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In this paper, we provide a tractable example of a polyhomogeneous solution space for electromagnetism
at null infinity in four dimensions. The memory effect for electromagnetism is then derived from the
polyhomogeneous solution space. We also comment on the connection between the electromagnetic
memories and asymptotic symmetries.
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I. INTRODUCTION

Memory effects broadly exist in gauge and gravity
theories. In gravity theories, the memory effects can be
observed by geodesic deviation [1], time delay [2], and
velocity kick [3]. When the theory is solved in series
expansion in the inverse powers of a radial coordinate r, the
geodesic deviation has subleading order terms in the
expansion known as infinite towers of memory [4] (see
also [5,6]). In non-Abelian gauge theory, the memory effect
is observed by a net relative color rotation of a pair of
nearby quarks [7–9]. In electromagnetism, the memory
effects can be observed by velocity kick [10] and position
displacement [11] of a test charged particle. The realization
in experimental detections of memory effect can be found,
for instance, in [12].
In the context of the triangle relations [13], memory

effects are mathematically equivalent to soft theorems.
Considering soft theorems as factorization properties that
scattering amplitudes must obey in a low-energy expan-
sion, soft factors should be related to memories in the 1

r
expansion [4,14]. In general, loop corrections involve
logarithms of the energy of the soft particle. This has been
precisely verified in the classical soft theorem [15,16]. It is
natural to ask whether there is logarithmic memory effect.
Memory effects are mostly investigated by asymptotic

analysis, namely the theories are studied in series expan-
sion. Though the expansion of the fields are typically of
integer powers of the inverse of the radial coordinate [17],
there is a more realistic class of expansions involving
logarithms, i.e., the polyhomogeneous expansion [18]. In
this paper, we study electromagnetic memories with a
special emphasis on the logarithmic term in r. This model
allows one to illustrate several aspects of the logarithmic
memory in a simplified setting. We obtain a self-consistent
polyhomogeneous solution space for electromagnetism in
four dimensions. We provide the exact memory formulas
up to the first order with ln r. The logarithmic term only

involves the logarithmic contribution from the local source.
The interpretations of such type of terms in literature are
not in agreement. It is called null memory (kick) in [10]
while memory effects only account for a modification
induced by a burst of radiation in [4]. Here we would refer
to the logarithmic term in the memory formula as loga-
rithmic effect. Then we derive an infinite tower of electro-
magnetic memories at all integer orders of 1

r when turning
off the logarithmic terms. The memories at integer orders of
1
r are related to the large gauge transformation. However the
logarithmic effect is not a transition between two vacua of
the gauge field. It cannot be associated with large gauge
transformation.
The organization of this paper is as follows. In the next

section, we derive the polyhomogeneous solution space of
electromagnetism. In Sec. III, we specify the electromag-
netic memories, in particular the logarithmic effect. In
Sec. IV, we comment on the relation of electromagnetic
memory and large gauge transformation. We close with a
discussion in the last section.

II. THE POLYHOMOGENEOUS SOLUTION SPACE

The Minkowski space-time has two null boundaries, past
null infinity I− and future null infinity Iþ. They are better
appreciated in advanced or retarded coordinates respec-
tively. We will concentrate on Iþ in the present work,
although everything can be similarly repeated on I−. The
retarded spherical coordinates are defined with the change
of coordinates as follows:

u0 ¼ t −
ffiffiffiffiffiffiffiffi
xixi

q
; r0 ¼

ffiffiffiffiffiffiffiffi
xixi

q
;

x1 þ ix2 ¼ 2r0z0

1þ z0z̄0
; x3 ¼ r

1 − z0z̄0

1þ z0z̄0
: ð1Þ

The line element of Minkowski space-time becomes
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ds2¼−du02−2du0dr0 þ2r02

P2
S
dz0dz̄0; PS¼

1þ z0z̄0ffiffiffi
2

p : ð2Þ

In the retarded spherical coordinates, Iþ is just the
submanifold r ¼ ∞ with topology S2 × R. For computa-
tional simplicity, the celestial sphere at null infinity can be
mapped to a 2D plane with the following change of
coordinates [8,19,20]:

u ¼ PS

�
u0 −

z0z̄0u02

2ðr0 þ PS
u0ffiffi
2

p Þ

�
;

r ¼ 1

PS

�
r0 þ PS

u0ffiffiffi
2

p
�
;

z ¼ z0 −
PSz0u0ffiffiffi

2
p ðr0 þ PS

u0ffiffi
2

p Þ : ð3Þ

The line element of Minkowski space-time now is given by

ds2 ¼ −2dudrþ 2r2dzdz̄: ð4Þ

We will work out the polyhomogeneous solution space of
electromagnetism with this line element. Since the equa-
tions are in a covariant way, the results in line element
Eq. (2) can be simply derived by the change of coordi-
nates (3).
As [21], we choose the following gauge and asymptotic

conditions for the Maxwell fields and the current that is
coupled to the Maxwell fields

