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The deflection and gravitational lensing of light and massive particles in arbitrary static, spherically
symmetric and asymptotically (anti–)de Sitter spacetimes are considered in this work. We first proved that
for spacetimes whose metric satisfies certain conditions, the deflection of null rays with fixed closest
distance will not depend on the cosmological constant Λ, while that of timelike signals and the apparent
angle in gravitational lensing still depend on Λ. A two-step perturbative method is then developed to
compute the change of the angular coordinate and total travel time in the weak field limit. The results are
quasipower series of two small quantities, with the finite distance effect of the source/detector naturally
taken into account. These results are verified by applying to some known asymptotically de Sitter
spacetimes. Using an exact gravitational lensing equation, we solved the apparent angles of the images and
time delays between them and studied the effect of Λ on them. It is found that generally, a small positive Λ
will decrease the apparent angle of images from both sides of the lens and increase the time delay between
them. The time delay between signals from the same side of the lens but with different energy however, will
be decreased by Λ.
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I. INTRODUCTION

Deflection of light by a massive object was one of the
most striking predictions of General Relativity (GR). Its
confirmation [1] not only greatly advanced the acceptance
of GR among the scientific community, but also laid the
foundation for the gravitational lensing (GL) phenomena.
GL nowadays has become an important tool in astronomy
and cosmology, due to the fact that GL observables can be
connected to the properties of the source, the lens, the
messengers and the spacetime the messengers went
through. It was used to investigate properties of supernova
[2], coevolution of galaxies and supermassive black holes
(SMBHs) [3], cosmological parameters [4,5] and dark
matter and energy [6,7] and to find exoplanets [8,9].
Regarding the messengers in the GL, light rays were the

only practical choice. However, with the discovery of the
SN 1987A supernova neutrinos [10,11] and more recent
blazar TXS 0506þ 056 neutrinos [12,13], and the impor-
tant observation of gravitational waves (GWs) after 2015
[14,15], it was clear that neutrinos and GWs can both be
the messengers in GL. These messengers are becoming
particularly important partially due to the discoveries of

GL of supernova [16,17] and multimessenger GRB-GW
events [18], and partially because the angular and time
resolutions of their detectors are advancing rapidly.
Meanwhile, this calls for the more careful investigation
of the deflection and GL of massive timelike signals, in
hope of better understanding some key problems in
astronomy and particle physics, such as the supernova
mechanism and neutrino properties [19–21].
In recent years, the deflection and GL of both null and

timelike signals in asymptotic flat spacetimes have been
considered theoretically by many authors using different
methods, such as the perturbative method [19,20,22–25]
and Gauss-Bonnet theorem method [26–30], and in differ-
ent limits, including both the weak field limit (WFL) and
strong field limit [23,31–34]. With the establishment of
the existence of dark energy and dark matter, people are
becoming increasingly interested in the deflection and GL
in asymptotically (anti–)de Sitter (dS) spacetimes. Many
authors studied the deflection of light rays in the
Schwarzschild-dS (SdS) spacetime [35–37]. Li et al. stud-
ied the strong GL of light rays in a brane world black hole
(BH) [38]. Panpanich et al. investigated the deflection
angle of light rays in a massive gravity [39]. Seçuk et al.
computed the deflection at a particular detector location in
the Ressner-Nordstrom(RN)-dS-Monopole spacetime [40].
Heydari-Fard studied the deflection angle in a novel 4D
Gauss-Bonnet-de Sitter spacetime using the Rindler-Ishak
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method. However, the above investigations of deflection
and GL are all done for light rays. There are still few works
that considered the deflection of timelike rays in (a)dS
spacetimes. Previous research either mainly concentrated
on the influence of Λ on some general features of the
massive particles’ trajectory, such as its perihelion shift
[41–44] or innermost stable circular orbits [45], or at most
studied deflection of timelike rays in a particular spacetime
[46]. In other words, a general method that can deal with
arbitrary static and spherically symmetric (SSS) and
asymptotically (a)dS spacetimes, like what Ref. [31] did
to the deflection in the strong field limit, is still lacking. In
this work, we attempt to establish a perturbative method
that can fulfill this task. This is an extension of our previous
work in the asymptotically flat spacetimes [24,47].
Moreover, we will also prove a result regarding the (in)
dependence of the deflection angle on the cosmological
constant Λ.
This work is organized as follows. In Sec. II, we lay out

the basic metric, geodesics and definition of the deflection,
and show the condition that the deflection angle is (in)
dependent on the cosmological constant. In Sec. III, the
perturbative method developed in Refs. [24,47] is extended
to the case of arbitrary SSS and asymptotically (a)dS
spacetimes. Both the deflection angle and total travel time
for null and timelike rays are computed, with the finite
distance effect of the source and detector taken into
account. These results are applied to four particular dS
spacetimes in Sec. IV to verify their correctness. In Sec. V,
the apparent angles of the GL images are solved from a new
GL equation applicable to deflection angles with finite
distance effect. The time delays between images from
opposite sides of the lens and between images with
different energies are also computed. The effects of Λ to
these observables are carefully studied. Section. VI con-
cludes the work with a short discussion. Throughout the
work we use the natural unit G ¼ c ¼ 1 and spacetime
signature ð−;þ;þ;þÞ.

II. DEFLECTION IN ASYMPTOTICALLY
dS SPACETIMES

We start from the most general SSS and asymptotically
dS spacetime with metric

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞðdθ2 þ sin2θdϕ2Þ; ð1Þ

where ðt; r; θ;ϕÞ are the coordinates and A, B, C are metric
functions depending on r only. Without losing any general-
ity, for SSS spacetimes we can choose the metric functions
A and B to satisfy A ¼ 1=B, which is allowed (at least
locally) by doing necessary changes of coordinates in r. For
SSS and asymptotically dS spacetimes therefore we can set
the metric functions to the following form:

AðrÞ ¼ 1

BðrÞ ¼ fðrÞ − Λr2

3
gðrÞ; ð2Þ

where Λ is the cosmological constant. In the following, we
will focus on the asymptotically dS case, i.e., assuming
Λ > 0. However, as one can verify, all methods and results
in this work are also valid to the asymptotically anti-dS
cases. In Eq. (2), we will assume that fðrÞ and gðrÞ can be
asymptotically expanded as inverse power series of r,
implying that the spacetime is asymptotically flat if Λ
was zero.
From the geodesic equations associated with metric (1),

the following equations can be obtained:

dϕ
dr

¼
ffiffiffiffi
B
C

r
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2=A − κÞC − L2
p ; ð3Þ

dt
dr

¼
ffiffiffiffiffiffiffi
BC

p

A
Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2=A − κÞC − L2
p ; ð4Þ

where κ ¼ 0, 1 respectively for null and timelike signals
and

E ¼ AðrÞ dt
dτ

; L ¼ CðrÞ dϕ
dτ

ð5Þ

are two first integral constants, with τ being the affine
parameter or proper time. In asymptotically flat spacetimes,
they are interpreted respectively as the energy and angular
momentum per unit mass measured by asymptotic observ-
ers. Here we will just treat them as two constants character-
izing the test particle. L can be related to E and the minimal
radius r0 using the radial equation (4), i.e., dr=dtjr¼r0 ¼ 0,
to find

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðr0ÞðE2=Aðr0Þ − κÞ

q
: ð6Þ

In other words, among the three variables L;E; r0, only two
of them are free. If desired, r0 can be solved from Eq. (6) as
a function of L, E, κ, and Λ. In asymptotically flat
spacetimes, this r0 can be related to the impact parameter
b of the trajectory. Although in the asymptotically dS
spacetimes, we can still define an effective impact param-
eter beff for purpose of comparison using Eq. (6) for L

beff ¼
Lffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − κ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðr0ÞðE2=Aðr0Þ − κÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − κ

p ; ð7Þ

the interpretation of jbj as the distance from the asymptotic
line to the lens center is in general spoiled. The reason is
that for asymptotically dS spacetimes with Λ > 0, no
timelike signal will be able to go beyond the cosmological
horizon located at rH ≈

ffiffiffiffiffiffiffiffiffi
Λ=3

p
. Another important reason

one should restrain from using this beff is that it makes the
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analysis of the influence of Λ obscured because as revealed
by Eq. (7), beff itself is also Λ dependent.
Using Eqs. (3) and (4), the change of the angular

coordinate Δϕ and the travel time Δt from a source at
radius rs to a detector at radius rd (see Fig. 1) can be
computed as

Δϕ ¼
�Z

rs

r0

þ
Z

rd

r0

� ffiffiffiffi
B
C

r
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2=A − κÞC − L2
p dr; ð8Þ

Δt ¼
�Z

rs

r0

þ
Z

rd

r0

� ffiffiffiffiffiffiffi
BC

p

A
Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2=A − κÞC − L2
p dr: ð9Þ

Throughout this work, we will assume that the source,
lens and detector are all static so that rs and rd will not
change.
In principle, for general metric functions A, B and C,

these two integrations cannot be carried out to closed forms
and therefore approximations have to be made. In this
work, we will show that there exists a systematical
way to perturbatively handle these integrals so that the
deflection angle and travel time for both null and timelike
signals can be computed to any desired accuracy for any
SSS and asymptotically (a)dS spacetimes. Moreover, the
method can take into account the finite distance effect of rs
and rd naturally. Before this however, we first prove in
Sec. II A that in some special cases of the spacetime
and signal, the deflection Δϕ for fixed r0 is indeed
independent of Λ.

