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Following a recent approach, complete and analytic solutions (brane and bulk) of regular black holes are
shown in a brane context. The metrics are regular both on the four-dimensional brane and in the five-
dimensional bulk. Like many braneworld scenarios, the bulk spacetime is asymptotically anti–de Sitter. On
the other hand, a de Sitter core on the brane avoids the singularity inside the event horizon, providing then
well-known regular black holes on the brane. From the bulk perspective, the regular black holes are five-
dimensional objects, with the event horizon extending to the extra dimension, but the de Sitter core is
entirely on the four-dimensional brane.
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I. INTRODUCTION

The Randall-Sundrum model I [1] was conceived of as
an attempt to solve the hierarchy problem in particle
physics by using a finite extra dimension and two branes
(in which our universe is a brane) embedded into a five-
dimensional spacetime. On the other hand, the Randall-
Sundrum II [2] adopts just one brane, with an infinite
extra dimension and a warped factor in the bulk or five-
dimensional spacetime that, in the second model version,
confines gravity close to our universe. Since then such
models were studied in other contexts like gravitation and
cosmology.1 The existence of either a finite or an infinite
extra dimension in a context in which our four-dimensional
world, a brane, is embedded into a five-dimensional bulk
creates new phenomena and has gained attention of many
researchers in the last decades.
In gravitation, after the so-called black string from

Hawking et al. [5], a large amount of articles exploring
the Randall-Sundrum models and the gravitational phe-
nomenon in that context discusses black holes and worm-
holes. We can divide the area into two approaches: from the
brane or from the bulk. In the first one, black hole and
wormhole geometries are built from the four-dimensional
brane, and equations in the five-dimensional bulk are
ignored [6–15]. The second one builds spacetimes from

the bulk and tries to find out the brane equations [16]. The
approach adopted here is the second one.
In a recent work, Nakas and Kanti [17] presented an

approach in which the geometry in the bulk is analytically
obtained, and then the brane spacetime metric (a known
solution in general relativity) and the energy-momentum
tensor (an effective tensor, for example) are fully calculated
in a Randall-Sundrum II-type model. The main accom-
plishment of the Nakas-Kanti approach—from bulk to the
brane—is to obtain a well-known black hole solution on the
brane, like the Schwarzschild geometry Ref. [17]. This will
be the approach adopted here. But instead of a black hole
with a constant mass like the Nakas and Kanti five-
dimensional black holes [17,18], I use a mass function
in order to generate a regular black hole (RBH) or a class of
RBHs. Contrary to the black string, which is singular in the
bulk, or the recent geometries of Nakas and Kanti [17,18],
which are regular in the bulk but they are singular on the
brane, the geometry (or geometries) presented here is
regular in both spacetimes. In particular, the study of the
model on the brane will be feasible due to the induced
gravitational field equations proposed by Shiromizu,
Maeda and Sasaki [19]. The induced field equations
provide an effective energy-momentum tensor on the brane.
As we will see, the brane spacetime is a vacuum spacetime,
and the origin of the RBH on the brane is due to the bulk
influence on the brane.
Like the Nakas and Kanti geometry [17], the RBH

presented here is a five-dimensional black hole, that is to
say, its event horizon extends to the five-dimensional bulk.
Moreover, in order to support a RBH, there is a de Sitter
core inside the event horizon, just on the brane spacetime,
responsible for avoiding the singularity issue. A de Sitter
core is, for many RBH solutions, the main feature of such
objects [20–25].
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RBHs have been studied since the pioneer work of
Bardeen [20]. This class of black holes, like a good black
hole, presents horizons (an inner and an outer horizon) and
precludes the central singularity. As I said, a de Sitter core
avoids the singularity, then the spacetime of RBHs is entirely
regular. The reason for that is some violation of energy
conditions inside such objects. With energy conditions
banned, the singularity theorems are not valid anymore.2

Thus the existence of a singularity inside a RBH is not a
necessary consequence from a mathematical theorem.
The bibliography on RBHs has increased in the last years.

