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We study the Bogomol’nyi-Prasad-Sommerfield solutions of the asymptotically flat, stationary micro-
state geometries with biaxisymmetry and reflection symmetry in the five-dimensional ungauged minimal
supergravity. We show that the angular momenta of the microstate geometry with a small number of centers
(at least, five centers) have lower bounds, which are slightly smaller than those of the maximally spinning
Breckenridge-Myers-Peet-Vafa (BMPV) black hole. Therefore, there exists a certain narrow parameter
region such that the microstate geometry with a small number of the centers admits the same angular
momenta as the BMPV black hole. Moreover, we investigate the dependence of the topological structure of
the evanescent ergosurfaces on the magnetic fluxes through the 2-circles between two centers.
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I. INTRODUCTION

Themicrostate geometries [1–14] are smooth horizonless
solutions in the bosonic sector of supergravity which have
the same asymptotic structure as a given black hole or a black
ring. So far, these solutions have been constructed and
thought of as one of ways to resolve the problem of black
hole information loss. This idea to describe black hole
microstates by horizonless geometries originated from the
works on fuzzballs ofMathur [15–17]. The existence of such
solutions itself should be surprising because of the earlier
results [18–21] on “No-Go” which exclude completely
smooth soliton solutions which are regular in four spacetime
dimensions. In five dimensional supergravity, the conclu-
sion of the no-go theorem can be evaded because the
spacetime admits the spatial cross sections with nontrivial
second homology and the Chern-Simons interactions.
Therefore, despite the absence of horizons, the microstate

geometries should closely approximate the geometries of
black holes and need to describe all phenomenon which
could occur in black hole spacetimes, such as the gravita-
tional lens effect and gravitational wave radiation. However,
the analysis is not still sufficient to say that such microstate
geometries well describes black hole physics. From this
point of view, it is an important issue to probe what extent
asymptotically flat microstate geometries possess the
classical features of stationary black holes with the same

asymptotic structure. There aremanyways to probe physical
aspects of such microstate geometries. A natural and simple
way is to investigate whether these spacetimes can carry the
same asymptotic charges, themass and angular momenta, as
rotating black holes [22–24], rotating black rings [25–28]
and rotating black lenses [29–33] in the same theory. If not
so, such spacetimes cannot be regarded as the description of
these black objects. For instance, as proved mathematically
in [34], there are no asymptotically static microstate geom-
etries in higher dimensional Einstein-Maxwell theory,
which implies that any static black hole cannot be described
by the soliton solutions. In particular, it is well known that
there exist the microstate geometries corresponding to
maximally spinning black holes and maximally spinning
black rings that have zero horizon area, which are referred to
“zero-entropymicrostate geometries” [35].Moreover, using
the merge of such zero-entropy microstate geometries,
Refs. [36,37] constructed the first microstate geometries
with the same charges as black holes and black rings which
have nonzero horizon area. In general, it is, however, not
known how to construct the microstate geometries that
correspond to black holes and black rings with nonzero
horizon areawithout introducing themerger of zero-entropy
microstate geometries.
The main purpose of this paper is to investigate whether

there exist the microstate geometries in five dimension
having the same asymptotic charges (mass and angular
momenta) as the black hole, without using zero-entropy
microstate geometries and by merely imposing a simple
symmetry. In this paper, based on the work developed by
Gauntlett et al. [38] in the framework of the five-dimensional
minimal ungauged supergravity, we consider asymptotically
flat, stationary and biaxisymmetric Bogomol’nyi-Prasad-
Sommerfield (BPS) microstate geometries with n centers
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on the z-axis of the Gibbons-Hawking space. In addition, we
impose reflection symmetry, which means the invariance
under the transformation z → −z, on the solution since such
an assumption dramatically simplifies the constraint equa-
tions for the parameters included in the solutions, a so-called
“bubble equations”, and this enables us to solve the con-
straint equations for the parameters. It can be shown that
under the symmetry assumptions, the geometry has equal
angular momenta. It is of physical interest to compare the
mass and angularmomenta of theBreckenridge-Myers-Peet-
Vafa (BMPV) solution [24] since it describes a spinning
black hole with equal angular momenta in the same theory.
We will show that asymptotically flat, stationary, biaxisym-
metric and reflection-symmetric microstate geometries (at
least, for five centers) can have the same mass and angular
momenta as the BMPV black hole.
The rest of the paper is organized as follows: In the

following Sec. II, we review the BPS solutions of the
microstate geometries in the five-dimensional minimal
supergravity. In Sec. III, we compute the mass, angular
momenta, and magnetic fluxes through the bubbles, and
show the existence of evanescent ergosurfaces. In Sec. IV,
imposing reflection symmetry, we simplify the solution and
the bubble equations and thereafter show numerically that
the microstate geometries have the same angular momen-
tum as the BMPV black hole. In Sec. V, we summarize our
results and discuss possible generalizations of our analysis.

II. MICROSTATE GEOMETRY

A. Solutions

First, we begin with supersymmetric solutions in the
five-dimensional minimal ungauged supergravity [38],
whose bosonic Lagrangian consists of the Einstein-
Maxwell theory with a Chern-Simons term. In this theory,
the metric and the gauge potential of Maxwell field for the
supersymmetric solutions take the form:

ds2 ¼ −f2ðdtþ ωÞ2 þ f−1ds2M; ð1Þ

A ¼
ffiffiffi
3

p

2

�
fðdtþ ωÞ − K

H
ðdψ þ χÞ − ξ

�
: ð2Þ

Here, the four-dimensional metric ds2M is the metric of an
arbitrary hyper-Kähler space, where we use the Gibbons-
Hawking space metric [39] which is written as

ds2M ¼ H−1ðdψ þ χÞ2 þHds2E3 ; ð3Þ

ds2E3 ¼ dx2 þ dy2 þ dz2; ð4Þ

H ¼
Xn
i¼1

hi
ri
; ð5Þ

with

ri ≔ jr − rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 þ ðy − yiÞ2 þ ðz − ziÞ2

q
; ð6Þ

r ≔ ðx; y; zÞ; ð7Þ

ri ≔ ðxi; yi; ziÞ; ð8Þ

The function H in Eq. (5) is a harmonic function with n
point sources (n centers) on three-dimensional Euclid space
E3, and the 1-form χ on E3 is determined by