A. (In)dependence of Δϕ on Λ for
timelike(null) signals

In this subsection, we will first show that for asymp-
totically dS spacetimes with AðrÞ and BðrÞ given by
Eq. (2), if the metric functions satisfy

CðrÞ ¼ h · r2gðrÞ; ð10Þ

where h is a Λ and r independent constant, then for a null
signal with fixed minimal radius r0 and L, E, its angular
coordinate change Δϕ as defined in Eq. (8) will be
independent of Λ. We will further show that the apparent
angle θ (see Fig. 1) against the lens-detector axis in GL as
measured by a detector with fixed rd however, does change
as Λ varies. Moreover, we will also show that for timelike
signals, not only the apparent angle θ but also the Δϕ itself
will change as Λ changes.
We start from substituting Eq. (6) into Eq. (8) and setting

κ ¼ 0 for null signals, yielding

Δϕ ¼
�Z

rs

r0

þ
Z

rd

r0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞCðr0Þ

CðrÞ½Aðr0ÞCðrÞ − AðrÞCðr0Þ�

s
dr

¼
�Z

rs

r0

þ
Z

rd

r0

�
r0
r

ffiffiffiffiffiffiffiffiffiffi
gðr0Þ
gðrÞ

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

h½fðr0Þr2gðrÞ − fðrÞr20gðr0Þ�

s
dr; ð11Þ

where in the second step metric functions (2) and (10) are
used. It is from Eq. (11) we observe that Δϕ does not
explicitly contain or depend on Λ for fixed rs, rd and r0.
After integration, Δϕ becomes a function of the following
form:

Δϕ ¼ Δϕðrs; rd; r0; other parametersÞ; ð12Þ

where “other parameters” include all the particle parame-
ters such as its energy E and spacetime parameters such as
its mass M and charge Q, but not the cosmological
constant Λ.
We emphasize that this is a general result applicable to

all metrics satisfying Eqs. (2) and (10). Such metrics
certainly include the familiar ones like SdS or RNdS
spacetimes. Moreover, this independence holds regardless
of the values of rs, rd or r0 as long as they are physically
allowed. In other words, this is also applicable to source/
detector near the cosmological horizon (i.e., rs; rd → rH),
or to signals that experience lensing in the strong field limit
(i.e., r0 → rphoton sphere). We also point out that the inde-
pendence of Δϕ on Λ for fixed r0 was previously
recognized for null rays in the SdS spacetime [48].
On the other hand, for timelike signals with κ ¼ 1,

substituting Eq. (6) and the metric functions (2) and (10)
into Eq. (8), we obtain

FIG. 1. The deflection and GL of signals in asymptotically dS
spacetimes. S, L, D represent the source, lens and detector
respectively. The large dashed circle and the smaller dashed circle
are respectively the cosmological horizon with radius rH and
black hole event horizon with radius rh. βL and β label the angular
location of the source with respect to the lens and detector
respectively. The observed apparent angle is labeled as θ.
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Δϕ ¼
�Z

rs

r0

þ
Z

rd

r0

�
dr

r0
r

ffiffiffiffiffiffiffiffiffiffi
gðr0Þ

p
ffiffiffiffiffiffiffiffiffi
gðrÞp

×


E2 − fðr0Þ þ Λr2

0

3
gðr0Þ

E2h½fðr0ÞgðrÞr2 − fðrÞgðr0Þr20� − h½r2gðrÞ − r20gðr0Þ�½fðrÞ − Λr2
3
gðrÞ�½fðr0Þ − Λr2

0

3
gðr0Þ�

vuut : ð13Þ

Here no further simplification like in the null case is possible. It is then clear that this Δϕ will unavoidably depend on the
value of Λ. Similarly, for the total travel time, substituting Eqs. (6), (2) and (10) and κ ¼ 0 into Eq. (9), we have

Δt ¼
�Z

rs

r0

þ
Z

rd

r0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2gðrÞ½fðr0Þ − Λr2

0

3
gðr0Þ�

q
fðrÞ − Λr2

3
gðrÞ

×


E2h½fðr0ÞgðrÞr2 − fðrÞrðr0Þr20� − hðr2gðrÞ − r20gðr0ÞÞ½fðrÞ − Λr2
3
gðrÞ�½fðr0Þ − Λr2

0

3
gðr0Þ�

q dr: ð14Þ

It is also clear that the total travel time and consequently
the time delay between the images will all depend on Λ,
even for light rays. For timelike rays, we can verify
similarly to Δϕ in Eq. (13) that the dependence of Δt
on Λ is even more apparent.

B. Dependence of the apparent angle on Λ
The apparent angle of the light ray observed by a static

observer against the observer-lens axis however is not Δϕ
but θ, as illustrated in Fig. 1. As pointed out by Bhadra
et al. [49], θ is indeed dependent on Λ for light rays in the
SdS spacetime. In this part, we will briefly demonstrate that
this is generally true for other asymptotically dS spacetimes
too. The angle θ in the SSS spacetimes described by metric
(1) can be computed using the projection of the four
velocity of the signal

dxμsig
dτ

¼
�
E
A
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −

L2A
C

−
κ

B

r
; 0;

L
C

�
ð15Þ

onto that of the static observer [24,50]

dxμobs
dτ

¼
�

1ffiffiffiffiffiffiffiffiffiffiffi
AðrdÞ

p ; 0; 0; 0
�
: ð16Þ

It is straightforward to show that the resultant apparent
angle θ for metric (1) is

θ ¼ arcsin

�
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − κAðrdÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffi
AðrdÞ
CðrdÞ

s �

¼ arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − κAðr0Þ
E2 − κAðrdÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrdÞCðr0Þ
Aðr0ÞCðrdÞ

s �
; ð17Þ

where in the second step Eq. (6) is substituted for L.

The apparent angle (17) at a freely varying beff and a
particular observer location rb determined by the alignment
of the source, lens and observer (see Eq. (15) of Ref. [46]
for its value in SdS spacetime), was previously computed
for light rays and timelike signals in SdS spacetime in
Refs. [35–37] and [46] respectively. Although in these
works, θ was called the “deflection angle” and this choice
of rb is not well justified [49], nevertheless we plugged
rd ¼ rb into Eq. (17) and verified that Eq. (17) will
correctly yield the corresponding values in these cases,
i.e., Eq. (15) of Ref. [35], Eq. (17) of Ref. [36] (with
a ¼ 0), Eq. (31) of Ref. [37] and Eq. (18) of Ref. [46]. In
Ref. [51], the apparent angle, also called the deflection
angle there, in dilaton–de Sitter spacetime was computed
for null rays. We also plugged in the corresponding rd
given in Eq. (2.22) of that paper into Eq. (17) and verified
that this yields its Eq. (4.3) to the order M2=r20;
MD=r20; r

3
0Λ=M and r20Λ [see Eq. (48) for the meaning

of these parameters].
For light signal with κ ¼ 0, Eq. (17) simplifies to

θ ¼ arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrdÞCðr0Þ
Aðr0ÞCðrdÞ

s �
: ð18Þ

In a GL configuration, if Λ is changed while holding source
and detector static, i.e., rs, rd and βL in Fig. 1 unchanged,
then it is clear from Fig. 1 that Δϕ ¼ π � βL is also kept as
a constant. From Eq. (12), this in turn means that for null
signal, as Λ varies, r0 should not change either. Then
immediately using Eq. (18) we see that θ will vary since all
variables in the metric function Aðr0Þ or AðrdÞ are
unchanged except Λ.
For timelike signal, we have shown previously that

unlike null signal, its Δϕ will change with the variation
of Λ. For its apparent angle θ, it is also seen from Eq. (17)
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by setting κ ¼ 1 that it will depend on the parameter Λ
through Aðr0Þ and AðrdÞ, just as in the case of null signal.
Finally we also note there exist other definitions of the

deflection angle in studies in asymptotically dS spacetimes.
For example Ref. [52] defined a deflection angle αSdS as the
difference between the inner angles of a geodesic triangle in
the SdS spacetime and in a comparison dS spacetime.
Moreover, as pointed out before, the deflection angle in
Refs. [35–37,46] is actually the apparent angle in this work.
Furthermore, if the spacetime is expanding, as in ΛCDM
standard cosmology, a deflection angle can also be defined
[53]. Because of the difference in these definitions, how-
ever, the conclusion about the effect of Λ on these
deflection angles might be different from the SSS case
considered here.

III. PERTURBATIVE DEFLECTION
IN THE WFL

In this section, we will resume computing Δϕ and Δt
according to Eqs. (8) and (9) in the WFL for asymptotically
dS spacetimes. In this limit, we can safely assume that

M ≪ r0 ≪ frs; rdg < rH ≈
ffiffiffiffiffiffiffiffiffi
3=Λ

p
; ð19Þ

where M is the mass of the spacetime.

A. The change of angular coordinate Δϕ
Starting from definition (8), our goal here is to find a

perturbative way to systematically expand the integrand,
which should then allow us to carry out the integration and

find an approximation of Δϕ. The main difficulty in
perturbative expansion in the asymptotically dS spacetime
in the WFL, comparing to that in asymptotically flat
spacetime, is that we cannot straightforwardly carry out
the large r0=M (or beff=M) expansion because the source or
observer cannot be at a radius larger than the cosmological
horizon rH. Therefore in this work, we use a trick to hold
r0=rH small while doing the large r0 expansion. We first
define a small variable ε

ε≡ r0
ffiffiffiffi
Λ

p
∼ r0=rH so that r0 ¼

εffiffiffiffi
Λ

p : ð20Þ

Then we can make a change of variable in Eq. (8) from r to
the new integral variable u,

r → u ¼ r
r0

or equivalently r ¼ ur0 ¼
uεffiffiffiffi
Λ

p : ð21Þ

Using this, the integral limits of Eq. (8) and the Jacobian
become

r0 → 1; rs;d →
rs;d

ffiffiffiffi
Λ

p

ε
≡ us;d; ð22Þ

dr →
εffiffiffiffi
Λ

p du: ð23Þ

Substituting Eq. (6) into Eq. (8) and using the change of
variables (21) for all r, Δϕ becomes

Δϕ ¼
�Z

us

1

þ
Z

ud

1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð uεffiffiffi

Λ
p Þ

Cð uεffiffiffi
Λ

p Þ

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih

E2

Að εffiffi
Λ

p Þ − κ
i
Cð εffiffiffi

Λ
p Þ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih

E2

Að uεffiffi
Λ

p Þ − κ
i
Cð uεffiffiffi

Λ
p Þ −

h
E2

Að εffiffi
Λ

p Þ − κ
i
Cð εffiffiffi

Λ
p Þ

r εffiffiffiffi
Λ

p du: ð24Þ

Since it is assumed that the spacetime is asymptotically
flat if Λ were zero, we can set the fðrÞ, gðrÞ and CðrÞ in
Eq. (2) to the following expansion form at large r:

fðrÞ¼
X
n¼0

fn
rn

; gðrÞ¼
X
n¼0

gn
rn
; CðrÞ¼ r2

X
n¼0

cn
rn
: ð25Þ

Without losing any generality, we can always set f0 ¼
g0 ¼ c0 ¼ 1 by a scaling of coordinates t, r and constant Λ.
Moreover, we can always identify f1 ¼ −2M where M is
the Arnowitt-Deser-Misner mass of the spacetime.
To perturbatively compute Δϕ in Eq. (24), we propose a

two-step perturbative method, to expand the integrand for
small Λ first and then for small ε. According to Eq. (20),
expanding around smallΛ is essentially equivalent to a large
r0 expansion,while the subsequent small ε expansionmakes

sure that r0=rH is still kept small.We emphasize that in order
for the method towork and to have a proper interpretation of
the result, it is important to carry out the expansion in the
above order. Substituting Eqs. (2) and (25) into (24) and
carrying out the said expansion, Δϕ is found to be

