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Theories of gravity that obey the weak equivalence principle have the same parametrized post-
Newtonian parameter γ for all particles at all energies. The large Shapiro time delays of extragalactic
sources allow us to put tight constraints on differences in γ between photons of different frequencies from
spectral lag data, since a nonzero Δγ would result in a frequency-dependent arrival time. The majority of
previous constraints have assumed that the Shapiro time delay is dominated by a few local massive objects,
although this is a poor approximation for distant sources. In this work we consider the cosmological context
of these sources by developing a source-by-source, Monte Carlo–based forward model for the Shapiro time
delays by combining constrained realizations of the local density field using the Bayesian origin
reconstruction from galaxies algorithm with unconstrained large-scale modes. Propagating uncertainties
in the density field reconstruction and marginalizing over an empirical model describing other
contributions to the time delay, we use spectral lag data of gamma ray bursts from the BATSE satellite
to constrain Δγ < 2.1 × 10−15 at 1σ confidence between photon energies of 25 keV and 325 keV.
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I. INTRODUCTION

A basic feature of metric theories of gravity is that
objects on either timelike or null geodesics experience
apparent time delays due to motion through regions of
varying spacetime curvature, caused by the difference
between proper and observer time induced by a gravita-
tional field. This effect, first derived by Shapiro in 1964 [1],
has now been accurately measured in the Solar System: the
best constraint on the fractional deviation of the time delay
from the prediction of general relativity (GR) is currently at
the 10−5 level, using data from the radio link with the
Cassini spacecraft [2]. In the parametrized post-Newtonian
(PPN) framework the time delay is governed by the light-
bending parameter γ [3]. For sources at greater distance,
however, the lack of knowledge of the time of emission of a
signal precludes direct measurement of the delay.
Nevertheless, the time delay effect has found use in

testing various aspects of the theory of gravity and the
standard model of cosmology. This is done by comparing
time delays, either between nearby geodesics or between
different types of object following the same geodesic. The
former may be achieved by comparing the time of reception
of photons originating from a common source but travers-
ing different paths due to gravitational lensing. When the

source is a time-varying quasar and the lens a single
massive elliptical galaxy or cluster, this method has been
used to constrain the Hubble parameter, H0, on which time
delay distances depend [4,5]. Conversely, comparing time
delays between different objects traveling along the same
geodesic allows the weak equivalence principle (WEP) to
be tested by investigating whether they experience time
delays identically. This can be achieved either when the
source emits light at varying frequencies which can be
independently measured [6] or when it emits other types of
energy in addition to light, such as gravitational waves [7].
Within the PPN framework, this constrains the difference
between their γ factors.
In general metric theories the time delay is proportional

to the integral of the fluctuation in Newtonian potential ϕ
along the line of sight to the source; within the PPN
framework it has a prefactor 1þ γ where γ ¼ 1 in GR.
Predicting time delays is therefore equivalent to determin-
ing δϕ. In typical analyses, δϕ ≃ ϕ is modeled as arising
from one or a few isolated sources near the line of sight that
are believed to be predominantly responsible for sourcing
the potential. However, the long range of the gravitational
potential (ϕ ∼ 1=r) casts doubt on the multiple point
masses approximation, since ϕ is sensitive to the distribu-
tion of distant sources and thus should be considered in a
cosmological context [8,9].*deaglan.bartlett@physics.ox.ac.uk
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The aim of this work is to account fully for the contribu-
tions to the time delay from all mass in the nonlinear
cosmological density field. As in [8], we consider an uncon-
strained contribution from distant sources; however, we also
combine this with the contribution from local structures using
constrained density fields generated by the Bayesian origin
reconstruction from galaxies (BORG) algorithm [10–14] to
produce a Monte Carlo–based source-by-source forward
model for the expected Shapiro time delay.
We apply our method to high-energy astrophysical

sources that have previously been used to test the
equivalence principle for photons of varying wave-
lengths. Marginalizing over uncertainties in the density
field reconstruction and parameters describing non-
equivalence-principle-violating contributions, we compare
our predictions to the observations via a Markov chain
Monte Carlo (MCMC) algorithm. We find our constraints
are ∼40 times tighter than literature results, illustrating the
benefit of using complete mass distributions when studying
nonlocal relativistic effects such as time delays in a
cosmological setting.
In Sec. II we discuss time delays in the context of metric

theories of gravity, including the importance of long
wavelength modes in calculating the Shapiro time delay.
We describe the gamma ray burst (GRB) observations in
Sec. III and detail our inference methods in Sec. IV. The
results are presented in Sec. V. A discussion of systematic
uncertainties, future applications of our methods, and a
comparison to the literature are presented in Sec. VI. We
conclude in Sec. VII.

II. TIME DELAY DIFFERENCES IN METRIC
THEORIES OF GRAVITY

A. Equivalence principle violation

Consider a perturbed Friedmann-Robertson-Walker-like
metric in the Newtonian gauge,

ds2 ¼ −ð1þ 2δϕÞdt2 þ a2ðtÞð1 − 2γδϕÞdr2; ð1Þ

where we have introduced the PPN parameter γ to allow for
deviations from general relativity (where γ ¼ 1).
For a massless particle, the gravitational time delay to a

source at distance rs is given by ð1þ γÞtgrav, where

tgrav ¼ −
Z

rs

0

drδϕ0ðrÞDðrÞ; ð2Þ

where DðrÞ is the linear growth factor, δϕ0 is the potential
fluctuation evaluated using the present-day matter field,
and we have used the weak field limit δϕ ≪ 1. For a set of
point masses ϕ ¼ P

i GMi=ri, but in a general density field
δϕ must be found by solving the Poisson equation

∇2δϕðrÞ ¼ 4πGδρðrÞ; ð3Þ

where δρ is the total matter density fluctuation. This is most
readily solved in Fourier space. Thus determining time
delays amounts to mapping out the three-dimensional
density field to at least the redshift of the source. We
describe how we do this in Sec. IVA.
There exist several formulations of the equivalence

principle, of varying strengths. The WEP, our focus here,
states that all freely falling test objects follow the same
trajectories given the same initial conditions, irrespective of
their composition or structure. This requires that all objects
from a given source experience the same time delay,
regardless of their composition or energy.
Multiple astrophysical sources have been detected with

precise timings of photons of different wavelengths. One
contribution to the difference in the time of reception of
these photons is a difference in gravitational time delay,
which can be parametrized as a difference in the PPN
parameter γ between two wavelengths. Thus by comparing
the measured time delays with the line-of-sight integral in
Eq. (2), one can put constraints on how γ changes with
photon frequency, and thus on any violation of the WEP.

