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The motion of spinning test particles around a traversable wormhole is investigated using the Mathisson-
Papapetrous-Dixon equations, which couple the Riemann tensor with the antisymmetric tensor Sαβ, related
to the spin of the particle. Hence, we study the effective potential, circular orbits, and innermost stable
circular orbit (ISCO) of spinning particles. We found that the spin affects significantly the location of the
ISCO, in contrast with the motion of nonspinning particles, where the ISCO is the same in both the upper
and lower universes. On the other hand, since the dynamical four-momentum and kinematical four-velocity
of the spinning particle are not always parallel, we also consider a superluminal bound on the particles
motion. In the case of circular orbits at the ISCO, we found that the motion of particles with an
adimensional spin parameter lower (greater) than s ¼ −1.5 (1.5) is forbidden. The spin interaction becomes
important for Kerr black hole orbiting super massive wormholes (SMWH). The motion of spinning test
particles around a rotating wormhole is in process, and we will present it in a new manuscript soon.
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I. INTRODUCTION

In the last years of his life, Einstein tried to find a theory
to unify electromagnetism with general relativity (GR). In
contrast to some scientists, Einstein was concerned by the
idea of considering material particles as singularities of the
fields: “a singularity brings so much arbitrariness in the
theory that it nullifies its laws” [1]. In this sense, it was a
fundamental principle for Einstein to remove singularities
in a field theory. Hence, in 1935, Einstein and Rosen tried
to answer the following question:

“Is an atomistic theory of matter and electricity con-
ceivable which, while excluding singularities in the field,

makes use of no other field variables than those of the
gravitational field (gμν) and those of the electromagnetic
field in the sense of Maxwell (vector potentials)?” [1].

One example of such singularities is the curvature singularity
that appears in thewell-known Schwarzschild solution [2,3].
When solving the field equations for a vacuum, static and
spherically symmetric space-time (with and without an
electrostatic field), it is clear that singularities at the center
of symmetry must emerge. Nevertheless, by reinterpreting
the Schwarzschild solution, Einstein and Rosen were able to
find a way to avoid the singularity problem. Their idea
consisted of treating the physical space as two concurrent
sheets, where (neutral and charged) particles are seen as the
portions of the space-time that connect the two sheets. In
simple words, Einstein and Rosen thought of particles as
“bridges”1 connecting two regions of the space-time.
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1It is necessary to point out that the Einstein-Rosen bridge was
originally discovered by Flamm (1916) after Schwarzschild
published his solution [4].
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With the paradigm of particles as bridges, Einstein and
Rosen tried to explain the atomistic character of matter2

without introducing new variables other than the metric and
the vector potential. It is worth noticing that for some time
the idea of the existence of “bridges”, or wormholes3 as
they are called today, was considered more appealing than
that of black holes. However, in 1962, Wheeler and Fuller
showed that the Einstein-Rosen bridge (also known as the
Schwarzschild wormhole) is unstable and will pinch off in a
finite time. Hence, although the Schwarzschild space-time
is static, a proper analysis shows that the Schwarzschild
geometry is changing with time [6]. As a consequence,
Schwarzschild wormholes are not traversable.
The possibility of traversable wormholes in general

relativity appeared for the first time in the works of Ellis
[7] and Bronnikov [8] (1973). In his paper, Ellis obtained a
solution of Einstein’s field equations for a vacuum space-
time, modified by the inclusion of a scalar field coupled to
the Ricci tensor. The solution is known as the Ellis drain-
hole. Thus, by analyzing the topology and geodesics, Ellis
was able to show that it is geodesically complete, horizon-
less, singularity-free, and fully traversable in both direc-
tions. The drain-hole solution requires two parameters to be
described: m, which fixes the strength of its gravitational
field, and n, which determines the curvature of its spatial
cross sections. When m ¼ 0, the drain-hole gravitational
field vanishes, forming a nongravitating, purely geometric,
traversable wormhole [7].
Traversable wormholes motivated numerous studies

during the 1980s and the 1990s [9–19]. These works
provided a deeper understanding of the physics behind
each particular solution. In Ref. [9], for example, Morris
and Thorne considered the following question: What
properties a classical wormhole should have to be tra-
versable? Usually, as Visser pointed out in Ref. [12], the
process to analyze classical wormholes starts by consider-
ing a Lagrangian, solving the Einstein field equations, and
then looking for different geometries among these solu-
tions. However, the authors of Ref. [9] used a different
approach. There, Morris and Thorne assumed the worm-
hole geometry to derive, via Einstein field equations, the
stress-energy tensor and then investigate the physics. In this
way, they were able to show that “exotic” matter should be
present at the throat of a traversable wormhole.
On the other hand, the idea of wormholes also has

inspired the possibility of time travel [9,10]. Although this
possibility has been considered speculatively (because the
existence of wormholes is constrained to existence of
“exotic” matter, which violates the weak energy condition),

we cannot entirely dismiss it. In fact, the discovery that
black holes can evaporate [20] has suggested that quantum
fields can violate the energy conditions and has led some to
speculate on the validity of energy conditions [21]. One
example related to wormholes is the quantum creation of
particles in [9].
After the work of Einstein and Rosen (1935) [1], the

interest in wormhole solutions remained dormant for
almost twenty years. Then, with the works of Wheeler
(1955) and Misner (1957) [5,22] wormholes started to be
considered again by the scientific community as viable
astrophysical objects. Recently, a lot of theoretical
researchers have studied different aspects of traversable
wormholes within Einstein’s gravity [23–32] as well as in
alternative theories of gravity [33–37]. Furthermore, some
authors have considered the effects that wormholes would
produce from the observational point of view [38–43] with
the aim of putting constraints on their possible detection. In
[42], for example, it is studied the Kα iron line of several
wormhole solutions based on the idea that supermassive
black hole candidates at the center of galaxies might be
wormholes formed in the early universe. By calculating the
Kα iron line produced by accretion disks in the space-time
of these solutions, one could compare it with that produced
by a Kerr black hole. It was found that the Kα iron line
produced around nonrotating or slow-rotating wormholes
may mimic the one obtained in vicinity of Kerr black holes
(with mid or high spins). Moreover, the results are still
marginally compatible with current observations. Hence,
the possibility that the supermassive black hole candidates
in galactic nuclei could in fact be these objects is still not
ruled out. On the other hand, in the case of wormholes with
spin parameter a� > 0.02, the iron line is indeed different
from the one produced in the space-time of a Kerr black
hole and therefore, their existence may already be excluded
via current observations [42].
One aspect that is important to consider when dealing

with accretion disks is the spin of the particles in the
accretion disk’s gas. In fact nowadays, the spin interaction
of relativistic systems has become an important subject of
study [44–61]. For this reason, it is important to properly
understand the dynamics of test particles in curved space-
time that includes classical spin. In 1937, Mathisson
studied the problem of extended bodies in GR. In his
work, he demonstrated an existing interaction between the
Riemann curvature tensor and the spin of the moving
particle in the equations of motion [62]. Papapetrou also
considered the same problem in Refs. [63,64] developing a
similar approach as Mathisson. It is worth remembering
that later, Tulczyjew improved on the methods of
Mathisson [65,66] while Moller and others made improve-
ments in the definition of center-of-mass in Refs. [67–72].
Today, the equations that describe the motion of extended
bodies with spin and mass are known as the Mathisson-
Papapetrous-Dixon equations (MPD).

2For example, according to this idea, the problem of the nature
of electrons and protons, which are described as pointlike
particles in electrodynamics, can be addressed by considering
it as a two bridge problem.