Δϕ ¼
�Z

us

1

þ
Z

ud

1

�X∞
n¼0

Λn
2

εnðuþ 1Þn

×
�X∞

m¼0

ε2m
� Xnþ2m−1

k¼1−n−2δm0

pn;m;k
ukffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 1

p
��

du; ð26Þ

where pn;m;k are the expansion coefficients determined by
the metric function coefficients and δm0 is the Kronecker
delta function. The first several pn;m;k are given by
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p0;0;−1 ¼ 1; ð27aÞ

p0;1;1 ¼
−κ

6ðE2 − κÞ ; ð27bÞ

p1;0;−2 ¼ p1;0;−1 ¼ −
f1 þ c1

2
; ð27cÞ

p1;0;0 ¼ −
E2ðf1 − c1Þ þ κc1

2ðE2 − κÞ ; ð27dÞ

p1;1;0¼
E4ð2g1−2c1Þ
12ðE2− κÞ2

þ κ½E2ð3c1þ5f1−4g1Þ−c1−3f1þ2g1�
12ðE2− κÞ2 ; ð27eÞ

p1;1;1 ¼
κ½E2ðc1 þ f1 − 2g1Þ − c1 − 3f1 þ 2g1�

12ðE2 − κÞ2 ; ð27fÞ

p1;1;2 ¼
κ½E2ðf1 − c1Þ þ c1�

12ðE2 − κÞ2 : ð27gÞ

The higher-order ones can be obtained easily too but are
more lengthy and therefore not presented here except in
some specific spacetimes in Sec. IV. Note that since the
dimension offn, gn and cn areMnwhereM is themass of the
spacetime, from Eq. (27) we see that the dimension ofpn;m;k

is also Mn. One would expect that if fn, gn and cn are
comparable to or smaller thanMn,pn;m;k will also be smaller
than or at most comparable to Mn.
Now the computation of Δϕ in Eq. (26) relies on the

integrability of the following integrals:

In;kðus;dÞ≡
Z

us;d

1

uk

ðuþ 1Þn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 1

p du ð28Þ

¼
Z

αs;d

0

cosn−k−1α
ðcos αþ 1Þn dα; ð29Þ

where in the second step a change of variables u ¼ sec α is
used, and αs;d ≡ sec−1ðus;dÞ are defined. We can prove that
the integral (29) can always be carried out for general n and
k. Their results are elementary functions given in Eq. (A6).
Later, to study the finite distance effect of rs;d and to solve
the lensing equations, we can also expand In;k’s in the large
us;d limit, whose leading order results are presented in
Eqs. (A8) and (A9). Substituting In;k back into Eq. (26) and
replacing ε by r0 using (20), we have finally

Δϕ ¼
X
j¼s;d

X∞
n¼0;m¼0

Δϕn;m; ð30Þ

where the contribution from order 1=rn0 and ðr20ΛÞm is

Δϕn;m ¼ ðr20ΛÞm
rn0

Xnþ2m−1

k¼1−n−2δm0

pn;m;kIn;k

�
rj
r0

�
: ð31Þ

A few comments are in order for result (30). Firstly, this
result is a quasipower series of two variables, namely 1=r0
and r20Λ. The simultaneous appearance of r20 and Λ in
ðr20ΛÞm makes sure that the large r0 limit will not cause
divergence in Δϕ since r0 < rH ∼

ffiffiffiffiffiffiffiffiffi
3=Λ

p
. Secondly, note

from the expression (27) that for null signal and if cn ¼
h · gn for all n ≥ 0 (h was fixed to 1 when setting
c0 ¼ g0 ¼ 1), all pn;m;k with m ≥ 1 indeed will reduce
to zero. Since the m ≥ 1 terms in Δϕ are exactly the terms
containing Λ, the above is just a manifestation of the
independence of Δϕ on Λ for null signals in spacetime
satisfying Eq. (10), as proven in Sec. II A. It is also clear
that even for timelike rays with κ ¼ 1, the m ≥ 1 terms are
generally suppressed in the ultrarelativistic limit ðE → ∞Þ
by the 1=E2m factor and therefore the effect ofΛwill be less
obvious.
Further noticing the order estimation (A8), for the k

summation in Eq. (30) we see that for each fixed m and n,
the term with highest index k ¼ nþ 2m − 1 will dominate.
Therefore keeping only these terms, Δϕ in Eq. (30) should
roughly be

Δϕ≈
X
j¼s;d

�X∞
n¼0

Ln;n−1

rn0
pn;0;n−1

þ
X∞

n¼0;m¼1

1

2m− 1

1

rn0
ðr20ΛÞmpn;m;nþ2m−1

�
rj
r0

�
2m−1

�

¼
X
j¼s;d

�X∞
n¼0

Ln;n−1

rn0
pn;0;n−1

þ r0
rs;d

X∞
n¼0;m¼1

1

2m− 1

1

rn0
ðr2s;dΛÞmpn;m;nþ2m−1

�
; ð32Þ

where Ln;n−1ðn ≥ 0Þ are r0 and Λ independent constants
given in Eq. (A8). Since the coefficients pn;m;k are of
dimension Mn, if the coefficients fn, gn and cn are not
much larger thanMn, then as an order estimation we should
have

OðΔϕÞ ¼
X∞
n¼0

�
M
r0

�
n
·Oð1Þ

þ r0
rs;d

X∞
n¼0;m¼1

Mn

rn0
ðr2s;dΛÞm ·Oð1Þ: ð33Þ

Clearly, Δϕ is a quasiseries of product of two series of two
small parameters, M=r0 and r2s;dΛ respectively. The domi-
nance of the terms depends on the detailed numerical
values of these parameters. In Sec. V, we will consider two
limiting cases: the first beingM=r0 as large as possible and
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r2s;dΛ is small, and the second case being r2s;dΛ as large as
possible and M=r0 small.

B. The total travel time

For the total travel time (9), we can carry out a procedure
similar to steps from Eqs. (19)–(30). After the change of
variables (21) and expansion of Λ and then ε, Δt becomes

Δt¼
�Z

us

1

þ
Z

ud

1

�X∞
n¼0

Λn−1
2

εn−1ðuþ1Þn

×

�X∞
m¼0

ε2m
� Xmax½n−2;0�þ2mþ1

k¼1−n
qn;m;k

ukffiffiffiffiffiffiffiffiffiffiffiffi
u2−1

p
��

du; ð34Þ

where qn;m;k are related to the coefficients of the metric
functions. The first few of them are

q0;0;1 ¼
Effiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − κ
p ; ð35aÞ

q0;1;1 ¼ −
E3

6ðE2 − κÞ32 ; ð35bÞ

q0;1;2 ¼ 0; ð35cÞ

q0;1;3 ¼
Eð2E2 − 3κÞ
6ðE2 − κÞ32 ; ð35dÞ

q1;0;0 ¼
Eðc1 − 3f1Þ
2ðE2 − κÞ12 ; ð35eÞ

q1;0;1 ¼ −
Ef1ð2E2 − 3κÞ
2ðE2 − κÞ32 ; ð35fÞ

and higher-order ones can be similarly obtained without
any difficulty. The qualitative difference of Eq. (34) from
Eq. (26) is that the beginning order of

ffiffiffiffi
Λ

p
=ε is from −1.

This is expected because Δt should carry a dimension
of ½ ffiffiffiffi

Λ
p

=ε�−1 ¼ ½r0�.
Equation (34) can also be integrated, yielding the

result

Δt ¼
X
j¼s;d

X∞
n¼0;m¼0

Δtn;m; ð36Þ

where

Δtn;m ¼ ðr20ΛÞm
rn−10

Xmax½n−2;0�þ2mþ1

k¼1−n
qn;m;kIn;k

�
rj
r0

�
; ð37Þ

with In;k given by Eq. (A6). In particular, using the first few
In;k in Eq. (A7), to the order Oðr30ΛÞ, the total time is

Δt ¼
X
i¼s;d

�
q0;0;1r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri
r0

�
2

− 1

s
þ r30Λ

�
q0;1;1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri
r0

�
2

− 1

s
þ q0;1;3

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri
r0

�
2

− 1

s ��
ri
r0

�
2

þ 2

��
þ q1;0;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri=r0 − 1

ri=r0 þ 1

s

þ q1;0;1

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri
r0

�
2

− 1

s
þ ri
r0

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri=r0 − 1

ri=r0 þ 1

s ��
þO

�
M
r0

; r50Λ2

�
;

¼
X
i¼s;d

Effiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − κ

p
�
r0

�
ri
r0

−
r0
2ri

�
þ r30Λ
6ðE2 − κÞ

�ð2E2 − 3κÞr3i
3r30

−
3κri
2r0

−
ð2E2 − 9κÞr0

8ri

�

þðE2 − κÞc1 − E2f1
2ðE2 − κÞ

�
1 −

r0
ri

�
−
f1ð2E2 − 3κÞ
2ðE2 − κÞ ln

�
2ri
r0

��
þO

�
M
r0

; r50Λ2;
r20
r2i

�
; ð38Þ

where in the second step the qn;m;k given in Eq. (35) and
the expansion of In;k in Eq. (A9) are used. The first,
second and last two terms in the curl brackets are
respectively due to the Δt0;0;Δt0;1 and Δt1;0 terms in
Eq. (36). Later in Sec. V B, we will show that the total

time truncated to the above order will determine the
leading three orders of the time delay between the GL
images. One particularly interesting limit of Δt is its
ultrarelativistic limit. Expanding Eq. (38) in the infinite E
limit, we obtain
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Δt ≈
X
i¼s;d

�
ri −

r20
2ri

þ Λ
3

�
r3i
3
−

r40
8ri

�

þ c1 − a1
2

�
1 −

r0
ri
þ r20
2r2i

�
− a1 ln

8ri
r0

þ 1

E2

�
ri
2
−

r20
4ri

þ Λ
4

�
−r20ri þ

r40
2ri

�

þ c1 − 3a1
4

�
1 −

r0
ri
þ r20
r2i

���

þO
�
M
r0

; r50Λ2;
r20
r2i
;
1

E4

�
: ð39Þ

The first two lines represent the leading orders of the
travel time of null rays and the third and fourth lines are
the relativistic corrections. They will be useful when
considering the time delay between different kinds of
signals in Sec. V B.

