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We present and discuss a new family of topological hairy dyonic black hole solutions in asymptotically
anti–de Sitter space. The coupled Einstein-Maxwell-scalar gravity system, that carries both the electric and
magnetic charges is solved, and exact hairy dyonic black hole solutions are obtained analytically. The
scalar field profiles that give rise to such black hole solutions are regular everywhere. The hairy solutions
are obtained for planar, spherical, and hyperbolic horizon topologies. In addition, analytic expressions of
regularized action, stress tensor, conserved charges, and free energies are obtained. We further comment on
different prescriptions for computing the black hole mass with hairy backgrounds. We analyze the
thermodynamics of these hairy dyonic black holes in canonical and grand canonical ensembles, and we find
that both electric and magnetic charges have a constructive effect on the stability of the hairy solution. For
the case of planar and hyperbolic horizons, we find thermodynamically stable hairy black holes that are
favored at low temperatures compared to the nonhairy counterparts. We further find that, for a spherical
hairy dyonic black hole, the thermodynamic phase diagram resembles to that of a Van der Waals fluid not
only in canonical but also in the grand canonical ensemble.
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I. INTRODUCTION

Black holes, which are one of the most intriguing and
celebrated predictions of general relativity, and yet are still
far from being fully understood, are conjectured to follow
the no-hair theorem [1]. The black hole no-hair theorem
simply states that a black hole with a spherical horizon can
be completely characterized by only three parameters: its
mass, angular momentum, and charge in the asymptotically
flat space. Put in another way, black holes do not support
additional matter fields, such as scalar fields, outside their
horizon in asymptotically flat space. The prime reason for
belief in the no-hair theorem is somewhat based on the
strong absorbing nature of the horizon, which tries to
absorb and pull everything around it. Although the initial
no-hair theorem has been advocated by several works [2–
11], it is not a theorem in a rigorous mathematical sense.
Indeed, by now several counterexamples to the no-hair
theorem in a variety of contexts exist [12–26].
The investigation of the no-scalar hair theorem and

interplay between gravity-scalar systems are not just of

theoretical concern, and there are many reasons to examine
them. Scalar fields play a central role in cosmology and
particle physics [27]. Scalar fields appear naturally as a
basic constituent of fundamental theories, such as string
theory, and also arise naturally in the high energy uni-
fication theories [28,29]. They are also arguably among the
most economical and suitable candidates for describing
dark matter, dark energy, and inflation physics [30–32].
From the astronomical observational perspective, the dis-
covery of gravitational wave and black hole image opened a
new window to test the no-hair theorem [33,34], as they are
believed to be sensitive to the geometry around the black
hole, especially in the vicinity of the horizon, and might
contain valuable information of additional matter fields
around the black hole. See [35–39] for a discussion in this
direction, and [40] for a review on observational tests of the
no-hair theorem.
There have been many attempts to endow black holes

with hair by means of additional scalar fields in the last few
decades. In principle, there are two essential requirements
for a physically acceptable scalar hairy black hole solution
(i) scalar field should be regular in the near horizon region
and should fall off sufficiently fast at the asymptotic
boundary, (ii) the hairy geometry should be smooth and
should not contain any additional singularity. The stability
of hairy solutions under perturbations is also desirable. The
initial black hole scalar hair solution in the asymptotic flat
spaces, unfortunately, turned out to be unphysical as the
scalar field diverged on the horizon [41–44]. A direct proof
and many compelling arguments in favor of the no-scalar
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hair theorem in the asymptotic flat spacetime was provided
in [2,45–47]. For a review and discussion on the interplay
of scalar field and gravity in asymptotic flat spaces, see
[48–50]. One way of ensuring regular scalar field at the
horizon, thereby evading the no-hair theorem, is by
introducing a new scale in the gravitational sector, i.e.,
via a cosmological constant. This amounts to studying
black holes in asymptotically de Sitter or anti–de Sitter
(AdS) spaces. The essential idea here is that the cosmo-
logical constant can create an effective potential and
therefore may stabilize the scalar field outside the horizon.
Some of these ideas led to stable hairy black holes with
interesting physical properties. In recent years, many works
discussing diverse physical scenarios of the hairy black
holes in various asymptotic spaces have appeared, see [51–
81] for a necessarily biased selection.
Black holes in AdS spaces, in particular, have attracted

much attention of late for many reasons. First, the black
holes in AdS spaces, as opposed to their asymptotically flat
counterparts, are thermodynamically stable with their
surroundings and exhibit rich phase structure. In particular,
AdS black holes often exhibit critical phenomena akin to
phase transitions in familiar liquid gas systems [82–89].
Second, the horizon topology of AdS black holes can be a
planar R2, sphere S2, or hyperbolic H2, as compared to
asymptotically flat black holes where the horizon topology
must be a round sphere S2 [90–96]. This again makes the
associated thermodynamic properties more interesting to
analyze in AdS spaces [97–99]. Third, and perhaps the
most important reason, is the discovery of the gauge/gravity
duality [100–102]. The gauge/gravity duality maps a theory
of gravity in AdS space to quantum field theory living at the
AdS boundary in one less dimension. The duality provides
a unique and attractive tool to address important questions
related to strong couplings in quantum field theories (which
otherwise are difficult to solve) using the classical AdS
gravity theory. Indeed, AdS black holes have been used to
discuss important questions in field theories such as
confinement physics [103], quark-gluon plasma [104],
nonequilibrium physics [105] etc.
Recent progress in the understanding of the gauge/

gravity duality advocate for a deeper and broad study of
the behavior of matter fields in the surroundings of charged
AdS black holes, which might develop hair [106]. In
particular, a good understanding of hairy charged AdS
black holes could shed new light on our understanding of a
number of condensed matter systems from the gauge/
gravity duality perspective. Prominent examples include
superfluidity and superconductivity (where a charged scalar
field condenses and develops a nonzero vacuum expect-
ation value at low temperatures) [107,108], quantum
liquids [109], nonconformal plasmas [110,111].
In a similar context, dyonic black holes that carry both

electric and magnetic charges have also appeared abun-
dantly in the literature. Because of electromagnetic duality,

it is possible to construct a black hole that carries both
electric and magnetic charges in four dimensions. In the
dual boundary description, these dyonic black holes cor-
respond to a field theory in (2þ 1) dimensions with a Uð1Þ
conserved charge (qe) and in a constant magnetic field
background (qM). The presence of magnetic charge not
only enriches the thermodynamic phase diagram of AdS
black holes in the gravity side but also allows us to
introduce a background magnetic field in the dual boundary
side, thereby providing an approach to probe physics
related to the Hall effect [112], ferromagnetism [113],
magnetohydrodynamics [114], the Nernst effect [115] etc.
See [116–135] for other related discussions on dyonic
black holes and their holographic applications to field
theory.
However, despite their profound importance in the

context of holography, the discussion of hairy dyonic black
holes is rather limited [117]. The main reason for this is the
difficulty in constructing such solutions analytically, as it
requires a simultaneous solution of the Einstein-Maxwell-
scalar system with a nontrivial profile for the scalar and
gauge fields. Accordingly, most hairy dyonic black hole
solutions have been obtained numerically [136]. Moreover,
analytic expressions of conserved charges and thermody-
namics observables are often difficult to obtain in these
systems. Cases where analytic hairy dyonic solutions have
been obtained are also mostly restricted to the planar case.
This, therefore, has hindered our understanding of hairy
dyonic black holes. In this paper, we remedy some of these
issues and discuss a number of exact analytic dyonic black
hole solutions that are simultaneously supported by a
scalar field.
More specifically, our aim in this work is to first

construct static hairy dyonic black holes and then study
their thermodynamic properties. To carry out this objective,
we consider the Einstein-Maxwell-scalar gravity system
and solve the coupled Einstein-Maxwell-scalar equations
of motion simultaneously in terms of a function AðzÞ
(see the next section for details) using the potential
reconstruction technique [137–147]. The different forms
of AðzÞ then allow us to construct a different family of hairy
dyonic black hole solutions. To make the analysis and
results more comprehensive, we choose two particular
forms of AðzÞ. These forms of AðzÞ allow us to introduce
a parameter a, which controls the strength of the scalar hair.
We find that for these forms the obtained gravity solution
exhibits desirable features such as the scalar field being
regular and the Kretschmann scalar being finite everywhere
outside the horizon. Moreover, the hairy dyonic solutions
are obtained not only for planar but for spherical and
hyperbolic horizon topologies as well. We further obtain
conserved charges of these black holes analytically. In
particular, we employ two methods: (i) Ashtekar-Magnon-
Das (AMD) prescription [148] and (ii) holographic renorm-
alization method [149–152] to find the mass of the hairy
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black hole. We find that the mass expression matches,
albeit with some subtleties, from these two methods for
the planar black hole. However, because of the presence of
additional logarithmic terms in the near boundary expan-
sion of the metric function, the AMD prescription is
difficult to implement for the spherical and hyperbolic
black holes; therefore, for these black holes, the mass
expressions are obtained from the holographic renormal-
ization method only.
We then discuss the thermodynamic properties of these

hairy dyonic black holes in both canonical and grand-
canonical ensembles. We obtain the Gibbs and Helmholtz
free energies analytically and find that the specific heat is
always positive for the planar and hyperbolic cases, thereby
establishing the local stability of these hairy black holes, in
both these ensembles. Moreover, the hairy black holes are
not only thermodynamically stable but also thermodynami-
cally favored. In particular, the free energies of the hairy
black holes are lower than the nonhairy black holes at low
temperatures. We further analyze the influence of param-
eters fa; qe; qMg on the temperature range for which the
hairy black holes are thermodynamically favored and find
that they have a constructive effect on the thermodynamic
stability of the hairy black hole. We find that qM can make
the free energy of the uncharged hairy black hole smaller
than the uncharged nonhairy black hole. This is an
important result considering that the free energy of the
Reissner-Nordstrom (RN)-AdS black hole is generally
found to be smaller than the hairy black hole for qe ¼ 0.
Similarly, for the spherical horizon, like their nonhairy
counterpart, we find Hawking/Page and small/large Van der
Waals type phase transitions. Interestingly, with scalar hair,
unlike their nonhairy counterpart, the small/large black
hole phase transition can appear in the grand-canonical
ensemble as well. In the constant charge ensemble, we get
the same thermodynamic properties as in [83,84],
with q2e → q2e þ q2M.
The paper is organized as follows. In the next section, we

introduce the gravity model and present its analytic solution
corresponding to the topological hairy dyonic black holes.
In Secs. III and IV, we study the thermodynamic stability of
these hairy black holes for two different AðzÞ forms.
Finally, in Sec. V, we summarize our main results and
discuss the future directions.