3The term “wormhole” was coined by Wheeler and Misner in
1957 [5].
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In this work, we investigate the motion of spinning
particles around a traversable wormhole. We organize our
work as follows: In Sec. II, we review properties of
traversable wormholes discussed in Ref. [9]. Next, in
Sec. III, we discuss the motion of spinning particles in a
spherically symmetric space-time. In this section, we use
the MPD equations to obtain the effective potential and the
superluminal condition. Then, in Secs. IV and V, we apply
the results of Sec. III to the Morris-Thorne wormhole. We
compute the effective potential, circular orbits, and the
innermost stable circular orbit (ISCO). We also use the
superluminal bound to find a constraint for the allowed
spin of the particle. Finally, in Sec. VI, we summarize
our work and discuss the implications of the results.
Throughout the manuscript, we use geometrized units
setting G ¼ c ¼ M ¼ 1.

II. MORRIS-THORNE WORMHOLES

In this section, we review properties of wormholes
discussed by Morris and Thorne in Ref. [9], where the
authors assumed the wormhole’s space-time geometry, and
then, via the field equations, computed the corresponding
energy-momentum tensor. Therefore, the discussion starts
by assuming a static and spherically symmetric space-time
for which the line element has the following form

ds2 ¼ −e2ΦðrÞdt2 þ dr2

ð1 − bðrÞ
r Þ

þ r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

where ΦðrÞ and bðrÞ are arbitrary functions of the radial
coordinate r known as the “redshift function” and the
“shape function”, respectively. The fact that Eq. (1) can
represent a wormhole with a throat is easily explained by
embedding the line element in a three-dimensional space at
a fixed time slice t. In addition, given the spherical
symmetry of the line element in Eq. (1), we can limit
the attention to the equatorial plane θ ¼ π=2 and consider
the restricted line element

ds2 ¼
�
1 −

bðrÞ
r

�
−1
dr2 þ r2dφ2: ð2Þ

One can interpret Eq. (2) as a “picture” of the space-time
observed from the equatorial plane at time t. The line
element in Eq. (2) can be embedded in the three-dimen-
sional space in cylindrical coordinates fr; z;φg with z ¼
zðrÞ as

ds2 ¼
�
1þ

�
dz
dr

�
2
�
dr2 þ r2dφ2; ð3Þ

if we compare Eqs. (2) and (3) to obtain dz=dr, which is
given by

dz
dr

¼ �
�

r
bðrÞ − 1

�
−1
2

: ð4Þ

As an example, we consider one of the wormhole
solutions obtained in Ref. [9] with bðrÞ ¼ b20=r (see
Fig. 1 for details). Hence, after integration, the coordinate
z as a function of radial coordinate r takes the following
form

zðrÞ ¼ �b0 ln
�
r
b0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r
b0

�
2

− 1

s �
: ð5Þ

Note that dz=dr in Eq. (4) (the slope) diverges at
r ¼ bðrÞ ¼ b0. Moreover, one can observe that Eq. (5)
has two branches: one with positive sign and the other with
negative sign. In Fig. 2 we show the plot of z vs. r. From the
figure, it is possible to see the two branches of Eq. (5),
which correspond to the upper (þ) and lower (−) universes.

FIG. 1. Representation of the wormhole embedded in a three
dimensional space-time. For the plot we use the line element
ds2 ¼ −dt2 þ dl2 þ ðb20 þ l2Þðdθ2 þ sin2 θdφ2Þ, which is a spe-
cial case of Eq. (1), where the coordinate l is related to r by
r2 ¼ b20 þ l2. Here the “redshift function” vanishes (Φ ¼ 0) and
the “shape function” is given by bðrÞ ¼ b20=r. In the plot we
chose b0 ¼ 10M.
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FIG. 2. Plot of Eq. (5) with b0 ¼ 10M (the radius of the throat).
One can see the upper (continous line) and lower (dotted line)
universes.
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Here the value b0 is the wormhole’s throat radius, where
dz=dr diverges. For a complete three-dimensional view of
the wormhole, it is necessary to rotate the function zðrÞ
around the z-axis. The result is shown in Fig. 1.
Now, knowing that the line element in Eq. (2) does

represent a spherically symmetric wormhole, the next step
is to make sure it is a solution of the field equations. In this
sense, it is necessary to compute the energy-momentum
tensor via Einstein’s field equations. Here, the reason for
considering an energy-momentum tensor different from
zero has to do with the fact that while nontraversable
wormholes, like the Einstein-Rosen bridge, are vacuum
solutions of the field equations for traversable wormholes
one must have an energy-momentum tensor different from
that of a vacuum located at the throat in order to allow the
matching of the upper and lower universes.
The analysis presented in Ref. [9] is performed using a

“proper reference frame”, this means that physical “obser-
vations” are performed by a local observer, who remains at
rest with respect to the coordinate system ft; r; θ;φg. The
proper reference frame is constructed using the tetrad
formalism with the basis vectors [73]

eðaÞ ¼ eðaÞμ∂μ and eðaÞ ¼ eðaÞμdxμ: ð6Þ
Here we use the same notation as in Ref. [73], where tetrad
indices are enclosed in parentheses to distinguish from the
tensor indices. In the case of the line element described by
Eq. (1), the orthonormal basis of a proper reference frame
is given by eðaÞμ. In terms of the metric, the tetrad has the
form

eð0Þμ ¼ ðe−Φ; 0; 0; 0Þ

eð1Þμ ¼
�
0;

�
1 −

bðrÞ
r

�
1=2

; 0; 0

�

eð2Þμ ¼ ð0; 0; r−1; 0Þ
eð3Þμ ¼ ð0; 0; 0; ðr sin θÞ−1Þ: ð7Þ

The purpose of using a proper reference frame (or,
equivalently, a “local Lorentz frame”) in the analysis of
the physical quantities is to diagonalize the energy momen-
tum tensor TðaÞðbÞ and then be able to relate each (diagonal)
component to a physical quantity of clear meaning, i.e. the
total density of mass-energy ρðrÞ, the tension per unit area
τðrÞ, and the pressure pðrÞ. Hence, from the physical point
of view, the observer in a local Lorentz frame interprets
ρðrÞ, τðrÞ, and pðrÞ as
Tð0Þð0Þ ¼ρ; Tð1Þð1Þ ¼−τðrÞ; Tð2Þð2Þ ¼Tð3Þð3Þ ¼pðrÞ: ð8Þ
The field equations of course are given by

GðaÞðbÞ ¼ 8πTðaÞðbÞ; ð9Þ

where GðaÞðbÞ is the Einstein tensor.