B. Time delay angular power spectrum

The angular power spectrum of the gravitational time
delay is [8]

Cl ¼ 2

π

Z
dkk2PϕðkÞ

����
Z

rs

0

drDðrÞjlðkrÞ
����2; ð4Þ

such that the mean-squared time delay is

ht2gravi ¼
X
l

2lþ 1

4π
Cl; ð5Þ

where Pϕ is the power spectrum of the potential. For
k ≪ 1=rs, the spherical Bessel function can be expanded as

jlðxÞ ¼
ffiffiffi
π

p
2lþ1Γðlþ 3

2
Þ x

l þOðx2þlÞ; ð6Þ

so that

Cl ¼ 4

π3

ffiffiffi
π

p
2lþ1Γðlþ 3

2
Þ
Z

dk
k
½TϕðkÞ�2Askns−1k2l

×
���� Z drDðrÞrl

���2 þOðk2þ2lÞ
�
; ð7Þ

where Tϕ is the potential transfer function and we assume a
nearly scale-invariant primordial power spectrum

PRðkÞ ¼ Askns−1: ð8Þ

On super-Hubble scales, TϕðkÞ∼ const, so the smallest
power of k in the integral has an exponent ns − 2þ 2l.
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For l ≥ 1, this is ≥ ns, which, given that ns ∼ 0.97 [15],
means that, for l ≥ 1, the integral does not diverge at small
k. However, for l ¼ 0, the exponent is ns − 2 < −1, and so
the integral diverges. We therefore see that the monopole
diverges due to the contribution from large scales. This is
not to say that there is an infinite time delay for a given
universe, but that its variance across all possible universes
is infinite.
The problematic diverging monopole was first noted by

Reischke et al. [16], who showed how to circumvent this
issue by computing the angular power spectrum and
forecasted constraints of Δγ < 10−15 using fast radio bursts
(FRBs). Similarly, for our forward modeling approach in
Sec. IV, we will only be able to predict angular fluctuations
about the mean Shapiro time delay at a given redshift, and
not its absolute value.

C. Other contributions to the time delay

We suppose that the time delay between frequencies νi
and νj for a source at location r can be written as the sum of
the following independent terms:

ΔtijðrÞ ¼ Δγijtgrav þ AðrÞðν−2i − ν−2j Þ þ Bij: ð9Þ

Besides the equivalence-principle-violating term, our time
delay contains two other contributions. The first of these
[containing AðrÞ] describes the dispersion due to electrons.

The second (Bij) represents the combination of an intrinsic
time delay at the source and the instrument response, which
we assume is independent of observed angle and redshift.
The mean of A depends on the temporal evolution of the

comoving electron density, n̄e;c, as

ĀðrÞ ¼ e2

2πme

1

4πϵ0

Z
zðrÞ

0

dz0

Hðz0Þ ð1þ z0Þn̄e;cðz0Þ; ð10Þ

and fluctuations about this depend on fluctuations in the
electron density and other relativistic effects [17]. The
comoving electron density can be modeled as

n̄e;cðzÞ ¼
3H2

0Ωb

8πGmp

xeðzÞð1þ xHðzÞÞ
2

; ð11Þ

where xe is the free electron fraction, xH is the hydrogen
mass fraction, Ωb is the baryon density fraction, and mp is
the proton mass. xe is proportional to the fraction of
electrons in the intergalactic medium, fIGMðzÞ, which
slightly increases with redshift, from 0.8 for z≲ 0.4 to
0.9 at z≳ 1.5 [18–20]. For simplicity, assuming xe ¼ 1 and
xH ¼ 0.75, we find the contribution from the electron
plasma to be

TABLE I. Parameters used to constrain the equivalence-principle-violating contribution to the time delay. Above the horizontal line
are the parameters used to forward model the time delay, and below are the parameters passed to MultiNest in the MCMC analysis. In the
final column we give the value chosen for each parameter, although we show in Sec. VI that our results are unchanged for reasonable
alternative values.

Parameter Description Value

Lbox=h−1 Mpc Side length of box used to reconstruct local density field. 4000
Nbox Number of grid points per side of box used to reconstruct local density field. 256
k0=Mpc−1 Minimum wave number used to calculate long wavelength contribution. 10−5

lmax Maximum multipole used to compute time delay from angular power spectrum. 2000
Nside Resolution of HEALPix map used to calculate the monopole. 64
Nmon Number of redshifts between z ¼ 0.1 and 2 used to calculate the monopole. 20
Nz;R Number of redshift points used to calculate the second term in Eq. (18). 512
Nz;L Number of redshift points used to calculate long wavelength time delay

contributions.
1024

Nk;L Number of wave number points used to calculate unconstrained time delay
contributions.

512

NMC Number of Monte Carlo runs to get the distribution of time delays for the
template signal for a given density field.

103

Nbin Number of redshift bins to determine redshift evolution of noise model. 5
NB Number of density field reconstructions sampled from the BORG chain. 18

n_live_points Number of live points used in MultiNest sampling. 800
importance_nested_sampling Whether to use importance nested sampling with MultiNest. True
multimodal Whether to allow mode separation in MULTINEST. True
evidence_tolerance Evidence tolerance for MultiNest. 0.5
sampling_efficiency Sampling efficiency for MultiNest. 0.8
const_efficiency_mode Whether to use constant efficiency mode in MultiNest. False

CONSTRAINTS ON EQUIVALENCE PRINCIPLE VIOLATION … PHYS. REV. D 104, 084025 (2021)

084025-3



AðrÞðν−2i − ν−2j Þ ¼
�Z

zðrÞ

0

dz0

Eðz0Þ ð1þ z0Þ
�

×

��
Ei

keV

	
−2

−
�

Ej

keV

	
−2
�

× 5.6 × 10−17 s; ð12Þ

where EðzÞ≡HðzÞ=H0. Since in this work we will be
considering gamma ray bursts, we will find that this
contribution is negligible for the probed frequencies, and
thus we will neglect it in our analysis. If we were to
consider radio bursts we would need to consider this term,
as we would expect contributions of Oð1 sÞ.