II. HAIRY DYONIC BLACK HOLE SOLUTION

In this section, our main motivation is to construct exact
analytic solutions of hairy dyonic black holes. For this
purpose, we start with the Einstein-Maxwell-scalar action,

SEMS ¼
1

16πG4

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
R −

fðϕÞ
4

FMNFMN

−
1

2
∂Mϕ∂Mϕ − VðϕÞ

�
; ð2:1Þ

where R is the Ricci scalar of the manifold M, G4 is the
four-dimensional Newton constant, FMN is the electromag-
netic field strength tensor of Uð1Þ gauge field BM, ϕ is the
scalar field, and VðϕÞ is the potential of the scalar field ϕ.
The information about the electric and magnetic charges,
hence the dyonic properties of the gravity system, lie within
the structure of the electromagnetic field strength tensor.
The function fðϕÞ represents the coupling between scalar
and Uð1Þ gauge fields.
The variation of the action (2.1) leads to the following

Einstein, Maxwell, and scalar equations of motion,

RMN −
1

2
gMNRþfðϕÞ

4

�
gMN

2
F2−2FMPFN

P

�

þ1

2

�
gMN

2
∂Pϕ∂Pϕ−∂Mϕ∂NϕþgMNVðϕÞ

�
¼ 0; ð2:2Þ

∇M½fðϕÞFMN � ¼ 0; ð2:3Þ

1ffiffiffiffiffiffi−gp ∂M½
ffiffiffiffiffiffi
−g

p ∂Mϕ� − F2

4

∂fðϕÞ
∂ϕ −

∂VðϕÞ
∂ϕ ¼ 0: ð2:4Þ

Since we want to construct static hairy dyonic black hole
solution for various horizon topologies, we consider the
following Ansätze for the metric gMN , gauge field BM, and
scalar field ϕ:

ds2 ¼ L2

z2

�
−gðzÞdt2 þ e2AðzÞdz2

gðzÞ þ dΩ2
κ;2

�
;

ϕ ¼ ϕðzÞ; BM ¼ BtðzÞδtM þ qMX ; ð2:5Þ

where L is the AdS length scale, and the parameter κ
indicates the curvature of the two-dimensional metric
dΩ2

κ;2. In particular, κ can take three different values,
f−1; 0;þ1g, corresponding to hyperbolic, planar, and
spherical horizon topologies, respectively.

dΩ2
κ;2 ¼

8>><
>>:

dx21 þ sin2x1dx22; κ ¼ 1

dx21 þ dx22; κ ¼ 0

dx21 þ sinh2x1dx22; κ ¼ −1
:

Bt and qM contain the information about the electric and
magnetic charges. In this work, we keep qM (or the
background magnetic field) fixed; i.e., qM is considered
as a parameter rather than a thermodynamic variable. We
will see in the next section that this is a consistent
treatment. And X is

X ¼

8>><
>>:

cos x1; κ ¼ 1

x1; κ ¼ 0

cosh x1; κ ¼ −1
:
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As usual, the radial coordinate z runs from z ¼ 0 (asymp-
totic boundary) to z ¼ zh (horizon radius), or to z ¼ ∞ for
thermal AdS (without horizon). Sometimes, we will also
use the coordinate r ¼ 1=z.
Substituting the above Ansätze into Eq. (2.2), we get the

following three Einstein equations of motion,

tt∶
A0ðzÞ
z

−
g0ðzÞ
2zgðzÞ þ

ϕ0ðzÞ2
8

þ 3

2z2
þ z2fðzÞB0

tðzÞ2
8L2gðzÞ

þ q2Me
2AðzÞz2fðzÞ
8L2gðzÞ þ e2AðzÞL2VðzÞ

4z2gðzÞ −
e2AðzÞκ
2gðzÞ ¼ 0; ð2:6Þ

zz∶−
g0ðzÞ
z

þgðzÞ
�
3

z2
−
ϕ0ðzÞ2
4

�
þ z2fðzÞB0

tðzÞ2
4L2

þq2Me
2AðzÞz2fðzÞ
4L2

þe2AðzÞL2VðzÞ
2z2

−e2AðzÞκ¼ 0; ð2:7Þ

x1x1∶g00ðzÞ − g0ðzÞ
�
A0ðzÞ þ 4

z

�

þ gðzÞ
�
6

z2
þ 4A0ðzÞ

z
þ ϕ0ðzÞ2

2

�
−
z2fðzÞB0

tðzÞ2
2L2

−
q2Me

2AðzÞz2fðzÞ
2L2

þ e2AðzÞL2VðzÞ
z2

¼ 0: ð2:8Þ

Importantly, one can rearrange these Einstein equations and
put them into the following simpler forms, which are then
easier to solve

g00ðzÞ − g0ðzÞ
�
A0ðzÞ þ 2

z

�
−
z2fðzÞB0

tðzÞ2
L2

−
q2Me

2AðzÞz2fðzÞ
L2

þ 2e2AðzÞκ ¼ 0; ð2:9Þ

ϕ0ðzÞ2 þ 4A0ðzÞ
z

¼ 0; ð2:10Þ

g00ðzÞ
4gðzÞ þ A0ðzÞ

�
1

z
−

g0ðzÞ
4gðzÞ

�
−
3g0ðzÞ
2zgðzÞ

þ e2AðzÞL2VðzÞ
2z2gðzÞ þ 3

z2
−
e2AðzÞκ
2gðzÞ ¼ 0: ð2:11Þ

Similarly, one gets the following equation of motion for the
scalar field,

ϕ00ðzÞ þ ϕ0ðzÞ
�
g0ðzÞ
gðzÞ − A0ðzÞ − 2

z

�
þ z2B0

tðzÞ2
2L2gðzÞ

∂fðϕÞ
∂ϕ

−
q2Me

2AðzÞz2

2L2gðzÞ
∂fðϕÞ
∂ϕ −

L2e2AðzÞ

z2gðzÞ
∂VðϕÞ
∂ϕ ¼ 0; ð2:12Þ

and for the gauge field,

B00
t ðzÞ þ B0

tðzÞ
�
f0ðzÞ
fðzÞ − A0ðzÞ

�
¼ 0: ð2:13Þ

Accordingly, there are a total of five equations. However,
only four of them are independent. Here, we consider the
scalar equation (2.12) as a constrained equation and take
the remaining equations as independent. To solve these
equations, we impose the following boundary conditions:

gð0Þ ¼ 1 and gðzhÞ ¼ 0;

Btð0Þ ¼ μe and BtðzhÞ ¼ 0;

Að0Þ ¼ 0: ð2:14Þ

These boundary conditions are chosen to ensure that the
spacetime asymptotes to AdS at the boundary z → 0. The
parameter μe is the leading term of the near boundary
expansion of the gauge field BtðzÞ, and corresponds to the
chemical potential of the theory. Using Gauss’s theorem,
one can also find a relation between μe and the electric
charge of the black hole (see the discussion below). Apart
from these boundary conditions, we further demand that the
scalar field ϕ remains real everywhere in the bulk and goes
to zero at the asymptotic boundary ϕð0Þ ¼ 0.
Interestingly, one can find a complete closed form

solution of the Einstein-Maxwell-scalar equations (2.9)–
(2.13) in terms of two unknown functions AðzÞ and fðzÞ by
the following approach:

(i) Solve Eq. (2.10) and find ϕ0ðzÞ in terms of AðzÞ.
(ii) Solve Eq. (2.13) and find BtðzÞ in terms of AðzÞ

and fðzÞ.
(iii) From the obtained BtðzÞ solution, solve Eq. (2.9)

and find gðzÞ in terms of AðzÞ and fðzÞ.
(iv) Lastly, we solve Eq. (2.11) and obtain V in terms of

AðzÞ and gðzÞ.
Using this approach, we get the solution for BtðzÞ as

BtðzÞ ¼ C1

Z
z

0

dξ
eAðξÞ

fðξÞ þ C2; ð2:15Þ

where the integration constants C1 and C2 can be found
from the boundary conditions [Eq. (2.14)] as

C2 ¼ μe; C1 ¼ −
μeR zh

0 dξ eAðξÞ
fðξÞ

: ð2:16Þ

The solution for BtðzÞ then becomes

BtðzÞ ¼ μe

�
1 −

R
z
0 dξ

eAðξÞ
fðξÞR zh

0 dξ eAðξÞ
fðξÞ

�
¼ μ̃e

Z
zh

z
dξ

eAðξÞ

fðξÞ : ð2:17Þ

Now, using Eq. (2.17) into Eq. (2.9), we get the following
solution for gðzÞ,
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gðzÞ ¼ C4 þ
Z

z

0

dξ eAðξÞξ2½C3 þKðξÞ�; ð2:18Þ

where

KðξÞ ¼
Z

dξ

�
μ̃2eeAðξÞ

L2fðξÞ þ
q2Me

AðξÞfðξÞ
L2

− 2κ
eAðξÞ

ξ2

�
; ð2:19Þ

C3 and C4 being the integration constants that can be again
obtained from Eq. (2.14),

C4 ¼ 1; C3 ¼ −
1þ R zh

0 dξeAðξÞξ2KðξÞR zh
0 dξeAðξÞξ2

: ð2:20Þ

Similarly, the scalar field ϕ can be solved in terms of AðzÞ
from Eq. (2.10)

ϕðzÞ ¼
Z

dz 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−A0ðzÞ

z

r
þ C5; ð2:21Þ

where C5 can be obtained by demanding ϕ to vanishes near
the asymptotic boundary, i.e., ϕjz¼0 → 0. Lastly, the
potential V can be found from Eq. (2.11),

VðzÞ ¼ −
z2e−2AðzÞg00ðzÞ

2L2
þ g0ðzÞe−2AðzÞ

L2

�
z2A0ðzÞ

2
þ 3z

�

−
gðzÞe−2AðzÞ

L2
ð2zA0ðzÞ þ 6Þ þ κ

z2

L2
: ð2:22Þ

It is therefore clear that we can obtain a closed form
analytic solution of the Einstein-Maxwell-scalar gravity
system of Eq. (2.1) in terms of two arbitrary functions, i.e.,
AðzÞ and fðzÞ, and construct a dyonic hairy black hole
solution with various horizon topologies. The different
forms of these functions AðzÞ and fðzÞ will however
correspond to different VðzÞ, i.e., different AðzÞ and fðzÞ
will attribute to different dyonic hairy black hole solutions.
Therefore, we can construct a large family of physically
allowed dyonic hairy black hole solutions for the Einstein-
Maxwell-scalar gravity system of Eq. (2.1) by choosing
different forms of AðzÞ and fðzÞ.
Nonetheless, in the context of AdS=CFT correspon-

dence, these functions are usually fixed by taking inputs
from the dual boundary theory. In particular, depending
upon what kind of boundary physics one is interested in
one usually consider different forms of these functions. For
example, in holographic QCD, the expressions of fðzÞ and
AðzÞ are usually determined by demanding the dual QCD
theory to exhibit physical QCD properties such as the linear
Regge trajectory for meson mass spectrum, confinement/
deconfinement phase transition etc. [138,139].1

One can also take a more pragmatic approach and
consider various different forms of AðzÞ and fðzÞ to
thoroughly investigate the effects of scalar hair and make
a comprehensive argument of the stability and thermo-
dynamics of the hairy dyonic black holes, without
worrying too much about the dual boundary theory.
Here, we take such an approach. Particularly, we consider
two different forms of AðzÞ: (i) AðzÞ ¼ − logð1þ azÞ and
(ii) AðzÞ ¼ −az. These forms of AðzÞ are chosen not just
for their simplicity but also to have better control over the
integrals that appear in Eqs. (2.17)–(2.22), again without
bothering greatly about their dual boundary theory.2 With
these forms of AðzÞ, one can see from Eq. (2.21) that the
strength of the scalar hair is characterized by the param-
eter a. Therefore, when a vanishes so does the scalar field.
Hence, as desired, in the limit a → 0, we get back to the
RN-AdS solution. Similarly, we can consider different
forms of fðzÞ. Here, we mostly concentrate on the case
fðzÞ ¼ 1, corresponding to no direct coupling between the
scalar and gauge field. It is also possible to take other
useful couplings, such as the nonminimal linear fðϕÞ ∝ ϕ
and exponential fðϕÞ ∝ e−ϕ couplings, which have been
considered in the literature. A detailed discussion with
these nonminimal coupling functions will appear in a
companion paper.
Another reason for considering the above-mentioned

fðzÞ and AðzÞ forms is that it makes sure our constructed
hairy spacetime asymptotes to AdS at the boundary z → 0.
In particular, near the boundary, we have

VðzÞjz→0 ¼ −
6

L2
þm2ϕ2

2
þ…;

VðzÞjz→0 ¼ 2Λþm2ϕ2

2
þ…; ð2:23Þ

where Λ ¼ − 3
L2 is the negative cosmological constant in

four dimensions. Furthermore, m2 ¼ −5=4 is the mass of
the scalar field, satisfying the Breitenlohner-Freedman
bound for stability in AdS space, i.e., m2 ≥ −9=4 [153].
Together with the fact that gðzÞjz→0 ¼ 1, it indeed makes
sure that the constructed geometry asymptotes to AdS at the
boundary.
Apart from the above obtained black hole solution, there

also exists a second solution having no horizon. This
corresponds to a thermal-AdS solution and it can be
obtained by taking the limit zh → ∞ in the black hole
solution given above.3 Depending upon the form of AðzÞ,
the thermal-AdS solution can have a nontrivial structure in

1In holographic QCD model context, unlike in our case, the
function AðzÞ generally appears as an overall conformal factor in
the spacetime metric [138,139].