Using Eq. (8) and the field equations (9) Morris and
Thorne obtained the following relations between the
physical quantities ρðrÞ, τðrÞ, pðrÞ and the metric quan-
tities ΦðrÞ and bðrÞ [9]

ρ ¼ b0ðrÞ
8πr2

τ ¼ bðrÞ=r − 2ðr − bðrÞÞΦ0

8πr2

p ¼ r
2
½ðρ − τÞΦ0 − τ0� − τ; ð10Þ

where f0 denotes the partial derivative of f with respect to
r. Therefore, solving the field equations in the case of a
wormhole corresponds to solving the set of equations (10).
Notice that these are three equations in five unknown
quantities. Accordingly, Morris and Thorne proposed to use
this freedom to control the functionsΦðrÞ and bðrÞ (related
to the wormhole’s geometry) in such a way that the solution
generates a traversable wormhole.
According to Ref. [9], there are several properties that

must be satisfied for the geometry to describe a traversable
wormhole. As already mentioned, the assumption that the
space-time be static and spherically symmetric greatly
simplifies the calculations (for stationary wormholes see
for example [74], while for static but nonspherically
symmetric wormholes see [75–77]). Second, any wormhole
solution should contain a throat that connects two asymp-
totically flat regions of space-time. This property is clearly
shown in Figs. 1 and 2 for a particular form of the shape
function bðrÞ. As said, the existence of a throat is related to
the divergence of dz=dr at r ¼ bðrÞ ¼ b0, while to dem-
onstrate that the solution is asymptotically flat, noticing that
the radial coordinate is ill-defined at the throat, Morris and
Thorne considered the proper radial distance [9]

lðrÞ ¼ �
Z

r

b0

�
1 −

bðr̃Þ
r̃

�
−1
2

dr̃; ð11Þ

which is finite everywhere if 1 − bðrÞ=r ≥ 0. Using the
proper radial distance, Morris and Thorne showed that
dz=dl → 0 as l → �∞, i.e. the space-time is asymptoti-
cally flat.
Finally, the solution must not contain a horizon.

Wormholes allow to causally connect two different portions
of the space-time by the throat. Therefore, the presence of a
horizon would prevent the two universes to be causally
connected. This condition is satisfied by demanding ΦðrÞ
to be finite everywhere.
These properties, along with the field equations (10), are

the “basic wormhole criteria”. Nevertheless, the authors
have also discussed the possibility of tuning the worm-
hole’s parameters to make it possible for humans to travel
through them; this requires the crossing-time to be finite for
any observer and the tidal force felt by the astronaut to be
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small. On the other hand, one of the most important results
is the necessity of “exotic matter” to generate the worm-
hole’s space-time curvature. This conclusion comes from
the fact that in the throat

τ0 > ρ0: ð12Þ
Physically, this means that the tension τ0 in the throat must
be so large as to exceed the total density mass-energy ρ0,
which implies that an observer passing through the throat,
with a radial velocity close to the speed of light, would
perceives a negative T̃ð0Þð0Þ [9]

T̃ð0Þð0Þ ¼ γ2½ρ0 − τ0� þ τ0: ð13Þ

Physicists have established a series of energy conditions
to ensure the physical viability of Tμν, such as for example
avoiding negative energy densities. However, energy con-
ditions are considered to be valid for classical matter fields
but may be violated at quantum level [15]. Therefore, while
Eq. (12) violates the weak energy condition, from a
quantum perspective, there exist some situations in which
such violation may be physically valid, such as, for
example, the quantum mechanical creation of particles
[78]. In this sense one can not entirely rule out the
possibility of the existence of the exotic material required
for the throat of a traversable wormhole to hold [9].
Finally, with the help of Eqs. (10), Morris and Thorne

established a method to obtain traversable wormhole sol-
utions. The method is as follows. First, givenΦðrÞ and bðrÞ
satisfying the conditions for a traversablewormhole, one can
use the first relation in Eq. (10) to obtain ρðrÞ. Then, using
the second relation in Eq. (10) one can obtain τðrÞ. Finally,
with ρðrÞ and τðrÞ, one can find pðrÞ. Following this
method, Morris and Thorne obtained three solutions: the
zero-tidal-force wormhole, a solution with a finite radial
cutoff of the stress-energy, and a solution with exotic matter
limited to the throat’s vicinity. In this paper, we will focus
our attention in the zero-tidal-force solution with

ΦðrÞ ¼ −
b0
r

and bðrÞ ¼ b20
r
: ð14Þ

III. EQUATIONS OF MOTION FOR
A SPINNING PARTICLE

The equations of motion of spinning particles are given
by the MPD equations that can be expressed as

Dpα

dλ
¼ −

1

2
Rα

βδσuβSδσ;

DSαβ

dλ
¼ pαuβ − pβuα; ð15Þ

where D=dλ≡ uα∇α is the projection of the covariant
derivative along the particle’s trajectory, uμ ¼ dxμ=dλ is the

4-velocity of the test particle, pα is the canonical
4-momentum, Rα

βδσ is the Riemann curvature tensor,
and λ is an affine parameter. The second rank tensor Sαβ

is antisymmetric,4 Sαβ ¼ −Sβα. In general relativity, the
geodesic equation is given by

∂βuαuβ þ Γα
σβuσuβ ¼ 0; ð16Þ

which can be expressed in terms of the 4-momentum of the
particle and the projection of the covariant derivative along
the particle’s trajectory as

Dpα

dλ
¼ 0: ð17Þ

Therefore, if one compares Eqs. (15) and (17), one
concludes that spinning particles do not follow a geodesic
due to the interaction between the Riemann curvature
tensor and the antisymmetric tensor Sαβ.
To solve the MPD, it is necessary to fix the center of

mass of the spinning particle by including the condition
[48,65]

Sαβpα ¼ 0; ð18Þ

which is the so-called Tulczyjew spin supplementary
condition (SSC) [48]. From Eq. (18), it turns out that
the canonical momentum and the spin of the particle
provide two independent conserved quantities given by
the relations

pαpα ¼ −m2;

s2 ¼ 1

2
SαβSαβ: ð19Þ

However, although the canonical momentum of the spin-
ning particle is conserved, it is important to point out that
the squared velocity does not necessarily satisfy the
condition

uαuα ¼ −1; ð20Þ

because the 4-vectors pα and uα are not always parallel.
Therefore, it is necessary to impose an additional condition
known as the superluminal bound to ensure that the
particle’s 4-velocity is always smaller than the speed
of light.
In addition to the conserved quantities resulting from the

Tulczyjew-SSC condition, there exist also the conserved
quantities associated to the space-time symmetries given by
the Killing vectors ξμ, which can be expressed as

4Note that for any antisymmetric tensor, the diagonal compo-
nents vanish identically, i.e. Sαβ ¼ 0 if α ¼ β.
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pαξα −
1

2
Sαβ∇βξα ¼ pαξα −

1

2
Sαβ∂βξα ¼ constant; ð21Þ

where we have used the fact that the term SαβΓγ
βα in the

convariant derivative vanishes because Sαβ is antisymmetric
while Γγ

βα is symmetric.

A. Effective potential

As mentioned before, the line element of a spherically
symmetric wormhole is given by Eq. (1). Here, we assume
bðrÞ ¼ b20=r, where b0 is the wormhole’s throat. In general,
b0 is interpreted as the mass of the wormhole in the
Newtonian limit (see for example Ref. [79]). Also we make
a common choice for the redshift function [79,80] taking
Eq. (14). We base this choice on the behavior of circular
orbits around the wormhole, which are unstable when
∂Φ=∂r < 0 and stable when ∂Φ=∂r > 0 (see Ref. [80] for
details).
Using the proper distance l, related to r by the relation

r2 ¼ b20 þ l2, as a new radial coordinate, the line element
Eq. (1) takes the form:

ds2¼−e2ΦðlÞdt2þdl2þðb20þ l2Þðdθ2þ sin2θdφ2Þ; ð22Þ

with

ΦðlÞ ¼ −
b0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 þ l2

p : ð23Þ

With this choice the throat of the wormhole is located at
l ¼ 0 and we are then able to consider the lower universe
(l < 0) and the upper universe (l > 0) in a unified manner.
Since the space-time is static and spherically symmetric,
the line element allows two Killing vector fields given by