Ar ¼ 0; Au ¼ Oðr−1Þ; Az ¼ Oð1Þ;
Jr ¼ 0; Ju ¼ Oðr−2Þ; Jz ¼ Oðr−2Þ: ð5Þ

A conserved current derived from a global symmetry is
naturally defined up to the equivalence Jμ ∼ Jμ þ∇νk½μν�.
Hence it makes more sense to consider equivalence classes
of currents ½Jμ� [22]. We have used this ambiguity to set the
radial component of the current to zero. This choice is more
natural to work with the gauge choice of the Maxwell fields
in (5).
It is convenient to arrange all Maxwell’s equations in

Minkowski spacetime (4) with a conserved source Jμ as
follows [23,24]:

(i) one hypersurface equation: ∇μFμu ¼ Ju,
(ii) two standard equations: ∇μFμz¼Jz and ∇μFμz̄¼ Jz̄,
(iii) the current conservation equation: ∇μJμ ¼ 0,
(iv) one supplementary equation: ∇μFμr ¼ Jr.
When the first three types of equations are satisfied, the

electromagnetic Bianchi equation ∇ν½∇μFμν − Jν� ¼ 0
reduces to ∂r½ ffiffiffiffiffiffi−gp ð∇μFμr − JrÞ� ¼ 0. This implies that
we just need to solve ∇μFμr ¼ Jr at order Oðr−2Þ, and all
the remaining orders will automatically vanish. Thus the
last equation is called the supplementary equation.

From the current conservation equation we get

Ju ¼
J0uðu; z; z̄Þ

r2
−

1

r2

Z þ∞

r
dr0ð∂zJz̄ þ ∂ z̄JzÞ; ð6Þ

where J0uðu; z; z̄Þ is the integration constant in r. Next, by
integrating the hypersurface equation, we obtain

Au¼
A0
uðu;z;z̄Þ

r
þ
Z þ∞

r
dr0

1

r02

Z þ∞

r0
dr00ð∂z∂r00Az̄þ∂ z̄∂r00AzÞ;

ð7Þ

where A0
uðu; z; z̄Þ is the integration constant and the other

integration constant is turned off by the asymptotic con-
dition (5). Let us assume the following ansatz for the
expansion of the gauge field

Azðz̄Þ ¼ A0
zðz̄Þðu; z; z̄Þ þ

X∞
m¼1

Xm
n¼0

Amn
zðz̄Þðu; z; z̄Þðln rÞn

rm
; ð8Þ

and the current

Jzðz̄Þ ¼
J0zðz̄Þðu; z; z̄Þ

r2
þ
X∞
m¼1

Xm
n¼0

Jmn
zðz̄Þðu; z; z̄Þðln rÞn

rmþ2
: ð9Þ

The appearance of logarithmic terms indicates that the
solutions are not smooth [18]. A generic polyhomogeneous
expansion includes also n > m terms [18]. However, we
take a subset of the whole expansion proposed in [23], for
which we can derive a finite logarithmic memory effect. If
the current is generated by a collection of charged particles,
the logarithmic terms in the asymptotic expansion represent
the effect of long range electromagnetic interactions
between the charged particles [15].
By integrating (6) and (7) in r, we find that u compo-

nents of the gauge field and the current are solved as

Ju ¼
J0uðu; z; z̄Þ

r2
þ
X∞
m¼1

Xm
n¼0

Jmn
u ðu; z; z̄Þðln rÞn

rmþ2
; ð10Þ

and

Au ¼
A0
uðu; z; z̄Þ

r
þ
X∞
m¼1

Xm
n¼0

Amn
u ðu; z; z̄Þðln rÞn

rmþ1
; ð11Þ

where Jmn
u and Amn

u are completely determined by Jmn
zðz̄Þ and

Amn
zðz̄Þ. In particular, for the first order after the integration

constant, we obtain

J11u ¼ 0; ð12Þ

J10u ¼ −∂zJ0z̄ − ∂ z̄J0z ; ð13Þ
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A11
u ¼ −