�dχ ¼ dH; ð9Þ
where the Hodge dual � is associated with E3. χ can be
written as

χ ¼
Xn
i¼1

hiω̃i; ð10Þ

where the 1-form ω̃i on E3, which is defined by

�dω̃i ¼ dð1=riÞ; ð11Þ
can be written as

ω̃i ¼
z − zi
ri

ðx − xiÞdy − ðy − yiÞdx
ðx − xiÞ2 þ ðy − yiÞ2

: ð12Þ

The vectors ∂=∂t and ∂=∂ψ are commuting Killing vector
fields. The Gibbons-Hawking metric (3) is preserved under
the scaling transformation H → λ2H, χ → λ2χ, ψ → λψ
and xi → λ−1xi, which enables us to fix the period of the
coordinate ψ as 0 ≤ ψ < 4π. These Gibbons-Hawking
spaces are nontrivial Uð1Þ fibration over a flat space E3

and the unique class of four-dimensional hyper-Kähler
metric with triholomorphic isometry.
The function f−1 and the 1-forms ðω; ξÞ are given by

f−1 ¼ H−1K2 þ L; ð13Þ

ω ¼ ωψðdψ þ χÞ þ ω̂; ð14Þ

ωψ ¼ H−2K3 þ 3

2
H−1KLþM; ð15Þ

where the functions K, L, and M are harmonic functions
on E3,

K ¼
Xn
i¼1

ki
ri
; ð16Þ

L ¼ l0 þ
Xn
i¼1

li
ri
; ð17Þ

M ¼ m0 þ
Xn
i¼1

mi

ri
; ð18Þ
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The 1-forms ω̂ are ξ are determined by

�dω̂ ¼ HdM −MdH þ 3

2
ðKdL − LdKÞ; ð19Þ

�dξ ¼ −dK; ð20Þ

and take the forms

ω̂ ¼
Xn

i;j¼1ði≠jÞ

�
himj þ

3

2
kilj

�
ω̂ij −

Xn
i¼1

�
m0hi þ

3

2
l0ki

�
ω̃i;

ð21Þ

ξ ¼ −
Xn
i¼1

kiω̃i; ð22Þ

where the 1-form ω̂ij (i ≠ j) on E3, which is determined by

�dω̂ij ¼ ð1=riÞdð1=rjÞ − ð1=rjÞdð1=riÞ; ð23Þ

can be written as

ω̂ij¼−
ðr− riÞ · ðr− rjÞ

rirj

½ðri− rjÞ× ðr− riþrj
2
Þ�kdxk

jðri− rjÞ× ðr− riþrj
2
Þj2 : ð24Þ

In this paper, we set ri ¼ ð0; 0; ziÞ (i ¼ 1;…; n), by
which x∂=∂y − y∂=∂x becomes another Uð1Þ Killing
vector field, and assume zi < zj for i < j (i; j ¼ 1;…; n)
without loss of generality. In terms of standard spheri-
cal coordinates ðr; θ;ϕÞ such that ðx; y; zÞ ¼ ðr sin θ cosϕ;
r sin θ sinϕ; r cos θÞ, the 1-forms ω̃i and ω̂ij are simplified
as

ω̃i ¼
r cos θ − zi

ri
dϕ; ð25Þ

ω̂ij¼
r2− ðziþ zjÞrcosθþ zizj

zjirirj
dϕ; zji ≔ zj− zi; ð26Þ

and so the 1-form ω̂ can be written as

ω̂ ¼
�Xn
i;j¼1

�
himj þ

3

2
kilj

�
r2 − ðzi þ zjÞr cos θ þ zizj

zjirirj

−
Xn
i¼1

�
m0hi þ

3

2
l0ki

�
r cos θ − zi

ri
þ c

�
dϕ; ð27Þ

where we have added the integration constant c since ω̂ is
determined by only the derivatives in Eq. (19).

B. Boundary conditions

As the detail is reviewed in [10,40], in order that the
supersymmetric solution describes the BPS microstate

geometry solution of physical interest, we must impose
suitable boundary conditions (i) at infinity, (ii) at the
Gibbon-Hawking centers r ¼ ri (i ¼ 1;…; n) and (iii) on
the z-axis x ¼ y ¼ 0 of E3 in the Gibbons-Hawking space.
More precisely, we consider the following boundary
conditions:

(i) at infinity r → ∞, the spacetime is asymptotically
Minkowski spacetime.

(ii) at the n centers r ¼ ri (i ¼ 1;…; n) such that each
harmonic function diverges, the spacetime is regular,
and behaves as the coordinate singularities like the
origin of the Minkowski spacetime. The spacetime
admits no causal pathology such as closed timelike
curve (CTCs) around these points.

(iii) on the z-axis I ¼ fðx; y; zÞjx ¼ y ¼ 0g of E3 in the
Gibbons-Hawking space, there appear no Dirac-
Misner strings, no orbifold singularities and no
conical singularities.

1. Infinity

The asymptotic flatness demands that at infinity r → ∞,
the functions (f−1, H), the 1-forms (χ, ω) behave as,
respectively,

f−1 ≃ 1; ð28Þ

H ≃
1

r
; ð29Þ

ω ≃ 0; ð30Þ

χ ≃� cos θdϕ; ð31Þ

which ensure that in terms of the radial coordinate
ρ ¼ 2

ffiffiffi
r

p
, and at r → ∞ (ρ → ∞) the metric is indeed

approximated as

ds2 ≃ −dt2 þ dρ2

þ ρ2

4
½ðdψ þ cos θdϕÞ2 þ dθ2 þ sin2θdϕ2�: ð32Þ

This is the metric of five-dimensional Minkowski space-
time where the metric on S3 is written in terms of Euler
angles ðψ ;ϕ; θÞ, whose ranges must be 0≤θ≤π, 0≤ϕ<2π
and 0 ≤ ψ < 4π with the identification ϕ ∼ ϕþ 2π and
ψ ∼ ψ þ 4π.
At infinity r → ∞, the metric functions f and H behave,

respectively, as

f−1 ≃ l0 þ
��X

i

ki

�
2

þ
X
i

li

��X
i

hi

�
−1
r−1; ð33Þ

H ≃
�X

i

hi

�
r−1: ð34Þ
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Since for r → ∞, the metric function ωψ and the 1-forms
(ω̃i, ω̂ij) behave as, respectively,

ωψ ≃m0 þ
3

2
l0

�X
i

hi

�
−1X

i

ki; ð35Þ

ω̃i ≃ cos θdϕ; ð36Þ

ω̂ij ≃
dϕ
zji

; ð37Þ

the 1-forms χ and ω are approximated by

χ ¼
X
i

hiω̂i ≃
X
i

hi cos θdϕ; ð38Þ

ω ≃
�
m0 þ

3

2
l0
X
i

ki

�
ðdψ þ cos θdϕÞ

−
X
i

�
m0hi þ

3

2
l0ki

�
cos θdϕ

þ
� X

i;jði≠jÞ

himj þ 3
2
kilj

zji
þ c

�
dϕ: ð39Þ

Thus, in comparison with Eqs. (28)–(31) and (33), (34),
(38), (39), the parameters must satisfy the following
constraints

l0 ¼ 1; ð40Þ
Xn
i¼1

hi ¼ 1; ð41Þ

m0 ¼ −
3

2
l0
Xn
i¼1

ki; ð42Þ

c ¼ −
Xn

i;j¼1ði≠jÞ

himj þ 3
2
kilj

zji
: ð43Þ

2. Gibbons-Hawking centers

The metric obviously has divergence at the points r ¼ ri
(n ¼ 1;…; n) on the Gibbons-Hawking space. We hence
impose the boundary conditions at the points r ¼ ri
(n ¼ 1;…; n) so that these become regular points like
the origin of Minkowski spacetime:

ds2≃−dt02

þ
�
dρ2þρ2

4
fðdψ 0 � cosθdϕ0Þ2þdθ2þ sin2θdϕ02g

�
:

ð44Þ
Let us choose the coordinates ðx; y; zÞ on E3 of the

Gibbons-Hawking space so that the ith point r ¼ ri is an

origin of E3. Near the origin r ¼ 0, the four harmonic
functions H, K, L, and M behave as, respectively,

H ≃
hi
r
þ

X
jð≠iÞ

hj
jzjij

; K ≃
ki
r
þ

X
jð≠iÞ

kj
jzjij

; ð45Þ

L≃
li
r
þ 1þ

X
jð≠iÞ

lj
jzjij

; M≃
mi

r
þm0þ

X
jð≠iÞ

mj

jzjij
; ð46Þ

which lead to

f−1 ≃
k2i h

−1
i þ li
r

þ c1ðiÞ; ð47Þ

ωψ ≃
k3i h

−2
i þ 3

2
kilih−1i þmi

r
þ c2ðiÞ; ð48Þ

where the constants c1ðiÞ and c2ðiÞ are defined by

hic1ðiÞ ≔ hil0 þ
Xn

j¼1ðj≠iÞ

2h2i kikj − hik2i hj þ h3i lj
jzijjh2i

¼ hi þ
Xn

j¼1ðj≠iÞ

2kikj − hik2i hj − hihjk2j
jzijj

; ð49Þ

hic2ðiÞ ≔ him0 þ
3

2
kil0

þ
Xn

j¼1ðj≠iÞ

−2k3i hj þ 3hik2i kj þ 3h2i kilj þ 2h3i mj

2jzijjh2i

¼ him0 þ
3

2
ki

þ
Xn

j¼1ðj≠iÞ

−2mihj − 3likj þ 3kilj þ 2himj

2jzijj
; ð50Þ

where we have used h2i ¼ 1 [hi ¼ �1 will be imposed
below. See Eq. (65)] in the second equalities of Eqs. (49)
and (50). The 1-forms ω̃j and ω̂kj are approximated by

ω̃i ≃ cos θdϕ; ω̃j ≃ −
zji
jzjij

dϕ ðj ≠ iÞ; ð51Þ

ω̂ij ≃ −
cos θ
jzjij

dϕ ði ≠ jÞ;

ω̂kj ≃
zjizki

jzjizkijzjk
dϕ ðk ≠ j; k; j ≠ iÞ; ð52Þ

and hence, 1-forms χ and ω̂ behave as

χ ≃ ðhi cos θ þ χ0ðiÞÞdϕ;
ω̂ ≃ ðω̂1ðiÞ cos θ þ ω̂0ðiÞÞdϕ; ð53Þ
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where

χ0ðiÞ ≔ −
X
jð≠iÞ

hjzji
jzjij

; ð54Þ

ω̂0ðiÞ ≔
X

k;jð≠i;k≠jÞ

�
hkmj þ

3

2
kklj

�
zjizki

jzjizkijzjk
þ

X
jð≠iÞ

�
m0hj þ

3

2
kj

�
zji
jzjij

þ c; ð55Þ

ω̂1ðiÞ ≔ −
X
jð≠iÞ

�
himj − hjmi þ

3

2
ðkilj − kjliÞ

�
1

jzjij
−
�
m0hi þ

3

2
ki

�
: ð56Þ

One therefore obtains the asymptotic behavior of the metric around the ith point as

ds2≃−
�
k2i h

−1
i þ li
r

þc1ðiÞ

�
−2
�
dtþ

�
k3i h

−2
i þ 3

2
kilih−1i þmi

r
þc2ðiÞ

�
fdψþðhi cosθþχ0ðiÞÞdϕgþðω̂1ðiÞ cosθþ ω̂0ðiÞÞdϕ

�
2

þ
�
k2i h

−1
i þ li
r

þc1ðiÞ

�
r
hi

�
fdψþðhi cosθþχ0ðiÞÞdϕg2þh2i

�
dr2

r2
þdθ2þ sin2θdϕ2

��
: ð57Þ

To remove the divergence of the metric, it is sufficient to
impose the following conditions on the parameters
ðki; li; miÞ (i ¼ 1;…; n):

k2i þ hili ¼ 0; ð58Þ

k3i h
−2
i þ 3

2
kilih−1i þmi ¼ 0; ð59Þ

which are equivalent to the condition for the parameters
ðli; miÞ,

li ¼ −
k2i
hi

; ð60Þ

mi ¼
k3i
2h2i

; ð61Þ

and these yield the equation

hic2ðiÞ ¼ −ω̂1ðiÞ: ð62Þ

Introducing the new coordinates ðρ;ψ 0;ϕ0Þ by

ρ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h−1i c1ðiÞr

q
; ψ 0 ¼ψþ χ0ðiÞϕ; ϕ0 ¼ϕ; ð63Þ

we can write the metric near r ¼ ri as

ds2≃−c−2
1ðiÞd½tþc2ðiÞψ 0 þω̂0ðiÞϕ0�2

þ
�
dρ2þρ2

4
fðdψ 0 þhicosθdϕ0Þ2þdθ2þsin2θdϕ02g

�
:

ð64Þ

Comparing the ðϕ0;ψ 0Þ-part of the above metric (64) with
the boundary condition (44), we must impose for each hi
(i ¼ 1;…; n)

hi ¼ �1: ð65Þ

To ensure the five-dimensional metric with
Lorentzian signature, the following inequities must be
satisfied

h−1i c1ðiÞ ¼ hiþ
Xn

j¼1ðj≠iÞ

2kikjþ lihjþhilj
jzijj

> 0 ði¼ 1;…;nÞ:

ð66Þ

The above metric (64) is locally isometric to the flat metric,
but CTCs necessarily appear near ρ ≃ 0 because the Killing
vector ∂=∂ψ 0 ¼ ∂=∂ψ becomes timelike. To avoid the
existence of CTCs around ri (i ¼ 1;…; n), c2ðiÞ ¼ 0 and
ω0ðiÞ ¼ 0 must be simultaneously satisfied at r ¼ ri
(i ¼ 1;…; n) but it is sufficient to impose only c2ðiÞ ¼ 0,
which can be written as