IV. APPLICATION TO ASYMPTOTICALLY
dS SPACETIMES

To check the validity of the perturbative method pre-
sented in Sec. III, especially the change of the angular
coordinate (30), in this section wewill computeΔϕ in a few
known asymptotically dS spacetimes.

A. Schwarzschild-dS spacetime

We first consider the SdS spacetime case, which has a
metric of Eq. (1) with (2) and

fðrÞ ¼ 1 −
2M
r

; gðrÞ ¼ 1; CðrÞ ¼ r2: ð40Þ

From this, reading off the coefficients fi, gi and ci in
Eq. (25) and substituting into Eq. (27) and further into (30),
we immediately obtain Δϕ in SdS spacetime for both null
and timelike signals, with finite distance effect taken into
account. To the order OðM=r0Þ2 and Oðr20ΛÞ1, we have

ΔϕS ¼
X
j¼s;d

½ΔϕS;0;0 þ ΔϕS;0;1 þ ΔϕS;1;0 þ ΔϕS;1;1

þΔϕS;2;0� þO
��

M
r0

�
3

; ðr20ΛÞ2
�
; ð41Þ

where the contributions from each order are

ΔϕS;0;0 ¼ I0;−1; ð42aÞ

ΔϕS;0;1 ¼ −ðr20ΛÞ
κ

6ðE2 − κÞ I0;1; ð42bÞ

ΔϕS;1;0 ¼
M
r0

�
I1;−2 þ I1;−1 þ

E2

E2 − κ
I1;0

�
; ð42cÞ

ΔϕS;1;1 ¼
M
r0
ðr20ΛÞ

×
κ½ð3−5E2ÞI1;0þð3−E2ÞI1;1−E2I1;2�

6ðE2− κÞ2 ; ð42dÞ

ΔϕS;2;0 ¼
M2

r20

�
3

2
I2;−3þ3I2;−2þ

3ð3E2−κÞ
2ðE2− κÞ I2;−1

þE2ð3E2−5κÞ
ðE2−κÞ2 I2;0þ

E2ð3E2−4κÞ
2ðE2− κÞ2 I2;1

��
: ð42eÞ

Note the higher orders are obtained but not presented here
due to their length. To see the finite distance effect of the
source and detectors more clearly, using the expansions
(A9) for In;k, the ΔϕS;n;m become to the leading orders of
r0=ri ði ¼ s; dÞ

Δϕ0
S;0;0 ¼

π

2
−
r0
rj
; ð43aÞ

Δϕ0
S;0;1 ¼ −ðr20ΛÞ

κ

6ðE2 − κÞ
�
rj
r0

−
r0
2rj

�
; ð43bÞ

Δϕ0
S;1;0 ¼

M
r0

�
1þ E2

E2 − κ

�
1 −

r0
rj

��
; ð43cÞ

Δϕ0
S;1;1 ¼

M
r0

ðr20ΛÞ

×
κf2r0rj½3κ lnð2rjr0 Þ − 5E2� − 2E2r2jg

12ðE2 − κÞ2r0rj
; ð43dÞ

Δϕ0
S;2;0 ¼

M2

r20

½E4ð15π−16Þþ2E2κð4−9πÞþ3πκ�
8ðE2− κÞ2 : ð43eÞ

Here we kept the result to different orders of ðr0=rjÞ in
different ΔϕS;n;m because when they blend into ΔϕS, a
combined second order of the small quantities M=r0; r20Λ
and r0=rj can be achieved. Setting Λ ¼ 0 in Eqs. (42) and
(43) reduces them to the Schwarzschild results obtained
previously for both timelike and null rays [23]. On the other
hand, setting κ ¼ 0, the ðr20ΛÞnðn ≥ 1Þ terms automatically
disappear fromΔϕS and the result becomes that of null rays
[23]. If one is interested in the deflection of null rays
expressed in terms of beff , then replacing r0 by beff using
(7) and setting κ ¼ 0 in Eq. (43), Eq. (5) of Ref. [54] can be
recovered. On the other hand, if one is interested in the null
deflection from a source to an observer both located
asymptotically at the cosmological horizon, then setting
κ ¼ 0 and rs ¼ rd ¼ rH in Eq. (43), Eq. (55) of Ref. [55] is
obtained.
To verify the correctness of these results, in Fig. 2(a) we

plot the contributions from different Δϕ0
S;n;m in Eq. (43).

Note that in this figure as well as in Fig. 2(b), some orders
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higher than shown in Eq. (43) are also plotted for
illustration purpose. In cosmology, it is known through
Planck 2018 observation that the cosmological constant is
quite small, Λc ≤ 1.06 × 10−52 [m−2] [56]. To see the effect
of Λ clearly among the contributions from all terms, we
have to use very large r0; rs;d and relatively small M.
Therefore we chose a toy dwarf galaxy whose distance is
rd ¼ 13.4 billion ly [57] with a mass M ¼ 106 M⊙ as the
lens. For energy E, as pointed out in Sec. III, the infinite E
limit will force Δϕ to approach its value of null rays and
become independent of Λ in the SdS case. Therefore in
the plots, we will only set E to a relatively small value,
E ¼ 6, which corresponds to the v=c ¼ 0.99 if the space-
time was asymptotically flat. From Fig. 2(a), it is seen that
for terms not involving Λ, i.e., Δϕ0

S;n;0 (n ¼ 1, 2) plotted
using the brown and red solid curves, the contribution for
each n decreases monotonically as r0 increases, and the two
terms are separated by about M=r0. These are expected

features similar to the perturbative deflection angle of
Schwarzschild spacetime [23]. For the terms containing
Λ, one observes that forΔϕ0

S;0;i (i ¼ 1, 2) plotted using blue
and magenta dashed curves, their sizes increase with the
increase of r0. ForΔϕ0

S;1;i (i ¼ 1, 2) plotted using green and
cyan dashed curves however, their sizes are almost inde-
pendent of r0 and then for Δϕ0

S;2;i (i ¼ 1, 2) using light and
darker dot-dashed curves, their sizes decrease monotoni-
cally as r0 increases. These features can be understood from
the general order estimation Eq. (32), where we knew that
ΔϕS;n;m (m ≥ 1) to the leading order should be proportional
to r1−n0 . Among the terms dependent on Λ, clearly, ΔϕS;0;1

is the largest. Comparing to the largest Λ independent term
ΔϕS;1;0, it is seen that for the given choice of parameters
ðM; rs;d;ΛÞ, ΔϕS;0;1 only becomes comparable when r0
reaches about 8½ 00� × rd.
To study how good is the perturbative result (41) in

approximating the true deflection angle, we first defined a
truncated ΔϕS;n̄;m̄ from (41):

ΔϕS;n̄;m̄ ¼
X
j¼s;d

X̄n
n¼0

X̄m
m¼0

ΔϕS;n;m; ð44Þ

where n̄ and m̄ are the truncation orders of n and m
respectively. And then in Fig. 2(b), its relative difference
jΔϕS;n̄;m̄ − ΔϕS;numj=jΔϕS;numj from the numerical deflec-
tion angle ΔϕS;num obtained using numerical integration
from the original definition (8) was plotted. It is seen that as
both n̄ and m̄ increase, the percentage difference between
the truncated Δϕn̄ m̄ and the ΔϕS;num keeps decreasing.
Note that because the ΔϕS;n;mðm ≥ 1Þ terms are negative,
for some n̄; m̄ and at some particular r0, these truncated
ΔϕS;n̄;m̄ might cross the numerical value ΔϕS;num and
therefore the difference at that point is zero.

B. RNdS spacetime

RNdS spacetime is described by the metric (1) with (2)
and

fðrÞ ¼ 1−
2M
r

þQ2

r2
; gðrÞ ¼ 1; CðrÞ ¼ r2: ð45Þ

As in the case of SdS spacetime, reading off the coefficients
fi, gi and ci in Eq. (25) from this and substituting them into
Eqs. (27) and (30), the change of the angular coordinate in
the RNdS spacetime ΔϕR to the order ðM=r0Þ2 and ðr20ΛÞ1
becomes

(a)

(b)

FIG. 2. Δϕ0
S using Eq. (43). (a) The curve with legend “n,m”

corresponds to Δϕ0
S;n;m and “jn;mj” to jΔϕ0

S;n;mj. (b) The curve
with n̄ m̄ corresponds to jΔϕ0

S;n;m − Δϕ0
S;numj=jΔϕ0

S;numj.
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ΔϕR ¼
X
j¼s;d

�
ΔϕS;0;0 þ ΔϕS;0;1 þ ΔϕS;1;0 þ ΔϕS;1;1

þM2

r20

�
−
1

2
ðQ̂2 − 3ÞI2;−3 − ðQ̂2 − 3ÞI2;−2 −

1

2
½E2ð2Q̂2 − 9Þ þ κð3 − Q̂2Þ�I2;−1

−
E2

ðE2 − κÞ2 ½E
2ðQ̂2 − 3Þ þ κð5 − Q̂2Þ�I2;0−

E2

2ðE2 − κÞ2 ½E
2ðQ̂2 − 3Þ þ κð4 − Q̂2Þ�I2;1

��

þO
��

M
r0

�
3

; ðr20ΛÞ2
�
; ð46Þ

where Q̂≡Q=M and ΔϕS;n;m are given in Eq. (42). It is seen that the effect of the electric charge on the deflection angle
emerges from order 1=r20 for the Λ ¼ 0 case. The large source/detector distance expansion of ΔϕR is

Δϕ0
R ¼

X
j¼s;d

�
Δϕ0

S;0;0 þ Δϕ0
S;0;1 þ Δϕ0

S;1;0 þ Δϕ0
S;1;1

þM2

r20

1

8ðE2 − κÞ2 ½E
4ð15π − 3πQ̂2 − 16Þþ2E2κð2πQ̂2 − 9π þ 4Þ þ ð3 − Q̂2Þπκ�

�

þO
��

M
r0

�
3

; ðr20ΛÞ2;
�
r0
rs;d

�
2
�
; ð47Þ

where Δϕ0
S;n;m are given in Eqs. (43). We can easily verify

that when setting Q̂ ¼ 0, the second-order terms propor-
tional to ðM=r0Þ2 in Eqs. (46) and (47) reduce to ΔϕS;2;0 in
Eq. (42e) and Δϕ0

S;2;0 in Eq. (43e). On the other hand,
taking Λ ¼ 0, Eqs. (46) and (47) reduce to the correspond-
ing results in RN spacetime for both null and timelike
rays [22,24].
From Eq. (47) it is clear that the spacetime chargeQ does

not appear in the first-order terms of ðr20ΛÞ. Therefore to
this order, the effect of Λ on ΔϕR is the same as its effect in
SdS spacetime. As we saw in Sec. IVA for the SdS case,
the first order of ðr20ΛÞ is already very small and therefore
we will not pursue to study the second-order terms propor-
tional to ðr20ΛÞ2 in the RNdS spacetime.

