mode during
the ringdown phase of an EMRI [52]. The potential barrier
corresponding to the 021 mode is qualitatively similar
to that of the 022 mode. We find that VRe

ULB peaks far from
the event horizon, close to the peak of jΦðt; r; θ;ϕÞj2 (at a
given time and angular position) which defines the mass
density of the cloud. This similarity makes sense if we

interpret VðULBÞ
nlm as representing the effects of the

cloud’s gravity on the ringdown GWs. For higher spin,
the effective potentials due to a bosonic cloud are quali-
tatively similar.

C. Shift of quasinormal-mode frequencies

VðULBÞ
nlm ðrÞ and VnlmðrÞ together form a new effective

potential of GW propagation, selecting GWs of a different

FIG. 1. The real and imaginary parts of the effective potential
for nlm ¼ 022 mode GW propagation due to an ultralight-
bosonic cloud around a black hole. We assume that the mass of
the cloud is Ms ¼ 0.05, formed by bosons of mass μ ¼ 0.1
around a black hole of massM ¼ 1 and a ¼ 0.4. We assume that
the GWs are propagating at the (complex) frequency of the 022
quasinormal mode. The peak of the real potential is located close
to that of jΦj2, where Φ is the wave function of ultralight bosons
(at a given time and angular position), much further away from
the event horizon.

3Note that such a ¼ 0 assumption is only valid when we are
considering the interaction of GWs with the cloud when they
meet the cloud potential barrier in the far field. When calculating
the shape of the cloud and the usual potential barrier, we still have
to include a nonzero spin, or else the cloud will not form in the
first place.
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set of QNMFs to reach spatial infinity as purely outgoing
waves. For simplicity, our work focuses on measuring
or constraining μ solely by measuring the shift of
QNMFs of an SMBH surrounded by a bosonic cloud.

Since ðMμÞ2 ∼ 10−2 ≪ 1, jVðULBÞ
nlm j ∼ ðMμÞ8 ≪ jVnlmj, and

we can solve Eq. (29) for ω̃nlm using logarithmic pertur-
bation theory [32]. Up to leading order, QNMFs in the
source frame are given by

ω̃nlm ≈ ω̃ð0Þ
nlm þ Δnlmðμ;Ms;MÞ

2ω̃ð0Þ
nlm

; ð30Þ

for the 021 and 022 modes of ringdown waves,

Δ02m ¼ 32Msk̃
3μ̃8e−2ð2k̃þμ̃2Þ

Fðk̃Þ

×

�
e−4k̃

b̃7

�X16
n¼0

μ̃nD02m
n ðk̃Þ

�
− 4e2μ̃

2

E02mðk̃; μ̃; b̃Þ
�

Fðk̃Þ ¼ 64k̃4 − 56k̃3 þ 36k̃2 − 15k̃þ 3; ð31Þ

where k̃ ¼ iMω, μ̃ ¼ Mμ, and b̃ ¼ ð2k̃ − μ̃2Þ. The explicit
expressions of polynomialsD02m

n ðxÞ and functions E02mðxÞ
for m ¼ 1, 2 are given in Appendix A.
Figure 2 plots the trajectory on the complex plane

of Mω̃022 with a ¼ 0.4 as μ increases from 10−17 to
10−16.6 eV (such that Mμ ∼ 1), assuming α ¼ 0.05. We
assume a ¼ 0.4 because it is close to the spin of the
Sagittarius A*,the closest supermassive black hole. For the
ease of comparison with the case of μ ¼ 0, the cross marks
the quasinormal-mode frequency of a Kerr black hole of

a ¼ 0.4 for μ ¼ 0 (taken from [53]). A yellower hue
represents a larger μ and a bluer hue represents a smaller
μ. As μ increases, both the real part and imaginary part of
ω̃022 decrease; thus, the life time, which is consistent with
the quasinormal mode, shifts for a black hole surrounded
by a constant density dark matter halo [31]. For μ smaller
than ∼10−16.8 eV, the QNMF shift is masked by the green
hue and the cross. For higher spin such as a ¼ 0.9, the 022-
mode frequency follows a quantitatively similar trajectory
starting from Mω ¼ 0.672 − 0.065i.