1

2
∂ z̄A11

z −
1

2
∂zA11

z̄ ; ð14Þ

A10
u ¼ −

1

2
∂ z̄A10

z −
1

2
∂zA10

z̄ −
1

4
∂ z̄A11

z −
1

4
∂zA11

z̄ : ð15Þ

The time evolution of the coefficients of Amn
zðz̄Þðu; z; z̄Þ is

controlled by the standard equations which reduces to

∂u∂rAz ¼
1

2
∂r∂zAu þ

1

2r2
∂zð∂ z̄Az − ∂zAz̄Þ −

1

2
Jz: ð16Þ

Clearly the retarded time derivative of all the coefficients in
the expansion of Az have been uniquely determined except
the leading A0

z . We will refer to ∂uA0
z as the news function

which reflects the propagating degree of freedom of
electromagnetism. Changing z⇌z̄ above gives another
news function ∂uA0

z̄ . We list several orders:

∂uA11
z ¼ 0; ð17Þ

∂uA10
z ¼ 1

2
∂zA0

u þ
1

2
∂zð∂zA0

z̄ − ∂ z̄A0
zÞ þ

1

2
J0z ; ð18Þ

∂uA22
z ¼ 0; ð19Þ

∂uA21
z ¼ −

1

2
∂z∂ z̄A11

z þ 1

4
J11z ; ð20Þ

∂uA20
z ¼ −

1

4
∂z∂ z̄A11

z −
1

2
∂z∂ z̄A10

z þ 1

8
J11z þ 1

4
J10z : ð21Þ

By turning off the logarithmic terms and mapping to the
celestial sphere case, this result recovers the ones in [24].
The first piece on the right-hand side of (20) will lead to
divergence of A21

z at u → �∞. Hence A11
z̄ should be set to

zero from global properties [25]. Then (14), (15) and (20)
are reduced to

A11
u ¼ 0; ð22Þ

A10
u ¼ −

1

2
∂ z̄A10

z −
1

2
∂zA10

z̄ ; ð23Þ

∂uA21
z ¼ 1

4
J11z : ð24Þ

Finally, the supplementary equation gives the time
evolution of the integration constant A0

uðu; z; z̄Þ as

∂uA0
u ¼ ∂uð∂zA0

z̄ þ ∂ z̄A0
zÞ þ J0u: ð25Þ

To summarize, we have shown that the solution in poly-
homogeneous expansion to the Maxwell system in four-
dimensional Minkowski space-time (4) with the prescribed
asymptotics (5) is completely determined in terms of the

initial data A0
uðu0; z; z̄Þ, Amn

z ðu0; z; z̄Þ, Amn
z̄ ðu0; z; z̄Þ

(m ≥ 1), the news functions A0
zðu; z; z̄Þ, A0

z̄ðu; z; z̄Þ and
the current J0uðu; z; z̄Þ, Jmn

z ðu; z; z̄Þ, Jmn
z̄ ðu; z; z̄Þ (m ≥ 0).

III. THE ELECTROMAGNETIC MEMORIES

Following closely the definition in [10], the kick
memory is induced by the time (u) integration of the
electric field Ez ¼ ∂uAz − ∂zAu and its complex conjugate
Ez̄. The electric field Ez can be derived from the solution
space in the previous section as

Ez ¼ E0
z þ

E1
z

r
þ E21

z ln r
r2

þOðr−2Þ; ð26Þ

where

E0
z ¼ ∂uA0

z ; ð27Þ

E1
z ¼ ∂uA10

z − ∂zA0
u; ð28Þ

E21
z ¼ ∂uA21

z − ∂zA11
u : ð29Þ

The first order (27) has been well studied in literature. It is
the E mode memory effect for which we can set
A0
zðz̄Þ ¼ ∂zðz̄Þαðu; z; z̄Þ. Then (25) yields

∂z∂ z̄δα ¼ 1

2
δA0

u þ
1

2

Z þ∞

−∞
J0udu; ð30Þ

where δ denotes the difference between late and early
retarded times. The first and second pieces on the right-
hand side induce the linear and null kick respectively.
After some massaging, the second order becomes

E1
z ¼ −∂uA10

z þ ∂zð∂zA0
z̄ − ∂ z̄A0

zÞ þ J0z : ð31Þ

After the u integration, the first piece on the right-hand side
will induce a linear kick at the subleading order, while the
remaining two pieces on the right-hand side are the
null part.
Then the first logarithmic term appears at the sub-

subleading order, which can be deduced to

E21
z ¼ 1

4
J11z : ð32Þ

The logarithmic term only has the null part induced by the
local source term.