C. Dilaton–dS spacetime

The metric of the dilaton–dS spacetime is given by
Eq. (1) with (2) and [58]

fðrÞ ¼ 1 −
2M
r

; gðrÞ ¼ 1 −
2D
r

;

CðrÞ ¼ r2
�
1 −

2D
r

�
; ð48Þ

whereD is the dilaton charge. WhenD ¼ 0, this reduces to
the SdS spacetime metrics. Reading off the coefficients fi,
gi and ci in Eq. (25) from this and substituting into
Eqs. (27) and (30), we have ΔϕD in this spacetime to
the leading orders

ΔϕD ¼
X
j¼s;d

½ΔϕD;0;0 þ ΔϕD;0;1 þ ΔϕD;1;0 þ ΔϕD;1;1

þΔϕD;2;0� þO
��

M
r0

�
3

; ðr20ΛÞ2
�
; ð49Þ

where

ΔϕD;0;0 ¼ ΔϕS;0;0; ð50aÞ

ΔϕD;0;1 ¼ ΔϕS;0;1; ð50bÞ

ΔϕD;1;0 ¼
M
r0

�
ð1þ D̂ÞðI1;−2 þ I1;−1Þ

þ
�

E2

E2 − κ
− D̂

�
I1;0

�
; ð50cÞ

ΔϕD;1;1¼
M
r0
ðr20ΛÞ

κ

6ðE2− κÞ×
��

D̂−
5E2−3

E2− κ

�
I1;0

þ
�
D̂−

E2−3

E2− κ

�
I1;1þ

�
D̂−

E2

E2− κ

�
I1;2

�
; ð50dÞ

ΔϕD;2;0¼
M2

r20

�
1

2
ð3D̂2þ2D̂þ3ÞI2;−3þð3D̂2þ2D̂þ3ÞI2;−2

þ
�
D̂2

2
−

D̂E2

E2−κ
þ3ð3E2−κÞ

2ðE2−κÞ
�
I2;−1

þ
�
−3D̂2þ D̂κ

E2−κ
þE2ð3E2−5κÞ

ðE2−κÞ2
�
I2;0

þ
�
−
D̂2

2
−

D̂E2

E2−κ
þE2ð3E2−4κÞ

2ðE2−κÞ2
�
I2;1

�
; ð50eÞ
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where ΔϕS;0;0 and ΔϕS;0;1 are given in Eqs. (42a) and (42b)
and D̂≡D=M. The finite distance expansions of these
contributions are

Δϕ0
D;0;0 ¼ Δϕ0

S;0;0; ð51aÞ

Δϕ0
D;0;1 ¼ Δϕ0

S;0;1; ð51bÞ

Δϕ0
D;1;0 ¼

M
r0

��
D̂ −

E2

E2 − κ

�
r0
rj

þ 2E2 − κ

E2 − κ

�
; ð51cÞ

Δϕ0
D;1;1 ¼

M
r0

ðr20ΛÞ
κ

6ðE2 − κÞ
��

D̂ −
E2

ðE2 − κÞ
�
rj
r0

þD̂ −
5E2 − 3 lnð2rjr0

Þ
E2 − κ

�
; ð51dÞ

Δϕ0
D;2;0¼

M2

r20

�
−
1

8
πD̂2−

D̂ðð3π−8ÞE2þð4−πÞκÞ
4ðE2− κÞ

þð15π−16ÞE4þð8−18πÞE2κþ3πκ

8ðE2− κÞ2
�
: ð51eÞ

whereΔϕ0
S;0;0 andΔϕ0

S;0;1 are given in Eqs. (43a) and (43b).
When the dilaton charge is zero, Eqs. (50) and (51) reduce
to the corresponding SdS results (42) and (43) respectively.
Unlike the charge parameter Q in the RNdS spacetime,

the dilaton charge D in ΔϕD appears from the first order of
M=r0, i.e., in the ΔϕD;1;m terms in Eq. (50) and Δϕ0

D;1;m

terms in Eq. (51). For the effect of Λ in which we are more
interested however, because the metric functions (48) of the
dilaton–dS spacetime also satisfy the condition (10), it is
seen from Eqs. (50b) and (50d) that when κ ¼ 0, the ðr20ΛÞ
terms will also vanish completely, as predicted in Sec. II A.
Therefore, the effect of Λ on ΔϕD of null rays with fixed r0
will be absent too.

D. Brane world BH spacetime

The line element of the brane world BH is given by
Eq. (1) with (2) and [59]

fðrÞ¼ 1−
2M
r

; gðrÞ¼ 1þ2β̂

r
þ β̂2

r2
; CðrÞ¼ r2; ð52Þ

with Λ ¼ α2; β̂≡ β=α and α, β are some parameters that
have not been well constrained. When β̂ ¼ 0, clearly this
reduces to the SdS spacetime. Note that this metric does not
satisfy condition (10) and therefore we would expect that
even for light rays, the Δϕðr0Þ will depend on Λ. This is
indeed the case, as we will see in Eq. (56).
Reading off the coefficients and substituting them into

Eqs. (27) and (30), the change of the angular coordinate in
this spacetime becomes

ΔϕB ¼
X
j¼s;d

½ΔϕB;0;0 þ ΔϕB;0;1 þ ΔϕB;1;0 þ ΔϕB;1;1

þΔϕB;2;0� þO
��

M
r0

�
3

; ðr20ΛÞ2
�
; ð53Þ

where the contributions from each order are

ΔϕB;0;0 ¼ ΔϕS;0;0; ð54aÞ

ΔϕB;0;1 ¼ ΔϕS;0;1; ð54bÞ

ΔϕB;1;0 ¼ ΔϕS;1;0; ð54cÞ

ΔϕB;1;1 ¼
M
r0

ðr20ΛÞ ×
��

−
κð5E2 − 3Þ
6ðE2 − κÞ2 þ

β̂

3M

�
I1;0

−
�
κðE2 − 3Þ
6ðE2 − κÞ2 þ

κβ̂

3MðE2 − κÞ
�
I1;1

−
κE2

6ðE2 − κÞ2 I1;2
�
; ð54dÞ

ΔϕB;2;0 ¼ ΔϕS;2;0; ð54eÞ

where ΔϕS;n;m are given in Eq. (42). Note for the terms in
Eq. (53) that do not involve ðr20ΛÞ, i.e., terms except
ΔϕB;n;1, their forms are exactly as in the SdS case because
in the case that Λ is not present, substituting Eq. (52) into
Eq. (2) leads exactly to the SdS spacetime.
Again, to see the finite distance effect, using the

expansions (A9) for the first few In;k’s, the ΔϕB;n;m become
to the leading orders of r0=riði ¼ s; dÞ

Δϕ0
B;0;0 ¼ Δϕ0

S;0;0; ð55aÞ

Δϕ0
B;0;1 ¼ Δϕ0

S;0;1; ð55bÞ

Δϕ0
B;1;0 ¼ Δϕ0

S;1;0; ð55cÞ

Δϕ0
B;1;1 ¼

M
r0

ðr20ΛÞ ×
�
−

κE2

6ðE2 − κÞ2
rj
r0

þ E2 β̂
M

3ðE2 − κÞ

þ
κ½ðð2 − 2E2Þ β̂

M þ 3Þ lnð2rjr0
Þ − 5E2�

6ðE2 − κÞ2
�
; ð55dÞ

Δϕ0
B;2;0 ¼ Δϕ0

S;2;0; ð55eÞ

where again Δϕ0
S;n;m are given in Eq. (43). After changing

from r0 to beff , this result agrees with Eq. (25) of Ref. [60]
to the order Λβ̂beff. A key difference of Eq. (55) from the
previous SdS, RNdS and dilaton–dS spacetime results is
that due to the breaking of condition (10) by metric (52),
even for the null signal the effect of the cosmological
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constantΛwill still be present. That is, for light, setting κ to
zero in Eq. (55d) we have

Δϕ0
B;1;1ðκ ¼ 0Þ ¼ M

r0
ðr20ΛÞ

β̂

3M
¼ β̂r0Λ

3
: ð56Þ

In addition, this result itself also shows that our perturbative
method for computing Δϕ can work not only for metrics
satisfying (10) but also those breaking it.
In Figs. 3(a) and 3(b), we plot the contribution from each

order of Eq. (55) for ðκ ¼ 1; E ¼ 6Þ and κ ¼ 0 respectively.
We chose the parameter β̂ ¼ 0.0100rd. Other parameters are
the same as in Fig. 2. Comparing plots 3(a) and 3(b), we
observe that unlike the case of ΔϕS, some of the ΔϕB;n;m

(m ≥ 1) terms proportional to Λm also survived after setting
κ ¼ 0, e.g., the ΔϕB;1;1, ΔϕB;2;1 and ΔϕB;2;2 terms.