Whether in the general relativity context [20–25,27–36] or in
other contexts [37–39], RBHs have been studied. Even in
the brane world context, there are articles that calculate
and explore spacetime metrics of RBHs [8,15]. Here, the
spacetime geometry is obtained both in the bulk and on
the brane. Contrary to previous articles, the complete and
analytic solution is then presented, corresponding to
known four-dimensional geometries on the brane, like the
Bardeen RBH.
This article is structured as follows: in Sec. II one

presents the Nakas and Kanti approach and applies it to
RBHs, generating then a five-dimensional RBH. In Sec. III
the bulk energy-momentum tensor is studied and is shown
that energy conditions are violated. In Sec. IV the gravi-
tational field equations are fully calculated, and it is shown
that, even with a four-dimensional RBH on the brane, this
spacetime is a vacuum spacetime. The final remarks are
given in Sec. V.
In this work, geometrized units are adopted. Then

G ¼ c ¼ 1 throughout this article. Capital Latin index
runs from 0 to 4, and Greek index runs from 0 to 3.

II. THE BULK PERSPECTIVE

A. Five-dimensional regular black hole

The five-dimensional metric in the Randall-Sundrum
model II [2] is given by

ds2 ¼ e−2kjyjð−dt2 þ dx⃗2Þ þ dy2; ð1Þ

where k is related to the anti–de Sitter curvature radius lAdS
by k ¼ 1=lAdS. The five-dimensional bulk M is asymp-
totically anti–de Sitter, and the four-dimensional brane Σ is
located at y ¼ 0. In the flat coordinates, i.e., when the
metric (1) is conformally flat, one has

ds2 ¼ 1

ð1þ kjzjÞ2 ð−dt
2 þ dr2 þ r2dΩ2

2 þ dz2Þ; ð2Þ

where the new coordinate z ¼ sgnðyÞðekjyj − 1Þ=k is
adopted (note that the brane is still located at z ¼ 0),

and dΩ2
2 ¼ dθ2 þ sin2 θdϕ2 is the line-element of a unit

two-sphere.
As I said, the Nakas-Kanti approach [17] to obtain both

the bulk metric and the brane metric will be used here.
According to those authors, the next step from the general
metric (2) regards to impose the spherical symmetry in the
bulk. For that purpose, the following change of coordinates
is necessary:

r ¼ ρ sin χ and z ¼ ρ cos χ; ð3Þ

with χ ∈ ½0; π�. With those coordinate transformations, the
metric (2) now is written as

ds2 ¼ 1

ð1þ kρj cos χjÞ2 ð−dt
2 þ dρ2 þ ρ2dΩ2

3Þ; ð4Þ

where dΩ2
3 plays the role of the line-element from a unit

three-sphere, that is to say,

dΩ2
3 ¼ dχ2 þ sin2χdθ2 þ sin2χsin2θdϕ2: ð5Þ

And the inverse transformations of (3) are given by

ρ ¼ ðr2 þ z2Þ12 and tan χ ¼ r
z
: ð6Þ

The new radial coordinate ρ is a mix of the bulk extra
coordinate and the brane radial coordinate r, it ranges from
0 to ∞. The coordinate χ indicates the “left” and “right”
side of the brane (see Fig. 1). For ½0; π=2½, one has the
“right” side (positive values of z), and for �π=2; π�, the “left”
one (or negative values of z). Due to theZ2 symmetry in the
bulk, points z and −z are equivalent. Therefore, for some
calculations, I will rule out the modulus of y in Eq. (4).
Following the famous work on the black string [5],

Nakas and Kanti [17] replaced the part of the line

FIG. 1. Brane world context: the four-dimensional brane is
indicated as Σ, described by the ðt; r; θ;ϕÞ coordinates and is
located at z ¼ 0. It is embedded into the five-dimensional bulk.