2In principle, one can consider other forms, such as AðzÞ ¼
−azn with n > 1, as well. However, we will not dwell into such
forms here.

3Here, we are referring to this without horizon solution as
thermal-AdS for simplicity even though the curvature is not
constant throughout the spacetime.
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the bulk spacetime, however, it will always go to AdS
asymptotically. Interestingly, as we will see shortly, there
can be a Hawking-Page type thermal-AdS/black hole phase
transition between these two solutions.
It is imperative to emphasize once again that Eqs. (2.17)–

(2.22) are a consistent solution to the Einstein-Maxwell-
scalar action for any AðzÞ and fðzÞ. Correspondingly,
depending upon the forms of AðzÞ and fðzÞ, a hairy dyonic
black hole solution with various horizon topologies can be
constructed analytically. However, it is important to note
that different forms of AðzÞ and fðzÞ will correspond to
different potentials VðzÞ. Therefore, by choosing different
forms of AðzÞ and fðzÞ, one is actually constructing a
different family of hairy dyonic black holes, as different
forms of AðzÞ and fðzÞ will give different potentials VðzÞ.
However, once the forms of AðzÞ and fðzÞ are fixed/chosen
then the form of VðzÞ also is, and in return Eqs. (2.17)–
(2.22) correspond to a self-consistent solution to a particu-
lar action with predetermined AðzÞ, fðzÞ, VðzÞ, and then
there is no ambiguity in the solution itself.4

To further establish the consistency of the gravity model,
we moreover check validity of the null energy condition
(NEC) in our model. The NEC can be expressed as

TMNNMN N ≥ 0; ð2:24Þ

where TMN is the energy-momentum tensor of the matter
fields. The null vector NM satisfies the condition
gMNNMN N ¼ 0, and can be chosen as

NM ¼ 1ffiffiffiffiffiffiffiffiffi
gðzÞp N t þ cos α

ffiffiffiffiffiffiffiffiffi
gðzÞp

eAðzÞ
N z

þ sin αffiffiffi
2

p N x1 þ sin αffiffiffiffiffiffiffiffiffiffiffiffi
2gx2x2

p N x2 ð2:25Þ

for arbitrary parameter α. The NEC then becomes

e−2AðzÞ½z2fðzÞsin2αðB0
tðzÞ þ q2Me

2AðzÞÞ�
þ e−2AðzÞcos2αgðzÞϕ0ðzÞ2 ≥ 0; ð2:26Þ

which is always satisfied in our model for the positive and
real gauge kinetic function fðzÞ and scalar field ϕðzÞ.
We can also write down the expressions of various

thermodynamic observables associated with the constructed

hairy black holes. This will be useful in the discussion of
black hole thermodynamics. The temperature and entropy of
the black hole are given by

T ¼ z2h
4π

�
−KðzhÞ þ

1þ R zh
0 dξeAðξÞξ2KðξÞR zh
0 dξeAðξÞξ2

�
;

SBH ¼ L2Ω2;κ

4G4z2h
; ð2:27Þ

whereΩ2;κ is the unit volume of the boundary space constant
hypersurface. To find the charge of the black hole, notice
from Eq. (2.3) that

ð ffiffiffiffiffiffi
−g

p
fðϕÞFztÞ ¼ qe; ð2:28Þ

where qe is a z-independent constant related to the electric
charge. By measuring the flux of the electric field at the
boundary, the electric charge can be computed as

Qe ¼
1

16πG4

Z
fðϕÞFαβuαnβdΩ2;κ; ð2:29Þ

where uα and nβ are the unit spacelike and timelike normals,
respectively, to the constant radial surface

uα ¼ 1ffiffiffiffiffiffiffiffi−gtt
p dt ¼ zffiffiffiffiffiffiffiffiffi

gðzÞp dt;

nβ ¼ 1ffiffiffiffiffiffi
gzz

p dz ¼ z
ffiffiffiffiffiffiffiffiffi
gðzÞp

eAðzÞ
dz; ð2:30Þ

this leads to the charge as

Qe ¼
qeΩ2;κ

16πG4

: ð2:31Þ

We can further find an explicit relation between Qe and
the corresponding conjugate chemical potential μe.
Substituting the BtðzÞ solution from Eq. (2.17) into
Eq. (2.28), we get

B0
tðzÞ ¼ −

qeeAðzÞ

fðzÞ ;

μ̃e ¼
μeR zh

0 dξ eAðξÞ
fðξÞ

¼ qe: ð2:32Þ

The explicit relation between μe and Qe depends on
the forms of AðzÞ and fðzÞ, and therefore is model
dependent.
To discuss the thermodynamic stability of the con-

structed hairy dyonic black hole solutions, we also need
to examine the notion of an energy function, or “mass” for
the black hole solutions. However, there are various
alternative definitions for calculating conserved charges

4Although the functions AðzÞ and fðzÞ seem to be arbitrary in
our construction, however, we need to be careful in choosing their
forms. In particular, we have to make sure that all the fields in the
gravity systems such as scalar field, gauge field, and metric
function remain real throughout the bulk. This puts a lot of
constraint on the forms of AðzÞ and fðzÞ we can choose. For
example, the scalar field would be complex if AðzÞ ¼ az, with a
being positive, is considered. Similarly, we can not choose forms
like AðzÞ ¼ a=zn, with n being positive, as this will make the
asymptotic boundary different from AdS.

PRIYADARSHINEE, MAHAPATRA, and BANERJEE PHYS. REV. D 104, 084023 (2021)

084023-6



in AdS spaces. This includes the conformal Weyl procedure
of AMD [148], and the holographic renormalize stress
tensor procedure [149–152].5 Moreover, these definitions
do not always agree with each other especially for gravity
systems containing additional matter fields, unless desir-
able boundary conditions are met for the matter fields at
the asymptotic boundary [60] (see the next section for
more details). In this work, we will compute the black
hole mass using these two definitions and explicitly
evaluate the effect of scalar hair on the black hole mass.
This computation will not only help us to make a better
comparison between these methods but also help us to
further understand the differences between them. We find
that even for the complicated Einstein-Maxwell-scalar-
like gravity system one can obtain an analytic expression
of mass from both these definitions. However, since these
definitions explicitly depend on the near asymptotic
structure of gravity and matter fields, it is difficult to
write down the mass expression for different horizon
topologies in full generality. For this reason, we have to
investigate the mass, and therefore the thermodynamics,
on a case-by-case basis.

III. BLACK HOLE THERMODYNAMICS WITH
AðzÞ= − logð1 + azÞ

In this section, we first examine the stability and
thermodynamics of the dyonic hairy gravity solution for
the case AðzÞ ¼ − logð1þ azÞ. The discussion for AðzÞ ¼
−az is postponed to the next section.

A. Planar horizon: κ= 0

Let us first discuss the results with planar horizon,
corresponding to κ ¼ 0. With AðzÞ ¼ − logð1þ azÞ, the
solutions of ϕðzÞ and BtðzÞ reduce to

ϕðzÞ ¼ 4 sinhð ffiffiffiffiffi
az

p Þ;

BtðzÞ ¼ μe

�
1 −

logð1þ azÞ
logð1þ azhÞ

�
: ð3:1Þ

This also gives us the relation

μ̃e ¼
aμe

logð1þ azhÞ
¼ qe: ð3:2Þ

Similarly, we get the following solution for gðzÞ,

gðzÞ ¼ 1þ 1

4a4

�
q2M þ μ2ea2

log2ð1þ azhÞ
��

azð2 − azÞ − 2 logðazþ 1Þ
azhðazh − 2Þ þ 2 logðazh þ 1Þ

�
× ðazhð6 − azhÞ þ 2 logðazh þ 1Þððazh − 3Þ þ ðazh þ 1Þ þ logðazh þ 1ÞÞÞ

þ −azðaz − 2Þ − 2 logðazþ 1Þ
azhðazh − 2Þ þ 2 logðazh þ 1Þ þ

1

4a4

�
q2M þ μ2ea2

log2ð1þ azhÞ
�

× ðazð6 − azÞ þ 2 logðazþ 1Þððaz − 3Þðazþ 1Þ þ logðazþ 1ÞÞÞ: ð3:3Þ

We can similarly write down the analytic expression of
VðzÞ. However, it is too complicated and lengthy, and at the
same time not very illuminating; therefore, we skip to
reproduce it here for brevity. Notice that in the limit a → 0,
the scalar field goes to zero and all other expressions reduce
to the standard nonhairy dyonic expressions.
In Fig. 1, the behavior of these functions for different

values of hair parameter a is illustrated. The results here are
illustrated for a particular value of zh ¼ 1, μe ¼ 1, and
qM ¼ 1; however, analogous results occur for their other
values as well. The blackening function gðzÞ changes sign
at z ¼ zh for all values of a, indicating the presence of a
horizon. The finiteness of the Kretschmann scalar
RMNPQRRNPQ outside the horizon further indicates the
nonsingular nature of the bulk spacetime. Similarly, the
scalar field is regular and real everywhere in the exterior

horizon region. Notice from Eq. (3.1) that ϕ goes to zero
only at the asymptotic boundary, implying the existence of
a well-behaved planar dyonic hairy black hole solution in
our model. We will discuss the thermodynamic stability of
this hairy dyonic black hole against the nonhairy dyonic
black hole shortly when we will examine their free
energies. Similarly, the potential is also regular everywhere
in the exterior horizon region, and it asymptotes to
Vðz ¼ 0Þ ¼ −6 at the AdS boundary for all a.
Additionally, provided that μe and qM are not too large,
the potential is also bounded from above by its boundary
value, i.e., Vð0Þ ≥ VðzÞ, thereby satisfying the Gubser
criterion to have a well-defined dual boundary theory [154].
However, for higher values of μe ≳ 2 and qM ≳ 2, the
Gubser criterion can be violated.
We can further analyze the behavior of VðzÞ with respect

to ϕðzÞ. We find that ϕ vs V profile for different values of a
and μe almost overlap with each other, demonstrating the
independence of the potential on these parameters (which it
should be). This is shown in Figs. 2 and 3. The VðzÞ profile

5One can also evaluate the mass using the Hamiltonian
formulism [60]. However, we will not concentrate on this method
here.
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for different values of qM also overlap with each other,
provided again that it is not too large. This is actually a
consequence of the above-mentioned violation of the
Gubser criterion. In particular, the parameter values for
which the Gubser criterion is violated also lead to different
and unphysical ϕ vs V behavior. In the rest of the work, we
will concentrate on only those parameter values for which
the Gubser criterion is respected.

1. Mass from AMD prescription

In this subsection, we calculate the mass of the hairy
black hole using the AMD prescription [148]. This pre-
scription is particularly useful as it can be straightforwardly
applied. The essential idea here is to evaluate the electric
part of the Weyl tensor of conformally recalled metric
˜ds2 ¼ ω2ds2, with ω having a zero of order one at infinity.