III. OBSERVATIONAL DATA

The spectral lag data we use are a sample of the BATSE
detections of GRBs catalogued by Hakkila et al. [21]. We
make use of a set of sources compiled by Yu et al. [22],
where the four energy bins considered are sensitive to the
ranges Ch1: 25–60 keV; Ch2: 60–110 keV; Ch3: 110–
325 keV; and Ch4: >325 keV. These four bins result in up
to 6 time delay pairs per source,Δtij, where the i, j label the
channels used. Without loss of generality we define i > j.
In the cases where no Δtij is recorded for a source due to
low signal to noise, we ignore that particular pair but still
consider the others. These sources also have pseudored-
shifts calculated using the spectral peak energy-peak
luminosity relation [23].
The physical mechanisms that result in the GRB spectral

lag are unknown; the search for the nature of spectral lag is
an ongoing research topic where most of the focus lies on
investigating possible effects at the source (see, e.g.,
[24–30]). It has, for example, been shown that the effects
of spectral lag can be recreated from simple source models
utilizing rapid bulk acceleration on relativistic jet shells
[30]. Therefore, when modeling the intrinsic contribution to
these time delays in Sec. IV E we will have to rely on
empirical models, as opposed to the ideal case where we
can calibrate our noise model with simulations [31].

IV. METHODS

In this section we use the large-scale structure informa-
tion described in Sec. IVA to produce a source-by-source
probabilistic forward model for the expected Shapiro time
delay difference for a given Δγij. Combining this with an
empirical model describing other contributions to the
measured time delays (noise) outlined in Sec. II, we
calculate the likelihood function and constrain Δγij and
the parameters describing the noise via a MCMC algo-
rithm. The parameters which are fixed in this section are
summarized in Table I.

A. Bayesian large scale structure inference

This work builds upon previous results of applying the
BORG algorithm to the data of the SDSS-III/BOSS galaxy
compilation (see, e.g., [10–14]).
The BORG algorithm is a fully probabilistic inference

method aimed at reconstructing matter fields from galaxy
observations. This algorithm incorporates a physical model
for gravitational structure formation, enabling the inference
of the three-dimensional density field and the correspond-
ing initial conditions at an earlier epoch from present
observations.
Specifically the algorithm explores a large-scale struc-

ture posterior distribution consisting of a Gaussian prior for
the initial density field at an initial cosmic scale factor of
a ¼ 10−3, linked to a Poissonian model of galaxy for-
mation at a scale factor a ¼ 1 via second order Lagrangian
perturbation theory (for details see [11]). The model
accurately describes one-, two-, and three-point functions
and represents very well higher-order statistics, as was
calculated by, e.g., [32–36]. Thus BORG naturally accounts
for the filamentary structure of the cosmic web typically
associated with higher-order statistics induced by nonlinear
gravitational structure formation processes. The posterior
distribution also accounts for the systematic and stochastic
uncertainties encountered in cosmological surveys, includ-
ing survey geometries, selection effects, and noise.
Applying the BORG algorithm to the SDSS-III/BOSS

galaxy sample [37,38], three-dimensional matter density
fields have been inferred on a cubic Cartesian grid of a side
length of 4000 h−1Mpc consisting of 2563 equidistant
voxels. This results in a grid resolution of ∼15 h−1Mpc.
The inference assumes a standard ΛCDM model with the
following set of cosmological parameters: Ωm ¼ 0.2889,
ΩΛ ¼ 0.7111, Ωb ¼ 0.048597, h ¼ 0.6774, σ8 ¼ 0.8159,
ns ¼ 0.9667 [15].
We also consider the 2M++ particle-mesh reconstruction

of BORG [14,39], which again has 2563 equidistant voxels,
but a smaller side length of 677.7 Mpc=h and thus a finer
spatial resolution.1 In Sec. IV B we compare how well we
can determine the Shapiro time delay using the SDSS-III/
BOSS vs 2M++ reconstructions.

B. Calculating the Shapiro time delay

As discussed in Sec. II B, the variance of the mean
Shapiro time delay at a given redshift across all possible
universes diverges. We can rephrase our problem so that
this is not an issue. Let us decompose the gravitational time
delay into two parts

1A set of 100 dark matter-only simulations based on the 2M++
reconstruction, dubbed CSIBORG [40], is also available. This
could be used to access smaller scales because the initial condi-
tions are augmented with white noise. We find in Sec. IV B
that these scales are unimportant, however, so we do not consider
these simulations further.
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tgravðrÞ ¼ t0ðrÞ þ δtgravðrÞ; ð13Þ

where t0ðrÞ is the mean Shapiro time delay across all angles
at a given r (i.e., the monopole) and δtgrav gives the
fluctuation about this. These fluctuations can be decom-
posed into the sum of three terms

δtgravðrÞ ¼ δtðLÞgravðrÞ þ δtðRÞgravðrÞ þ δtðSÞgravðrÞ ð14Þ

corresponding to the long wavelength (L; k < kmin),
resolved (R; kmin ≤ k < kmax), and short wavelength (S;
k ≥ kmax) contributions, respectively. The “resolved” con-
tribution can be determined using the inferred matter fields
from BORG.
To determine the resolution and box size required to

accurately reconstruct the time delay fluctuation, we
compare the results of calculating the angular power
spectrum with a finite resolution and box size to the
continuous, infinite volume case. Obviously the latter is
impossible in practice, but we approximate this limit by
choosing a sufficiently small minimum (10−5 Mpc−1) and
large maximum (100 Mpc−1) k. To approximate the finite
volume result, we consider a box length Lbox withNbox grid
cells along each side, so we have minimum and maximum
(nonzero) k of

kmin ¼
2π

Lbox
; kmax ¼

πðNbox − 1Þ
Lbox

: ð15Þ

Note that we do not include a factor of
ffiffiffi
3

p
in kmax as the

sphere in k-space of radius kmax does not fully fit inside the
first Brillouin zone if this is included. To mimic using this