ξα ¼ δαt ; ξα ¼ δαφ; ð24Þ

which correspond to time translation and rotations, and
have associated two conserved quantities, i.e. the energy E
and the angular momentum L. Using Eq. (24), the con-
served quantities can be expressed as [49,54,55]

−E ¼ pt −
1

2
gtα;βSαβ ¼ pt −

1

2
gtt;lStl;

L ¼ pφ þ
1

2
gφα;βSβα ¼ pφ þ

1

2
gφφ;lSlφ: ð25Þ

Given the spherical symmetry of the geometry we can
restrict the attention to a plane of constant θ, such as the
equatorial plane θ ¼ π=2. Then pθ ¼ 0 and the metric
functions on the equatorial plane depend only on the radial
coordinate l. Therefore, since Sθα ¼ 0, the number of
independent components of Sαβ reduces to three. Using
Eq. (18) one obtains the following relations:

Stφ ¼ pl

pφ
Slt ¼ −

pl

pφ
Stl;

Slφ ¼ −
pt

pl
Stφ ¼ pt

pφ
Stl: ð26Þ

Now, from the normalization condition and conservation of
angular momentum in Eqs. (19) we have

p2
l ¼ −gll½gttp2

t þ gφφp2
φ þm2�;

2S2 ¼ SαβSαβ ¼ 2Slt
�
Stl −

pl

pφ
Stφ þ

pt

pφ
Slφ

�
; ð27Þ

and

Stl ¼ gtρglϵSρϵ ¼ gttgllStl;

Stφ ¼ gtγgφσSγσ ¼ −gφφgtt
pl

pφ
Stl;

Slφ ¼ glλgμφSλμ ¼ gllgφφ
pt

pφ
Stl: ð28Þ

From which we get

Stl ¼ � pφsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgllgφφ
p ¼ pφe−ΦðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b20 þ l2
p s; ð29Þ

where s ¼ S=m can be positive or negative and represents
the direction of the spin with respect to the direction of pφ.
Now, from the conservation of energy and angular momen-
tum Eq. (25) we have

−E ¼ pt − sApφ;

L ¼ pφ þ sBpt; ð30Þ

with5

A ¼ 1

2

gtt;lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgllgφφ
p ¼ −

eΦðlÞΦ0ðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 þ l2

p ;

B ¼ 1

2

gφφ;lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgllgφφ
p ¼ le−ΦðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b20 þ l2
p : ð31Þ

After solving, we obtain

pt ¼
−Eþ sAL
1þ s2AB

;

pϕ ¼ Lþ sBE
1þ s2AB

; ð32Þ

and

5Where now prime 0 denotes partial derivatives with respect to
radial coordinate l.
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AB ¼ −
lΦ0ðlÞ
b20 þ l2

: ð33Þ

Now, after inserting Eq. (32) into Eq. (27), we finally obtain

ðplÞ2 ¼
1

α
ðβE2 þ 2δLEþ σL2 − γÞ; ð34Þ

which is quadratic equation for E with

α ¼ gll
�
1 −

g0ttg0φφs2

4gttgllgφφ

�
2

;

β ¼ −gtt þ gφφðg0φφÞ2s2
4gttgllgφφ

;

δ ¼ ðgttg0tt − gφφg0φφÞs
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgllgφφ
p ;

σ ¼ −gφφ þ gttðg0ttÞ2s2
4gttgllgφφ

;

γ ¼ m2

�
1 −

g0ttg0φφs2

4gttgllgφφ

�
2

: ð35Þ

Equation (34) can be expressed as

ðplÞ2 ¼
β

α
ðE − VþÞðE − V−Þ; ð36Þ

where V� is a solution of ðprÞ2 ¼ 0 given by

V� ¼ −
δL
β

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2L2

β2
þ γ − σL2

β

s
: ð37Þ

According to Eq. (36), the energy of the particle must
satisfy the conditions

E ∈ ð−∞; V−� or E ∈ ½Vþ;∞Þ; ð38Þ

in order to have ðplÞ2 ≥ 0. In the following,we shall focus on
the case in which test particles have positive energy and
therefore explore the effective potential given by Veff ¼ Vþ.

B. Superluminal bound

As mentioned, the dynamical four-momentum pα and
the kinematical four-velocity uα of a spinning particle are
not always parallel. As a consequence, although pαpα ¼
−m2 is satisfied, the normalization uαuα ¼ −1 does not
hold. As the spinning particle moves closer to the center of
symmetry, uα increases, and eventually, for certain values
of the spin s and radius l, some components of the four-
velocity may even diverge. Before this happens, the motion
of the particle crosses the boundary between timelike and
spacelike trajectories thus becoming superluminal. It is
well-known that spacelike (or superluminal) motion does

not have any physical meaning, and the transition to
uαuα > 0 is not allowed for real particles. In this sense,
one must impose a further constrain known as the super-
luminal bound, defined by the relation uαuα ¼ 0. Hence,
for the particle to move always in the timelike region, it is
necessary to impose the following condition [54,55]

uαuα

ðutÞ2 ¼ gtt þ gllðulÞ2 þ gϕφðuφÞ2 ≤ 0; ð39Þ

with the equality holding at the superluminal bound. To
compute ul and uφ, we use a method developed in Ref. [81]
(see the Appendix for the full derivation). This method is
based on application of the MPD equations (15). From the
second MPD equation, by using Tulczyjew-SSC, applying
D=dλ and solving it for DStl=dλ, DStφ=dλ and DSlφ=dλ
one can obtain the following system for the nonzero
components of Sαβ:

DStl

dλ
¼ ptul − utpl;

DStφ

dλ
¼ ptuφ − utpφ;

DSlφ

dλ
¼ pluφ − ulpφ: ð40Þ

Following to the gauge choices and invariant relations in
Ref. [81], we set λ ¼ t and can express the above system of
equations in terms of Sφl only. This is a consequence of the
MPD equations that imply

ul ¼ Ĉ

B̂

pl

pt
;

uφ ¼ Â

B̂

pφ

pt
; ð41Þ

with

Â ¼ gφφ þ Rtllt

�
Sφl

pt

�
2

;

B̂ ¼ gtt þ Rφllφ

�
Sφl

pt

�
2

;

Ĉ ¼ gll þ Rφttφ

�
Sφl

pt

�
2

: ð42Þ

Now, inserting Eq. (41) into the superluminal bound
condition (39) we have

gttðB̂Þ2ðptÞ2 þ gllðĈÞ2ðplÞ2 þ gφφðÃÞ2ðpφÞ2 ≤ 0; ð43Þ

and from the conservation of the four-momentum
pαpα ¼ −m2, the superluminal bound condition reduces to
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F ¼
�
pt

m

�
2

X þ
�
pφ

m

�
2

Y − Z ≤ 0; ð44Þ

with

X ¼ gttðB̂Þ2 −
ðĈÞ2
gtt

;

Y ¼ gφφðÂÞ2 − ð ˆCÞ2
gφφ

;