V. THE GRAVITATIONAL LENSING IN
ASYMPTOTICALLY dS SPACETIMES

A. The GL apparent angles

In order to study the GL effect in asymptotically dS
spacetimes, we should first build a proper lensing equation

(LE), from which the apparent angles of the lensed images
can be solved for any given angular position of the lens, i.e.,
βL or β in Fig. 1. Traditionally, this LE was built using
deflection angle for source and observer located at spacial
infinity, together with some approximate geometric rela-
tion. However in the case that spatial infinity cannot be
reached as in asymptotically dS spacetimes, this is not
possible. In contrast, if Δϕ with finite distance effect is
known, we can actually build an exact LE without having to
set the source/detector to some approximate locations. This
exact LE is just the relation between the change of angular
coordinate Δϕ given in Eq. (30) and the source angular
location βL (see Fig. 1):

π � βL ¼ Δϕðr0Þ; ð57Þ

where the þ and − signs correspond respectively to the
trajectories rotating anticlockwise and clockwise. From this
equation, the closest distance r0 can be solved, after which
using Eqs. (6) and (17) the apparent angle θ can be
obtained.
Since Δϕ in (30) after the large rs;d=r0 expansion of In;k

is a rational function of r0, the analytical solution to
Eq. (57) will be difficult if we keep too high or too many
orders of r0 in Δϕ. Therefore we will truncate Δϕ in
Eq. (57) to the highest solvable order. We will analyze the
GL in two limiting cases. Case (1) is whenM=r0 is as large
as possible while r2s;dΛ is as small as possible, and case
(2) is when M=r0 is as small as possible while r2s;dΛ is as
large as possible.
In case (1), such as in the GL by the SgrA* SMBH, we

would have a typical OðM=r0Þ ¼ 10−6 ∼ 10−5, and if Λ ¼
Λc is used, r2s;dΛc ¼ 6.7 × 10−12. Then the n ¼ 0, 1 and
m ¼ 0 terms in Δϕ are much larger than the n ≥ 2, m ¼ 0
and n ≥ 0, m ≥ 1 terms and therefore keeping only the
former terms, the LE (57) becomes

π � βL ¼
X
j¼s;d

�
p0;0;−1I0;−1

�
rj
r0

�
þ 1

r0

X0
k¼−2

p1;0;kI1;k

�
rj
r0

��
:

ð58Þ

To solve r0, wewill directly use the large rs;d=r0 expansions
of I0;−1 and I1;kðk ¼ −2;−1; 0Þ given in Eq. (A9). Then the
above equation becomes a quadratic equation of r0:

π � βL ¼
X
j¼s;d

�
π

2
−
r0
rj

þ 1

r0

�
p1;0;−2

�
2 −

π

2

�

þp1;0;−1

�
π

2
− 1

�
þ p1;0;0�

�

¼
X
j¼s;d

�
π

2
−
r0
rj

−
1

r0

ð2E2 − κÞf1
2ðE2 − κÞ

�
; ð59Þ

(a)

(b)

FIG. 3. ΔϕB using Eq. (55). (a) κ ¼ 1, E ¼ 6; (b) κ ¼ 0. Other
parameters are the same as in Fig. 2.
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where in the second step p0;0;−1 and p1;0;k in Eq. (27) were
substituted. Solving this, we find two allowed r0: r0þ and
r0− for signals from the counterclockwise and clockwise
directions respectively:

r0� ¼ 1

2ðrd þ rsÞ
�
∓rdrsβL

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2dr

2
sβ

2
L −

4rdrsðrd þ rsÞð2E2 − κÞf1
E2 − κ

s �
: ð60Þ

Case (2) can be realized by the GL of more distant
objects so that rs;d and consequently r2s;dΛ can be larger. In
this case, the n ¼ 0; m ¼ 0, 1 terms of Δϕ could be more
important than the n ¼ 1, m ¼ 0 term which is certainly

much larger than the n ≥ 2 terms. Therefore the LE (57)
becomes

π � βL ¼
X
j¼s;d

�
p0;0;−1I0;−1

�
rj
r0

�
þ 1

r0

X0
k¼−2

p1;0;kI1;k

�
rj
r0

�

þðr20ΛÞ
X1
k¼−1

p0;1;kI0;k

�
rj
r0

��
: ð61Þ

Here we kept the term proportional to 1=r0 because this
does not spoil the solvability of the equation. Using the
large rs;d=r0 expansion of I0;kðk ¼ −2;−1; 0Þ and I1;kðk ¼
−1; 0; 1Þ in Eq. (A9), this also becomes a quadratic
equation of r0,

π � βL ¼
X
j¼s;d

�
π

2
−
r0
rj

þ 1

r0

�
p1;0;−2

�
2 −

π

2

�
þp1;0;−1

�
π

2
− 1

�
þ p1;0;0

�
þ r0rjΛp0;1;1

�

¼
X
j¼s;d

�
π

2
−
r0
rj

−
1

r0

ð2E2 − κÞf1
2ðE2 − κÞ −

κr0rjΛ
6ðE2 − κÞ

�
; ð62Þ

where in the second step the pn;m;k were substituted by Eq. (27). From this, again r0 can be readily solved as

r0� ¼ 1

2ðrd þ rsÞ½1þ κrsrdΛ=½6ðE2 − κÞ��
�
∓rdrsβL þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2dr

2
sβ

2
L −

4rdrsðrd þ rsÞð2E2 − κÞf1
E2 − κ

�
1þ κrsrdΛ

6ðE2 − κÞ
�s �

: ð63Þ

The βL in this and the former result (60) can be replaced by the more commonly used β in Fig. 1, by using the following
geometrical relation between them:

rs sin βL ¼ ðrd þ rs cos βLÞ tan β: ð64Þ

This equation allows us to rewrite any formula involving βL into a formula using β. Solving this to the first order and
substituting into Eq. (63), r0� become

r0� ¼ rd
2½1þ κrsrdΛ=½6ðE2 − κÞ��

�
∓ β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 −

4rsð2E2 − κÞf1
rdðrd þ rsÞðE2 − κÞ

�
1þ κrsrdΛ

6ðE2 − κÞ
�s �

: ð65Þ

Clearly, Eq. (65) is a more general result than Eq. (60),
which is the asymptotically flat spacetime result: when
Λ → 0, Eq. (65) reduces to Eq. (60). In order for the effect
of Λ on r0� to be apparent, from Eq. (65) we see that we
should have for κ ¼ 1 the following condition:

rsrdΛ≳ 6ðE2 − 1Þ: ð66Þ

Noting the value of Λc, this means only for source and lens
that are of cosmic distance can the effect of Λ be important
to r0�. When this is the case, expanding (63) in small Λ,
one arrives at

r0�ðΛ→ 0Þ ¼ r0�ðΛ ¼ 0Þ þΛ×

"
rdrsβL

2ðrd þ rsÞ

−
r2dr

2
sβ

2
L −

2rdrsðrdþrsÞð2E2−κÞf1
E2−κ

2ðrd þ rsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2dr

2
sβ

2
L −

4rdrsðrdþrsÞð2E2−κÞf1
E2−κ

q
#
;

ð67Þ

where r0�ðΛ ¼ 0Þ is just the r0� in Eq. (60). It is not too
difficult by using typical parameter values to numerically
verify that the square bracket part is actually negative, and
therefore a positive Λ will decrease both r0þ and r0−.
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Having obtained r0�, substituting it into Eq. (17), we can
get the apparent angles of the two images,

θ� ¼ arcsin
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − κAðr0�Þ
E2 − κAðrdÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrdÞCðr0�Þ
Aðr0�ÞCðrdÞ

s �
: ð68Þ

Since rd ≫ r0 ≫ jf1j ¼ 2M, and if Oðfn; gn; cnÞ ≤ Mn,
then these apparent angles can be further expanded in terms
of the ratios among frd; r0;M;Λg. Substituting Eqs. (2),
(25) into (68), carrying out the expansion in terms of
Λ; r0�=rd;M=r0� and keeping only to the first order for
each of these, the apparent angles become

θ� ¼ r0�
rd

−
Λr0�rdE2

6ðE2 − κÞ þO
��

r0
rd

�
2

;ΛrdM;Λ2

�
; ð69Þ

where r0� is in Eq. (63). Further carrying out the small Λ
expansion in r0� using (67), the effect of Λ on θ� becomes
more apparent,

θ� ¼ r0�ðΛ ¼ 0Þ
rd

þ
�
CΛ

rd
−
r0�ðΛ ¼ 0ÞE2

6ðE2 − κÞ
�
Λ

þO
��

r0
rd

�
2

;ΛrdM;Λ2

�
; ð70Þ

where CΛ is the coefficient of Λ in the second term of
Eq. (67). Since both terms in the square bracket are
negative, it is clear then θ� will also decrease as Λ
increases. We point out that if Λ ¼ 0 as in asymptotically
flat spacetimes, the r0�ðΛ ¼ 0Þ=rd term can be reexpressed
using Eq. (60) in terms of the angle β, and θ�ðΛ ¼ 0Þ
become

θ�ðΛ ¼ 0Þ ¼ r0�ðΛ ¼ 0Þ
rd

¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4θ2E

q
∓ β

�
; ð71Þ

where the Einstein angular radius θEðΛ ¼ 0Þ is

θEðΛ ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

4rsð2E2 − κÞf1
rdðrd þ rsÞðE2 − κÞ

s
: ð72Þ

Equation (71) agrees perfectly with the apparent angles of
conventional point mass lensing [61].
In Fig. 4, we plot r0� in (63) and the two associated

apparent angles θ� in (68) as functions of βL and Λ. The
coefficient f1 is set to −2M and other parameters are the
same as in Fig. 2. We see from Fig. 4(a) that with this
parameter setting, the value of r0�ðβL → 0Þ=rd, which is
roughly the Einstein radius (in asymptotic flat spacetime),
is 0.010 [ 00] and the minimal radius r0þ (or r0−) decreases
(or increases) as βL increases, as expected from Fig. 1.
From Fig. 4(c) we see however, the exact value of θE
(defined as the value of θ� at βL ¼ 0) is at 0.0066 [ 00],

(a)

(b)

(c)

(d)

FIG. 4. The minimal radii r0� and apparent angles θ� for two
trajectories from two sides of the lens, as functions ofβL [(a) and (c)]
andΛ [(b) and (d)]. TheΛ in (a) and (c) are set toΛc. The chosen βL
in are respectively βL;1 ¼ 10−3, βL;2 ¼ 10−2 and βL;3 ¼ 10−1 [ 00].