III. IMPLICATIONS ON ASTROPHYSICAL
OBSERVATIONS

As the boson mass changes the gravitational QNMFs, it
can be measured or constrained by observing the ringdown
of astrophysical black holes. Possible sources for which our
ringdown analysis could be applied to probe ultralight
bosons include intermediate-mass ratio inspiral events
or EMRIs, as cloud depletion in these cases is negligible
[54]. We perform a mock data challenge to estimate our
ability of measuring ultralight boson mass upon detecting
the ringdown phase of an EMRI from Sgr A* and M32 by
the Laser Interferometer Space Antenna (LISA), a proposed
space-based interferometer capable of detecting high-mass
mergers [55–63].

A. Constructing the likelihood

We construct a waveform model to simulate GWs during
the ringdown phase. In the time domain, GWs emitted
during the ringdown phase due to an EMRI can be expres-
sed as a linear combination of damped sinusoids [64,65],

hðtÞ ¼ m
r

X
nlm

Anlme−iϕnlm−iω̃nlmt: ð32Þ

Here m is the mass of the compact object inspiraling into
the central host black hole and r is the luminosity distance
to the host black hole. Anlm is the mode amplitude, and we
use A022 ≈ 10−0.1 and A021 ≈ 10−0.4, which are typical
values for EMRIs [64]. ϕnlm is the initial phase of the
nlmth mode. The QNMFs ω̃nlm are functions of μ,Ms,M,
and a.
When estimating the parameters, it will be more

convenient to work in the frequency domain. We per-
form a Fourier transform on Eq. (32) following the FH
convention [58]. The convention replaces e−iωnlmt−t=τnlm

by e−iωnlmt−jtj=τnlm assuming that the ringdown starts
at t ¼ 0,

Z
∞

−∞
eiωtðe−iωnlmt−jtj=τnlmÞdt

¼ 2=τnlm
ð1=τnlmÞ2 þ ðω − ωnlmÞ2

: ð33Þ

FIG. 2. The shift of the 022 mode QNMFs for different μ. We
assume M ¼ 4.4 × 106 M⊙ and dimensionless spin a ¼ 0.4
surrounded by a cloud of α ¼ 0.05. The cross marks the
quasinormal-mode frequency of a Kerr black hole with a ¼
0.4 for μ ¼ 0. As μ increases, the 022-mode real frequency
increases but the lifetime decreases, which is consistent with the
changes of QNMF due to a dark matter halo of constant density.
For μ smaller than 10−16.8 eV, the QNMF shift is masked by the
green hue and the cross.
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Noting that ωIm
nlm ¼ −τ−1nlm because the imaginary part of

QNMFs are always negative, we arrive at4

hðf;Mf; af; μ;Ms; Anlm;ϕnlmÞ

¼ −
2m
r

X
nlm

AnlmωIm;nlme−iϕnlm

ω2
Im;nlm þ ð2πf − ω2

Re;nlmÞ2
: ð34Þ

Upon detecting the GW strain data d̃ of an EMRI, we can
estimate M, a, μ, Ms, Anlm, and initial phase ϕnlm using
Bayesian inference.5 By Bayes’ theorem, the posterior of
the parameters describing the host black hole (θ⃗) and
bosonic cloud (α, μ) is

pðθ⃗; α; μjd̃; H; IÞ ∝ pðd̃jθ⃗; α; μ; H; IÞpðθ⃗; α; μ; H; IÞ;
ð35Þ

where pðθ⃗; α; μ; H; IÞ is the prior of θ⃗, α, and μ (see Table I
for the complete list of priors), while pðd̃jθ⃗; α; μ; H; IÞ is
the likelihood