The conserved quantity C½K� associated with a Killing field
K is then given by

0.2 0.4 0.6 0.8 1.0 1.2
z

– 0.5

0.5

1.0

g(z)

(a)

0.2 0.4 0.6 0.8 1.0
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30
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60

RMNPQRMNPQ

(b)

0.2 0.4 0.6 0.8 1.0
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(c)

0.2 0.4 0.6 0.8 1.0
z

– 8.5
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– 7.5

– 7.0

– 6.5

V(z)

(d)

FIG. 1. The behavior of (a) gðzÞ, (b) RMNPQRMNPQ, (c) ϕðzÞ, and (d) VðzÞ for different values of hair parameter a. Here zh ¼ 1,
μe ¼ 0.1, κ ¼ 0, and qM ¼ 0.1 are used. Red, green, blue, brown, orange, and cyan curves correspond to a ¼ 0, 0.05, 0.10, 0.15, 0.20,
and 0.25, respectively.

0.5 1.0 1.5 2.0
(z)

–8.0

–7.5

–7.0

–6.5

V(z)

FIG. 2. Scalar potential as a function of scalar field for various
values of μe. Here a ¼ 0.1, zh ¼ 2.0, and qM ¼ 0.1 are used.
Red, green, blue, brown, and orange curves correspond to μe ¼ 0,
0.1, 0.2, 0.3, and 0.4, respectively.
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FIG. 3. Scalar potential as a function of scalar field for various
values of a. Here μe ¼ 0.1, qM ¼ 0.1, and zh ¼ 2.0 are used.
Green, blue, brown, orange, and magenta curves correspond to
a ¼ 0.05, 0.10, 0.15, 0.20, and 0.25, respectively.
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C½K� ¼ 1

8πG4

I
ϵ̃μνKνdΣ̃μ; ð3:4Þ

where ϵ̃μν ¼ ω−1ñρñσC̃μ
ρνσ , ω ¼ z and ñρ is the unit

normal vector to the constant ω surface. C̃μ
ρνσ is the

Weyl tensor constructed from ˜ds2 and dΣ̃μ is the two-
dimensional area element of the space section of the AdS
boundary. For a timelike killing vector K, we have the mass
expression

C½K� ¼ MAMD ¼ Ω2;κ

8πG4

ω−1ðñωÞ2C̃t
ωtω; ð3:5Þ

here all the functions are meant to be calculated with the

metric ˜ds2. Using ñμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðωÞe−2AðωÞ

q
, substituting the

expression of C̃t
ωtω, switching back to r ¼ 1=ω coordinate

and simplifying, we get

MAMD ¼ Ω2;κ

8πG4

�
e−2AðrÞr4

3

�
−g0ðrÞ þ rA0ðrÞg0ðrÞ

2
−
rg00ðrÞ

2

�
þ κ

r
3

�
; ð3:6Þ

Substituting AðrÞ and gðrÞ expressions of the planar hairy black hole, we finally get

MAMD ¼ Ω2;0

12πG4

a3
�ðq2eþq2MÞð2ða2z2h−2azh−3Þ log ðazhþ1Þþazhð6−azhÞþ2log2ðazhþ1ÞÞ

4a4 þ 1
�

azhðazh − 2Þ þ 2 log ðazh þ 1Þ : ð3:7Þ

Notice that, in the limit a → 0, the above expression
reduces to standard nonhairy dyonic expression.

2. Mass from holographic renormalization

We now compute the mass using the holographic
renormalization method [149–152]. This is one of the
most elegant methods that is used not just to compute
the mass but also other thermodynamic quantities of the
black hole. In this method, the thermodynamic quantities
are computed from the regularized action using boundary
counterterms. For the Einstein-Maxwell-scalar system in
Eq. (2.1), the renormalized action is given by subtracting
the boundary terms from the bulk action

SGren ¼ Son shellEMS þ 1

8πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p
Θ

−
1

16πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p ð4þRð3ÞÞ

þ 2

16πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p ðb1ϕ2þb2ϕ4þb3ϕ6Þ; ð3:8Þ

where the first term is the on shell action, second term is the
usual Gibbons-Hawking surface term, the third term is the
Balasubramanian-Kraus counterterms, and the fourth term
is the scalar counterterms. Notice that no new counterterms
are needed due to the Uð1Þ gauge field, as F2 term falls off
sufficiently quickly near the boundary. γ is the induced
metric on the boundary ∂M, Rð3Þ is the Ricci scalar
constructed from the boundary metric γ, and Θ is the trace
of the extrinsic curvature Θμν. The constants b1, b2, and b3
are fixed by demanding complete cancellation of the IR
divergences coming from the scalar part of the action. Their
values are computed as

b1 ¼ −
1

8
; b2 ¼ −

1

384
; b3 ¼ −

1

46080
: ð3:9Þ

A few important points about the above regularized action
are in order:

(i) The variation of scalar part of the Einstein-
Maxwell-scalar action also gives a boundary term
ð−1=16πG4Þ

R
∂M d3x

ffiffiffiffiffiffi−γp
nr∂rϕðδϕÞ. Therefore, in

principle one could add a boundary term
ð1=16πG4Þ

R
∂M d3x

ffiffiffiffiffiffi−γp
nrϕ∂rϕ in the renormal-

ized action in Eq. (3.8). However, since the latter
term is not explicitly constructed from the boundary
metric, we therefore do not include this term here.

(ii) Similarly, thevariation of gauge part of the action also
gives a boundary term

R
∂Md3x

ffiffiffiffiffiffi−γp
nrfðϕÞFrμðδBμÞ.

This term goes to zero for the Dirichlet boundary
condition δBμ ¼ 0. Since the Dirichlet boundary
condition corresponds to the case of fixing the
constant part of the gauge field, i.e., the chemical
potential; therefore, in the grand canonical ensemble,
no additional terms are required to be added in the
above action.

(iii) However, if we want to study the system in
the canonical ensemble, corresponding to fixed
charge qe, i.e., δFrμ ¼ 0, then the boundary termR
∂M d3x

ffiffiffiffiffiffi−γp
nrFrμðδBμÞ is not zero and we have to

add a boundary term
R
∂M d3x

ffiffiffiffiffiffi−γp
nrfðϕÞFrμBμ in

the action such that we get a thermodynamic
function in terms of the variable (qe) we wish to
control. Therefore, the renormalized action in the
case of canonical ensemble would be
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SFren ¼ Son shell
EMS þ 1

8πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p
Θ

−
1

16πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p ð4þ Rð3ÞÞ

þ 2

16πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p ðb1ϕ2 þ b2ϕ4 þ b3ϕ6Þ

þ 1

16πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p
nrfðϕÞFrμBμ:

ð3:10Þ

As we will see, the last term would not only give
an additional contribution to the Helmholtz free
energy but is also necessary to get a standard
thermodynamic relation between canonical and
grand-canonical free energies.

(iv) Generally, the canonical boundary condition in
Einstein-Maxwell-scalar theory mixes the gauge
field variation with that of the scalar field variation,
i.e., the sum of δFrμ and δϕ variations [155]. The
coupled scalar and gauge variations lead to a
possibility of a generalized mixed boundary con-
dition on both fields, corresponding to the semi-
canonical ensemble. However, for the case when δϕ
vanishes, this semicanonical ensemble reduces to
the standard canonical ensemble. Since in this work
we are mostly interested in physical situations
where the scalar field (or the parameter a) is fixed,
we will not dwell much into the semicanonical
case here.

From the renormalized action, and using the Arnowitt-
Deser-Misner decomposition, we can compute the corre-
sponding stress energy tensor

Tμν ¼ 1

8πG4

�
Θγμν − Θμν þ 2ffiffiffiffiffiffi−γp δLct

δγμν

�
; ð3:11Þ

where Lct is the Lagrangian of the counterterms only.
Explicitly, for the grand canonical case Eq. (3.8), we have

TG
μν ¼

1

8πG4

½Θγμν − Θμν − 2γμν þGð3Þ
μν

þ γμνðb1ϕ2 þ b2ϕ4 þ b3ϕ6Þ�; ð3:12Þ

where Gð3Þ
μν is the Einstein tensor of the boundary metric.

Similarly, for the canonical case

TF
μν ¼

1

8πG4

½Θγμν−Θμν−2γμνþGð3Þ
μν

þ γμνðb1ϕ2þb2ϕ4þb3ϕ6Þ�

þ 1

8πG4

�
γμν

fðϕÞ
2

nrFrρBρ−fðϕÞnρFρνBμ

�
: ð3:13Þ

In the above equations, the superscript G and F are used to
denote grand canonical and canonical ensemble, respec-
tively. The mass of the black hole is then related to the tt
component of Tμν. In particular, if Kμ is a Killing vector
generating an isometry of the boundary space, then the
associated conserved charge is

C½K� ¼ MHR ¼
Z
Σ
d2x

ffiffiffi
σ

p
uμTμνKν; ð3:14Þ

where Σ is a spacelike surface in ∂M, with induced metric
σ, and uμ ¼ −

ffiffiffiffiffiffiffiffiffi
gðzÞp

δtμ is the timelike unit normal to Σ.

3. Thermodynamics with constant potential

Let us first discuss the black hole thermodynamics in the
grand canonical ensemble. Substituting the planar black
hole expressions in Eqs. (3.12) and (3.14), we get the mass
of the black hole

MG
HR ¼ Ω2;0

12πG4

a3
�ðq2eþq2MÞð2ða2z2h−2azh−3Þ log ðazhþ1Þþazhð6−azhÞþ2 log2 ðazhþ1ÞÞ

4a4 þ 1
�

azhðazh − 2Þ þ 2 log ðazh þ 1Þ : ð3:15Þ

Notice that this black hole mass expression matches
exactly with the AMD prescription. Moreover, this ex-
pression also matches with the z3 coefficient of gðzÞ. In
particular,

MG
HR ¼ MAMD ¼ Ω2;0

8πG4

× ½z3 coefficient of gðzÞ�: ð3:16Þ

At this point, we like to emphasize that the scalar IR
divergences could have been removed from the action
[Eq. (3.8)] by adding only b1 and b2 terms. The b3 term is
needed to match the holographic renormalized mass with

the AMD mass, otherwise there would be a disagreement
between them. This further highlights the important differ-
ence between the AMD and holographic renormalized
masses in the presence of a scalar field. In particular, the
holographic renormalized mass is sensitive to boundary
terms, whereas the AMD mass does not depend on
boundary counterterms. For further discussion on this
matter, see [156]. This freedom to redefine the holographic
mass expression is actually like the Legendre transforma-
tions that one makes between different forms of energy in
standard thermodynamics. Note that since no additional
counterterms are needed for the gauge field, the AMD and

PRIYADARSHINEE, MAHAPATRA, and BANERJEE PHYS. REV. D 104, 084023 (2021)

084023-10



holographic renormalized mass agree with each other for
the standard nonhairy dyonic black holes.