ZIXIAO LI, HAOTIAN LIU, and JUNJI JIA PHYS. REV. D 104, 084027 (2021)

084027-14



slightly different from the value estimated from Fig. 4(a).
The reason is that the estimation θE ≈ r0�ðβL → 0Þ=rd only
works well when Λ ¼ 0, as indicated by Eqs. (70) and (71),
and the extra term proportional to Λ in Eq. (70) decreases
this value.
On the other hand, from Fig. 4(b) we observe that for all

three chosen βL (βL;1 ¼ 10−3, βL;2 ¼ 10−2 and βL;3 ¼ 10−1

[ 00]), r0� are (almost) independent of Λ. As pointed out
earlier, this is because for the chosen rs; rd;Λ and E, the
condition (66) is still far from being reached, which
consequently suppressed the effect of Λ. As for the
dependence of θ� on Λ, we see from Fig. 4(d) that unlike
r0�, the apparent angles from both sides of the lens for the
same three representative βL decrease very apparently as Λ
increases, as predicted by Eq. (70).

B. Time delay between GL images

With r0� known in Eq. (65), we can now utilize the total
travel time (38) to compute the time delay between GL
images. If the images are formed by the rays of the same
energy E but from different sides of the lens, then such time
delay is

Δ2t� ≡ Δtðr0þðEÞ; EÞ − Δtðr0−ðEÞ; EÞ; ð73Þ

where both the minimal radii r0� and total travel time
explicitly depend on the signal energy. On the other hand, if
we consider the time delay between signals from the same
side of the lens but having different energies, such as the
time delay between light (or GW) and neutrinos, or
neutrinos of different mass eigenstates, then such time
delay is

Δ2t12 ≡ Δtðr0ξðE1Þ; E1Þ − Δtðr0ξðE2Þ; E2Þ; ð74Þ

where ξ ¼ � represents the signals from the “þ” or “−”
side of the lens.
For the time delay Δ2t�, substituting Eq. (65) into (38),

and then further into (73) and simplifying the result, we
find

Δ2t� ¼
X
i¼s;d

Effiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − κ

p 2l2
ffiffiffiffiffiffiffiffiffiffiffi
ηþ 1

p
ri

þ El2
ffiffiffiffiffiffiffiffiffiffiffi
ηþ 1

p

6ðE2 − κÞ32
Λ
ri

× ½ð2E2 − 9κÞl2ðηþ 2Þ þ 6κr2i �

þ E

2ðE2 − κÞ32
�
½ðE2 − κÞc1 − E2f1�

2l
ri

−f1ð2E2 − 3κÞ ln
ffiffiffiffiffiffiffiffiffiffiffi
ηþ 1

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
ηþ 1

p
− 1

�

þO
�
ri
b2

;
rir20Λ
b

; riðr20ΛÞ2
�
; ð75Þ

where the auxiliary parameters l and η are

l ¼ rdβ
2½1þ κrsrdΛ=½6ðE2 − κÞ�� ; ð76Þ

η ¼ −
4f1rsð2E2 − κÞ

rdðrs þ rdÞβ2ðE2 − κÞ
�
1þ κrsrdΛ

6ðE2 − κÞ
�
: ð77Þ

The first, second and third terms in Eq. (75) are due to the
Δt0;0;Δt0;1 and Δt1;0 orders in the total travel times (38)
respectively. Therefore we can expect that the contribution
from first term to the time delay should be larger than other
terms. Note that in the case of Λ ¼ 0, Eq. (75) agrees with
the time delay in asymptotically flat SSS spacetimes [47].
The dependence of (75) on Λ however is not only through
the second term since there also existΛ dependence in l and
η. To isolate the effect of Λ, we can further expand (75) in
the small Λ limit, and find to the leading order of Λ

Δ2t� ≈
X
i¼s;d

Effiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − κ

p
�
2l20

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η0 þ 1

p
ri

− f1 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η0 þ 1

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
η0 þ 1

p
− 1

�

þ ΛE
ðE2 − κÞ32

�
−κl20rsrdð3η0 þ 4Þ

6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η0 þ 1

p
ri

þ κf1rsrd
6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η0 þ 1

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η0 þ 1

p �
κl20ri þ

l40ðη0 þ 2ÞðE2 − κÞ
3ri

��
þOðΛ2Þ; ð78Þ

where

l0 ¼ lðΛ → 0Þ ¼ rdβ
2

; ð79Þ

η0 ¼ ηðΛ → 0Þ ¼ −
8f1rs

rdðrs þ rdÞβ2
: ð80Þ

The first, second and third terms of the OðΛ1Þ order come
respectively from the Δt0;0 order, the Δt1;0 order and Δt0;1
order in the total travel time.
Here it is important to note that in the time delay Δ2t� in

Eq. (75), three nontrivial spacetime parameters, c1, f1 and
Λ are involved. However the first term of the Δt0;1 order
given in the curl bracket, which contains the only occasion
of c1, can be shown to be always much smaller than the
logarithmic term. And therefore in the expansion in
Eq. (78), the c1 disappears in the leading order of Δ2t�.
Therefore one can conclude that for arbitrary asymptoti-
cally dS spacetimes, the time delay Δ2t� depends only on
f1 and Λ, to the leading order.
In Fig. 5, we plot the time delay (75) and its three terms

Δ2t�0;0;Δ2t�0;1 andΔ2t�1;0 corresponding to contributions
from order Δt0;0;Δt0;1 and Δt1;0 in the total travel time, as
functions of β and Λ. Note that for comparison purpose, in
Fig. 5(b), we have allowed Λ to go beyond Λc to about
100Λc. We observe from Fig. 5(a) that as β decreases to
zero, all contributions decrease monotonically to zero, as
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expected for the time delay between signals from the two
sides of the lens. When β is smaller than 0.007½ 00� ∼ θE, the
Δ2t�0;0 and Δ2t�1;0 contribute similarly. When β increases
beyond θE however, the Δ2t�0;1 increases much faster than
Δ2t�1;0 and surpasses it at about β ≈ 0.23½ 00�. On the other
hand, from Fig. 5(b) we observe that as Λ increases to
∼10Λc, the Δ2t�0;1 term increases almost linearly as
dictated by the second term of Eq. (75) and its contribution
surpasses the Δ2t�1;0 and Δ2t�0;0 terms when Λ ¼ 50.6Λc

and Λ ¼ 41.1Λc respectively. Moreover, we also note that
for Λ smaller than 10Λc, superficially both the Δ2t�0;0 and
Δ2t�1;0 terms are almost invariant as Λ changes. However,
from Eq. (78) it is known that indeed these two terms also
contain Λ dependence comparable to the Δ2t�0;1 term in at
least some parameter space spanned by β, Λ and E etc.
Indeed, as Λ increases larger than 10Λc, their dependence
on Λ becomes very apparent. Furthermore, in the three
terms proportional to Λ in Eq. (78), we can show that for
any reasonable set of parameters frd;M; βg, the third term

will always be positive and larger than the first two terms
and therefore the total Δ2t� should increase as the small Λ
increase. This is also seen in the inset of Fig. 5(b), in which
Δ2t� increased until Λ ≈ 59Λc, beyond which the small Λ
expansion (78) broke down.
For the time delay between signals from the same side,

substituting r0� in Eq. (65) with the same sign but different
energies E1 and E2 into (38), and then further into (74),
the value of Δ2t12 can be obtained. Since the signals we
consider are usually relativistic or null, we can actually
substitute (65) directly into (39) and then expanding it in
the large energy limit and directly find, to the leading order
of 1=E2,

Δ2t12 ¼
X
i¼s;d

�
1

E2
1

−
1

E2
2

��
ri
2
−
rir20ξ∞Λ

4

�
þO

�
ri
E4

�
; ð81Þ

where

r0ξ∞≡ r0ξðE→∞Þ ¼ l0ð
ffiffiffiffiffiffiffiffiffiffiffiffi
η0þ 1

p
− ξÞ; ξ¼�1: ð82Þ

It is seen that generally, the existence of a positive
cosmological constant will decrease the time delay
Δ2t12. The second and first terms in the square bracket
of Eq. (81) have a ratio of r20ξ∞Λ=2. Unfortunately, for the
currently known Λc, r20ξ∞Λc ≪ 1 and therefore the second
term involving Λ will be much smaller than the first term.
Let us take the time delay between different mass eigen-
states jνii (i ¼ 1, 2, 3) of supernova neutrinos as an
example. Assuming that the average energy of the mass
eigenstates is hEi ¼ 10 ½MeV�, then the energies per unit
mass of the first mass eigenstates jνji and the second
mass eigenstate jνki are respectively E1 ¼ hEi=mj and
E2 ¼ hEi=mk. Substituting them into Eq. (81), then the
time delay between them simplifies to

Δ2t12 ¼
X
i¼s;d

Δm2
jk

hEi2
�
ri
2
−
rir20ξ∞Λ

4

�
þO

�
ri
E4

�
: ð83Þ

Since the mass square differences of neutrino mass eigen-
states are [62]

Δm2
12 ¼ −7.53 × 10−5 ½eV2�; ð84Þ

and for normal ordering

Δm2
23 ¼ −2.453 × 10−3 ½eV2� ð85Þ

and inverse ordering

Δm2
23 ¼ 2.546 × 10−3 ½eV2�; ð86Þ

then for the time delay between the mass eigenstates jν1i
(or roughly jν2i) and jν3i, one can compute the first and

(a)

(b)

FIG. 5. Time delay Δ2t� in Eq. (75) and its various terms as a
functions of β for Λ ¼ Λc (a) and as functions of Λ for β ¼
0.01½ 00� (b). The inset shows the total Δ2t� using linear scale for y
axis. Other parameters are the same as in Fig. 4.
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second terms in the square bracket of Eq. (83) using the
same rs;d andM as in Fig. 4. They yield at most 10.7 [s] and
2.14 × 10−8 ½s� for β ≈ 10½ 00� and ξ ¼ −1. Only if r20ξ∞Λ
were larger, which requires a larger rs;d;M and β, or the
resolution of the time delay is much better than
Oð10−8Þ ½s�, will the effect of Λ on Δ2t12 be explicitly
distinguishable.