Lðsjθ⃗Þ ∝ exp

�
−
1

2
hs − hðθ⃗Þjs − hðθ⃗Þi

�
: ð36Þ

d̃ ¼ ñþ h̃ðθ⃗inj; αinj; μinjÞ is the injected strain data, includ-
ing noises, ñ, simulated according to the power spec-
tral density (PSD) of LISA [57] and the injected signal
h̃ðθ⃗inj; αinj; μinjÞ with θ⃗inj; αinj; μinj being the injected param-
eters. The inner product hajbi is defined as

hajbi ¼ 4ℜ

�Z
fhigh

flow

aðfÞb�ðfÞ
SnðfÞ

df

�
; ð37Þ

where flow ¼ 10−4 Hz and fhigh ¼ 1 Hz are the lower and
upper limit of LISA’s sensitivity band, respectively, while
SnðfÞ is the PSD of LISA’s noise.
Specifically, our mock data simulate the ringdown phase

of EMRIs due to compact objects plunging into Sgr A* and
M32. The mass of the compact object is set to be 10 M⊙,
typical of stellar mass black holes inspiraling into a
supermassive black hole [63,67]. For Sgr A*, we take
a ¼ 0.4, which is its measured spin [51]. As for M32, since
its host black-hole spin is not well measured, we assume
a ∼ 0.9, a common spin of SMBHs [68]. The mode com-
ponent Anlm of the injected signal is computed according to
[52]. We include only the 022 and 021 modes in mock
signals as they are the dominant quasinormal modes of the
EMRI ringdown signals [52]. We estimated that the
detectable EMRI ringdown phase of Sgr A* and M32
can last for ∼10 times the lifetime of the 022 mode. We
found that the optimal signal-to-noise ratio (SNR, ρopt),
defined by

ρ2opt ¼ hh̃jh̃i ¼ 4ℜ

�Z
fhigh

flow

h̃ðfÞh̃�ðfÞ
SnðfÞ

df

�
; ð38Þ

of the EMRI ringdown of Sgr A* is ∼1.38 × 105 and that of
M32 is ∼1.6 × 103.

B. Results of mock data challenge

Figure 3 shows the marginalized posterior of the
base-10 log of boson mass μ in eV inferred from the
mock ringdown signal of Sgr A* (solid blue line) and

TABLE I. The prior prescribed for various parameters for the
mock data challenge.

Variables Prior type Range

Mf Log uniform ½106; 108�M⊙
af Uniform [0, 1]
α Uniform [0, 0.2]
μ Conditional and log uniform ½10−18;M−1

f � eV
Anlm Log uniform ½10−22; 10−13�
ϕnlm Uniform ½0; 2π�

FIG. 3. Constraints on μ by a LISA detection of the EMRI
ringdown phase of Sagittarius A* (¼ 4.3 × 106 M⊙ [69], in blue)
and M32 (¼ 3.4 × 106 M⊙ [70], in red). We assume μ ¼ 0 and
carry out our ringdown analysis over ten lifetimes of the 022
modes, with the mass, spin, and luminosity distance set to be
close to that of the corresponding SMBH. By observing the
ringdown phase of an EMRI of these SMBHs, we can rule out
μ ∼ 10−17 eV, as shown by the 90% confidence interval of
our posterior for Sagittarius A* marked by the dashed-dotted
vertical line.

4In principle, our waveform model should also depend on the
cosmological redshift and the sky position of the host SMBH.
However, as we are considering Sgr A* and M32, whose redshift
z ∼ 0, we omit z from our inference. To have fair comparison with
other proposed searches for dark matter with LISA such as
[26,66], we assume that the detectors are oriented optimally for
the plus polarized waves.

5Following other works which propose searches for ultralight
bosons (see, e.g., [18,26]), we assume that no other type of matter
surrounds the black hole.
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M32 (solid red line) with an injected null-hypothesis signal
μ ¼ 0. The posterior of log10 μ resembles a step-function
shape with a steep cutoff at ∼10−17 eV. Beyond the cutoff,
the posterior distributions show no support, thereby putting
a bound on μ. The posteriors demonstrate that such an
analysis on a single ringdown event can lead to stringent
constraints on boson mass if no QNMF shift is measured.
Our constraint suggests that we might be able to probe the

existence of ultralight boson of μ ∼ 10−17 eV by detecting
just a single ringdown signal of these SMBHs. To test so, we
inject the same ringdown signal of a black hole surrounded
by a bosonic cloud. IfMμ is too close to zero or unity, cloud
formation is not favorable. Hence we assume Mμ ¼ 0.3 for