Z ¼ gllðĈÞ2: ð45Þ

C. Other bounds on the spin parameter

When dealing with realistic astrophysical scenarios, such
as compact stars and stellar mass black holes orbiting
supermassive black holes, we must notice that the approx-
imations considered here have limits. Themass and size of the
spinning test particle must be negligible with respect to the
central object’s mass and must not affect the geometry.
Furthermore, it is crucial to remark that MPD equations only
take into account effects generated by themassmonopole and
spin dipole, the well-known pole-dipole approximation. In
this sense, these equations do not take into account the mass
quadrupole effect related to the tidal coupling.Hence, one can
not use them to model more extended objects [49,82].
Additionally, since the MPD equations are conservative,
the effects of gravitational radiation are ignored.
In this sense, following Refs. [49,82], it is important to

point out that we measure the spin parameter s in terms of
mb0, not m2. Therefore, the system considered in this
work is a spinning compact body of mass m orbiting a
super massive wormhole of mass b0. In the case of compact
objects, such as black holes, neutron stars, or white
dwarfs, physically realistic values of the spin must satisfy
s ≪ 1. If the compact object is a maximally spinning black
hole of mass m, with spin angular momentum m2 (and
m ≪ b0), for example, the spin parameter s is given by the
condition [82]

s ¼ S
mb0

≤
m2

mb0
¼ m

b0
≪ 1: ð46Þ

On the other hand, if the compact object is a neutron star,
one can take a maximum value (approximately) of 0.6m2

[83]. From which one gets s≲ 0.6m=b0.
When the compact object is a white dwarf, the bound on

the spin is more difficult to compute. First, one needs to
consider the maximum value of s before the star begins to
break up. This value is given by smax ¼ IΩmax, where Ωmax
is the maximum angular velocity and I is the moment of
inertia. If we write I ¼ αmR2 and Ωmax ¼ β

ffiffiffiffiffiffiffiffiffiffiffiffi
m=R3

p
for

some constants α ¼ 0.2044 and β ≲ 1 (β ¼ 0.5366), we
have that [82]

smax ¼ 0.110
ffiffiffiffiffiffiffiffiffi
m3R

p
: ð47Þ

Nevertheless, the limit in Eq. (47), depends on the mass-
radius ratio between the objects in question. Therefore, an
analytical expression may be necessary to compute the
mass-radius ratio. One example is given by the relation (for
nonrotating white dwarfs) [82]

R
R⊙

¼ 0.1125

�
m

mmax

�
−1
3

f
1
2ðmÞ; ð48Þ

with

fðmÞ ¼ 1 −
�

m
mmax

�4
3

; ð49Þ

and mmax ¼ 1.454 M⊙. From which, following the results
of Ref. [84], it is possible to obtain the limit

s ≤ smax ¼
Smax

mb0
¼ 9 × 10−6 ≪ 1: ð50Þ

IV. SPINNING PARTICLES AROUND THE
MORRIS-THORNE WORMHOLE

In this section, we use the results from Sec. III to
compute the effective potential Veff for a spinning test
particle moving around a wormhole. As we have shown,
the effective potential depends on α, β, δ, σ, γ, which are
given by Eqs. (35). Note that these functions depend on the
redshift function Φ. As mentioned before, we focus on
particles with positive energy taking Veff ¼ Vþ in Eq. (37).
In general it is useful to rescale all the quantities in such a

way that they are adimensional. Hence, we define

l →
l
b0

; s →
s
b0

¼ S
mb0

; L →
L
b0

¼ L
mb0

: ð51Þ

Since the throat of the wormhole can be interpreted as the
gravitational mass of the source, we can rescale the radial
distances per unit mass or equivalently set b0 ¼ M ¼ 1.
Therefore, from Eqs. (35), and (37) we obtain

Veffðl; s;LÞ ¼ −
δL
β

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δL
β

�
2

þ γ − L2σ

β2

s
; ð52Þ

where we have also defined the adimensional effective
potential per unit mass of test particle by setting
Veff → Veff=m. With the above adjustments we get
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β ¼ e
2ffiffiffiffiffiffi
1þl2

p ½1þ lðl − sÞ�½1þ lðlþ sÞ�
ð1þ l2Þ2 ;

δ → b0δ ¼
lsð1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p
Þ

ð1þ l2Þ32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
− 2ffiffiffiffiffiffi

1þl2
p ð1þ l2Þ

q ;

σ → b20σ ¼ l2s2

ð1þ l2Þ4 −
1

1þ l2
;

γ →
γ

m2
¼

�
1 −

l2s2

ð1þ l2Þ52
�

2

: ð53Þ

From Eqs. (52) and (53), it is possible to see the symmetries
in VeffðlÞ depending on the signs of s, and L. We may call
VP
eff the “plus” configuration with positive signs for s and

L. Then we have

VP
effðl; s;LÞ ¼ VP

effðl;−s;−LÞ: ð54Þ

Also we may call VM
eff the “minus” configuration with the

opposite sign in the first term of Eq. (52). This is obtained
when either L or δ or β changes sign. Then we have

VM
effðl; s;−LÞ ¼ VM

effðl;−s;LÞ: ð55Þ

In Table. I we show in detail the symmetries for Veff in the
upper (l > 0) and lower (l < 0) universes. Moreover, the

behavior of each configuration is shown in Fig. 3. In the left
panel, we have plot together VM

effðl;−0.1; 1.997394Þ (red)
and VP

effðl; 0.1; 1.997394Þ (black), as functions of l. Note
that the change in the configuration from “plus” to “minus”
also changes the location of the innermost stable circular
orbit (ISCO), shown in the figure with black and gray dots.
In the central panel, we plot the “plus” configuration
given by VP

effðl;0.1;1.997394Þ ¼ VP
effðl;−0.1;−1.997394Þ.

Finally, in the right panel, we plot the “minus” configu-
ration given by VM

effðl;−0.1; 1.997394Þ ¼ VM
effðl; 0.1;

−1.997394Þ.
One interesting feature one sees from Fig. 3 is that the

profile of the effective potential is not symmetric about
the throat l ¼ 0 due to the spin of the particle, in contrast to
the motion of nonspinning particles (s ¼ 0) as shown in
Fig. 4. The direction of the spin of the test particle changes
the shape of the effective potential removing its symmetry
between upper and lower universe. In the “plus” configu-
ration, for example, the value of VP

eff in the upper universe is
larger than that in the lower universe. On the other hand, in
the “minus” configuration, the value of the effective
potential in the lower universe is larger than that in the
upper universe, as can be seen from Fig. 3. For spinning
particles the symmetry of Veff depends on which universe
(i.e. sign of l) and direction of the spin (i.e. sign of s), so
that particles with positive spin in the upper universe have
the same motion as particles with negative spin in the lower
universe.
In Fig. 5, the behavior of Veff as function of l in different

situations is plotted. In the left panel, we show the effective
potential for a nonrotating particle with different values of
the angular momentum L, varying from 0.7 to 2.3 and
increasing with a step of 0.1. In the figure, it is possible to
see the symmetry about the throat in the shape of Veff ,
which has the same behavior in both the lower and upper
universes. As the angular momentum increases, the effec-
tive potential increases. For large values of L, such as

FIG. 3. The effective potential Veff as a function of the radial coordinate l with the throat located at l ¼ 0. Left panel: plots of Veff in
“plus”(red) and “minus” (black) configurations. Central panel: two “plus” configurations. Right panel: two “minus” configurations. The
dots show the location of the ISCO in the lower (black) and upper (gray) universes. In the plots we assume b0 ¼ M ¼ 1.