0 ¼ hic2ðiÞ

¼ him0 þ
3

2
ki þ

Xn
j¼1ðj≠iÞ

himj −mihj − 3
2
ðlikj − kiljÞ

jzijj

¼ him0 þ
3

2
ki þ

Xn
j¼1ðj≠iÞ

ðhikj − hjkiÞ3
2jzijj

: ð67Þ
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These equations are so-called “bubble equations” in Refs. [9,41], which physically means the balance between the
gravitational attraction and the repulsion by the magnetic fluxes over the 2-cycles. Moreover, let us note that ω̂0ðiÞ ¼ 0

automatically hold for all i ¼ 1;…; n, if we impose (67) since from Eqs. (60) and (61), ω̂0ðiÞ can be shown to vanish,

ω̂0ðiÞ ¼
X

k;jðk;j≠i;k≠jÞ

�
hkmj þ

3

2
kklj

�
zjizki

jzjizkijzjk
þ

X
jð≠iÞ

�
m0hj þ

3

2
kj

�
zji
jzjij

−
X

k;jðj≠kÞ

hkmj þ 3
2
kklj

zjk

¼
X

k;jðk;j≠i;k≠jÞ

ðhkkj − hjkkÞ3
4zjk

zjizki
jzjizkij

þ
X

k;jðj≠i;k≠jÞ

ðhkkj − hjkkÞ3
2jzjkj

zji
jzjij

−
X

k;jðk≠jÞ

ðhkkj − hjkkÞ3
4zjk

¼ 0; ð68Þ

where we have used Eq. (67) for the 2nd term in the right-hand side of the first equality, and the last equality can be shown
by long but simple computations.
Furthermore, the n bubble equations c2ðiÞ ¼ 0 (i ¼ 1;…; n) are not independent because the summation of hic2ðiÞ

(i ¼ 1;…; n) automatically vanishes, regardless of the bubble equations, as

Xn
i¼1

hic2ðiÞ ¼
Xn
i¼1

him0 þ
3

2

Xn
i¼1

ki þ
Xn
i¼1

Xn
j¼1ðj≠iÞ

himj −mihj − 3
2
ðlikj − kiljÞ

jzijj

¼
Xn
i¼1

Xn
j¼1ðj≠iÞ

ðhikj − hjkiÞ3
2jzijj

¼ 0; ð69Þ

where we have used Eqs. (40) and (42) in the second
equality and the antisymmetry for i and j in the last
summation. Thus, the bubble equations hic2ðiÞ ¼ 0

(i ¼ 1;…; n) give (n − 1) independent constraint equations
for the parameters ðki; ziÞ (i ¼ 1;…; n).

3. Axis

The z-axis of E3 (i.e., x ¼ y ¼ 0) in the Gibbons-
Hawking space consists of the (nþ 1) intervals: I− ¼
fðx; y; zÞjx ¼ y ¼ 0; z < z1g, Ii ¼ fðx; y; zÞjx¼ y¼ 0;
zi < z < ziþ1g (i¼1;…;n−1) and Iþ¼fðx;y;zÞjx¼y¼0;

z>zng. On the z-axis, the 1-forms ω̂ij and ω̃i are,
respectively, simplified to

ω̂ij ¼
ðz − ziÞðz − zjÞ
zjijz − zijjz − zjj

dϕ; ω̃i ¼
z − zi
jz − zij

dϕ: ð70Þ

In particular, on I�, ω̂ij and ω̃i become, respectively,

ω̂ij ¼
1

zji
dϕ; ω̃i ¼ �dϕ: ð71Þ

Hence, on I�, ω̂ ¼ ω̂ϕdϕ vanishes since

ω̂ ¼
X

k;jðk≠jÞ

�
hkmj þ

3

2
kklj

�
ω̂kj −

X
j

�
m0hj þ

3

2
kj

�
ω̂j þ cdϕ

¼
X

k;jðk≠jÞ

�
hkmj þ

3

2
kklj

�
dϕ
zjk

∓ X
j

�
m0hj þ

3

2
kj

�
dϕ −

X
k;jðk≠jÞ

�
hkmj þ

3

2
kklj

�
dϕ
zjk

¼ ∓X
j

�
m0hj þ

3

2
kj

�
dϕ

¼ ∓
�
m0 þ

3

2

X
j

kj

�
dϕ

¼ 0; ð72Þ
where we have used Eq. (42) in the last equality.
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On z ∈ Ii (i ¼ 1;…; n − 1), the 1-forms ω̂ij and ω̂j are
written as

ω̂kj ¼
zikzij

zjkjzikzijj
dϕ ðk; j ≠ iÞ;

ω̂ij ¼ −
1

jzijj
dϕ ðj ≠ iÞ ð73Þ

ω̃j ¼
zij
jzijj

dϕ ðj ≠ iÞ; ω̃i ¼ dϕ; ð74Þ

and therefore,

ω̂ϕ − ω̂0ðiÞ ¼ −
X
jðj≠iÞ

himj − hjmi þ 3
2
ðkilj − kjliÞ

zji

−
�
m0hi þ

3

2
ki

�

¼ hic2ðiÞ ¼ 0; ð75Þ

where we have used Eq. (67) and (68). Thus, we can show
that ω̂ ¼ 0 also holds on Ii for i ¼ 1;…; n − 1. We there-
fore conclude that ω̂ ¼ 0 holds at each interval I� and
Iiði ¼ 1;…; n − 1Þ. This means that there are no Dirac-
Misner strings in the spacetime, which can be obtained as
the result of the bubble equations (67) (see [10,41]).

Next, we show the absence of orbifold singularities. On
the intervals I�, the 1-form χ becomes

χ ¼ �dϕ; ð76Þ

and on the intervals Ii (i ¼ 1;…; n − 1), it takes the
form

χ ¼
�Xi

j¼1

hj
z − zj
jz − zjj

þ
Xn
j¼iþ1

hj
z − zj
jz − zjj

�
dϕ

¼
�Xi

j¼1

hj −
Xn
j¼iþ1

hj

�
dϕ: ð77Þ

The two-dimensional ðϕ;ψÞ-part of the metric on the
intervals I� and Ii can be written in the form

ds22 ¼ ð−f2ω2
ψ þ f−1H−1Þðdψ þ χϕdϕÞ2: ð78Þ

Here let us use the coordinate basis vectors ð∂ϕ1
; ∂ϕ2

Þ with
2π periodicity, instead of ð∂ϕ; ∂ψ Þ, where the coordinates
ϕ1 and ϕ2 are defined by ϕ1 ≔ ðψ þ ϕÞ=2 and
ϕ2 ≔ ðψ − ϕÞ=2. It can be shown from (78) that the
Killing vector v ≔ ∂ϕ − χϕ∂ψ vanishes on each interval.
Indeed we can show