M32 (corresponding to μ ∼ 1.58 × 10−17 eV) and Sgr A*
(corresponding to μ ∼ 6 × 10−18 eV). Based on [71], we
assume the cloud-mass ratio to be α ¼ 0.05, which is smaller
than themaximum cloudmass that could develop around the
assumed SMBHs. Figure 4 shows the marginalized poste-
riors of log10 μ obtained from the ringdown signal of Sgr A*
(top panel) and M32 (bottom panel). The posterior of both
black holes peak at a value close to the injected μ (solid
vertical line in black). The posterior for Sgr A* peaks more
sharply at the injectedμ because of its greater ringdownSNR.
These results indicate that our method can also recover an
injected ultralight boson mass from solely detecting the
ringdown waveform of a SMBH.
While we measure μ, we can also accurately measure the

mass and spin of the host black hole. Figure 5 shows the
50% confidence interval (CI, solid lines) and 95% CI
(dashed lines) of the two dimensional posterior of host
black hole mass and spin recovered from our analysis of the
mock signals from Sgr A* (left panel) and M32 (right
panel). The scatter points on both panels mark the respec-
tive mass and spin of the black holes. As we can see, for the
cases of μ ¼ 0 (in blue) andMμ ¼ 0.3 (in red), all contours
enclose the injected values, which are the assumed mass
and spin of the host black holes. These show that we can
accurately measure M, af, and μ simultaneously. These
results also imply that our method will not mistake a black
hole with a bosonic cloud as a vacuum black hole of
different mass and spin.

IV. CONCLUDING REMARKS

In conclusion, we have shown a new method to calculate
the shift of gravitational QNMFs due to a scalar field
around a black hole. Focusing on scalar ultralight bosons,
we calculated the QNMF shifts due to bosonic clouds
surrounding the black hole. Using the computed frequency
shift, we demonstrated that by a single detection of the
ringdown phase EMRI signal of a nearby supermassive
black hole, such as Sgr A* and M32, we can confirm
or rule out the existence of ultralight bosons of mass
between ½10−17; 10−16� eV. Our method further extends the
working scope of other proposed GW searches of ultralight
bosons, which cover the range of μ ∈ ½10−16; 10−12� eV
[16,22,24–26,72].
To simplify our analysis, we have made use of several

assumptions. We ignored back reactions on the bosonic
cloud during the inspiral and ringdown phase, which might
cause depletion of the cloud, mass transfer between the
cloud and the black holes, and the excitation of modes of
the bosonic cloud as in [18,26]. This is an approximation
which is similar to the Cowling approximation, which
assumes a stationary background spacetime when studying
the matter modes in asteroseismology. We note that the
Cowling approximation should be valid in general [73–78]
but A2 might fail when studying some gravitational
systems. One example where neglecting effects of the

FIG. 4. The marginalized posterior of μ estimated from the
same signal in Fig. 3 except with an injected value of μ ¼
6.03 × 10−18 eV for Sagittarius A* (top panel) and μ ¼ 1.58 ×
10−17 eV for M32 (bottom panel). For both injections, the
injected μ corresponds to Mμ ∼ 0.3. In both panels, the solid
vertical line in black denotes the injected μ. Both posteriors peak
at a value of μ close to the injected value with significant support.
Moreover, the posterior of Sagittarius A* (solid blue line) peaks
so much sharper than the posterior of M32 (solid red line) that it
can only be seen clearly when zoomed in (embedded figure). The
better measurement of μ for Sagittarius A* is expected because its
relative proximity gives ringdown signals with higher SNR.
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perturbations on the background may break down is the
calculation of quasinormal modes in massive Chern-Simon
theory [79]. However, in our case, the effect of cloud
perturbations on the quasinormal modes should not be
significant. Firstly, in general, gravitational perturbations in
the ringdown phase are weaker than those in the inspiral
phase. For (extremely) small-mass-ratio inspirals, which
our study focuses on, it has been verified that the excitation
and decay of bosonic clouds during the inspiral phase are
negligible [21,27]. Thus, the cloud excitation and decay
during the ringdown phase should be even weaker com-
pared to that of the inspiral phase. Secondly, in our study,
the effective potential is proportional to ðMμÞ8. When
Mμ < 1, the effective potential of the cloud is small relative
to that of the Kerr background. In contrast, in [79], the
effective potential due to scalar field is proportional to the
coupling constant α and μ2CS, where μCS stands for the mass
of the scalar field in massive Chern-Simons gravity. Thus,
the gravitational feedback on bosonic clouds and the effects
on the ringdown phase due to the feedback are more
suppressed than massive Chern-Simons gravity. For these
reasons, we expect our approximation is valid for our
analysis. Nonetheless, to prepare for future astrophysical
detections, it will be beneficial to study the gravitational
feedback of bosonic clouds more thoroughly with numeri-
cal efforts.
Other than assuming the Cowling-like approximation