TABLE I. Symmetries and configurations for Veff depending
on the signs of l, s, and L.

l s L Configuration l s L Configuration

þ þ þ Plus − − − Plus
þ þ − Minus − − þ Minus
þ − þ Minus − þ − Minus
þ − − Plus − þ þ Plus
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L ¼ 2.1, 2.2 and 2.3, the behavior of Veff shows two
maxima (unstable circular orbits) and three minima, one of
which is located at the throat. The behavior in the upper
(lower) universe outside the throat resembles the usual
behavior in the Schwarzschild geometry. Also, when the
angular momentum L decreases, the two peaks vanish, and
the shape of Veff changes in such a way that only one
minimum value appears at the throat. One can see similar
behavior in the right panel of Fig. 5, where the effective
potential of a spinning particle (s ¼ 0.2) for different values
of L is plotted. However here we see that the presence of
the spin removes the symmetry of Veff about the throat and
the effective potential does not have the same behavior in
both universes. This is clearly highlighted in the central
panel of Fig. 5 where Veff is plotted for various values of s,

while keeping the angular momentum (L ¼ 2) constant. As
above mentioned, the profile of Veff is symmetric only
when the spin of the particle is zero (red color curve in the
central panel of Fig. 5). Finally, it is important to point out
that Veff tends to 1 when l → �∞.

V. INNERMOST STABLE CIRCULAR ORBITS

Now, we focus our attention on circular orbits of
spinning particles in the space-time of a wormhole given
by Eq. (22). Circular motion occurs when the radius is
constant and the radial acceleration of the particle vanishes.
Mathematically, this means that the radial velocity of the
test particle vanishes dl=dλ ¼ 0, which implies that E ¼
VeffðlÞ [see Eq. (36)], where we have defined the energy of
the test particle per unit mass as E ¼ E=m. The radial
acceleration of the particle also vanishes, i.e. d2l=dλ2 ¼ 0,
from which dVeff=dl ¼ 0. Nevertheless, this condition does
not guarantee that circular orbits are stable. The stability of
a circular orbit can be evaluated from the second derivative
of the effective potential with respect to the radial coor-
dinate, which must be positive, namely

d2Veff

dl2
≥ 0: ð56Þ

When d2Veff=dl2 ¼ 0, one can obtain the marginally stable
circular orbit, corresponding to the smallest allowed value
for stable circular orbits, also known as the innermost stable
circular orbit or ISCO.
Using the conditions E ¼ Veff and dVeff=dl ¼ 0 we

obtain the values of E and L in terms of the circular orbit
radius l and then from d2Veff=dl2 ¼ 0 the value of the
radius of the ISCO for a spinning test particle. Since the
process involves the solution of a nonlinear system of
equations for l and L, we must in general solve it
numerically. Also, to ensure that motion of the spinning
particle is physically valid, we check that the superluminal
bound is satisfied using Eq. (44).

FIG. 5. Plots of Veff as a function of l in different situations. Left panel: for a nonrotating particle with different values of L. Central
panel: constant angular momentum L ¼ 2 and different values of s. Right panel: constant spin s ¼ 0.2 with different values of L. In the
plots we consider b0 ¼ M ¼ 1. Furthermore, in the left and right panels, we vary L from 0.7 to 2.3 by a step of 0.1.

FIG. 4. The effective potential for a nonspinning test particle
(s̃ ¼ 0) is symmetric about the throat, hence the ISCO for
nonspinning particles is at the same distance from the throat
in the upper and lower universes. In the plots we assume
b0 ¼ M ¼ 1.
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In Fig. 6, we show the contour plots for the first and
second derivatives of the effective potential for two differ-
ent values of the spin s ¼ 0.1 and 1.3. When we consider
s ¼ 0.1 and the “plus” configuration (both L and s
positives), the contour plot shows two possible values
for the ISCO: one located in the upper universe
(lISCO ¼ 1.946354727) and the other is in the lower
universe (lISCO ¼ −1.470809497). It is important to point
out that each value of the ISCO corresponds to a different
value in the angular momentum. Hence, in the upper
universe, a particle with spin s ¼ 0.1 moves in a stable
circular orbit at the ISCO radius l ¼ 1.946354727 with
angular momentum L ¼ 1.979967293191. In the lower
universe, on the other hand, a particle with spin s ¼ 0.1
moves in a stable circular orbit at the ISCO radius
l ¼ 1.470809497 with angular momentum L ¼
1.997394095017. Note that the ISCO in the lower universe
has a higher angular momentum, and it is closer to
the wormhole’s throat. When we change the “minus”
configuration, the roles are inverted. See the black and

red dots in the figure. In the “minus” configuration (s
positive and L negative), the ISCO represented by the red
dot is at the lower universe.
For values of the spin in the range −1 < s < 1, we have

two values for the ISCO at each universe. Nevertheless, for
s < −1 or s > 1, we have only one ISCO; located only in
one of the universes: upper or lower. We can see this
behavior from the contour plots in the second row of Fig. 6,
where we impose s ¼ 1.3.
The above statement is clearly illustrated in Fig. 7.

Nevertheless, taking into account the discussion of
Sec. III C, the interval jsj > 1 does not represent realistic
values of the spin. In the case of an extended body like
Jupiter, for example, the ratio S=m2 could be Oð103Þ, then
s ∼ 1. Therefore, although Jupiter may survive a traversable
wormhole (because there is no tidal), the MPD equations
are inappropriate to model its motion. Only those values of
s ≪ 1 have physical meaning.
In the figure, we plot the first and second derivatives of

the effective potential when s ¼ 0.1 (left and central

FIG. 6. Contour plots for the first and second derivatives of Veffðl;LÞ and location of the ISCO shown using dots with black a red
colors. In the first row we have s ¼ 0.1, in the second row s ¼ 1.3. Left panel: contour plot of dVeff=dl ¼ const. The ISCO is located on
the curve dVeff=dl ¼ 0. Middle panel: contour plot of d2Veff=dl2 ¼ const. The ISCO is located on the curve d2Veff=dl2 ¼ 0. Right
panel: superposition of dVeff=dl and d2Veff=dl2. The ISCO (when the first and second derivatives vanish) is given by the point of
intersection of the two curves dVeff=dl ¼ d2Veff=dl2 ¼ 0. In the plots we assume b0 ¼ M ¼ 1.
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panels) and s ¼ −1.5 (right panel), with the corresponding
values of the angular momentum being LISCO ¼
1.979967293191, 1.997394095017 and 0.868763508655,
respectively. In the left panel, we see how the derivatives
intersect at lISCO ¼ −1.4708095 (lower universe) when
L ¼ 1.997394. Moreover, from the small frame, we see
that the values of the corresponding effective potential (dot-
dashed line) are greater than the values of Veff when the
angular momentum is L ¼ 1.979967293191 (gray line). In
the central panel of Fig. 7, we see the intersection of the
first and second derivatives at lISCO ¼ þ1.946354727
(upper universe). In the small frame we plot the effective
potential when L ¼ 1.979967293191 (dot-dashed line) and
L ¼ 1.997394095017 (gray line) for reference. In the right
panel, we consider the case when s ¼ −1.5 and L ¼
0.868763508655 and in this case, the first and second

derivatives intersect at l ¼ −2.141902280 (lower universe).
Note that this time we considered the “minus” configura-
tion, but analogue results hold for the “plus” configuration.
Other examples are listed in Table II.
Using the values of Table II, one can also check the

superluminal bound by means of Eq. (44). Hence, for a
wormhole described by Eqs. (22) and (23), we have

pt

m
¼ −

1

1 − l2s2

ðl2þ1Þ5=2

0
B@l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
− 2ffiffiffiffiffiffi

l2þ1

p ðl2 þ 1Þ
q

sL

ðl2 þ 1Þ5=2 þ E

1
CA

pφ

m
¼ 1

1 − l2s2

ðl2þ1Þ5=2

0
B@ lsEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e
− 2ffiffiffiffiffiffi

l2þ1

p ðl2 þ 1Þ
q þ L

1
CA; ð57Þ

FIG. 7. First and second derivatives of the effective potential as a function of l. In the left panel with s ¼ 0.1 and
L ¼ 1.997394095017, in the middle panel with s ¼ 0.1 and L ¼ 1.979967293191 and in the right panel, we consider the case in
which s ¼ −1.5 and L ¼ 0.868763508655. In the plots we consider b0 ¼ M ¼ 1, we also include, in the small frame, a plot of the
effective potentials for comparison. The ISCO is given by V 0

eff ¼ V 00
eff ¼ 0 and we can see that for s ¼ 0.1 there are two ISCO, one for

l < 0 and one for l > 0, while for s ¼ −1.5 there is only one ISCO for l < 0.