box,we top-hat filter the potential power spectrum, allowing
modes between kmin and kmax. We calculate two quantities:
(i) theCl’s themselves, and (ii) the root mean square (RMS)
fluctuation in the time delay using Eq. (5), where we find
lmax ¼ 2000 to be more than sufficient (halving this to
lmax ¼ 1000 does not change the final result).
In Fig. 1 we compute the Cl’s for a source at redshift

z ¼ 0.10 using the Core Cosmology Library [41]. We
compare the results from the continuous case with the
SDSS-III/BOSS (Lbox ¼ 4000 h−1 Mpc, Nbox ¼ 256) and
2M++ (Lbox ¼ 677.7 h−1Mpc, Nbox ¼ 256) reconstruc-
tions. We note that the maximum distance a source can
be from the observer in the latter two cases is Lbox

ffiffiffi
3

p
=2,

which is 5.17 Gpc for the SDSS-III/BOSS and 876 Mpc for
the 2M++ reconstruction, corresponding to redshifts of 1.9
and 0.21, respectively. Thus our test source at z ¼ 0.10 is
within both boxes.
The continuous case gives the same result as SDSS-III/

BOSS to ∼4 parts in 105 as the Cl’s only disagree at l ≫ 1
while the result is dominated by low l. The lack of power at
low k results in the 2M++ box underestimating the low l
contribution, and thus the RMS time delay. The points of
disagreement are as expected, since for this redshift, using
the Limber approximation [42] l ∼ kr, we find that kmin
and kmax correspond to multipoles

lSDSS−III=BOSS
min ∼ 0.46; lSDSS−III=BOSS

max ∼ 59; ð16Þ

l2Mþþ
min ∼ 2.7; l2Mþþ

max ∼ 346; ð17Þ

which is approximately where we see the results diverging
from the continuous case. Since the total time delay is

FIG. 1. The predicted Shapiro time delay fluctuation angular power spectrum for a source at z ¼ 0.10 calculated with the Core
Cosmology Library. For the SDSS-III/BOSS and 2M++ calculations, we only include k modes within the range sampled in the
simulated volume due to the finite box length and resolution. The right-hand panel shows the fractional difference between these and the
continuous case. Using SDSS-III/BOSS gives practically the same result for the time delay as the continuous case, whereas 2M++
underestimates this by ∼32 percent. The result is driven by the smallest l, making a large box size far more important than high spatial
resolution.
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dominated by low l, we conclude that a large box size is far
more important than a fine resolution, justifying our choice
of the SDSS-III/BOSS over 2M++ reconstruction. For
simplicity, we will henceforth refer to the SDSS-III/
BOSS BORG reconstruction simply as “BORG.”
Nonetheless, for sources at higher redshift, the density

field not contained within the inferred volume contributes
significantly to the gravitational time delay. For sources
outside of the BORG volume, Eq. (2) can be split into a
contribution from the observer to the edge of the box, rb,
and then from rb to the source:

tgrav ¼ −
Z

rb

0

drδϕ0ðrÞDðrÞ −
Z

rs

rb

drδϕ0ðrÞDðrÞ: ð18Þ

When we compute the first term [or Eq. (2) for sources
inside the box] we do not have a fluctuation, since the mean
time delay at the upper limit of the integral is not zero. We
therefore must find and subtract this mean. We do this by
computing the time delays on HEALPix

2 [43,44] maps with
Nside ¼ 64 at Nmon ¼ 20 logarithmically spaced redshifts
between z ¼ 0.1 and z ¼ 2. We then compute the monop-
oles of these maps with HEALPY. To determine the monop-
ole at some intermediate redshift we linearly interpolate
between the sampled redshifts.
The ensemble mean of the resulting time delay fluc-

tuation map is plotted in Fig. 2. One can see that the typical
fluctuation from the resolved contribution is larger than
∼1011 s and thus, given that the measured time delays are
typically Oð0.1 sÞ, one would expect jΔγijj to be smaller
than ∼10−12.
If the source is outside the volume, we now add an

unconstrained contribution to the fluctuation (but not the
monopole) drawn from a Gaussian of width given by
Eq. (5), but only using k modes accessible to BORG

[Eq. (15)] and integrating between rb and rs using Nz;R ¼
512 intermediate points. This corresponds to fluctuations
due to the second term in Eq. (18). We find lmax ¼ 2000 to
be sufficient for this calculation.
To marginalize over the uncertainties in the pseudored-

shifts, angular position, and unconstrained regions, we use
simulation-based Bayesian forward modeling to create
predictions from the statistical models. In particular, for
a given density field from the converged part of the BORG
MCMC chain, we take NMC ¼ 103 Monte Carlo draws
from the input distributions to build the likelihood. For each
iteration, we draw an angular location from Gaussian
distributions characterized by the positional uncertainty
given in [22] and a redshift from a two-sided Gaussian
using the upper and lower uncertainties determined by [23].
The time delay for a source at this position is then
calculated for this density field. From Eq. (9), we see that
the gravitational contribution to the time delay between any

two frequencies is proportional to Δγij. We therefore only
need to run this Monte Carlo procedure once per source to
construct a template signal with Δγij ¼ 1 since this can be
trivially reintroduced as a scaling factor later.

C. Monte Carlo modeling

Now that we have NMC samples per source and per

BORG density field of our probabilistic model for δtðRÞgrav, we
must convert these samples into a distribution to use in our
likelihood analysis.
We model the samples as a Gaussian mixture model

(GMM) [45], where the likelihood function for some
source s and BORG density field b is

LsbðδtðRÞgravjΔγij ¼ 1Þ ¼
X
α

wðαÞ
sbffiffiffiffiffiffi

2π
p

τðαÞsb

× exp

�
−
ðδtðRÞgrav − λðαÞsb Þ2

2τðαÞsb
2

�
; ð19Þ

where

X
α

wsb
ðαÞ ¼ 1; wsb

ðαÞ ≥ 0; ð20Þ

and the sum runs over the Gaussians. The number of
Gaussians is chosen to minimize the Bayesian information
criterion (BIC)

BIC ¼ K logN − 2 log L̂; ð21Þ

for K model parameters, N ¼ NMC data points, and
maximum likelihood estimate L̂. Independent Gaussians
are obtained for each source and BORG density field.