(A2), we have also ignored any changes in the amplitudes
of the quasinormal modes, focusing instead on the fre-
quency shifts. Future in-depth studies to include the
changes of amplitudes into our measurement could lead

us towards probing lower boson masses at further distances,
as effects of the bosonic cloud on quasinormal-mode
excitation factors should lead to stronger ringdown wave-
form effects. Moreover, when computing the shifts of
QNMFs, we assume ðMμÞ2 ≪ 1 (A1), which is a physi-
cally motivated regime for ultralight boson searches
[18,23,26]. We also note a few outstanding questions
which may be of future interest: for one, whether the
bosonic cloud around a black hole will break the isospec-
trality of gravitational quasinormal modes [80] and lead to
the emergence of new modes remain to be seen. We also
hope to explore the effects of vector and tensor ultralight
bosons on a black hole’s gravitational quasinormal modes.
Our work has several important implications. Firstly, our

method is capable of probing the mass of ultralight bosons
with ringdown analyses, both by constraining the mass in
the absence of a detection, and via direct detection if the
scalar ultralight boson actually exists. Our ringdown-based
analysis could bolster already existing inspiral-based analy-
ses, and strengthen evidence for detection of ultralight
bosons [26]. Secondly, our work illustrates a method for
calculating shifts in the quasinormal modes due to sur-
rounding environmental effects, which may be extended to
other possible dark matter structures, like halos [66,81–83]
and spikes. This sheds light on a whole new direction to
detect signatures of dark matter. Thirdly, the potential
derived in this paper may also affect the self-force calcu-
lations [84–89] for estimating GWs generated by an EMRI,
which is the skeleton of many proposed methods to search
for the existence of ultralight bosons by dynamical friction.
To fully account for the effects of a bosonic cloud on EMRI

FIG. 5. The 50% (dashed) and 95% (solid) CI of the two-dimensional posteriors of spin af and the base-10 log of mass log10 Mf of Sgr
A* (left panel) and M32 (right panel) with injected μ ¼ 0 (blue) and Mμ ¼ 0.3 (red). The scatter points mark the mass and spin of the
host black holes. Contours on both panels enclose the respective injected values, meaning that while we measure μ, we can also
accurately measure the properties of the host black hole. Thus, our analysis will not mistake a black hole with a bosonic cloud as a
vacuum black hole of a different mass or spin.
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orbits, self-force calculations may need to consider the
bosonic cloud effective potential we have derived.
Other than searching for dark matter, our calculations

may help to test scalar-field involved alternative theories,
such as Gauss-Bonnet theories [90] and scalarized black
holes [91–94]. Existing studies of gravitational QNMFs of
black holes in these theories are confined to nonrotating or
slowly rotating black holes [95–101]. This limitation
hinders us from thoroughly testing these alternative theo-
ries from astrophysical black holes as they are usually
spinning. We note that scalar fields described by energy-
momentum tensors similar to Eq. (6) appear in these
theories. Calculations presented in this paper might be
useful for extracting QNMFs of generically spinning black
holes in these alternative theories. Once these spectra are
available, these theories can be subjected to more thorough

GW tests, paving a new way to study environmental effects
of black holes through GW detection.
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APPENDIX A: EXPLICIT EXPRESSIONS FOR THE EFFECTIVE POTENTIAL
AND FREQUENCY SHIFTS