From the renormalized action, we can further calculate
the Gibbs free energy G ¼ −SGren=β

G ¼ μ2eða3zhðazh − 6Þ − 2a2 log2 ðazh þ 1Þ þ 2a2ð−a2z2h þ 2azh þ 3Þ log ðazh þ 1ÞÞ
96πaG4 log2 ðazh þ 1Þðazhðazh − 2Þ þ 2 log ðazh þ 1ÞÞ

þ q2Mð2ð2a2z2h − 4azh þ 3Þ log3 ðazh þ 1Þ þ a2z2h log
2 ðazh þ 1Þ þ 10 log4 ðazh þ 1ÞÞ

96πaG4 log2 ðazh þ 1Þðazhðazh − 2Þ þ 2 log ðazh þ 1ÞÞ

−
2a3 þ 3zhq2M

48πG4ðazhðazh − 2Þ þ 2 log ðazh þ 1ÞÞ : ð3:17Þ

Importantly, this expression of Gibbs free energy matches
with the expected thermodynamic relation G ¼ MG

HR−
TSBH −Qeμe. This is a consistency check for the thermo-
dynamic formulae found here for the dyonic hairy black
holes. It is indeed surprising that even for these complicated
dyonic hairy black holes analytic expressions of various
thermodynamic observables could be obtained. Further,
holding the relation G ¼ MG

HR − TSBH −Qeμe, without
requiring to add a term for the magnetic charge, further
supports the fact that treatment of qM as a constant external
parameter is consistent. We further calculated the pressure
in the grand canonical ensemble,6 and find that the Ein-
stein-Maxwell-scalar gravity system satisfies the standard
thermodynamic relation,7

G ¼ −PG: ð3:18Þ

As expected the above expression for G reduces to the
standard nonhairy dyonic black hole expression in the limit
a → 0, again providing a consistency check of the ex-
pression. However, it turns out that the Gibbs free energy
does not satisfy the differential first law like relation

dG ¼ −SBHdT −Qedμe: ð3:19Þ

This unfortunate result might be related to the fact that with
the scalar field this form of first law needs to be modified by
scalar contributions. Indeed, by now many works have
strongly advocated for modification of the differential first
law in the presence of a scalar field [157,158]. It is of
course important to explicitly establish the first law in our
Einstein-Maxwell-scalar model as well; however, since our
primary focus here is on the construction and thermody-
namic stability of the hairy black holes (and on the
corresponding hairy/nonhairy phase transitions). We there-
fore postpone this curious exercise for future work.

With various analytic expressions in hand, we are now
ready to discuss the thermodynamic properties of the planar
hairy dyonic black holes. In Fig. 4, we have shown the
behavior of Hawking temperature with respect to inverse
horizon radius zh for different values of a. Here, we have
kept μe ¼ 0.1 and qM ¼ 0.1 fixed but similar results hold
for other values of μe and qM as well. We find a one to one
relation between the horizon radius and Hawking temper-
ature. Remember that the usual nonhairy dyonic black hole
becomes extremal only when μe and qM are finite. This
property continues to hold for the hairy dyonic case as well.
With finite a, the difference arises in the magnitude of zexth
at which the hairy black hole becomes extremal. We find
that the magnitude of zexth increases with a for all μe and qM.
The overall dependence of extremal horizon radius on a, μe
and qM is shown in Fig. 5.
It is also important to analyze the local stability, which

measures the response of the equilibrium system under a
small fluctuation in thermodynamical variables, of these
hairy black holes. In the constant potential ensemble, the
local stability is quantified by the positivity of the specific
heat Cμ ¼ Tð∂SBH=∂TÞ at constant potential. Since
SBH ∝ z−2h , it is easy to see that the slope of the SBH − T
plane in these hairy black holes is always positive. This in

2 4 6 8 10
zh

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T

FIG. 4. Hawking temperature T as a function of horizon radius
zh for various values of a. Here μe ¼ 0.1 and qM ¼ 0.1 are used.
Red, green, blue, brown, orange, and magenta curves correspond
to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25, respectively.

6The pressure can be computed from the x1x1 component
of Tμν.

7Note that with finite qM, P differs from Txx by a term
proportional to the magnetization.
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turn implies that Cμ ≥ 0, indicating the local stability of
hairy dyonic black holes.
To further analyze the thermodynamic stability of the

hairy dyonic black holes, we examine its free energy. The
Gibbs free energy as a function of temperature for different
values of a is shown in Fig. 6. One can immediately notice
that Gibbs free energy of the hairy black hole (a ≠ 0) is
smaller than the nonhairy black hole (a ¼ 0) at lower
temperatures, whereas it is greater than the nonhairy black

hole at higher temperatures. This suggests that although the
nonhairy black hole is thermodynamically preferable at
higher temperatures, however, it is the hairy black hole
structure that is thermodynamically more preferable at low
temperatures. Moreover, the temperature range for which
the hairy black hole is more preferable increases with a. In
particular, the temperature Tcrit at which the free energy of
hairy black hole becomes lower than the nonhairy black
hole increases with a. Similarly, Tcrit increases with μe and
qM as well. This indicates that the thermodynamic stability
of the hairy dyonic black hole phase strengthens at higher
temperatures as both μe and qM increase. The complete
phase diagram displaying the dependence of Tcrit on a, μe,
and qM is shown in Fig. 7.
Importantly, the planar hairy black hole can become

thermodynamically favorable even when μe ¼ 0. This is an
interesting result considering that the free energy of planar
RN-AdS black hole is generally found to be smaller than
the planar hairy black holes for μe ¼ 0 [137]. We find that
this situation can be circumvented for the dyonic case
having finite qM. In particular, for qM ≠ 0, the free energy
of an uncharged hairy black hole can be smaller than the
uncharged nonhairy black hole at low temperatures. This is
shown in Fig. 8 for a particular value of qM ¼ 0.2.
Moreover, the temperature Tcrit at which the free energy
of hairy uncharged black hole becomes lower than the
nonhairy uncharged black hole increases with qM. This
further suggests that the possibility of thermodynamically
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FIG. 5. The variation of extremal black hole horizon radius zexth
as function of a. Red, green, blue, brown, orange, and magenta
curves correspond to μe ¼ 0, 0.1, 0.2, 0.3, 0.4, and 0.5,
respectively. Solid, dashed, dotted, and dot-dashed curves cor-
respond to qM ¼ 0.1, 0.2, 0.3, and 0.4, respectively.
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FIG. 6. Gibbs free energy G as a function of Hawking temperature T for various values of a. The upper-left graph (a) corresponds to
qM ¼ 0 and μe ¼ 0.1; the upper-right graph (b) corresponds to qM ¼ 0 and μe ¼ 0.3; the lower-left graph (c) corresponds to qM ¼ 0.2
and μe ¼ 0.1; and the lower-right graph (d) corresponds to qM ¼ 0.2 and μe ¼ 0.3. Red, green, blue, brown, orange, and magenta curves
correspond to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25, respectively.
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stable hairy uncharged black hole increases with the dyonic
parameter qM. The dependence of Tcrit on qM and a for the
uncharged cases (μe ¼ 0) is shown in Fig. 9. Overall, our
whole free energy analysis indicates the existence of a
thermodynamically stable and well-behaved hairy dyonic

planar black hole solution in asymptotically AdS space in
our model.

4. Thermodynamics with constant charge

To discuss the thermodynamic in the canonical ensem-
ble, we use the renormalized action Eq. (3.10) to compute
the Helmholtz free energy F ¼ −SFren=β. We find that

F ¼ ðq2e þ q2MÞða2z2h þ 2ð2a2z2h − 4azh þ 3Þ log ½azh þ 1� − 6azh þ 10 log2 ½azh þ 1�Þ
96πaG4ðazhðazh − 2Þ þ 2 log ½azh þ 1�Þ

−
a3

24πG4ðazhðazh − 2Þ þ 2 log ½azh þ 1�Þ : ð3:20Þ

This is again consistent with the standard thermodynamic
relation that the Helmholtz free energy is a Legendre
transformation of the Gibbs free energy

F ¼ GþQeμe ¼ MG
HR − TSBH: ð3:21Þ

Similarly, we can compute mass and pressure in the
canonical ensemble from (tt) and (xx) component of the

stress energy tensor Eq. (3.13). The pressure again turns
out to be negative of the Helmholtz free energy,8
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FIG. 8. Gibbs free energy G as a function of Hawking
temperature T for various values of a. Here μe ¼ 0 and qM ¼
0.2 are used. Red, green, blue, brown, orange, and magenta
curves correspond to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25,
respectively.
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FIG. 9. The variation of Tcrit as function of a. Here μe ¼ 0 is
used. Red, green, blue, brown, and orange curves correspond to
qM ¼ 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.
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FIG. 7. The variation of Tcrit as function of a. Red, green, blue,
and brown curves correspond to μe ¼ 0.1, 0.2, 0.3, and 0.4,
respectively. Solid, dashed, dotted, and dot-dashed curves cor-
respond to qM ¼ 0, 0.1, 0.2, and 0.3, respectively.
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FIG. 10. Hawking temperature T as a function of horizon radius
zh for various values of a. Here qe ¼ 0.1 and qM ¼ 0.1 are used.
Red, green, blue, brown, orange, and magenta curves correspond
to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25, respectively.

8Again, for finite qM, P differs from Txx by a term proportional
to the magnetization.
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PF ¼ −F: ð3:22Þ

Whereas, the mass is given by

MF
HR ¼ Ω2;0

12πG4

a3
�ðq2eþq2MÞð2 log ½1þazh�ðða− 3

zh
Þðaþ 1

zh
Þþlog ½1þazh �

z2
h

Þ−aða− 6
zh
ÞÞ

4a4z−2h
þ 1

�
az2hða − 2

zh
Þ þ 2 log ½1þ azh�

−
Ω2;0

16πG4

q2e log ½1þ azh�
a

: ð3:23Þ

Here the last term is nothing butQeμe. Notice that this mass
MF

HR differs from the mass in Helmholtz free energy in
Eq. (3.21) by a factor of Qeμe. This difference arises
precisely from the additional gauge field terms introduced
in the action [Eq. (3.10)] and stress energy tensor
[Eq. (3.28)] to have a well-defined fixed charge ensemble.
For the usual RN-AdS black hole in the canonical ensem-
ble, the massMF

HR is usually identified as the energy above
the ground state, i.e., the extremal black hole [83]. How-
ever, we find that for the hairy case the mass of the fixed
charge differ byQeμe, and not by the energy of the extremal
black hole. It would certainly be interesting to find out the
exact meaning of this holographic renormalized mass MF

HR
in the canonical ensemble context, however, at this moment
we are unsure about its correct physical interpretation.
In Fig. 10, the variation of Hawking temperature with

horizon radius is shown. Here, we have kept qe ¼ 0.1 and
qM ¼ 0.1 fixed, but similar results occur for other values of
qe and qM as well. In the canonical ensemble too, the radius
of the extremal horizon zexth increases with a. The negative
slope and one to one relation between the horizon radius
and Hawking temperature further indicate that the hairy
black hole does not only exists at all temperatures but also
are thermodynamically stable. In particular, the specific
heat at constant charge Cq ¼ Tð∂SBH=∂TÞ is always
positive, implying the local stability of these black holes
in the canonical ensemble as well.
In Fig. 11, the thermal variation of Helmholtz free energy

as function a is shown. We again see that the free energy of
the hairy black hole (a ≠ 0) is smaller than the nonhairy
black hole (a ¼ 0) at lower temperatures, whereas it is
greater than the nonhairy black hole at higher temperatures.
This implies that, like in the grand canonical ensemble, the
hairy black hole is thermodynamically more preferable at
low temperatures compared to the nonhairy black hole in
the canonical ensemble as well. We further calculated the
temperature Tcrit, at which the Helmholtz free energy of
hairy black hole becomes lower than the nonhairy black
hole, and find it to be an increasing function of a, qe, and
qM. This implies that the temperature window where the
hairy black hole is more preferable increases with a, qe, and
qM. The overall dependence of Tcrit on a, qe, and qM is
shown in Fig. 12. Therefore, in the canonical ensemble as
well, the dyonic parameter qM plays a constructive role in

the thermodynamic stability of the hairy black hole.
Moreover, since the case qe ¼ 0 is identical to the μe ¼ 0
case, which we have already discussed in the last sub-
section, the planar hairy uncharged black hole can become
thermodynamically favorable in the canonical ensemble
as well.