2See, for example, Ref. [26], chapter 9, for a detailed study on
the singularity theorems.
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element (4), namely −dt2 þ dρ2, by the metric elements of
the Schwarzschild geometry. Thus, the metric (4) assumed
the following form:

ds2¼ 1

ð1þkρcosχÞ2
�
−fðρÞdt2þ dρ2

fðρÞþρ2dΩ2
3

�
: ð7Þ

But in order to build a five-dimensional RBH (or an entire
class of RBHs), I consider a mass function instead of a
constant mass. That is, the metric element fðρÞ is then
written as

fðρÞ ¼ 1 −
2MðρÞ

ρ
: ð8Þ

An appropriate mass function that produces RBHs (as we
will see) can be written as

MðρÞ ¼ M0

½1þ ðr0ρ Þq�
3
q

: ð9Þ

Such a mass function generated RBHs in the general
relativity context. It is worth mentioning that the mass
function (9) provided solutions of Einstein’s field equations
by using the so-called Synge g-method, in which from a
given metric (with, for example, the mass function (9)), one
obtains and interprets the resulting energy-momentum
tensor (see Ref. [40] for more details on the Synge method).
Introduced in Ref. [24], the mass function (9) is able to
produce RBHs with and without rotation. In particular, for
q ¼ 2 we have the Bardeen RBH [20], and for q ¼ 3 the
Hayward RBH [29] is obtained. The constant M0 is
conceived of as the black hole mass, and q is a positive
integer in the mass function. On the other hand, r0 is
adequate to—at least—two interpretations. For q ¼ 2, the
constant r0 is interpreted as a charge in a nonlinear
electrodynamics according to Ayón-Beato and Garcia’s
work [41]. But in our work [42], r0 is conceived of as
length, related to the Planck length. Even an upper bound
on r0 was assumed but in the general relativity context.3

However, as we will see, a mass function like (9) is also
able to provide RBHs in a brane context assuming that r0 is
a short length.
The capability of MðρÞ removing the central singularity

is made clear from the Ricci scalar R and from RMNRMN

and RMNLKRMNLK (where the last one is also called
Kretschmann scalar):

lim
ρ→0

R ¼ −20k2 þ 40M0

r30
; ð10Þ

lim
ρ→0

RMNRMN ¼ 80k4 −
320M0

r30

�
k2 −

M0

r30

�
; ð11Þ

lim
ρ→0

RMNLKRMNLK ¼ 40k4 −
160M0

r30

�
k2 −

M0

r30

�
: ð12Þ

As we can see, all results are q-independent. Also the
metric elements are regular from that mass function, i.e.,
gtt ¼ −grr ¼ −1 and gθθ ¼ gϕϕ ¼ gχχ ¼ 0 for ρ → 0.
On the other hand, the anti–de Sitter behavior of (7) is

indicated as ρ → ∞. That is,

lim
ρ→∞

R ¼ −20k2; ð13Þ

lim
ρ→∞

RMNRMN ¼ 80k4; ð14Þ

lim
ρ→∞

RMNLKRMNLK ¼ 40k4: ð15Þ

Therefore, even with a mass function in Eq. (7), the bulk is
still asymptotically anti–de Sitter.
In order to better illustrate the event horizon and then

present the five-dimensional bulk RBH, one writes the
metric (7) in the original ðt; r; θ;ϕ; yÞ coordinates. Thus