The polynomials C021
n ðx; yÞ and C022

n ðx; yÞ in Eq. (28) are

C021
0 ðr̃; k̃Þ ¼ 4k̃2r̃5 þ ð−16k̃2 − 8k̃Þr̃4 þ ð20k̃2 þ 38k̃þ 4Þr̃3 þ ð−8k̃2 − 60k̃ − 24Þr̃2

þ ð32k̃þ 48Þr̃ − 32

C021
2 ðr̃; k̃Þ ¼ −4k̃2r̃8 þ ð14k̃2 − 4k̃Þr̃7 þ ð−24k̃2 þ 22k̃þ 2Þr̃6 þ ð30k̃2 − 27k̃ − 15Þr̃5

þ ð−24k̃2 þ 12k̃þ 30Þr̃4 þ ð8k̃2 − 4k̃ − 44Þr̃3 þ 56r̃2 − 32r̃

C021
1 ðr̃; k̃Þ ¼ 0; ðA1Þ

C022
0 ðr̃; k̃Þ ¼ −14k̃2r̃6 þ ð68k̃2 þ 14k̃Þr̃5 þ ð−118k̃2 − 87k̃Þr̃4 þ ð88k̃2 þ 212k̃þ 12Þr̃3

þ ð−24k̃2 − 236k̃ − 72Þr̃2 þ ð96k̃þ 144Þr̃ − 96

C022
2 ðr̃; k̃Þ ¼ 18k̃2r̃7 þ ð14k̃ − 60k̃2Þr̃6 þ ð90k̃2 − 103k̃ − 16Þr̃5 þ ð−72k̃2 þ 148k̃þ 108Þr̃4

þ ð24k̃2 − 68k̃ − 216Þr̃3 þ 224r̃2 − 96r̃

C022
1 ðr̃; k̃Þ ¼ 0: ðA2Þ

The polynomials D021
n ðxÞ and D022

n ðxÞ in Eq. (31) are

D021
0 ðk̃Þ ¼ −256k̃8 þ 704k̃7 − 160k̃6 þ 288k̃5

D021
2 ðk̃Þ ¼ 2048k̃8 − 7680k̃7 þ 9184k̃6 − 11168k̃5 þ 7432k̃4 − 3672k̃3 þ 864k̃2

D021
4 ðk̃Þ ¼ −6144k̃7 þ 22720k̃6 − 22464k̃5 þ 18584k̃4 − 7484k̃3 þ 1092k̃2 þ 336k̃

D021
6 ðk̃Þ ¼ 7680k̃6 − 27136k̃5 þ 20464k̃4 − 11164k̃3 þ 1830k̃2 þ 402k̃ − 24

D021
8 ðk̃Þ ¼ −5120k̃5 þ 17360k̃4 − 9268k̃3 þ 2980k̃2 − 23k̃ − 15

D021
10 ðk̃Þ ¼ 1920k̃4 − 6432k̃3 þ 2214k̃2 − 379k̃þ 16

D021
12 ðk̃Þ ¼ −384k̃3 þ 1380k̃2 − 274k̃þ 30

D021
14 ðk̃Þ ¼ 32k̃2 − 160k̃þ 16

D021
16 ðk̃Þ ¼ 8

D021
j ðk̃Þ ¼ 0 for odd j; ðA3Þ
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D022
0 ðk̃Þ ¼ 1768k̃8 þ 576k̃7 − 1536k̃6 þ 1936k̃5 − 1008k̃4