FIG. 2. Mollweide projection in equatorial coordinates of the
ensemble mean of the time delay fluctuations at z ¼ 0.1 from
resolved wavelengths. The typical scale is ∼1011 s which, since
the majority of observed time delays are Oð0.1 sÞ, indicates that
constraints at least as tight as jΔγijj ≲ 10−12 should be possible.

2http://healpix.sf.net.
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To account for a different Δγij, we must transform the
means and widths of the Gaussians in the GMM as

λ̃ðαÞsbij ¼ Δγijλ
ðαÞ
sb ; τ̃ðαÞsbij ¼ jΔγijjτðαÞsb : ð22Þ

D. Adding larger scale modes

Thus far we have only calculated the “resolved” con-
tribution to the Shapiro time delay fluctuations. Since the
large-k contributions are negligible, we do not consider
these further. To incorporate the long wavelength modes,
we evaluate Eq. (5) for each source, where we integrate
between k0 ¼ 10−5 Mpc−1 and kmin [Eq. (15)] using
Nk;L ¼ 512 intermediate points. We integrate up to the
three-sigma redshift in the pseduoredshift distribution with
Nz;L ¼ 1024 points and again use lmax ¼ 2000. For source
s this gives the width of the distribution of long-wavelength
contributions, ξs, which we assume to be Gaussian dis-
tributed since the density should also be Gaussian
distributed on large scales. We must convolve this long-
wavelength distribution with our GMM to get the total
likelihood of δtgrav,

LsbðδtgravÞ ¼
X
α

wðαÞ
sbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðτ̃ðαÞsbij
2 þ ξ̃2sijÞ

q

× exp

�
−
ðδtgrav − λ̃ðαÞsb Þ2

2ðτ̃ðαÞsbij
2 þ ξ̃2sijÞ

�
; ð23Þ

where

ξ̃sij ≡ Δγijξs: ð24Þ

E. Modeling the noise

Given that we are neglecting the contribution from the
electron plasma in Eq. (9), to determine the likelihood of an
observed time delay, we must finally convolve Eq. (23)
with the likelihoods for the intrinsic contribution and
monopole terms. We assume that for each pair of frequen-
cies the distribution of Bij can be written as the sum of NG
Gaussians,

LðBijÞ ¼
X
β

ωðβÞ
ijffiffiffiffiffiffi

2π
p

σðβÞij

exp

�
−
ðBij − μðβÞij Þ2

2σðβÞij
2

�
: ð25Þ

where

X
β

ωðβÞ
ij ¼ 1; ωðβÞ

ij ≥ 0; ð26Þ

and β ∈ f0; 1;…; NG − 1g. Without loss of generality, we

define the Gaussians such that ωðβÞ
ij ≥ ωðβþ1Þ

ij .

For nonzeroΔγij, by binning the sources by redshift, one
can constrain t0 for each bin and a universal set of

parameters describing Bij, fωðβÞ
ij ; μðβÞij ; σðβÞij g. However, we

will find that Δγij is consistent with zero, which leaves t0
completely unconstrained, and thus a different approach is
required. This is unfortunate since t0 is the only parameter
common to all different frequency pairs.

We therefore do not infer fμðβÞij g, but rather

μ̃ð0Þij ðzÞ≡ μð0Þij þ Δγijt0ðzÞ; ð27Þ

and fΔμðβÞij g, where

ΔμðβÞij ≡ μðβÞij − μð0Þij ; ð28Þ

such that

μ̃ðβÞij ðzÞ ¼ μ̃ð0Þij ðzÞ þ ΔμðβÞij : ð29Þ

We bin our sources into Nbin ¼ 5 linearly spaced redshift
bins between theminimumandmaximumpseudoredshifts in
the sample and assume that all sources within each bin have

the same μ̃ð0Þij ðzÞ. Sincewehave nowdecoupledΔγij from the
monopole term, our results are drivenby the angular variation
in the time delay and not the absolute value.
Finally, we must incorporate the errors on the measured

Δtij. If these were independent of Δtij, then this could be

incorporated into fσðβÞij g; however, longer lags tend to have
larger errors [21]. We thus use the quoted measurement
errors for each source and time delay pair, εsij, so that the
likelihood for an observed time delay is

LsbðΔtijÞ¼
X
αβ

wðαÞ
sb ω

ðβÞ
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðτ̃ðαÞsbij
2þ ξ̃2sijþσðβÞij

2þ ε2sijÞ
q

×exp

�
−

ðΔtij− λ̃ðαÞsbij− μ̃ðβÞij ðzsÞÞ2

2ðτ̃ðαÞsbij
2þ ξ̃2sijþσðβÞij

2þ ε2sijÞ

�
: ð30Þ

F. Likelihood model

Treating each source as independent, the likelihood for
our dataset D is then

LijðDjθÞ ¼
Y
s

�
1

NB

X
b

LsbðΔtijÞ
	
; ð31Þ

where θ≡ fΔγij; μ̃ð0Þij ðzÞ;ΔμðβÞij ; σðβÞij ;ωðβÞ
ij g and we use

NB ¼ 18 BORG density field reconstructions, separated
by 500 steps on the MCMC chain (approximately the
autocorrelation length). Finally, given some prior on θ,
PðθÞ, we use Bayes’ theorem to obtain the posterior
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PijðθjDÞ ¼ LijðDjθÞPðθÞ
ZijðDÞ ; ð32Þ

where the evidence, ZijðDÞ, is the constant probability of
the data for any θ.
We treat each pair of frequencies as independent and

separately derive posteriors on Δγij and the noise param-
eters using PyMultiNest [46–48] with the settings given in
Table I. The priors for all inferred parameters, given in
Table II, are found to be much broader than the posteriors
for Gaussians with nonzero weights.
We run our inference with NG in the range 1–5

(inclusive) to determine the posterior distributions for each
noise model. To determine the appropriate NG, we compare
the models by calculating the BIC [Eq. (21)]; the best-
fitting model minimizes this statistic. Since we now have
access to the full posterior, as suggested by Handley and
Lemos [49] we set K ¼ d̃ij, where the Bayesian model
dimensionality (BMD) is defined to be

d̃ij
2

≡
Z

PijðθjDÞ
�
log

PijðθjDÞ
PðθÞ

	
2

dθ ð33Þ

and is computed using the ANESTHETIC software package
[50]. Although not as “Bayesian” as comparing the
evidence, we prefer this statistic due to its insensitivity
to the prior. We have deliberately set our priors very wide,
making ratios of Zij difficult to interpret.