B. Spherical horizon: κ= 1

We now turn our attention to dyonic hairy black hole
solution and thermodynamics with the spherical horizon,
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FIG. 12. The variation of Tcrit as function of a. Red, green, blue,
and brown curves correspond to qe ¼ 0.1, 0.2, 0.3, and 0.4,
respectively. Solid, dashed, dotted, and dot-dashed curves cor-
respond to qM ¼ 0, 0.1, 0.2, and 0.3, respectively.
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FIG. 11. Helmholtz free energy F as a function of Hawking
temperature T for various values of a. Here qe ¼ 0.1 and qM ¼
0.1 are used. Red, green, blue, brown, orange, and magenta
curves correspond to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25,
respectively.
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corresponding to κ ¼ 1. The thermodynamic phase struc-
ture of the usual spherical nonhairy dyonic black hole has
an incredibly rich structure [113]. In particular, there appear
interesting Hawking/page and small/large black hole phase

transitions. Therefore, it will be interesting to see how the
presence of scalar hair affects this phase structure.
Similar to the planar case, we can again obtain the

analytic, though slightly complicated, expression of gðzÞ

gðzÞ ¼ 1þ azðaz − 2Þ þ 2 logðazþ 1Þ
a2ðazhðazh − 2Þ þ 2 log ðazh þ 1ÞÞ

	
log ðazh þ 1Þðlog ðazh þ 1Þ − 2 logðzhÞ − 1Þ

− a2 þ azh

�
2 log

�
zh

azh þ 1

�
þ azh log

�
1þ azh

zh

�
− 1

�
− 2Li2ð−azhÞ




−
ðq2e þ q2MÞðazðaz − 2Þ þ 2 logðazþ 1ÞÞ
4a4ðazhðazh − 2Þ þ 2 log ðazh þ 1ÞÞ f2ðlog ðazh þ 1Þ − 3Þ logðazh þ 1Þ

þ azhð−4 log ðazh þ 1Þ þ azhð2 log ðazh þ 1Þ − 1Þ þ 6Þg

þ ðq2e þ q2MÞ
�
2ða2z2 − 2az − 3Þ logðazþ 1Þ þ azð6 − azÞ þ 2log2ðazþ 1Þ

4a4

�

þ 4Li2ð−azÞ þ azð−azþ 2ðaz − 2Þ logðzÞ þ 4Þ þ 4 logðzÞ logðazþ 1Þ
2a2

þ azðaz − 2Þ − 2 logðazþ 1Þðazðaz − 2Þ þ logðazþ 1Þ − 1Þ
2a2

:

Where Li2 is the Polylogarithm function. This expres-
sion again reduces to the standard dyonic RN-AdS
expression in the limit a → 0. Since the expressions
for ϕðzÞ and BtðzÞ remain the same as in the planar
case, the scalar field continues to be regular and well-
behaved everywhere outside the horizon. The profile of
gðzÞ and Kretschmann scalar, shown in Fig. 13, further
illustrates the smooth and well-behaved nature of the
spacetime.
To investigate the local and thermodynamic stability of

this spherical hairy dyonic black hole, we again need to
compute various thermodynamic quantities. The expres-
sions of charge and chemical potential remain the same as
in the planar horizon case. However, because of the

presence of z3 log z term in the near boundary expansion
of gðzÞ, the AMD prescription does not yield a sensible
result for the black hole mass. Nonetheless, we can still use
the holographic renormalization method to compute the
black hole mass.

1. Mass from holographic renormalization

The procedure for obtaining the black hole mass and
other thermodynamic quantities from the holographic
renormalization method is exactly the same as discussed
earlier for the planar horizon case. The difference arises
only in the scalar boundary counterterms in the regularize
action,
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FIG. 13. The behavior of (a) gðzÞ and (b) RMNPQRMNPQ for different values of hair parameter a. Here zh ¼ 1, qe ¼ 0.1, and
qM ¼ 0.1 are used. Red, green, blue, brown, orange, and magenta curves correspond to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25,
respectively.
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SGren ¼ Son shellEMS þ 1

8πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p
Θ

−
1

16πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p ð4þRð3ÞÞ

þ 2

16πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p ðb1ϕ2þb2ϕ4þb3ϕ6 logϕÞ:

ð3:24Þ

The ϕ6 logϕ counterterm is needed to make sure that the
additional logarithmic divergences in Son shell

EMS , arising due to

the structure of gðzÞ, cancel out in SGren. This renormalized
action is suitable to study fixed potential ensemble. The
corresponding stress energy tensor is then given by

TG
μν ¼

1

8πG4

½Θγμν − Θμν − 2γμν þ Gð3Þ
μν

þ γμνðb1ϕ2 þ b2ϕ4 þ b3ϕ6 logϕÞ�; ð3:25Þ

whose tt component will give us the following desired mass
expression9:

MG
HR ¼ a2ð−að4a2 þ 5Þz2h þ 8ða2 þ 5Þzh − 60zhðazh − 2Þðcoth−1ð2azh þ 1Þ − logð4ÞÞ þ 30aÞ

360πG4ðazhðazh − 2Þ þ 2 log ðazh þ 1ÞÞ

þ 4að−2a2 þ 15 log ðazhÞ þ 5þ 60 logð2ÞÞ log ðazh þ 1Þ þ 60aLi2ð−azhÞ − 30alog2ðazh þ 1Þ
360πG4ðazhðazh − 2Þ þ 2 log ðazh þ 1ÞÞ

þ aμ2eð2ða2z2h − 2azh − 3Þ log ðazh þ 1Þ þ azhð6 − azhÞ þ 2log2ðazh þ 1ÞÞ
48πG4log2ðazh þ 1Þðazhðazh − 2Þ þ 2 log ðazh þ 1ÞÞ

þ q2Mð2ða2z2h − 2azh − 3Þ log ðazh þ 1Þ þ azhð6 − azhÞ þ 2log2ðazh þ 1ÞÞ
48aπG4ðazhðazh − 2Þ þ 2 log ðazh þ 1ÞÞ : ð3:26Þ

For the fixed charge ensemble, as discussed before, the renormalized action would need to be modified
appropriately,

SFren ¼ Son shell
EMS þ 1

8πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p
Θ −

1

16πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p ð4þ Rð3ÞÞ

þ 2

16πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p ðb1ϕ2 þ b2ϕ4 þ b3ϕ6 logϕÞ þ 1

16πG4

Z
∂M

d3x
ffiffiffiffiffiffi
−γ

p
nrfðϕÞFrμBμ; ð3:27Þ

the corresponding energy momentum tensor is then

TF
μν ¼

1

8πG4

½Θγμν − Θμν − 2γμν þ Gð3Þ
μν þ γμνðb1ϕ2 þ b2ϕ4 þ b3ϕ6 logϕÞ� þ 1

8πG4

�
γμν

fðϕÞ
2

nrFrρBρ − fðϕÞnρFρνBμ

�
;

ð3:28Þ

the tt component of which gives us the mass

MF
HR ¼ MG

HR −
q2e log ðazh þ 1Þ

16πaG4

: ð3:29Þ

Again, this mass MF
HR is not exactly the mass that appears in the Helmholtz free energy but differs by a

factor of Qeμe.

2. Black hole thermodynamics

Let us first discuss the black hole thermodynamics in the grand canonical ensemble. From the renormalized on shell
action, we get the Gibbs free energy per unit area as

9This is actually the mass per unit area Ω2;1 of the boundary spatial section.
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G ¼ 1

360πG4zhðazhðazh − 2Þ þ 2 log ðazh þ 1ÞÞ ½−30azhLi2ð−azhÞ − 75azhlog2ðazh þ 1Þ

þ log ðazh þ 1Þðað−8a2 − 25þ 240 log 2Þzh þ 60azh log ðazhÞ þ 90Þ − 5azhð3a2 − 8azh þ 18Þ
− a2z2hðað4aðazh − 2Þ þ 5zhÞ − 60 logð4Þðazh − 2Þ þ 60ðazh − 2Þcoth−1ð2azh þ 1ÞÞ�

−
aμ2eð2ða2z2h − 2azh − 3Þ log ðazh þ 1Þ þ azhð6 − azhÞ þ 2log2ðazh þ 1ÞÞ

96πG4log2ðazh þ 1Þðazhðazh − 2Þ þ 2 log ðazh þ 1ÞÞ

þ q2Mðð4a2z2h − 8azh þ 6Þ log ðazh þ 1Þ þ azhðazh − 6Þ þ 10log2ðazh þ 1ÞÞ
96πaG4ðazhðazh − 2Þ þ 2 log ðazh þ 1ÞÞ :

The free energy satisfies the expected thermodynamic
relation G ¼ MG

HR − TSBH −Qeμe, and reduces to the
standard dyonic expression in the limit a → 0. This is a
consistency check for the thermodynamic formulae found
here for the spherical dyonic hairy black holes.
In Fig. 14, we have shown the behavior of Hawking

temperature for μe ¼ 0 and qM ¼ 0. As is well known, the
usual nonhairy Schwarzschild AdS black hole exists only
above a certain minimum temperature Tmin, and below this
minimum temperature the black hole ceases to exist,
thereby exhibiting an interesting Hawking/Page transition
between the Schwarzschild AdS black hole and thermal
AdS. We find that this interesting behavior and phase
transition continue to hold in the presence of scalar hair as
well. In particular, there again appear two black hole
branches, large and small, at all temperatures T ≥ Tmin.
The large black hole branch [indicated by (1) in Fig. 14] has
a positive specific heat and is stable whereas the small black
hole branch [indicated by (2) in Fig. 14] has a negative
specific heat and is unstable. Moreover, the free energy of
the large black hole branch is always smaller than the small
black hole branch. However, the free energy of the large

black hole can become higher than the thermal AdS at
lower temperatures, implying the Hawking/page phase
transition between them. This is shown in Fig. 15, where
the free energy difference between hairy black hole and
thermal AdS is plotted for various values of a.
The thermodynamic structure becomes even more inter-

esting for the small but finite chemical potential μe. For a
small chemical potential, still in the case qM ¼ 0, the
Hawking/page phase transition continue to exists, with a
large stable black hole solution dominating the thermody-
namics at a higher temperature, whereas the thermal-AdS
solution dominates at a lower temperature. Interestingly,
with scalar hair, a new small black hole branch can appear,
which remains stable at low temperature [indicated by
(3) in Fig. 16]. In particular, the Hawking temperature now
has local minima and maxima and vanishes at a finite radius
zexth ; i.e., at least one stable black hole branch always exists
all at each temperature. Moreover, the magnitude of this zexth
decreases with a. The free energy behavior, shown in
Fig. 17, further suggests a first order phase transition
between the large black hole branch (1) and small black
hole branch (3) as the temperature is lowered. This is the
famous small/large black hole phase in the context of
charged AdS black hole [83–87]. Notice that the free
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FIG. 14. Hawking temperature T as a function of horizon radius
zh for various values of a. The large and small black hole
branches are indicated by (1) and (2), respectively. Here μe ¼ 0
and qM ¼ 0 are used. Red, green, blue, brown, orange, and
magenta curves correspond to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and
0.25, respectively.
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FIG. 15. Gibbs free energy difference ΔG as a function of
Hawking temperature T for various values of a. The free energy
of large and small black hole branches are indicated by (1) and
(2), respectively. Here μe ¼ 0 and qM ¼ 0 are used. Red, green,
blue, brown, orange, and cyan curves correspond to a ¼ 0, 0.05,
0.10, 0.15, 0.20, and 0.25, respectively.
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energy of the unstable second branch (2) is always higher
than the stable first and third branches and therefore is
always thermodynamically disfavored.
At this point, it is important to emphasize that the usual

spherical RN-AdS black hole exhibits only the Hawking/
Page phase transition in the grand canonical ensemble, and
the small/large black hole phase transition appears only in
the canonical ensemble. Here, we see that in the presence of
scalar hair the small/large black hole phase transition can
take place in the grand canonical ensemble as well.
For higher values of a, only one stable black hole branch

appears that remains thermodynamically preferred at all
temperatures. In particular, the size of the second branch
decreases with a and then completely disappears. This
leads to the merging of small and large black hole branches
to form a single black hole branch that remains stable at all
temperatures T ≥ 0. Therefore, the small/large phase tran-
sition ceases to exist at higher values of a. A similar
scenario persists for larger values of chemical potential as