VI. CONCLUSION

In this paper, we studied the deflection and GL of null
and timelike rays in general SSS and asymptotically (a)dS
spacetimes. We first showed that if the metric function
satisfies a simple condition, Eq. (10), then the change of the
angular coordinate for fixed r0 will actually not depend on
the parameter Λ for null rays, although that of timelike rays
(13), the apparent angles of the GL images (17), and the
total travel time (14) will still depend on Λ explicitly. A
two-step perturbative method is then developed to calculate
the change of the angular coordinate and the result is
expressed into a quasipower series form of both M=r0 and
Λ, i.e., Eq. (30), with the coefficients of the series
determined by the asymptotic expansion coefficients of
the metric functions. The finite distance effect of the
source/detector is also naturally taken into account. The
methodology is applied to SdS, RNdS, dilaton–dS and
brane-world–dS spacetimes to find the deflection in them.
The total travel time is computed using the same method
and expressed in a similar quasiseries, Eq. (36).
Using the obtained deflection, an exact GL equation is

used to solve the allowed minimal radius (65) from each
side of the lens and the corresponding apparent angles. It is
found that generally, due to the smallness of currently
known Λ, only for source of very large distance can the

effect ofΛ be apparent on these quantities. In this case, asΛ
increases, both apparent angles will decrease as Λ increases
(see Fig. 4). The time delaysΔ2t� between the images from
two sides and Δ2t12 between signals from the same side are
also obtained in Eqs. (75) and (81). We found that
qualitatively a small positive Λ will cause the former to
increase while the latter to decrease.
We emphasize the generality of the perturbative method

developed in this work: besides the four spacetimes
considered in Sec. IV, it can be applied to other interesting
asymptotically dS spacetimes for the computation of both
deflection and time delay for both null and timelike rays,
with finite distance effect naturally taken into account.
Moreover, although in the examples in this work, we
explicitly consider the case of asymptotically de Sitter
spacetimes with Λ > 0, indeed both the method and
relevant results are valid for asymptotically anti–de Sitter
spacetimes. Finally, a generalization of the method to more
realistic spacetime such as the equatorial plane of Kerr–dS
or Kerr-Newmann–dS spacetimes is also possible.
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APPENDIX: INTEGRATION FORMULAS

To carry out the integrals in Eq. (29), we first need to do
partial fraction decomposition to the integrand. When
kþ 1 < 0, we have

cosn−k−1α
ðcos αþ 1Þn ¼

Xn
i¼0

Ci
n−k−1ð−1Þn−k−i−1
ð1þ cos αÞn−i þ

X−k−1
i¼1

Xi

j¼0

Ciþn
n−k−1C

j
ið−1Þkþiþ1cosjα;

¼
Xn
i¼0

Ci
n−k−1ð−1Þn−k−i−1
ð2cos2 α

2
Þn−i þ

X−k−1
i¼1

Xi

j¼0

Ciþn
n−k−1C

j
ið−1Þkþiþ1cosjα: ðA1Þ

When 0 ≤ kþ 1 ≤ n, we have

cosn−k−1α
ðcos αþ 1Þn ¼

Xn−k−1
i¼0

Ci
n−k−1ð−1Þn−k−i−1
ð2cos2 α

2
Þn−i : ðA2Þ

When n < kþ 1, we have

cosn−k−1α
ðcos αþ 1Þn ¼ ð−1Þk−nþ1

Xn
i¼1

Cn−i
k−i

ð2cos2 α
2
Þi þ

Xk−nþ1

j¼1

ð−1Þk−n−jþ1Ck−n−jþ1
k−j

cosjα
: ðA3Þ

Equation (29) is integrable if the terms on the right-hand sides of these equations are integrable. Their integration can be
done using Eqs. 2.513 3, 4 and 2.519 1, 2 in Ref. [63] and the results for l > 0 are
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Z
dα

cos2lα
¼ sin α

2l − 1

�
sec2l−1αþ

Xl−1
kl¼1

2klðl − 1Þðl − 2Þ…ðl − klÞ
ð2l − 3Þð2l − 5Þ…ð2l − 2kl − 1Þ sec

2l−2kl−1α

�
; ðA4aÞ

Z
dα

cos2lþ1α
¼ sin α

2l

�
sec2lαþ

Xl−1
kl¼1

ð2l − 1Þð2l − 3Þ…ð2l − 2kl þ 1Þ
2klðl − 1Þðl − 2Þ…ðl − klÞ

sec2l−2klα
�
þ ð2l − 1Þ!!

2ll!
ln tan

�
π

4
þ α

2

�
; ðA4bÞ

Z
cos2l αdα ¼ 1

22l
Cl
2lαþ 1

22l−1

Xl−1
kl¼0

Ckl
2l
sin ½ð2l − 2klÞα�

2l − 2kl
; ðA4cÞ

Z
cos2lþ1 αdα ¼ 1

22l

Xl

kl¼0

Ckl
2lþ1

sin ½ð2l − 2kl þ 1Þα�
2l − 2kl þ 1

: ðA4dÞ

Corresponding to Eqs. (A4a) and (A4b), and (A4c) and (A4d), we then define two functions FnðαÞ and GnðαÞ as

F0ðαÞ ¼ α ðA5aÞ

F1ðαÞ ¼ ln tan

�
π

4
þ α

2

�
ðA5bÞ

FnðαÞ ¼
sin α
n − 1

�
secn−1αþ

X½n2�−1
i¼1

ðn − 2Þðn − 4Þ…ðn − 2iÞ
ðn − 3Þðn − 5Þ…ðn − 2i − 1Þ sec

n−2i−1α

�

þ
� 0; n is even and n > 0;

ðn−2Þ!!
ðn−1Þ!! ln tan ðπ

4
þ α

2
Þ; n is odd and n > 1;

ðA5cÞ

G0ðαÞ ¼ α ðA5dÞ

G1ðαÞ ¼ sin α ðA5eÞ

GnðαÞ ¼
1

2n−1

X½nþ1
2
�−1

i¼0

Ci
n
sin ½ðn − 2iÞα�

n − 2i
þ
�

1
2n
C

n
2
nα; n is even and n > 0;

0; n is odd and n > 1:
ðA5fÞ

So the result of the integral Eq. (29) is

In;k ¼
Z

αj

0

cosn−k−1α
ðcos αþ 1Þn dα ðαj ¼ sec−1uj; j ¼ s; dÞ

¼

8>>><
>>>:

P
n
i¼0

Ci
n−k−1ð−1Þn−k−i−1

2n−i−1
F2n−2iðαj2 Þ þ

P−k−1
i¼1

P
i
j¼0 C

nþi
n−k−1C

j
ið−1Þkþiþ1GjðαjÞ; kþ 1 < 0;P

n−k−1
i¼0

Ci
n−k−1ð−1Þn−k−i−1

2n−i−1
F2n−2iðαj2 Þ; 0 ≤ kþ 1 < n;

ð−1Þk−nþ1
P

n
i¼1

Cn−i
k−i

2i−1
F2iðαj2 Þ þ

Pk−nþ1
i¼1 ð−1Þk−n−iþ1Ck−n−iþ1

k−i FiðαjÞ; n < kþ 1.

ðA6Þ
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When n, k are small, the first few In;k that will be used in
the main text can be given explicitly:

I0;1ðujÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2j − 1

q
; ðA7aÞ

I0;2ðujÞ ¼
uj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2j − 1

q
2

þ 1

2
ln
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2j − 1
q

þ uj


; ðA7bÞ

I0;3ðujÞ ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2j − 1

q
ðu2j þ 2Þ; ðA7cÞ

I1;0ðujÞ ¼
uj − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2j − 1

q ; ðA7dÞ

I1;1ðujÞ ¼ ln
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2j − 1
q

þ uj


−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2j − 1

q
uj þ 1

: ðA7eÞ

The large uj expansion of In;kðujÞ can also be worked
out to the first nontrivial order as

In;k≈

8>>>>>><
>>>>>>:

uk−ns;d

k−n¼ 1
k−nðrs;dr0 Þk−n; k> n

lnð2ujÞ¼ ln½2rs;dr0
�; k¼ n;

ðn−k−1Þ!
2kð2n−2k−1Þ!!
×2F1ð12 ;−k; 12þn−k;−1Þ≡Ln;k; k< n:

ðA8Þ

where 2F1 is the Gaussian hypergeometric function and for
notation simplicity, we have denoted the result for the case
k < n as Ln;k. For the first few n and k that will be used,
their expansions can be worked to even higher orders,

I0;−1 ¼
π

2
−

1

uj
þO

�
1

u2j

�
; ðA9aÞ

I0;0 ¼ lnð2ujÞ þO
�
1

u2j

�
; ðA9bÞ

I0;1 ¼ uj −
1

2uj
þO

�
1

u2j

�
; ðA9cÞ

I0;2 ¼
u2j
2
þ ln 2uj

2
−
1

4
þO

�
1

u2j

�
; ðA9dÞ

I0;3 ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2j − 1

q
ðu2j þ 2Þ; ðA9eÞ

I1;−2 ¼ 2 −
π

2
þO

�
1

u2j

�
; ðA9fÞ

I1;−1 ¼
π

2
− 1þO

�
1

u2j

�
; ðA9gÞ

I1;0 ¼ 1 −
1

uj
þO

�
1

u2j

�
; ðA9hÞ

I1;1 ¼ lnð2ujÞ − 1þ 1

uj
þO

�
1

u2j

�
; ðA9iÞ

I1;2 ¼ uj − lnð2ujÞ þ 1 −
3

2uj
þO

�
1

u2j

�
; ðA9jÞ

I2;−3 ¼
7π

4
−
16

3
þO

�
1

u2j

�
; ðA9kÞ

I2;−2 ¼
10

3
− π þO

�
1

u2j

�
; ðA9lÞ

I2;−1 ¼
π

2
−
4

3
þO

�
1

u2j

�
; ðA9mÞ

I2;0 ¼
1

3
þO

�
1

u2j

�
; ðA9nÞ

I2;1 ¼
2

3
−

1

uj
þO

�
1

u2j

�
: ðA9oÞ
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