(1) on the interval I−, the Killing vector v− ≔ ∂ϕ þ ∂ψ ¼ ∂ϕ1
vanishes,

(2) on each interval Ii (i ¼ 1;…; n − 1), the Killing vector

vi ≔ ∂ϕ − χϕjIi∂ψ ¼ 1 − χϕjIi
2

∂ϕ1
−
1þ χϕjIi

2
∂ϕ2

¼ 1

2

�
1 −

Xi

j¼1

hj þ
Xn
j¼iþ1

hj

�
∂ϕ1

−
1

2

�
1þ

Xi

j¼1

hj −
Xn
j¼iþ1

hj

�
∂ϕ2

¼
� Xn

j¼iþ1

hj

�
∂ϕ1

−
�Xi

j¼1

hj

�
∂ϕ2

ð79Þ

vanishes, where we have used
P

i hj ¼ 1 in the last equation.
(3) on the interval Iþ, the Killing vector vþ ≔ ∂ϕ − ∂ψ ¼ −∂ϕ2

vanishes.
From these, we can observe that the Killing vectors v�; vi on the intervals satisfy with

detðvT−; vT1 Þ ¼ h1; detðvTn−1; vTþÞ ¼ −hn; ð80Þ
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detðvTi−1; vTi Þ ¼ −
�Xn

j¼i

hj

��Xi

j¼1

hj

�
þ
� Xn

j¼iþ1

hj

��Xi−1
j¼1

hj

�

¼ −
�Xn

j¼i

hj

��Xi

j¼1

hj

�
þ
�Xn

j¼i

hj − hi

��Xi

j¼1

hj − hi

�

¼ h2i −
�Xn

j¼i

hj þ
Xi

j¼1

hj

�
hi

¼ h2i −
�Xn

j¼i

hj þ hi

�
hi

¼ −
�Xn

j¼i

hj

�
hi

¼ −hi: ð81Þ

Therefore, it turns out that jdetðvT−;vT1 Þj¼jdetðvTn−1;vTþÞj¼
jdetðvTi−1;vTi Þj¼1 hold, which means that there exist no
orbifold singularities at adjacent intervals, as proved in
Ref. [42].

C. Gauge freedom

As discussed in Ref. [43], the supersymmetric solutions
have a gauge freedom, which means that for the linear
transformation for the harmonic functions H, K, L, andM,

K → K þ λ̄H; L → L − 2λ̄K − λ̄2H;

M → M −
3

2
λ̄Lþ 3

2
λ̄2K þ 1

2
λ̄3H; ð82Þ

the metric and Maxwell field are invariant, where λ̄ is a
constant. Indeed, it is easy to show that under the trans-
formation (82), ðf;ωψ ; χ) remain invariant, and the 1-form
ξ changes as ξ → ξ − λ̄χ, which merely corresponds to the
gauge shift of A, A → Aþ λ̄dψ . Using this gauge trans-
formation and the appropriate choice of λ̄, one can set

km ¼ 0; ð83Þ

for a certain m (m ¼ 1;…; n) because the coefficient of
1=rm in K changes km → km þ λ̄hm. Moreover, using the
shift symmetry of z → zþ const, one can set

zm ¼ 0 ð84Þ

for a certain m (m ¼ 1;…; n).

D. Parameter counting

The solution (1) and (2) includes the 4nþ 3 continuous
parameters ðki; l0; li; m0; mi; zi; cÞ and the n discrete
parameters hi ¼ �1 (i ¼ 1;…n). The conditions (40),

(42), (43) (60), (61), (67) and the gauge conditions (83),
(84) reduce the number of independent continuous param-
eters from 4nþ 3 to n − 1, where the bubble equations (67)
give not n but rather (n − 1) independent equations due to
the constraint equation (69), and the condition (41) reduces
the number of independent discrete parameters from n to
n − 1. Moreover, these parameters must be subject to the n
inequalities (66).
It follows from the constraint equation (41) and the

conditions (65) that the number n of centers r ¼ ri must be
odd, and so in Sec. IV, we consider three centers and five
centers as the simplest nontrivial examples of the micro-
state geometries (the case n ¼ 1 corresponds to Minkowski
spacetime).

III. PHYSICAL PROPERTIES

Under the appropriate boundary conditions mentioned in
the previous section, let us investigate some physical
properties of the solutions.

A. Conserved quantities

To begin with, we consider conserved quantities of the
microstate geometries. From the boundary conditions at
infinity (40)–(43), the ADM mass and two ADM angular
momenta can be computed as

M ¼
ffiffiffi
3

p

2
Q ¼ 3π

��X
i

ki

�
2
�X

i

hi

�
−1

þ
X
i

li

�
; ð85Þ

Jψ ¼ π

��X
i

ki

�
3

þ
X
i

mi

þ 3

2

�X
i

hi

�
−1
�X

i

ki

��X
i

li

��
; ð86Þ
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Jϕ¼
3π

2

�X
i

hi

�
−1
�
−
�X

i

ki

��X
i

hizi

�
þ
�X

i

kizi

��
;

ð87Þ

where Q is the electric charge, which saturates the BPS
bound [44].
Each interval Ii (i ¼ 1;…; n − 1), which is introduced in

Sec. II B 3, denotes the bubble which is topologically a
two-dimensional sphere since the ψ-fiber of the Gibbons-
Hawking space (3) collapses to zero at the centers z ¼ zi
and z ¼ ziþ1, and so along the interval, the fiber sweeps out
two-dimensional sphere. Since the Maxwell gauge field Aμ

is obviously smooth on the bubbles, the magnetic fluxes
through Ii (i ¼ 1;…; n − 1) can be defined as

q½Ii� ≔
1

4π

Z
Ii

F; ð88Þ

which are computed as

q½Ii� ¼ ½−Aψ �z¼ziþ1
z¼zi

¼
ffiffiffi
3

p

2

�
ki
hi

−
kiþ1

hiþ1

�
ði ¼ 1;…; n − 1Þ: ð89Þ

B. Evanescent ergosurface

The existence of ergoregions gives rise to strong insta-
bility due to a superradiant-triggered mechanism in spite of
the existence of the horizon [45,46]. It was demonstrated
that a certain class of nonsupersymmetric microstate
geometries with ergoregion in type IIB supergravity are
unstable, which is a general feature of horizonless geom-
etries with ergoregion [47]. The BPS microstate geometries
does not admit the presence of ergoregions but evanescent

ergosurfaces [10,48], which are defined as timelike
hypersurfaces such that a stationary Killing vector field
becomes null there and timelike everywhere except there.
Reference [49] proved that on such surfaces, massless
particles with zero energy (E ¼ 0) relative to infinity move
along stable trapped null geodesics. Since this stably
trapping leads to a classical non-linear instability of the
spacetime [45,49,50], it is of physical importance to
investigate the existence of evanescent ergosurfaces, which
exist at f ¼ 0 which corresponds to

H ¼
Xn
i¼1

hi
ri

¼ 0: ð90Þ

For simplicity, let us consider the microstate geometries
with reflection symmetry zm ¼ −zn−mþ1 and km ¼ kn−mþ1