V. RESULTS

In Fig. 3 we plot the BIC as a function of the number of
Gaussian components in the noise model,NG, where we set
the number of model parameters equal to the BMD. We
find that the change in BIC is large when we use non-
optimal NG, indicating that the best NG is unambiguous.
The same trend is found when we fix Δγij ¼ 0 (i.e., fit the
observations with just the noise model). For NG ¼ 5, we

find that the weight of the lowest-weighted Gaussian, ωð4Þ
ij ,

is extremely small: ωð4Þ
ij < 0.03 at 68% confidence for all

frequency pairs. It is unsurprising then that the BIC
increases for this case, since we are adding three new
but negligible parameters to the noise model. Similar
results are found if we compare models using the Bayes
factor; the only discrepancy is for ði; jÞ ¼ ð4; 2Þ where the
BIC prefers NG ¼ 3, whereas the Bayes factor suggests
that NG ¼ 4 is optimal. The constraints are similar for both
models.
For the optimal NG we plot the marginalized one-

dimensional posteriors of Δγij in Fig. 4, and in Fig. 5
we show the corner plot for the time delay pair with the
weakest constraints on Δγij. Since the unconstrained large

TABLE II. Model parameters describing the predicted signal
and the empirical noise model. All priors are uniform in the range
given.

Parameter Prior

Δγij ½−10−13; 10−13�
μ̃ð0Þij ðzÞ=s ½−10; 10�
ΔμðβÞij =s ½−10; 10�
σðβÞij =s [0, 10]

ωðβÞ
ij

[0,1],
P

β ω
ðβÞ
ij ¼ 1, ωðβÞ

ij ≥ ωðβþ1Þ
ij

(a) (b)

FIG. 3. Noise model comparison, including the equivalence-principle-violating term, using (a) the BIC [Eq. (21)] with the number of
parameters of our model equal to the BMD [Eq. (33)], and (b) the Bayes factor. The best-fitting model should minimize the BIC and
maximize the Bayes factor. For i < 4 we see that NG ¼ 4 is the optimal noise model using either statistic. Although the Bayes factor
prefers NG ¼ 4 for ði; jÞ ¼ ð4; 2Þ, we adopt NG ¼ 3 for i ¼ 4 since this is favored by the BIC, but find similar constraints on Δγ42 for
both NG ¼ 3 and NG ¼ 4.
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scale contribution is modeled as a Gaussian of zero mean
and finite width, if such scales alone were important, then
the one-dimensional posteriors would be symmetric about
Δγij ¼ 0. That this is not true for all frequency pairs shows
that our constraints on the density field are relevant.
For all time delay pairs we findΔγij to be consistent with

zero. The 1σ constraints (defined to be half the difference
between the 84th and 16th percentiles) are tabulated in
Table III. The tabulated results use the best-fit NG;
however, we find that these change by no more than
25% across the range NG ¼ 3–5.
We find that our weakest constraint is for the time delay

between the highest and lowest energy channels
[ði; jÞ ¼ ð4; 1Þ], where we find Δγ41 < 2.1 × 10−15 at 1σ
confidence. This is unsurprising because each pulse of a
GRB’s light curve is known to peak first at higher energy
due to spectral evolution [51–54], although the reasons for
this are not fully understood [24–30]. This results in the
majority of observed time delays obeying Δtij > 0 for
i > j, so one expects the largest time delay for this pair and
hence the weakest constraint.
Given the form of our noise model, if Δγij ¼ 0, then one

expects fμ̃ð0Þij g to be redshift independent. We check this in
Fig. 6 and indeed find that for all pairs any variation in

fμ̃ð0Þij g is comparable to its uncertainty, indicating that our
assumption is reasonable. Furthermore, the time delay pair
giving the weakest constraint [ði; jÞ ¼ ð4; 1Þ] has noise
parameters most suggestive of redshift evolution, as would
be expected.

VI. DISCUSSION

A. Systematic uncertainties

Our probabilistic forward model is designed to propagate
uncertainties in the source localization and density field

reconstruction, which we marginalize over via a MCMC
algorithm. We use NMC ¼ 103 Monte Carlo samples per
source and per BORG density field to estimate the like-
lihood, but we also check that this is sufficiently large to
fully sample the distributions we wish to marginalize over.
Running the inference using NMC ¼ 500 yields identical
constraints on Δγij and the noise parameters as the fiducial
case of NMC ¼ 103, indicating that the number of samples
is adequate.
In order to measure the fluctuations in the Shapiro time

delay using BORG, we had to subtract the monopole at a
given redshift. This involved sampling Nmon ¼ 20 loga-
rithmically spaced redshifts, where for each redshift we
computed the monopole using a Nside ¼ 64 HEALPix map.
In Fig. 7 we plot the ensemble mean of the inferred
monopole, t0, to subtract from the BORG contribution
as a function of redshift, z, and see that t0 is a smoothly
varying function of z, indicating that Nmon ¼ 20 should be
sufficient. We find that if we were to use small values of
Nside we would calculate the wrong monopole at high
redshift, but that the values quickly converge with increas-
ing Nside. The maximum fractional difference between the
calculated t0 at Nside ¼ 32 and Nside ¼ 64 is 3 × 10−3,
indicating that our map’s resolution is sufficient. Moreover,
we run the inference again with Nside ¼ 32 and Nmon ¼ 10

and find 1σ constraints on Δγ41 of 2.1 × 10−15 and
2.0 × 10−15, respectively, suggesting that our constraints
are robust to these choices.
In Sec. IV B, at each Monte Carlo iteration we drew a

redshift from a two-sided Gaussian. One may be concerned
that this is not the correct distribution. To test the effect of
the redshift uncertainty, we repeat the analysis but fix the
redshift to the mean value; i.e., we assume zero redshift
error. We find the constraints change by ∼10% compared to
our fiducial method, indicating that our constraints are not
dominated by redshift uncertainty, and thus that the exact
redshift distribution is not important.
Finally, to account for the monopole of the Shapiro time

delay (which we are unable to predict or constrain by
itself), we introduce a redshift dependence in our noise
model, binning our sources into Nbin ¼ 5 linearly spaced
redshift bins. Repeating the inference with Nbin ¼ 1 or
Nbin ¼ 10 changes our constraint to γ41 < 1.8 × 10−15 and
γ41 < 2.5 × 10−15, respectively. This is as one would
expect; the constraint tightens as we decrease the number
of parameters in the noise model and weakens as this
increases. However, this change is only 0.1dex, indicating
that our constraint is relatively insensitive to the choice
of Nbin.