TABLE II. Values for the radius lISCO, the angular momentum LISCO and the energy EISCO of the innermost stable circular orbit for
different values of the spin s.

s lISCO LISCO EISCO s lISCO LISCO EISCO

∓1.6 ∓1.920360608 0.722911422497 0.8612999409591453 ∓0.7 �0.429511438 1.402514112333 0.6351506341677197
∓1.5c ∓2.141902280 0.868763508655 0.8742579899441784 ∓0.6 ∓2.534233144 1.713278206766 0.8872844627862982
∓1.4 ∓2.322036598 0.993562472504 0.8814014855529899 ∓0.6 �0.526940168 1.554036117274 0.682349979652707
∓1.3b ∓2.452395852 1.105236494336 0.8855957905171136 ∓0.5 ∓2.464002952 1.780911539067 0.8851281413233677
∓1.2 ∓2.541002804 1.208099326345 0.8881263685022468 ∓0.5 �0.634414281 1.682361990518 0.7239081520286046
∓1.1 ∓2.596660369 1.304401541915 0.889587124437354 ∓0.4 ∓2.373390705 1.842804901024 0.8822631357857148
∓0.9 ∓2.631997715 1.481545447701 0.8903365076796163 ∓0.4 �0.763940166 1.795084655659 0.7618079197491819
∓0.9 �0.230465057 0.928262126118 0.50216126965439 ∓0.2 ∓2.119571659 1.944481810011 0.8735759021557974
∓0.8 ∓2.618174005 1.563289723767 0.8898509886736642 ∓0.2 �1.183708000 1.962437611319 0.0.824239661146142
∓0.8 �0.334514462 1.209867268321 0.5781567283131726 ∓ 0.1a ∓1.946354727 1.979967293191 0.8669581544832881
∓0.7 ∓2.585463638 1.640598254787 0.8888394718973344 ∓ 0.1a �1.470809497 1.997394095017 0.8443614729992029
∓0.7 �0.429511438 1.402514112333 0.6351506341677197 0.0 ∓1.732050808 1.999999999999 0.8577638849606256

aSee the first row of Fig. 6, and the left and central panels in Fig. 7.
bSee the second row of Fig. 6.
cSee the right panel of Fig. 7.
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and

X ¼ e
2ffiffiffiffiffiffi
1þl2

p
��

l2s2

ð1þ l2Þ52 − 1

�
2

−
½ð1þ l2Þ2 − s2�2

ð1þ l2Þ4
�
;

Y ¼
nh

ð1þ l2Þ72 −
	
1 − l2ð1þ 2l2Þ þ l2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p 

s2
i
2

− ð1þ l2Þ2½ð1þ l2Þ52 − l2s2�
o 1

ð1þ l2Þ8 ;

Z ¼ 1 −
l2s2

ð1þ l2Þ52 : ð58Þ

In Fig. 8, we show the behavior of lISCO, EISCO, LISCO
and F ISCO as a function of s. In the first row left panel, for
example, we plot lISCO as a function of s. As mentioned
before, note there is only one value for lISCO (in the upper or
lower universes) when jsj ≥ 1 and two values of lISCO when
−1 < s < 1 (one in the upper universe and the other in the
lower universe). For this reason, we have two different
colors representing these intervals: black (when lISCO is far
from the throat) and red (for those values of lISCO closer to
the throat) colors. We have a similar situation for EISCO,
LISCO and F ISCO. In the lower universe, the figure shows

that lISCO decreases when the spin of the particle s ≤ −1.
Then, in the interval −1 < s < 1, lISCO increases and gets
closer to the throat of the wormhole. In the upper universe,
on the other hand, the situation is inverted. Note that we
have chosen LISCO always positive so that the “plus” and
“minus” configurations are given only by the sign of s.
In the first row right panel of Fig. 8, we show the

behavior of EISCO as a function of s. As expected, when
s ¼ 0, the value of EISCO is the same in both universes due
to the symmetry in the effective potential. On the other
hand, when −1 < s ≤ 0 (“minus” configuration), note that
particles in the lower universe move with a higher value of
energy than those moving in the upper universe, but it
increases as s increases reaching the same value at s ¼ 0.
The situation is inverted when we change the configuration
to “puls” (0 ≤ s < 1).
In the second row left panel of Fig. 8, we show the

behavior of LISCO as a function of s. From the figure, when
−1 < s ≤ 0, it is possible to see that particles in the lower
universe move with higher angular momentum than those
in the upper universe. However, at some value of s (around
−0.25), particles in the upper universe begin to move with
higher angular momentum with a maximum value
LISCO ¼ 2.0022010837825808, see the small frame added

FIG. 8. Plots of ISCO radius lISCO, energy EISCO, angular momentum LISCO, and F [see Eq. (44)] as a function of s. The curves in red
color corresponds to the values of the ISCO closer to the wormhole’s throat (see Table II). The region in gray color represents the zone
where the particle’s motion is spacelike. In the plots we assume b0 ¼ M ¼ 1.
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in the figure. Note that this maximum value occurs far from
the throat when lISCO ¼ 1.627928721886677. Once again,
the situation is inverted when we consider the “plus”
configuration.
Finally, in the second row right panel of Fig. 8, we show

the value of F ISCO [see Eq. (44)]. From the figure, it is clear
that the condition F < 0 is always satisfied when the
particle’s spin belongs to the interval −1 < s < 1. The last
statement is true for particles moving in both universes.
However, when jsj > 1, the value of F increases and
reaches the zero value at s ¼ ∓ 1.5, which is the well-
known superluminal bound. Therefore, when the spin is in
the interval −1.5 < s < 1.5, the motion of a spinning
particle at the ISCO is timelike and has physical meaning.
Nevertheless, when jsj > 1.5, the motion of a spinning
particle at the ISCO is spacelike and meaningless from the
physical point of view; see the gray region in all the figures.