(m ¼ 1;…n). For the microstate geometries with three
centers (n ¼ 3) and ðh1; h2; h3Þ ¼ ð1;−1; 1Þ, they intersect
the z-axis at the points

F3ðzÞ ≔ jzjjz − z3j − jz − z1jjz − z3j þ jzjjz − z1j
¼ 0: ð91Þ

It turns out from simple computations that F3ðzÞ ¼ 0 has
no root on I� and a single root Ii (i ¼ 1, 2). As seen Fig. 1,
the evanescent ergosurfaces on the timeslice t ¼ const is
the closed surface surrounding the center r2 ¼ ð0; 0; 0Þ,
where we have introduced the radial coordinate by ρ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

For the microstate geometry with five centers (n ¼ 5)
and ðh1; h2; h3; h4; h5Þ ¼ ð1;−1; 1;−1; 1Þ, they intersect
the z-axis at the points z satisfying F5ðzÞ ¼ 0, where
F5ðzÞ is written as

F5ðzÞ ≔ jzþ z2jjzjjz − z2jjz − z1j − jzþ z1jjzjjz − z2jjz − z1j þ jzþ z1jjzþ z2jjz − z2jjz − z1j
− jzþ z1jjzþ z2jjzjjz − z1j þ jzþ z1jjzþ z2jjzjjz − z2j: ð92Þ

The roots of the equation F5ðzÞ ¼ 0 are determined by the
ratio k2=k1 through the bubble equations (67). As seen in
Fig. 2, for the small ratio 0 < k2=k1 ≪ 1, the intervals
z21ðz54Þ of I1 (I4) are much larger the intervals z32ðz43Þ of
I2 (I3), whereas for the comparable ratio 1≲ k2=k1 ≲ 2, the
intervals z21ðz54Þ also become comparable with z32ðz43Þ.
This reason can be physically interpreted as the result that
the magnetic fluxes need to support the bubbles. More
precisely, this is caused by the force balance between a
gravitational force that tend to contract the bubbles and a
repulsive force by the magnetic fluxes that tend to expand
the bubbles. For k2=k1 ≪ 1, the magnetic flux through

I1 (I4) is much larger than one through I2 (I3)
[jq½I1�j ≫ jq½I2�jðjq½I4�j ≫ jq½I3�jÞ], and so the size of
the bubble on I1 (I4) is larger than I2 (I3), whereas for
k2=k1 ≃ 2, two magnetic fluxes are comparable [jq½I1�j≃
jq½I2�jðjq½I4�j ≃ jq½I3�jÞ], and hence the size of the bubbles
also becomes comparable. For k2=k1 ≪ 1, the evanescent
ergosurface exists as a common surface surrounding three
centers r ¼ ri ¼ ð0; 0; ziÞ (i ¼ 2, 3, 4), for k2=k1 ≃ 1,
another ergosurface appears as the surface surrounding
the center r ¼ r3 ¼ ð0; 0; z3Þ, whereas for k2=k1 ≃ 2, two
ergosurfaces combine into one, and thereafter separates into
two parts.
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IV. MICROSTATE GEOMETRIES WITH
REFLECTION SYMMETRY

In Sec. II, we have considered the stationary and
biaxisymmetric microstate geometries with n centers on
the z-axis of the Gibbons-Hawking space which satisfy the
bubble equations (67). The nasty constraint equations (for
the parameters included in the solutions) make it difficult
for us to understand the physical properties. In this section,
in addition to such symmetry assumptions, we impose a
further reflection symmetry on the solutions:

zm ¼ −zn−mþ1; km ¼ kn−mþ1 ðm ¼ 1;…nÞ; ð93Þ

which means the invariance of the solutions under the
transformation z → −z. This additional assumption
extremely simplifies the bubble equations so that one
can solve them and express zi (1;…; n) in terms of ki
(i ¼ 1;…; n), at least, for small n. In particular, it is easy to
show from Eq. (87) that the angular momentum Jϕ always
vanishes under the additional symmetry assumption. In this

FIG. 1. Evanescent ergosurface in the microstate geometry for
n ¼ 3 in the ðρ; zÞ-plane: The black points corresponds to three
centers that are located at r1, r2 and r3 on the z-axis, and the red
curve denotes an evanescent ergosurface, which surrounds a
center at r2 ¼ ð0; 0Þ but does not other two centers r1 ¼ ð0;−2Þ
and r3 ¼ ð0; 2Þ.

FIG. 2. Evanescent ergosurfaces in the microstate geometry with five centers in the ðρ; zÞ-plane for k3 ¼ 0, k4 ¼ k2, k5 ¼ k1, z3 ¼ 0,
z4 ¼ −z2, z5 ¼ −z1: The upper and lower figures correspond to the ratios k2=k1 ¼ 0.1, 0.6, 0.9, and k2=k1 ¼ 1.1, 1.9, 2.0, respectively,
from left to right. The black points correspond to the five centers that are located at ri (i ¼ 1;…; 5) on the z-axis, and the red curves
denote the evanescent ergosurfaces, whose shapes depend on k1 and k2.
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section, for simplicity, let us consider only two cases of
n ¼ 3 and n ¼ 5.

A. Three-center solution

First, let us consider the solution with three centers
(n ¼ 3) and ðh1; h2; h3Þ ¼ ð1;−1; 1Þ that describes the
simplest asymptotically flat, stationary, and biaxisymmetric
microstate geometry, which has the four parameters
ðk1; k3; z1; z3Þ, where we have set k2 ¼ 0 and z2 ¼ 0 from
the two gauge conditions (83) and (84). Moreover, under
the assumption of the reflection symmetry

z3 ¼ −z1≕ a ð>0Þ; k3 ¼ k1; ð94Þ

the bubble equations (67) are simply written as

c2ð1Þ ¼ −
1

2
c2ð2Þ ¼ c2ð3Þ ¼

k1½k21 − 3a�
2a

¼ 0; ð95Þ

which imply

k1 ¼ 0; ð96Þ

a ¼ k21
3
: ð97Þ

It is obvious that in the former case hic1ðiÞ ¼ 0 (i ¼ 1, 2, 3),
and so the inequalities (66) cannot be satisfied. In the
meanwhile, in the latter case, the inequalities (66) can be
automatically satisfied because hic1ðiÞ (i ¼ 1, 2, 3) can be
directly computed as

h1c1ð1Þ ¼ h3c1ð3Þ ¼ 4; h2c1ð2Þ ¼ 5: ð98Þ

Therefore, for arbitrary nonzero k1, this describes a regular
and causal solution of an asymptotically flat, stationary
microstate geometry with the biaxisymmetry and reflection
symmetry. This solution was previously analyzed in
Ref. [10].
The z-axis of E3 in the Gibbons-Hawking space consists