B. Comparison with the literature

The majority of previous attempts to constrain violations
of theWEPviaΔγijwithGRBs [22,55–58], FRBs [6,59–62],
supernovae [63,64], gravitational waves [65–73], blazar

FIG. 4. Posteriors on Δγij for the different time delay pairs,
marginalized over the noise parameters. These constraints use the
noise models which minimize the BIC [Eq. (21)].
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flares [74–78], or pulsars [79–82] have assumed that the
gravitational potential is dominated by the contribution
from the Milky Way and/or other massive objects such as
the Laniakea supercluster. This has two major shortcom-
ings for distant sources: first, the gravitational potential in
Eq. (2) should be a fluctuation about the cosmological
mean (and thus can take either sign, unlike in the multiple-
source approximation where it is strictly additive), and
second, the long range behavior of the gravitational
potential means that we cannot neglect the large-scale

FIG. 5. Constraints on Δγij and the parameters describing other contributions to the time delay for ði; jÞ ¼ ð4; 1Þ. The ij indices have
been suppressed for clarity since all parameters are only for this pair. The contours show the 1 and 2σ confidence intervals.

TABLE III. The 1σ constraints on Δγij for the different time
delay pairs.

ði; jÞ Constraint on Δγij × 1015

(2, 1) 0.68
(3, 1) 1.19
(3, 2) 0.62
(4, 1) 2.13
(4, 2) 1.72
(4, 3) 0.92
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distribution of mass [8,9]. These studies claim that only
including a few sources underestimates the Shapiro time
delay, making the constraints obtained conservative [83].
However, since the potential can take either sign, this
reasoning is incorrect. Furthermore, the modeling of
other contributions to the time delay in these studies are
relatively simplistic compared to our analysis; for example,

Yu et al. [22] assume all noise can be modeled as a single
Gaussian, which we have shown to be a poor approxima-
tion. Not only have we considered more sophisticated noise
models but also we have demonstrated that our constraints
are robust to the choice of model.
As well as being more robust than previous work, our

constraints are also stronger and are comparable to the
forecasts of [16] for FRBs. The first attempts to include the
cosmological contribution to the time delays yielded con-
straints weaker than Δγij < 10−13 [8,84]. Using the same
sources as us and the point-massmethodology, Yu et al. [22]
find Δγ41 < 1.3 × 10−13, which is a factor of ∼40 weaker
than our constraints. As a consistency check, we rerun our
inference for ði; jÞ ¼ ð4; 1Þ but (incorrectly) assume that the
gravitational potential is dominated by the Laniakea super-
cluster (of mass M ¼ 1017 M⊙, at a distance d ¼ 79 Mpc,
with RA ¼ 10h32m and Dec ¼ −46°000) as is done by Yu
et al. [22]. Also mimicking Yu et al. [22], we now assume
that the redshifts and angular positions of the sources have
no uncertainty. We find constraints of Δγ41 < 1.1 × 10−14,
which are tighter than [22]. This is due to our use of the
optimal noise model with NG ¼ 3; if we use NG ¼ 1, then
our constraint is Δγ41 < 1.1 × 10−13, similar to that of [22].
One might have expected that increasing the number of
Gaussian components describing the noise would weaken
the constraint, not strengthen them.We find that forNG ¼ 1
the constraint is dominated by the few sources with the
largest time delays. This is because the WEP-violating term
must account for the wide tails in the measured time delays,
upweighting larger values of jΔγj. When allowing NG > 1,
the broader Gaussians capture the tails instead, favoring
smaller jΔγj. This is preferable behavior because the con-
straint onΔγ should come from the angular correlation of the
measured time delays with those predicted by BORG, rather
than from the width of the measured time delay distribution
itself.
The long Shapiro time delays for extragalactic sources

result in tight constraints on Δγij; however, one can only
measure the time delay differences and not the absolute
time delays; we constrain Δγij and not γi. Therefore,
although our constraints may appear tighter than Solar
System measurements from the Cassini spacecraft [2] or
very long baseline interferometry [85,86] of γ − 1 ¼
ð2.1� 2.3Þ × 10−5 and ð−0.8� 1.2Þ × 10−4, respectively,
these have the advantage of constraining the PPN
parameter itself and thus can differentiate between different
theories that obey the equivalence principle. Nonetheless,
our constraints indicate that the equivalence principle
should be obeyed to within 2.1 × 10−15 for photons in
the energy range 25–325 keV.

C. Further applications

In this work we have used the BORG reconstruction of
the SDSS-III/BOSS galaxy compilation to predict the

FIG. 6. Evolution of the means of the highest-weighted
Gaussian in the noise model, μ̃ð0Þij , with redshift, where it is
assumed that all sources in the same redshift bin have the same

μ̃ð0Þij . Any variation with redshift is comparable to the uncertainty

on μ̃ð0Þij , as one would expect for a redshift-independent intrinsic
time delay contribution, since Δγij is consistent with zero.