ds2 ¼ e−2kjyj
�
−fðr; yÞdt2 þ

�
r2

fðr; yÞ þ zðyÞ2
�

×
dr2

r2 þ zðyÞ2 þ
�

1

fðr; yÞ − 1

�
2rzðyÞekjyj
r2 þ zðyÞ2 drdy

þ r2dΩ2
2

�
þ
�
r2 þ zðyÞ2

fðr; yÞ
�

dy2

r2 þ zðyÞ2 ; ð16Þ

with

fðr; yÞ ¼ 1 −
2Mðr; yÞ

½r2 þ zðyÞ2�12 ; ð17Þ

Mðr; yÞ ¼ M0

� ½r2 þ zðyÞ2�32
ðrq0 þ ½r2 þ zðyÞ2�q2Þ3q

�
; ð18Þ

and, as we saw, zðyÞ ¼ sgnðyÞðekjyj − 1Þ=k. As pointed out
by Nakas and Kanti [17], contrary to the Hawking et al. [5]
black string, the metric (16) is nonfactorized. And contrary
to the geometry studied in Refs. [17,18], there are two
horizons here. The mass function (18) is able to provide at
most two horizons, an inner r− and an outer horizion rþ,
the event horizon properly speaking, since r0 < M0. Zeros
of grrðr�; y0Þ ¼ fðr�; y0Þ ¼ 0 give us the localization of
the horizons. As we can see from Fig. 2, both horizons
extend to the bulk. This very feature was pointed out by
Nakas and Kanti [17,18] and then was argued the “pan-
cake” shape (for a fixed y ¼ y0) of the event horizon
studied by the authors. For a constant mass or r0 ¼ 0, the3The upper bound obtained in Ref. [42] was r0 < 10−25 m.
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“pancake” shape of the horizon (in this case only one) is
indicated by r2þ ¼ 4M2

0 − ðekjy0j − 1Þ2=k2, and y0 is simply
obtained by making rþ ¼ 0, thus y0 ¼ lnð2M0kþ 1Þ=k
for a constant mass. The value y0 means the value of the
extra coordinate in which rþ shrinks exponentially and
becomes zero. For our mass function, y0 is obtained from
2kMð0; y0Þ − ekjy0j þ 1 ¼ 0, which give us two values for
the edge of the horizons in the extra dimension, namely y0�
(related to the outer and inner horizons, respectively).

III. THE MATTER CONTENT IN THE BULK

As we can see from the form of the metric element fðρÞ
adopted here, the five-dimensional bulk is not an empty
or flat spacetime. In order to illustrate this point, following
Nakas and Kanti [17] and specifying the bulk energy-
momentum tensor, one writes the bulk gravitational
action as

SB ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �ð5ÞR
2κ25

þ LðBÞ
m

�
; ð19Þ

in which g is the metric determinant (from the bulk metric
gMN), ð5ÞR is the five-dimensional Ricci scalar, κ25 ¼ 8πG5

is defined by the gravitational constant in five dimensions,

and LðBÞ
m is the Lagrangian of the bulk matter content. By

means of the variation of (19) with respect to gMN , we have
the field equations of the bulk, i.e.,

GMN ¼ κ25T
ðBÞ
MN ¼ −

2κ25ffiffiffiffiffiffi−gp δðLðBÞ
m

ffiffiffiffiffiffi−gp Þ
δgMN ; ð20Þ

where GMN is the five-dimensional Einstein tensor,

and TðBÞ
MN is the bulk energy-momentum tensor. From the

metric (7), the nonvanishing energy-momentum tensor
components in the ðt; ρ; θ;ϕ; χÞ coordinates are given by

TðBÞt
t ¼ TðBÞρ

ρ ¼
1

κ25

�
6k2 þ

�
9k cos χ

ρ2
−

3

ρ3

�
MðρÞ

−
�
3k cos χ

ρ
þ 3

ρ2

�
M0ðρÞ

�
; ð21Þ

TðBÞθ
θ ¼ TðBÞϕ

ϕ ¼ TðBÞχ
χ

¼ 1

κ25

�
6k2 −

�
6k2cos2χ

ρ
−
6k cos χ

ρ2

�
MðρÞ

þ
�
4k2cos2χ þ 2k cos χ

ρ
−

2

ρ2

�
M0ðρÞ

−
�
k2ρcos2χ þ 2k cos χ þ 1

ρ

�
M00ðρÞ

�
; ð22Þ

where the operator 0 means derivative with respect to
the function argument. As we can immediately read from
Eqs. (21)–(22), the bulk energy-momentum tensor is
diagonal in the ðt; ρ; θ;ϕ; χÞ coordinates, it can be written
as TðBÞμ