of the four intervals: I− ¼ fðx; y; zÞjx ¼ y ¼ 0; z < z1g,
Ii ¼ fðx; y; zÞjx ¼ y ¼ 0; zi < z < ziþ1g (i ¼ 1, 2) and
Iþ ¼ fðx; y; zÞjx ¼ y ¼ 0; z > z3g. From the result in
Sec. II B 3, one can see
(1) on I−, the Killing vector v− ¼ ∂ϕ1

vanishes,
(2) on I1, the Killing vector v1 ¼ ðP3

j¼2 hjÞ∂ϕ1
−

h1∂ϕ2
¼ −∂ϕ2

vanishes,
(3) on I2, the Killing vector v2 ¼ h3∂ϕ1

−
ðP2

j¼1 hjÞ∂ϕ2
¼ ∂ϕ1

vanishes, and
(4) on Iþ, the Killing vector vþ ¼ −∂ϕ2

vanishes.
Thus the rod structure of this three-center microstate
geometry is displayed in Fig. 3.
Under the symmetric conditions (94) and gauge con-

ditions k2 ¼ 0, z2 ¼ 0, the ADM mass and two ADM
angular momenta in Eqs. (85)–(87) are reduced to

M ¼
ffiffiffi
3

p

2
Q ¼ 6πk21; ð99Þ

Jψ ¼ 3πk31; ð100Þ

Jϕ ¼ 0; ð101Þ

and the magnetic fluxes in Eq. (89) are written as

q½I1� ¼ −q½I2� ¼
ffiffiffi
3

p

2
k1: ð102Þ

B. Five-center solution

Next, let us consider the stationary, biaxisymmetric
microstate geometry with five centers (n ¼ 5), which has
the four parameters ðk1; k2; z1; z2Þ under the reflection-
symmetric conditions

k5 ¼ k1; k4 ¼ k2;

z5 ¼ −z1≕ aþ b; z4 ¼ −z2≕ b ð103Þ

and the gauge conditions k3 ¼ 0, z3 ¼ 0. Here, let us
notice that for the five-center solutions, there are two
possible types of reflection-symmetric solutions, one
with ðh1; h2; h3; h4; h5Þ ¼ ð1;−1; 1;−1; 1Þ and one with
ðh1; h2; h3; h4; h5Þ ¼ ð−1; 1; 1; 1;−1Þ, but the latter
numerically seems not to satisfy the conditions (66).
Thus, we here concentrate on only the former, in which
case the conditions (67) are simplified to give

2h1c2ð1Þ ¼ 2h5c2ð5Þ

¼ −3ðk1 þ 2k2Þ−
k31

aþ b
þ ðk1 þ k2Þ3

a
þ ðk1 þ k2Þ3

aþ 2b

¼ 0; ð104Þ

2h2c2ð2Þ ¼ 2h4c2ð4Þ

¼ 3ð2k1 þ 3k2Þ −
k32
b
−
ðk1 þ k2Þ3

a
−
ðk1 þ k2Þ3
aþ 2b

¼ 0; ð105Þ

h3c2ð3Þ ¼ −3ðk1 þ k2Þ þ
k31

aþ b
þ k32

b
¼ 0; ð106Þ

where we note that Eqs. (104)–(106) are not indepen-
dent due to the constraint equation

P
5
i¼1 hic2ð1Þ ¼

2h1c2ð1Þ þ 2h2c2ð2Þ þ h3c2ð3Þ ¼ 0. Therefore, this solution

FIG. 3. Rod structure for the microstate geometry with three
centers and ðh1; h2; h3Þ ¼ ð1;−1; 1Þ.

LOWER BOUND FOR ANGULAR MOMENTA OF MICROSTATE … PHYS. REV. D 104, 084022 (2021)

084022-11



has only two independent parameters. If we regard a and b
as the functions of k1 and k2 from Eqs. (104), (106), this
solution is a two-parameter family for ðk1; k2Þ.
Furthermore, the parameters k1 and k2 must satisfy the

inequalities (66), which are reduced to

h1c1ð1Þ ¼ h5c1ð5Þ

¼ 1−
k21

aþb
þðk1þk2Þ2

a
þðk1þk2Þ2

aþ2b
> 0; ð107Þ

h2c1ð2Þ ¼ h4c1ð4Þ

¼ −1þ k22
b
þ ðk1 þ k2Þ2

a
þ ðk1 þ k2Þ2

aþ 2b
> 0; ð108Þ

h3c1ð3Þ ¼ 1 −
2k21
aþ b

þ 2k22
b

> 0; ð109Þ

together with the inequalities

a > 0; b > 0: ð110Þ

In the below, we assume k1 ≠ 0 and k2 ≠ 0 because from
Eqs. (104) and (106), the case k1 ¼ 0 leads to

ða; bÞ ¼
�
−1� ffiffiffi

5
p

6
k22;

1

3
k22

�
; ð111Þ

where only the solution with the positive sign can satisfy
(107)–(110) and has j2 ¼ 25=24, and from Eqs. (104)–
(106), the case k2 ¼ 0 yields ða; bÞ ¼ ðk21=3; 0Þ, which
cannot satisfy one of the inequalities (110). In what
follows, we remove both cases of k1 ¼ 0 and k2 ¼ 0.
As shown in Fig. 4, these inequalities are equivalent with

k2=k1<−1; −0.2063…<k2=k1< 0; k2=k1> 0: ð112Þ

The z-axis of E3 in the Gibbons-Hawking space consists
of the six intervals: I− ¼ fðx; y; zÞjx ¼ y ¼ 0; z < z1g,
Ii ¼ fðx; y; zÞjx ¼ y ¼ 0; zi < z < ziþ1gði ¼ 1;…; 4Þ and
Iþ ¼ fðx; y; zÞjx ¼ y ¼ 0; z > z5g. Applying the result in
Sec. II B 3 to this solution, one can see
(1) on I−, the Killing vector v− ¼ ∂ϕ1

vanishes,
(2) on I1, the Killing vector v1 ¼ ðP5

j¼2 hjÞ∂ϕ1
−

h1∂ϕ2
¼ −∂ϕ2

vanishes,
(3) on I2, the Killing vector v2 ¼ ðP5

j¼3 hjÞ∂ϕ1
−

ðP2
j¼1 hjÞ∂ϕ2

¼ ∂ϕ1
vanishes,

(4) on I3, the Killing vector v3 ¼ ðP5
j¼4 hjÞ∂ϕ1

−
ðP3

j¼1 hjÞ∂ϕ2
¼ −∂ϕ2

vanishes,
(5) on I4, the Killing vector v4 ¼ h5∂ϕ1

−
ðP4

j¼1 hjÞ∂ϕ2
¼ ∂ϕ1

vanishes, and
(6) on Iþ, the Killing vector vþ ¼ −∂ϕ2

vanishes,
Thus, it turns out that this five-center microstate geometry
has the rod structure displayed in Fig. 5.