IV. COMMENT ON THE RELATION TO
ASYMPTOTIC SYMMETRIES

The residual (large) gauge transformation that preserving
the conditions (5) is generated by an arbitrary function
ϵðz; z̄Þ on the 2D plane of the null infinity [21]. The action
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of the asymptotic symmetries on the solution space is quite
simple. Infinitesimally, the nonzero components are just

δϵA0
z ¼ ∂zϵ; δϵA0

z̄ ¼ ∂ z̄ϵ: ð33Þ

Though the electric field Ez is gauge invariant, the memory
formula is defined by its u integration. For instance, the
leading kick memory is just δA0

zðz̄Þ, namely the passage of

electromagnetic radiation through a region induces a
transition from one configuration of A0

zðz̄Þ (vacuum) to

another. The two different vacua of A0
zðz̄Þ are also related by

the large gauge transformation A0
zðz̄Þ → A0

zðz̄Þ þ ΘðuÞδϵA0
zðz̄Þ

which reveals the equivalence of the memory effect and the
asymptotic symmetry for electromagnetism [26].
For the subleading memories at integer orders of 1

r, the
vacuum transition is implicitly given by the time evolution
equations, (16). For instance, the next-to-leading order (28)
in the vacuum case Jμ ¼ 0 can be reorganized as

E1
z ¼ −∂z∂ z̄A0

z ; ð34Þ

where we have used Eqs. (18) and (25) and the integration
constant in u is set to zero for the global consideration.
The memory formula is reduced to

R
duA0

zðz̄Þ and is related

to gauge transformation A0
zðz̄Þ → A0

zðz̄Þ þ δðuÞδϵA0
zðz̄Þ. This

computation can be extended to any higher order in analog
with the gravity case [5]. In the vacuum case, the electric
field Ez at higher order in the expansions in integer powers
of 1

r is given by1

Em
z ¼

�
1

m
∂2
z −

1

2
ðm − 1Þ

�
Am−1
z ; m ≥ 2: ð35Þ

Hence the memory formula at mth order is reduced toR
duAm−1

zðz̄Þ . The time evolution of Am−1
z is completely

determined by A0
z through the time evolution equations

∂uA1
z ¼ ∂2

zA0
z̄ ;

∂uAm
z ¼ −

�
1

m
∂z∂ z̄ þ

1

2
ðm − 1Þ

�
Am−1
z ; m ≥ 2: ð36Þ

Ignoring the integration constants in u, one obtains

A1
z ¼ ∂2

z

Z
du0A0

z̄ ;

Amþ2
z ¼ ð−Þmþ1

Ym
k¼0

��
1

kþ 2
∂z∂ z̄ þ

1

2
ðkþ 1Þ

�

×
Z

dukþ1

�
∂2
z

Z
du0A0

z̄ : ð37Þ

So the memory formula at mth order is related to gauge
transformation A0

zðz̄Þ → A0
zðz̄Þ þ dmΘðuÞ

dum δϵA0
zðz̄Þ.

Since the logarithmic term (32) only involves the local
source term, it can not be generated by electromagnetic
radiation. Hence the logarithmic effect is not connected by
vacuum configuration of the gauge theory and cannot be
created by the presence of a burst of radiation between two
given points at null infinity. Memory observable with the
latter property is in one-to-one correspondence with
particular residual (large) gauge transformations [4].
So the logarithmic effect (32) is not related to any large
gauge transformation. Moreover the theory is linear, the
fields at integer orders of 1r will not arise in the evolution of
the logarithmic fields according to (16). In other words,
the news functions will not arise in the evolution of the
logarithmic fields. Hence all logarithmic effects in the
present theory cannot be related to any large gauge
transformation.

V. DISCUSSIONS

In this paper, we have shown a consistent solution space
in series expansion with logarithmic terms for electromag-
netism in four dimensions. This has been applied to derive
the logarithmic effect of the electromagnetic memory.
There are infinite towers of electromagnetic memories at
the integer orders of 1

r which are related to large gauge
transformation.
The solution space we have derived is a subset of the

most generic polyhomogeneous expansion. More logarith-
mic terms can be included in the initial data in (8) and (9).
However the powers of logarithmic term in the expansion
should be finite. The time evolution, (16), will set all
logarithmic terms at order Oðr−1Þ to zero.
The logarithmic effect that we have derived is

not related to asymptotic symmetries. Nevertheless it is
still of interest to study this type of memory effect in the
context of the triangle relations, e.g., to see if it has any
connection to the logarithmic terms in the soft theo-
rem [15,16].
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1Note that we have turned off the logarithmic terms for this
computation.
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