ν ¼ diagð−ρE; p1; p2; p2; p2Þ, in which ρE is the
energy density, and p1 and p2 are pressures. As p1 ≠ p2,
thus the bulk spacetime is supported by an anisotropic
fluid. Most importantly is the limit of the components of
that tensor as ρ → ∞. That is to say,

lim
ρ→∞

ρE ¼ −
6k2

κ25
¼ Λ5 ð23Þ

lim
ρ→∞

p1 ¼ lim
ρ→∞

p2 ¼
6k2

κ25
¼ −Λ5; ð24Þ

in which Λ5 is the five dimensional cosmological constant.
Therefore, the anti–de Sitter feature of the bulk gets evident
once again.
In order to see the dependence of (21)–(22) on the extra

coordinate, let us write TðBÞμ
ν in the ðt; r; θ;ϕ; yÞ coor-

dinates. Using the transformations (6), we have

ρE ¼ −
3k2

κ25

�
2 − ð1þ δÞ−3þq

q
kM0½4ð1þ δÞ − 3ekjyj�
½k2r2 þ ðekjyj − 1Þ2�32

�
;

ð25Þ

p2 ¼
6k2

κ25

�
1þ kM0ðekjyj − 1Þð2 − ekjyjÞ

½k2r2 þ ðekjyj − 1Þ2�32

−
kM0½ð4 − 3ekjyj − ð1þ qÞ 1

2
e2kjyjÞδþ 4δ2�

½k2r2 þ ðekjyj − 1Þ2�32
�
; ð26Þ

with

FIG. 2. Zeros of grr ¼ fðr�; y0Þ ¼ 0 (indicated by the black
lines) give us the localization of horizons. The mass function
(18) is able to provide two horizons, the inner r− and the outer
horizon rþ. As we can see, the horizons get close to the brane
(located at y ¼ 0). In this graphic, one uses k ¼ 1, M0 ¼ 1,
r0 ¼ 0.5 and q ¼ 3.
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δ ¼
�

kr0
½k2r2 þ ðekjyj − 1Þ2�12

�
q
: ð27Þ

As we can see, for δ ¼ 0 or, equivalently, r0 ¼ 0 we have
the same results of Ref. [17], and the mass function (18)
turns into a constant. In the ðt; r; θ;ϕ; yÞ coordinates, the
energy-momentum tensor is not diagonal anymore. Two
new off-diagonal components TðBÞr

y ¼ e2kjyjTðBÞy
r appear,

but both are zero as y → ∞, as we would expect for an
asymptotically anti–de Sitter spacetime. Other components
will not be shown here due to the large and cumbersome
final forms. The main idea here is just indicate some energy
condition violation for the five-dimensional bulk. In par-
ticular, as we can see in Fig. 3, the weak energy condition is
violated close to the brane, i.e., ρE < 0 and ρE þ p2 < 0.
Moreover, Fig. 4 shows that for r ¼ 0 and y ¼ 0,
p2=ρE ¼ −1, which is the equation of state of a de
Sitter spacetime. As we will see, this indicates that a de
Sitter core is inside the event horizon and it is entirely on
the brane, not in the bulk. For a five-dimensional de Sitter
space one has gtt ¼ −ð1 − r2=α2Þ, with α constant, and
from Eq. (16), for small values of the radial coordinate r,
we have gtt ≃ −ð1 − βr2Þ, with β constant, only for y ¼ 0,
that is, outside the extra dimension.

IV. THE BRANE PERSPECTIVE

A. Gravitational field equations on the brane

With y ¼ z ¼ 0 in the metric (16), we have a four-
dimensional RBH. But would it be a RBH in a brane
context? For sure in that context the gravitational field
equations are not the Einsteinian equations. In the four-
dimensional world, the brane, the field equations are very

different ones. They were deduced from the Gauss and
Codacci equations, according to the seminal work of
Shiromizu, Maeda, and Sasaki [19]. I adopt here a scenario
like that one. In such a scenario, the four-dimensional
brane ðΣ; hMNÞ is embedded into a five-dimensional bulk
ðM; gMNÞ, and a normal and unit vector to the brane is
written as nM ¼ hMy. Therefore, the induced metric on the
brane reads hMN ¼ gMN − nMnN .
Following Nakas and Kanti [17,18], one defines the total