For this solution, the ADM mass and two ADM angular
momenta in Eqs. (85)–(87) are reduced to

M ¼
ffiffiffi
3

p

2
Q ¼ 6πðk21 þ 4k1k2 þ 3k22Þ; ð113Þ

Jψ ¼ 3πðk31 þ 6k21k2 þ 10k1k22 þ 5k32Þ; ð114Þ

Jϕ ¼ 0; ð115Þ

and the magnetic fluxes in Eq. (89) are written as

q½I1� ¼ −q½I4� ¼
ffiffiffi
3

p

2
ðk1 þ k2Þ;

q½I2� ¼ −q½I3� ¼ −
ffiffiffi
3

p

2
k2: ð116Þ

C. Comparison with BMPV black hole

Finally, we compare the BPS microstate geometries for
n ¼ 3 and n ¼ 5 described in the previous section with the
rotating BPS black hole in the five-dimensional minimal

FIG. 4. The plots of Aihic1ðiÞ=jhic1ðiÞj ½i ¼ 1; 2; 3;
ðA1; A2; A3Þ ¼ ð0.25; 0.5; 0.75Þ� for the microstate geometry with
five centers and ðh1; h2; h3; h4; h5Þ ¼ ð1;−1; 1;−1; 1Þ, where we
set k1 ¼ 1. The inequalities (107)–(110) are simultaneously
satisfied in the range k2=k1 < −1;−0.2063… < k2=k1 < 0;
k2=k1 > 0, where all graphs are positive. In particular, in the
range −0.2063… < k2=k1 < 0, the solution to Eqs. (104)–(106)
has the two branches which have the same nonzero pair of
ðk1; k2Þ but two different positive pairs of ða; bÞ. One of two
branches cannot satisfy the inequality (107).

FIG. 5. Rod structure for the microstate geometry with five
centers and ðh1; h2; h3; h4; h5Þ ¼ ð1;−1; 1;−1; 1Þ.
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supergravity, i.e., the BMPV black hole [24], which carries
mass (saturated the BPS bound) and equal angular
momenta (Jϕ ¼ 0). For this purpose, let us define a
dimensionless angular momentum by

j ≔
3

ffiffiffiffiffiffi
3π

p jJψ j
M3=2 : ð117Þ

For the BMPV black hole, the dimensionless angular
momentum j has the range of

0 ≤ j < 1; ð118Þ

where j ¼ 0 corresponds to the extremal Reissner-
Nordstrom black hole. The absence of CTCs around the
horizon requires the upper bound, j ¼ 1.
It is shown from Eqs. (99) and (100) that for n ¼ 3, the

squared angular momentum j2 takes only the value of

j2 ¼ 9

8
ð>1Þ; ð119Þ

which is a larger value than the upper bound for the BMPV
black hole.
Similarly, for n ¼ 5, we evaluate the value of the squared

angular momentum j2 from Eqs. (113) and (114), where the
ratio k2=k1 lies in the range (112). As seen in Fig. 6, The
squared angular momentum j2 asymptotically approaches
25=24 at k2=k1 → −∞. For k2=k1 < −1, j2 monotonically
increases and diverges at k2=k1 → −1, whereas for
k2=k1 > −1, it has the lower bound 0.841… at
k2=k1 → −0.206…, where Eqs. (104)–(106) cannot be
satisfied. Thereafter, it increases and approaches 9=8 at
k2=k1 → 0, for k2=k1 > 0 monotonically decreases and
asymptotically approaches 25=24 at k2=k1 → ∞. Thus,
because the squared angular momentum does not have an
upper bound but have the lower bound j2 ¼ 0.841…, we
find that it must run the range

j2 > 0.841…: ð120Þ

From this analysis, we can conclude that the biaxisym-
metric and reflection-symmetric microstate geometry with
five centers can have the angular momentum of the range
0.841… < j2 < 1 as the BMPV black hole, while the
microstate geometry with three centers cannot have.

V. SUMMARY AND DISCUSSIONS

In this paper, we have analyzed the solutions of the
asymptotically flat, stationary, BPS microstate geometries
with biaxisymmetry in the five-dimensional minimal super-
gravity. Moreover, we have imposed additional reflection
symmetry since this symmetry assumption extremely sim-
plifies the expression of the solutions and enables us to solve
the bubble equations. We have also computed the conserved
charges, the ADM mass, two ADM angular momenta, and
(n − 1) magnetic fluxes through the bubbles between two
centers. In particular, we have compared the mass and
angular momenta for the three-center solution and the five-
center solution of microstate geometries with those of the
BMPV black hole. We have shown that the dimensionless
angular momentum of the five-center microstate geometry
does not have the upper bound but has the lower bound
which is smaller than the angular momentum for the
maximally spinning BMPV black hole, and hence there
are the parameter region such that the microstate geometry
has the same angular momentum as the BMPV black hole.
In our present analysis, we have restricted ourselves to

the reflection-symmetric microstate geometries for n ¼ 3
and n ¼ 5, but it is not trivial whether there exist the
reflection-symmetric solutions with a larger number of
centers (n ¼ 7; 9;…) which admit the same mass and
angular momentum as the BMPV black hole or the
microstate geometries for n ¼ 3, 5. The biaxisymmetric
and reflection-symmetric microstate geometry with n
centers seems to have ðnþ 3Þ=2 independent physical

FIG. 6. The range of j2 for the asymptotically flat, stationary, biaxisymemtric and reflection-symmemtic microstate geometry with five
centers (n ¼ 5). The left figure shows the plots of j2, and the right figure the close-up region of −0.206…: < k2=k1 < 0 in the left figure.
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charges or fluxes [the mass M, the angular momentum Jψ
or the ðn − 1Þ=2magnetic fluxes q½Ii� (i¼1;…;ðn−1Þ=2)],
among which only ðn − 1Þ=2 are independent since the
number of the parameters reduces to half due to reflection
symmetry. The analysis for such microstate geometries
with n ≥ 7 deserves future works. Moreover, it may be
interesting to compare the five-center solution dealt with in
this paper with the spherical black holes having a topo-
logically nontrivial domain of outer communication in
Refs. [51,52], which can have not only same asymptotic
charges as the BMPV black hole but also different ones.
The solution without the reflection symmetry should be
compared with the supersymmetric black ring [27] and
supersymmetric black lenses [29,31,32] which does not
admit the limit to equal angular momenta. This may be an
interest issue as our future study. Finally, we comment that
the solutions of the five-dimensional minimal supergravity
can be uplifted to the solutions of both type IIB super-
gravity and eleven supergravity [53,54], and as discussed in

Ref. [55], such solutions are relevant for the most general
four-dimensional superconformal field theories (SCFTs)
with holographic duals. This enables one to study some
aspects of the dual strongly coupled thermal plasma with a
nonzero R-charge chemical potential. Therefore, it might
be physically interesting to study the fluid-dynamics of the
thermal plasma of the SCFTs corresponding to the micro-
state geometries.
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