well. Overall, this thermodynamic behavior is akin to the
famous Van der Waals type phase transition, where a first
order critical line stops at a second order critical point.
Similar results appear for finite values of qM as well. In

particular, for small qM, there again exists three black hole
branches: two stable and one unstable. The stable first and
third branches are always thermodynamically favored over
the unstable second branch. The stable first and third black
hole branches further undergo a small/large black hole phase
transition as the temperature is varied. This is shown in
Figs. 18 and 19.However, for higher values ofqM, the size of
the unstable second branch (2) start decreasing and ulti-
mately disappear. Therefore, for large qM only one stable
black hole branch exists and there is no phase transition
between black holes. This is shown in Figs. 20 and 21.
We now discuss the hairy black hole thermodynamics in

the canonical ensemble. Since most of the thermodynamic
results are completely analogous to the above discussion,
we will be very brief here. From the renormalized on shell
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FIG. 18. Hawking temperature T as a function of horizon radius
zh for various values of a. The large, intermediate, and small
black hole branches are indicated by (1), (2), and (3), respectively.
Here μe ¼ 0 and qM ¼ 0.1 are used. Red, green, blue, brown,
orange, and magenta curves correspond to a ¼ 0, 0.02, 0.04,
0.06, 0.08, and 0.10, respectively.
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FIG. 16. Hawking temperature T as a function of horizon radius
zh for various values of a. The large, intermediate, and small
black hole branches are indicated by (1), (2), and (3), respectively.
Here μe ¼ 0.3 and qM ¼ 0 are used. Red, green, blue, brown,
orange, and magenta curves correspond to a ¼ 0, 0.05, 0.10,
0.15, 0.20, and 0.25, respectively.

(1)

(2)

(3)1 2 3 4
T

–0.002

0.002

0.004

0.006

G

FIG. 17. Gibbs free energy difference ΔG as a function of
Hawking temperature T for various values of a. The free energy
of large, intermediate, and small black hole branches are
indicated by (1), (2), and (3) respectively. Here μe ¼ 0.3 and
qM ¼ 0 are used. Red, green, blue, brown, orange, and magenta
curves correspond to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25,
respectively.
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FIG. 19. Gibbs free energy G as a function of Hawking
temperature T for various values of a. The free energy of large,
intermediate, and small black hole branches are indicated by (1),
(2), and (3), respectively. Here μe ¼ 0 and qM ¼ 0.1 are used.
Red, green, blue, brown, orange, and magenta curves correspond
to a ¼ 0, 0.02, 0.04, 0.06, 0.08, and 0.10, respectively.
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action [Eq. (3.27)], the Helmholtz free energy per unit area
F can be obtained. We find that it is simply given by

F ¼ GþQeμe ¼ MG
HR − TSBH; ð3:30Þ

thereby, again satisfying the expected thermodynamic relation.
The thermodynamic behavior of qe ¼ 0 case is exactly

similar to the μe ¼ 0 case discussed above. The thermo-
dynamic behavior for a small but finite fixed charge qe is
shown in Figs. 22 and 23. It is well known that the usual
charged RN-AdS spherical black hole exhibits a swallow-
tail-like structure in the free energy and undergoes a small/
large black hole phase transition as the temperature is
altered in the canonical ensemble [83]. We find that similar
results persist for the charged hairy cases as well. The
difference arises in the magnitude of the small/large black
hole transition temperature, which increases as the param-
eter a increases.10 Similarly, most of the results for higher

qe values persist as well. In particular, there appears a
critical charge qcrite above which the unstable branch
[indicated by (2) in Figs. 22 and 23] disappears and we
have a single black hole branch, which is stable at all
temperatures, i.e., the small/large black hole phase tran-
sition ceases to exist above qcrite . This is shown in Figs. 24
and 25. The qcrite therefore defines a second order critical
point on which the first order small/large black hole phase
transition line stops. As usual, the magnitude of qcrite can be
found by analyzing the inflection point of temperature.
As we vary qM, the thermodynamic phase diagram

remains quite similar to what we have seen for varying
qe. Here as well, there occurs a critical magnetic charge qcritM
at which the first order small/large black hole phase
transition line terminates and the nucleation of other two
branches appear. The remembrance of fixed qe and qM
thermodynamics is expected considering that the metric is
symmetric in electric and magnetic charges. Hence, it is
expected that the pure constant magnetic charge system
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FIG. 20. Hawking temperature T as a function of horizon radius
zh for various values of qM. Here μe ¼ 0 and a ¼ 0.05 are used.
Red, green, blue, brown, and orange curves correspond to
qM ¼ 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.
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FIG. 21. Gibbs free energy G as a function of Hawking
temperature T for various values of qM. Here μe ¼ 0 and a ¼
0.05 are used. Red, green, blue, brown, and orange curves
correspond to qM ¼ 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.
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FIG. 22. Hawking temperature T as a function of horizon radius
zh for various values of a. The large, intermediate, and small
black hole branches are indicated by (1), (2), and (3), respectively.
Here qe ¼ 0.1 and qm ¼ 0 are used. Red, green, blue, brown,
orange, and magenta curves correspond to a ¼ 0.0, 0.02, 0.04,
0.06, 0.08, and 0.1, respectively.
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FIG. 23. Helmholtz free energy F as a function of Hawking
temperature T for various values of a. The free energy of large,
intermediate, and small black hole branches are indicated by (1),
(2), and (3), respectively. Here qe ¼ 0.1 and qm ¼ 0 are used.
Red, green, blue, brown, orange, and magenta curves correspond
to a ¼ 0.0, 0.02, 0.04, 0.06, 0.08, and 0.1, respectively.

10Due to numerical artifacts, it is difficult to exactly pin point
the small/large black hole phase transition temperature for large a
values.
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behaves analogously to the pure constant electric charge
system.
This completes our discussion on the spherical hairy

dyonic black holes. We have established the resemblance of
hairy dyonic black holes phase transitions with the liquid-
gas phase transition. One can in principle also do a

thorough analysis of the thermodynamic equation of state,
the dependence of small/large black hole phase transition
temperature and critical points qcrite and qcritM on various
parameters, thermodynamic fluctuations, and critical expo-
nents etc in our model. However, we feel that investigation
of these important issues is worthy of a separate indepen-
dent study. The investigation of these issues here will not
only make the whole paper a little bit bulky but also take us
away from the main aim of our paper. Therefore, we
postpone such study for future work.

C. Hyperbolic horizon: κ = − 1
We now briefly discuss the dyonic hairy black hole

solution and thermodynamics with the hyperbolic horizon.
Analytic expression of gðzÞ can be found for κ ¼ −1 as
well. In Fig. 26, the variation of gðzÞ and Kretschmann
scalar is plotted. Once again we have a well-behaved and
smooth hairy black hole geometry having no divergences
outside the horizon. Similarly, the scalar field remains finite
and regular everywhere as well.
Similarly, we can again obtain analytic expressions of

conserved charges and free energies. No additional scalar
counterterms, than those already present in the spherical
case [Eq. (3.24)], are needed to make the on shell action
finite. In Figs. 27 and 28, the thermodynamic stability and
phase structure of the hairy hyperbolic black hole solution
in the grand canonical ensemble is shown. As in the planar
horizon case, there is only one black hole branch. Since
heat capacity at constant potential is always positive for this
branch, it indicates that the hairy hyperbolic black holes are
thermally stable. Moreover, there is also no Hawking/Page
type phase transition and the Gibbs free energy is always
negative, provided that qM is not too large. Similar to the
case of planar horizon, the free energy of hairy black hole
can become smaller than the nonhairy black hole at low
temperatures. This should be distinguish from [137], where
the free energy of hairy hyperbolic black hole was found to
be always higher than the nonhairy black hole. We similarly
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FIG. 25. Helmholtz free energy F as a function of Hawking
temperature T for various values of qe. Here qM ¼ 0 and a ¼
0.02 are used. Red, green, blue, brown, and orange curves
correspond to qe ¼ 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.
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FIG. 26. The behavior of (a) gðzÞ and (b) RMNPQRMNPQ for different values of hair parameter a. Here zh ¼ 1, μe ¼ 0.1, and qM ¼ 0.1
are used. Red, green, blue, brown, orange, and cyan curves correspond to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25, respectively.
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FIG. 24. Hawking temperature T as a function of horizon radius
zh for various values of qe. Here qM ¼ 0 and a ¼ 0.02 are used.
Red, green, blue, brown, and orange curves correspond to
qe ¼ 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.
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find stable and thermodynamically favored hairy black
holes for other values of μe and qM as well.
Similar thermodynamic results persist in the canonical

ensemble as well. This is shown in Figs. 29 and 30. Again,

there is a one to one relation between horizon radius and
temperature. The specific heat of the black hole at constant
charge is also always positive. The Helmholtz free energy
of the hairy black hole can again become smaller than the
nonhairy black hole at low temperatures. Again, for a fixed
qe and qM, the temperature range for which the hairy black
hole free energy remains smaller increases with a.

IV. BLACK HOLE THERMODYNAMICS WITH
AðzÞ= − az

It is instructive to also investigate the hairy black hole
solution and thermodynamics for a different form of AðzÞ.
In particular, in order to check the universal features of the
results presented above for the hairy black hole thermo-
dynamics it is desirable to perform analogous analysis with
a different form of AðzÞ. Here, we consider another simple
form AðzÞ ¼ −az. This form makes sure that constructed
geometry asymptotes to AdS at the boundary.
With AðzÞ ¼ −az, most of our results for the hairy

solution remain the same as in the previous case. This is
true for all horizon topology. Here we mainly concentrate
on the planar black holes as analytic results are not only
straightforward to obtain but also easily expressible for this
case. With AðzÞ ¼ −az, the solutions of ϕðzÞ and BtðzÞ
reduce to

ϕðzÞ ¼ 4
ffiffiffiffiffi
az

p
;

BtðzÞ ¼ μe

�
1 −

1 − e−az

1 − e−azh

�
; ð4:1Þ

together with the relation

eμe ¼ aμe
1 − e−azh

¼ qe: ð4:2Þ

Similarly, the metric function is given by
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FIG. 27. Hawking temperature T as a function of horizon radius
zh for various values of a. Here μe ¼ 0.1 and qM ¼ 0.1 are used.
Red, green, blue, brown, orange, and magenta curves correspond
to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25, respectively.
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FIG. 28. Gibbs free energy G as a function of Hawking
temperature T for various values of a. Here μe ¼ 0.1 and qM ¼
0.1 are used. Red, green, blue, brown, orange, and magenta
curves correspond to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25,
respectively.
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FIG. 29. Hawking temperature T as a function of horizon radius
zh for various values of a. Here qe ¼ 0.1 and qM ¼ 0.1 are used.
Red, green, blue, brown, orange, and magenta curves correspond
to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25, respectively.
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FIG. 30. The Helmholtz free energy F as a function of Hawking
temperature T for various values of a. Here qe ¼ 0.1 and qM ¼
0.1 are used. Red, green, blue, brown, orange, and magenta
curves correspond to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25,
respectively.
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gðzÞ ¼ 1 −
ð−azðazþ 2Þ þ 2eaz − 2Þeazh−az

−azhðazh þ 2Þ þ 2eazh − 2
þ e−2az

4a4
ðq2e þ q2MÞ

×

�
1þ ð−azðazþ 2Þ þ 2eaz − 2Þeaðz−zhÞð2azhðazh þ 1Þ − e2azh þ 1Þ

azhðazh þ 2Þ − 2eazh þ 2
þ 2azðazþ 1Þ − e2az

�
: ð4:3Þ

This is well-behaved function as can be seen from Fig. 31. This, along with the fact that Kretschmann scalar is finite
everywhere outside the horizon, indicating the well-behaved nature of the hairy geometry. Moreover, the scalar field is finite
and goes to zero only at the asymptotic boundary. It once again implies the existence of a well-behaved planar charged hairy
black hole solution.
We can similarly obtain the black hole mass. The mass from the AMD prescription is given by