D022
2 ðk̃Þ ¼ 6144k̃8 − 18432k̃7 þ 19872k̃6 − 12896k̃5 þ 3368k̃4 þ 72k̃3

D022
4 ðk̃Þ ¼ −18432k̃7 þ 44736k̃6 − 46144k̃5 þ 24360k̃4 − 4100k̃3 − 588k̃2

D022
6 ðk̃Þ ¼ 23040k̃6 − 45312k̃5 þ 41488k̃4 − 15628k̃3 þ 550k̃2 þ 498k̃

D022
8 ðk̃Þ ¼ −15360k̃5 þ 22800k̃4 − 18556k̃3 þ 4462k̃2 þ 236k̃ − 48

D022
10 ðk̃Þ ¼ 5760k̃4 − 5184k̃3 þ 4274k̃2 − 603k̃ − 14

D022
12 ðk̃Þ ¼ −1152k̃3 þ 36k̃2 − 470k̃þ 44

D022
14 ðk̃Þ ¼ 96k̃2 þ 192k̃þ 20

D022
16 ðk̃Þ ¼ −24

D022
j ðk̃Þ ¼ 0 for odd j: ðA4Þ

The functions E021ðxÞ and E022ðxÞ in Eq. (31) are

E021ðk̃; μ̃; b̃Þ ¼ ð24k̃μ̃2 − 14k̃2 − 5k̃ − 8μ̃4 − 2μ̃2ÞEið2b̃Þ þ 4iπb̃2; ðA5Þ

E021ðk̃; μ̃; b̃Þ ¼ ð−24k̃μ̃2 − 6k̃2 þ k̃þ 12μ̃4 þ 20μ̃2ÞðEið2b̃Þ − iπÞ; ðA6Þ

where EiðxÞ is the exponential integral special function

EiðxÞ ¼
Z

x

−∞
dz

ez

z
: ðA7Þ

When deriving the potentials, we have made use of the
following fact which we found numerically:I

dΩS022Y22ðθ;ϕÞ ∼
I

dΩS021Y21ðθ;ϕÞ ∼ 1: ðA8Þ

APPENDIX B: CALCULATIONS OF
LOGARITHMIC PERTURBATION

To calculate the QNMFs due to an additional, perturba-
tive potential, we apply the method of logarithmic pertur-
bations. To start, it will be more convenient for us to
transform Eq. (9) into a Klein-Gordon-like equation, by
letting u ¼ Δ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
RðrÞ [45]. Then u satisfies

∂2u
∂x2 þ ðω2 − Vð0ÞðxÞ − VKG

ULBðrÞÞu ¼ 0; ðB1Þ

where x is the tortoise coordinate defined by d
dx ¼ Δ

r2þa2
d
dr,

Vð0ÞðxÞ is the intrinsic potential, and VKG
ULBðrÞ is the trans-

formed potential due to bosonic cloud, which is related to
VðULBÞ by

VKG
ULB ¼ −

Δ
ðr2 þ a2Þ2 VULBðrÞ: ðB2Þ

As ðMμÞ8 ≪ 1, jVKG
ULBj ≪ jVð0Þj, and by logarithmic per-

turbation theory, we can compute the QNMFs up to the

leading order of OðVKG
ULBÞ. Formally, the shifted QNMFs

are given by [32]

ω̃nlm ≈ ω̃ð0Þ
nlm þ hujVKG

ULBjui
2ω̃ð0Þ

nlmhujui
; ðB3Þ

where ω̃ð0Þ is the QNMFs for μ ¼ 0, which we take to be
the values in [58], u is the solution to Eq. (B1) when
VKG ¼ 0, and

hujui ¼
Z þ∞

−∞
dxu2ðxÞ;

hujVKG
ULBðxÞjui ¼

Z
∞

−∞
dxuðxÞVKG

ULBðxÞuðxÞ: ðB4Þ

Since uðxÞ ∼ eikx, for a negative imaginary component of
the QNMF hujVULBjui is dominated by contributions from
the far field. In this limit,

RðrÞ ∝ r3eþiωr: ðB5Þ

Thus, in the far-field limit, we can make the following
approximations to simplify our calculations of T̃:

∂rRðrÞ ¼ þiωr3eþiωr þ 3r2eþiωr ≈ iωRðrÞ;
∂2
2RðrÞ ≈ −ω2r3eþiωr ¼ −ω2RðrÞ: ðB6Þ

These approximations are valid because r=M ≫ 1 and the
terms of the highest power of r dominate. Therefore,
we take
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uðrÞ ∝ r2eþiωr: ðB7Þ

Evaluating Eq. (B4), we have

ω̃nlm ≈ ω̃ð0Þ
nlm þ Δnlmðμ;Ms;MÞ

2ω̃ð0Þ
nlm

: ðB8Þ
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