VI. CONCLUSIONS

In this work, we have studied the motion of spinning test
particles around a traversable wormhole using the MPD
equations. These equations relate the Riemann curvature
tensor to the second rank and skew-symmetric tensor Sαβ,
which is related to the particle spin s. Hence, following
Refs. [54,55], we were able to compute the effective
potential for a spinning test particle moving in the back-
ground of a traversable wormhole, described by the Morris-
Thorne solution given in Refs. [79,80].
Our analysis shows how the effective potential depends

on the angular momentum, the throat of the wormhole b0,
the proper radial distance l and the spin of the particle s. In
particular, we discussed the symmetries of the system and
the location of the ISCO in upper and lower universes.
These symmetries depend on the signs of the angular
momentum and the spin of the particle. When − 1 < s < 1,
one interesting feature we found is the existence of two
radii allowed for the ISCO on both sides of the wormhole’s
throat depending on whether the particle’s spin is corotating
or counterrotating with respect to the particle’s angular
momentum. On the other hand, when jsj > 1, only one
ISCO exists for corotation in the upper universe and
counterrotation in the lower universe. This would produce
some peculiar features for accretion disks around worm-
holes that will be investigated in future works.
Finally, we studied the superluminal bound for spinning

particles at the ISCO and showed that they are allowed to
move in a timelike trajectory if −1.5 < s < 1.5. In this
region, the value of F is negative, satisfying Eq. (44).
Nevertheless, for values of jsj > 1.5, the motion of the
spinning test particles is spacelike, and therefore mean-
ingless from the physical point of view. On the other hand,
in the case of compact objects orbiting a traversable
wormhole, our analysis indicates that they move in a
timelike trajectory because the spin parameter of these
objects is s ≪ 1. In this particular case, our analysis shows

that compact objects orbiting a traversable wormhole in the
lower universe will move with higher values of energy
EISCO than those moving in the upper universe. We can see
similar behavior in the case of the angular momentum
LISCO: compact objects in the lower universe move with
higher angular momentum than those in the upper universe.
However, at some value of the spin s ≈ −1.5, compact
objects in the upper universe begin to move with higher
angular momentum.
In Ref. [31], the authors studied the dynamics of particles

in several solutions of the MorrisThorne wormhole. Using
the Jacobi metric approach, they investigated the geodesic
motion, finding that the only stable circular orbits are at the
throat. In this work, we showed that the spin s allows stable
circular orbits outside the throat. This conclusion comes from
the fact that the lISCO increase as s goes from−1 to 1. On the
other hand, in Ref. [30], the authors considered the Barcelo
and Visser wormhole solution (based on the Janis-Newman-
Winicour-Wyman). There, it was shown that bound orbits
occur for timelike geodesics only in one of the two worlds.
This behavior agrees with our result in which the ISCO can
be found only in one of the universewhen the spin parameter
belongs to the interval jsj ≥ 1. Nevertheless, as mentioned
before, when −1 < s < 1, we have two values of lISCO, one
in each universe. In this sense, s does affect themotion of test
particles around wormholes, generating differences that we
can compare with nonspinning particles (possibly) in differ-
ent wormhole backgrounds.
When considering astrophysical sources such as stellar

mass black hole candidates or supermassive black hole
candidates, then the motion of test particles orbiting the
central object may allow us to determine the features that
distinguish a central black hole from awormhole [43,85–87].
Although, considering the discussion of Sec. III C, it is
important to remember that the MPD equations are obtained
under the assumption that the mass and size of the spinning
test particle must be negligible with respect to the central
objects mass and must not affect the background geometry,
the presence of the spin may still produce observable effects
on the motion of test particles. Such test particles may be in
the form of gas particles in the accretion disk but also in the
form of large objects such as asteroids and planets orbiting
stellar mass candidates and rapidly rotating black holes and
neutron stars orbiting supermassive candidates. In this
respect then, the spin of the test particle may become an
important element to consider when describing themotion of
such objects and the observations that would allow us to
conclude if these objects are black holes or wormholes.
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APPENDIX: DERIVATION OF ul AND uφ

Let us start with the first relation in Eq. (40). From the
Tulczyjew-SSC condition Sαβpα ¼ 0, we obtain

Stlpt þ Sφlpφ ¼ 0: ðA1Þ
Applying the operator D=dλ, we get

D
dλ

ðStlplÞ þ
D
dλ

ðSφlpφÞ

¼ pt
DStl

dλ
þ Stl

Dpt

dλ
þ pφ

DSφl

dλ
þ Sφl

Dpφ

dλ
¼ 0; ðA2Þ

from which, after recalling that Stl ¼ −ðpφ=ptÞSφl, solving
for DStl=dλ, and inserting into the MPD equation, we
obtain

DStl

dλ
¼ pφSφl

ðptÞ2
Dpt

dλ
−
pφ

pt

DSφl

dλ
−
Sφl

pt

Dpφ

dλ

¼ ptul − utpl: ðA3Þ
In a similar way, we proceed with DStφ=dλ. The
Tulczyjew-SSC condition takes the form

Sαφpα ¼ Slφpl þ Stφpt ¼ 0: ðA4Þ

Then, applying the operator D=dλ, we obtain

D
dλ

ðSlφplÞ þ
D
dλ

ðStφptÞ

¼ pl
DSlφ

dλ
þ Slφ

Dpl

dλ
þ pt

DStφ

dλ
þ Stφ

Dpt

dλ
¼ 0: ðA5Þ

Recalling that Stφ ¼ ðpl=ptÞSφl, taking into account the
Slφ ¼ −Sφl, solving for DStφ=dλ, and inserting into the
MPD equation, we obtain

DStφ

dλ
¼ pl

pt

DSφl

dλ
þ Sφl

pt

Dpl

dλ
−
plSφl

ðptÞ2
Dpt

dλ

¼ ptuφ − utpφ: ðA6Þ

Now, from the MPD equation for Sφl, the last two of
Eqs. (40) reduce to

Sφl

pt

�
pφ

Dpt

dλ
− pt

Dpφ

dλ

�
¼ ðpφpφ þ ptptÞul

− plpφuφ − plptut;

Sφl

pt

�
pt

Dpl

dλ
− pl

Dpt

dλ

�
¼ ðplpl þ ptptÞuφ

− pφplul − pφptut: ðA7Þ

Now we use the second MPD equation to obtain Dpt=dλ,
Dpφ=dλ and Dpl=dλ. Hence from

Dpα

dλ
¼ −

1

2
RαβδσuβSδσ; ðA8Þ

we obtain

Dpt

dλ
¼−

1

2
ð2RttδσutSδσþ2RtlδσulSδσþ2RtφδσuφSδσÞ: ðA9Þ

The factor 2 in the Riemann tensor components comes
due to the antisymmetry of both Sαβ and Rαβδσ . Therefore,
we have to count twice in the sum because RabδσSδσ ¼
RabσδSσδ. Consequently, we get

Dpt

dλ
¼ −RtltlulStl − RtφtφuφStφ: ðA10Þ

Recalling that Stl ¼ − pφ

pt
Sφl and Stφ ¼ pl

pt
Sφl, the last

equation reduces to

Dpt

dλ
¼ Sϕl

pt
ðpφRtltlul − plRtφtφuφÞ: ðA11Þ

Following a similar procedure, we obtain the following
relations for Dpl=dλ and Dpφ=dλ

Dpl

dλ
¼ Sφl

pt
ðpφRlttlut þ ptRlφlφuφÞ;

Dpφ

dλ
¼ Sφl

pt
ðptRφllφul − plRφttφutÞ: ðA12Þ

Then, inserting them into the system of equations (A7), we
obtain

ul½ðpφÞ2Âþ ðptÞ2B̂� ¼ uφĈplpφ þ utĈplpt;

uφ½ðplÞ2Ĉ þ ðptÞ2B̂� ¼ ulÂplpφ þ utÂpφpt: ðA13Þ

Finally, solving the system, we obtain

ul ¼ Ĉ

B̂

pl

pt
;

uφ ¼ Â

B̂

pφ

pt
; ðA14Þ

with

Â ¼ gφφ þ Rtllt

�
Sφl

pt

�
2

;

B̂ ¼ gtt þ Rφllφ

�
Sφl

pt

�
2

;

Ĉ ¼ gll þ Rφttφ

�
Sφl

pt

�
2

: ðA15Þ
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