MAMD

Ω2;0
¼ −

a3eazh

24πG4ða2z2h þ 2azh − 2eazh þ 2Þ −
z2hð2a2ðe−azh − 2Þ þ 2aðe−azh−4Þ

zh
þ e−azhþ7eazh−8

z2h
Þðq2e þ q2MÞ

96πaG4L2ða2z2h þ 2azh − 2eazh þ 2Þ ; ð4:4Þ

which is same as the z3 coefficient of gðzÞ. Moreover, the mass from the holographic renormalization procedure also
matches exactly with the AMD mass. Importantly, for AðzÞ ¼ −az no other counterterms are needed to renormalize the
action than those already suggested for AðzÞ ¼ − logð1þ azÞ. Similarly, the Gibbs free energy from the renormalized
action is given by

G
Ω2;0

¼ e−azhð−4a4e2azh þ8a4e3azh −4a4e4azhÞ
192πaG4ðeazh −1Þ2ð−azhðazhþ2Þþ2eazh −2Þþ

q2Me
−azh

192πaG4ðeazh −1Þ2

×

�
−2a2z2hð−9eazh þ4e2azh þ5Þðeazh −1Þ

ð−azhðazhþ2Þþ2eazh −2Þ þð17eazh −23Þðeazh −1Þ3−2azhð8eazh −11Þðeazh −1Þ2
ð−azhðazhþ2Þþ2eazh −2Þ

�

þμ2ee−azhð−2a4z2he2azh −a2e2azhðeazh −1Þð7eazh −1ÞÞ
192πaG4ðeazh −1Þ2ð−azhðazhþ2Þþ2eazh −2Þ þ μ2ee−azhð4a4z2he3azh þ2a3zhe2azhð4eazh −1ÞÞ

192πaG4ðeazh −1Þ2ð−azhðazhþ2Þþ2eazh −2Þ :

This once again satisfies the thermodynamic relations G ¼
MG

HR − TSBH −Qeμe and G ¼ −PG.
In Figs. 32 and 33, the thermodynamic behavior in the

grand canonical ensemble is shown. There is again a one to
one relation between the Hawking temperature and horizon
radius. The black hole can become extremal for finite μe
and qM, and the magnitude of zexth increases with μe and qM.

Importantly, once again, the specific heat at constant
potential is always positive, indicating the local stability
of hairy dyonic black holes for AðzÞ ¼ −az case as well.
Similarly, the Gibbs free energy of the hairy black hole can
be smaller than the nonhairy black hole at lower temper-
atures. This is shown in Fig. 33. This suggests that, for this
form of AðzÞ as well, the hairy black holes can be
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FIG. 31. The behavior of (a) gðzÞ and (b) RMNPQRMNPQ for different values of hair parameter a. Here zh ¼ 1, qe ¼ 0.1, qM ¼ 0.1, and
κ ¼ 0 are used. Red, green, blue, brown, orange, and magenta curves correspond to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25, respectively.
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thermodynamically favored at lower temperatures.
Whereas at high temperatures, the non-hairy black holes
have lower free energy. Moreover, the temperature Tcrit at
which the free energy of hairy black hole becomes lower
than the nonhairy black hole increases with a, μe, and qM.
This once again implies that the temperature window for
which the hairy black hole is more preferable widens with
these parameters. The phase diagram illustrating the
dependence of Tcrit on a, μe, and qM is quite similar to
what is shown in Fig. 7 for AðzÞ ¼ − logð1þ azÞ.
Importantly, the parameter qM again has a constructive

effect on the hairy solution. In particular, we can have a
stable and thermodynamically favored hairy solution even
when μe ¼ 0. This is shown in Fig. 34 for a particular value
of qM ¼ 0.2. We indeed see that the free energy of the
uncharged hairy black hole is smaller than the uncharged
nonhairy black hole at low temperatures. Moreover, since
Tcrit increases with qM, it indicates that the stability of
thermodynamically favored hairy uncharged black hole
enhances with qM. Once again, the phase diagram illustrat-
ing the dependence of Tcrit on a and qM for the uncharged
case μe ¼ 0 is quite similar to what is shown in Fig. 9
for AðzÞ ¼ − logð1þ azÞ.

The thermodynamic discussion in the canonical ensem-
ble follows a similar trait. The relevant Helmholtz free
energy again satisfies the relations F ¼ GþQeμe ¼
MG

HR − TSSB and F ¼ −PG. The thermodynamic behavior
is again qualitatively similar to the AðzÞ ¼ − logð1þ azÞ
case. In particular, the thermodynamically stable hairy
black hole exists for all temperatures and has a positive
constant charge specific heat. Similar to the grand-canoni-
cal case, the free energy of the hairy black hole can be
smaller than the non-hairy black hole at lower temper-
atures, implying the overall stability of hairy black hole
over non-hairy black hole at low temperatures. This is
shown in Figs. 35 and 36. Moreover, the temperature Tcrit is
found to be an increasing function of a, qe, and qM.
Therefore, in the canonical ensemble as well, the dyonic
parameter qM not only plays a constructive role on the
thermodynamic stability of the hairy black hole but also
make hairy uncharged black hole thermodynamically more
favored compared to the nonhairy uncharged black hole.
Above we discussed the hairy black hole solution and

thermodynamic for the planar horizon and found that
results remain qualitatively similar to the case of
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FIG. 33. The Gibbs free energy G as a function of Hawking
temperature T for various values of a. Here μe ¼ 0.2 and qM ¼ 0
are used. Red, green, blue, brown, orange, and magenta
curves correspond to a ¼ 0, 0.01, 0.02, 0.03, 0.04, and 0.05,
respectively.
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FIG. 34. Gibbs free energy G as a function of Hawking
temperature T for various values of a. Here μe ¼ 0 and qM ¼
0.2 are used. Red, green, blue, brown, orange, and magenta
curves correspond to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25,
respectively.
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FIG. 35. Hawking temperature T as a function of horizon radius
zh for various values of a. Here qe ¼ 0.2 and qM ¼ 0 are used.
Red, green, blue, brown, orange, and magenta curves correspond
to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25, respectively.
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FIG. 32. Hawking temperature T as a function of horizon radius
zh for various values of a. Here μe ¼ 0.2 and qM ¼ 0 are used.
Red, green, blue, brown, orange, and magenta curves correspond
to a ¼ 0, 0.01, 0.02, 0.03, 0.04, and 0.05, respectively.
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AðzÞ ¼ − logð1þ azÞ. We have analyzed other simpler
forms of AðzÞ as well, and again found similar results. The
results for the spherical and hyperbolic horizons, though
not presented here for brevity, again exhibit similar features
for different AðzÞ forms. In particular, for AðzÞ ¼ −az,
there are again Hawking/Page and small/large black hole
type phase transitions in the spherical case whereas there
are stable hairy black holes, without undergoing any phase
transition, in the hyperbolic case. This shows that though
the form of AðzÞ dictates the overall hairy black hole
solution and thermodynamics, however, qualitatively they
exhibit similar features. Our whole analysis therefore does
indicate the existence of a thermodynamically stable and
well-behaved hairy dyonic black hole solution in asymp-
totically AdS spaces in our model.

V. CONCLUSIONS

In this paper, we have constructed and investigated four-
dimensional hairy dyonic static black holes in AdS space in
the Einstein-Maxwell-scalar gravity theory, where theUð1Þ
gauge field carries both electric and magnetic charges. We
solved the coupled Einstein-Maxwell-scalar equations of
motion analytically and obtained the exact hairy dyonic
black hole solutions with various horizon topologies. This
includes planar, spherical, and hyperbolic horizon topol-
ogies. The analytic gravity solution is expressed in terms of
a function AðzÞ, which allowed us to introduce scalar hair
controlling parameter a. In the limit a → 0, our solution
reduces to the standard nonhairy AdS dyonic solution. We
considered two simple, and yet different, profiles for AðzÞ,
each of which led to qualitatively similar features in the
hairy black hole solution and thermodynamics. For these
profiles, the scalar field is found to be regular everywhere
outside the horizon and goes to zero at the AdS boundary.
Similarly, the Kretschmann scalar is finite everywhere
outside the horizon, indicating the absence of any addi-
tional singularity in the constructed hairy black holes.

We then investigated the thermodynamic properties of
the hairy dyonic black holes in the canonical and grand
canonical ensembles. For this, we first obtained analytic
expressions of various thermodynamic variables. To com-
pute the black hole mass, we employed the AMD and
holographic renormalization methods. We found agreement
between these methods for the planar case, albeit utilizing
the freedom of appropriately choosing the scalar counter-
terms, whereas for the spherical and hyperbolic cases, due
to additional logarithmic divergences in the metric func-
tion, the black hole mass expression could be obtained from
the holographic renormalization method only. We found
that the specific heat is always positive for the planar and
hyperbolic cases, thereby establishing these hairy black
holes local stability in both these ensembles. Moreover, the
hairy black holes are not only thermodynamically stable but
also thermodynamically favored. In particular, the hairy
black holes have lower free energy than the nonhairy black
holes at low temperatures. This interesting behavior is quite
similar to the holographic condensed matter systems, where
a similar phase transition to hairy black holes, correspond-
ing to the condensation of a dual scalar operator in the
boundary theory, typically appears below a certain temper-
ature. We further analyzed the influence of parameters
fa; μe; qe; qMg on the temperature range for which the
hairy black holes are thermodynamically favored and on
the hairy/nonhairy transition temperature. We found that all
these parameters have a constructive effect on the thermo-
dynamic stability of the hairy black hole. Importantly,
thanks to finite qM, the free energy of the uncharged hairy
black hole can be smaller than the uncharged nonhairy
black hole. This is an important improvement on the results
of [137], where the thermodynamically favored hairy black
holes were found only for the charged case. Similarly, for
the spherical horizon, like their nonhairy counterpart, there
occurred Hawking/Page and small/large Van der Waals
type phase transitions. Interestingly, with scalar hair, unlike
their nonhairy counterpart, the small/large black hole phase
transition appeared in the grand-canonical ensemble
as well.
There are many directions in which our work can be

extended. The first and foremost is to construct and
investigate hairy black holes for nonminimal couplings,
such as fðϕÞ ∝ e−ϕ or fðϕÞ ∝ ϕ, between the scalar and
gauge field. These types of nonminimal couplings have
long been considered in the context of, e.g., supergravity
and Kaluza-Klein theory [21,159]. A similar type of
nonminimal coupling has also been used to construct
spontaneous scalarized charged black hole solutions in
recent years [160,161].11 Therefore, it is interesting to
analyze the effect of this nonminimal coupling in our
model. Similarly, it is also important to explicitly establish
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FIG. 36. The Helmholtz free energy F as a function of Hawking
temperature T for various values of a. Here qe ¼ 0.2 and qM ¼ 0
are used. Red, green, blue, brown, orange, and magenta
curves correspond to a ¼ 0, 0.05, 0.10, 0.15, 0.20, and 0.25,
respectively.

11In spontaneous scalarized charged black hole models, gen-
erally the coupling of type fðϕÞ ¼ e−ϕ

2

is considered.
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the first law of thermodynamic like relation for these hairy
black holes. Since the parameter qM corresponds to a
background magnetic field in the dual boundary theory, one
can also use a modified version of our constructed solution
to investigate important anisotropic properties in holo-
graphic QCD in the lines of [162–164]. It would also be
interesting to study the dynamical stability of the hairy
black hole under various perturbations. Work in this
direction is in progress.
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