FIG. 7. Evolution of the ensemble mean of the monopole of
Shapiro time delays, t0, with redshift, z, calculated using wave-
lengths resolved within the BORG box. Note that the true
monopole from all wavelengths cannot be predicted statistically
(Sec. II B). The monopole is found to vary smoothly with
redshift, suggesting that our interpolation procedure is reason-
able. The ensemble mean is positive due to local massive
structures.
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Shapiro time delay to GRBs. The mean pseudoredshifts of
the sources compiled by Yu et al. [22] is ∼2, and thus we
had to include unconstrained contributions to the calcu-
lation between the edge of the constrained volume and the
sources [Eq. (18)]. This, coupled with the importance of
long wavelength modes (Sec. IV B), suggests that our
constraints could be improved by the next generation of
galaxy surveys, such as with Euclid [87] or the Rubin
Observatory [88], which will be sensitive up to z ∼ 2. To
estimate the potential improvement, we run the end-to-end
inference assuming that we can accurately reconstruct the
density field up to z ¼ 1.26 and to twice this redshift by
generating Gaussian random fields. We find that the
constraint improves by a factor of ∼30% with this extra
information. By combining the SDSS-III/BOSS and 2M++
reconstructions one could also reduce the uncertainty of the
low-redshift part of the calculation, since 2M++ provides
better constraints on the local density field.
A violation of the equivalence principle is not the only

phenomenon which could lead to a delay between arrival
times of photons of different energy. If the photon velocity
is energy dependent, then photons that travel more slowly
will arrive later. If the photon has a nonzero rest mass, mγ ,
then the speed of propagation increases with increasing
energy

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
γ

E2

s
≈ 1 −

1

2

m2
γ

E2
ð34Þ

(c≡ 1), whereas in a quantum gravity scenario [89] one
would expect a different scaling with energy

v ∼ 1 − ξ
E

EQG
; ð35Þ

where ξ ¼ �1 and EQG is the quantum gravity energy
scale, presumably around the Planck scale. In these cases,
the Shapiro term is no longer dominant when computing
the time delay, but the expected time delay for the massive
photon is

Δtij ¼ Δvij
Z

z

0

dz0

Hðz0Þð1þ z0Þ2 ; ð36Þ

and for the quantum gravity case [90]

Δtij ¼ Δvij
Z

z

0

ð1þ z0Þ
Hðz0Þ dz0; ð37Þ

where Δvij is the difference in photon velocity between
observed frequencies νi and νj. Applying a similar meth-
odology to that developed here would allow one to
constrain on the photon mass and quantum gravity energy
scale, and we will do so in future work.

We note that in this work we have used Δγij as a
phenomenological parameter with which to quantify the
WEP violation of photons through Eq. (2). This is an
arbitrary choice, and one could equally phrase equivalence
principle violation as a difference in, e.g., the gravitational
constant [91]. Theories that predict a non-null signal in our
test (e.g., massive photons) may have γ ¼ 1 in the usual
PPN sense. In these cases, and neglecting cosmological
redshift for illustrative purposes, one would equate
Δγij ¼ Δvij, and thus for the above models our bound
on Δγ41 would correspond to mγ ≲ 10−6 eV and
EQG ≳ 1011 GeV, if E1 ¼ 25 keV and E4 ¼ 325 keV.
For such models the geometric term [Eqs. (36) and (37)]
dominates the time delay, so it is unsurprising that these
bounds are weaker than the most stringent to date [61,92].
Strong lensing of distant objects smears their light into

an Einstein ring. The paths of photons observed across the
ring trace out two cones that intersect at the lens plane.
The relative time delays of these photons therefore contain
information not only on the distribution of mass in the lens
that sources a large part of the potential, but also on the
path length itself which the time delay is proportional to.
This length is a function of H0, enabling this fundamental
cosmological parameter to be constrained by measuring
the time delays across the ring [4,5]. As in this work, the
modeling is potentially sensitive to mass further away
from the geodesics that the photons follow than either the
lens itself or the few additional massive objects modeled
in [4]. Provided one has sufficient spatial resolution to
determine time delay differences across the Einstein ring,
by using the time delay maps from constrained density
fields one can test the validity of the external source
assumptions.
Similarly, in GR photons and gravitational waves are

predicted to follow the same geodesics. Recently, by
considering the effect of four massive halos along the line
of sight, it was shown [93] at > 5σ confidence that
GW170817 [7] underwent gravitational lensing. As with
the case of measuring H0, one could use constrained
density fields to determine the impact of mass away from
the line of sight when computing the time delay.
In this work we have only considered the time delay

differences between different frequencies from a given
source. The only cosmological regime in which the time
delay itself may be directly measurable is the cosmic
microwave background, where different delays between
different regions of the sky imply varying times of
recombination, and correspondingly varying temperature
of the blackbody radiation [94]. Standard autocorrelation
techniques cannot currently detect such a delay; however,
cross-correlation with other fields appears to be a
promising avenue [95]. We leave it to future work to
determine whether the large scale structure information
from the BORG algorithm could afford a detection of this
phenomenon.
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VII. CONCLUSIONS

The PPN parameter γ is the same for all particles at all
energies if the WEP is obeyed. If there is a difference in γ,
Δγij, between two photon frequencies, νi and νj, then
there will be a spectral lag proportional to Δγij and the
Shapiro time delay. Most previous attempts to calculate the
Shapiro delay in order to constrain Δγij have assumed that
the gravitational potential is dominated by only a few
local sources and incorrectly argue that this produces
conservative constraints.
In this work we constructed a source-by-source,

Monte Carlo–based forward model for the Shapiro time
delay from gamma ray bursts detected by the BATSE
satellite. We work in a cosmological context by combining
the constrained local density field determined using the
BORG algorithm with unconstrained, long-wavelength
modes. Propagating uncertainties in the density field
reconstruction via Monte Carlo sampling and marginalizing
over an empirical model characterizing other contributions
to the time delay, we derive constraints onΔγij between the
four energy channels, and for all pairs find constraints at
least as tight as Δγij < 2.1 × 10−15 at 1σ confidence. These
constraints are a factor ∼30 times tighter than previous
results that use a cosmological model and ∼40 times tighter
than if one neglects the cosmological contribution.
Our modeling is applicable to alternative multimessenger

probes of the WEP, although these may require different

models for the other contributions to the time delays. For
example, for FRBs one would need accurate maps of the
electron density of the universe to forward model the
contribution of scattering from the electron plasma, which
depends on the integrated electron density (and is thus
direction dependent) and scales as ν−2. Furthermore,
cosmological calculations of the Shapiro time delay can
determine the accuracy of lens modeling when considering
time delays across the Einstein ring of a strongly lensed
source or find use in the analysis of the cosmic microwave
background. Identifying potential systematics in these
probes of the Universe is vitally important, especially in
the context of the Hubble tension [96].
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