energy-momentum tensor as

TMN ¼ TðBÞ
MN þ hμMhνNT

ðbrÞ
μν δðyÞ; ð28Þ

with the brane energy-momentum tensor, like many brane
world scenarios, given by

TðbrÞ ¼ −λhμν þ τμν: ð29Þ

The constant λ is the brane tension, some sort of vacuum
energy on the brane, and τμν regards all matter fields on the
four-dimensional spacetime. As we will see, the tensor τμν
vanishes, and the RBH on the brane will be supported by
the bulk geometrical influence on the brane. Another
important point here is that the total energy-momentum
tensor (28) is different from that one chosen in Ref. [19].
The bulk energy-momentum tensor is not described by a
cosmological constant term. As we saw in the previous
section, an exotic field ensures the asymptotic anti–de Sitter
behavior for the bulk spacetime instead of a five dimen-
sional cosmological constant.
In order to show that τμν ¼ 0 in the brane context studied

here, one uses Israel’s junction condition [43] at y ¼ 0 and
a very important result for the extrinsic curvature Kμν,
namely

4 2 0 2 4

50

0

50

100

150

200

250

y

p2
E

FIG. 3. Components of the bulk energy-momentum tensor and
the weak energy violation close to the brane, located at y ¼ 0.
Vertical dashed lines indicate the horizons edges in the bulk
(inner y0− ¼ �0.08 and outer y0þ ¼ �3.04). In this graphic, one
uses κ5 ¼ k ¼ 1, M0 ¼ 10, r0 ¼ 0.1, q ¼ 2 and, most impor-
tantly, r ¼ 0.5.

2 1 0 1 2

1. 105

5. 104

0

1. 105

5. 104

y

p2
E

FIG. 4. Components of the bulk energy-momentum tensor for
r ¼ 0 on the brane. The vertical dashed lines indicate the inner
horizon limit in the bulk (y0− ¼ �0.08). In this graphic, one uses
κ5 ¼ k ¼ 1, M0 ¼ 10, r0 ¼ 0.1 and q ¼ 2. For y ¼ 0, we see a
de Sitter equation of state (p2=ρE ¼ −1).
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½Kμν� ¼ −κ25

�
TðbrÞ
μν −

1

3
hμνTðbrÞ

�
; ð30Þ

where TðbrÞ is the trace of the energy-momentum tensor on
the brane. The extrinsic curvature is defined as

Kμν ¼ hAμhBν∇AnB; ð31Þ

with nA ¼ ð0; 0; 0; 0; 1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gyyðy ¼ 0Þp Þ, and the bracket

notation means

½X� ¼ lim
y→0þ

X − lim
y→0−

X ¼ Xþ − X−: ð32Þ

The induced metric hμν on the brane in the ðt; r; θ;ϕÞ
coordinates is written as

ds2 ¼ −
�
1 −

2mðrÞ
r

�
dt2 þ

�
1 −

2mðrÞ
r

�
−1
dr2 þ r2dΩ2

2;

ð33Þ

with

mðrÞ ¼ Mðr; 0Þ; ð34Þ

and it clearly satisfies ½hμν� ¼ 0. With the aid of (16), then
the extrinsic curvature reads simply

Kμν ¼ −k
djyj
dy

hμν; ð35Þ

and follows that K ¼ −4k djyj
dy . With the extrinsic curvature

calculated, the definition (30) (contracted with hμν) leads to

TðbrÞ ¼ 3

κ25
½K�: ð36Þ

Therefore, Eq. (30) can be rewritten as

TðbrÞ
μν ¼ −

1

κ25
ð½Kμν� − ½K�hμνÞ ¼ −

6k
κ25

hμν; ð37Þ

in which the Z2 symmetry was used. From the above result
and Eq. (29), one concludes that τμν ¼ 0, that is to say,
there are no sources or matter fields on the brane. Besides,
the brane tension is related to the anti–de Sitter curvature by
means of λ ¼ 6k=κ25 > 0. Then the RBH geometry should
be produced by the bulk influence on the brane (this point
will be emphasized again below).
In order to describe the bulk influence on the brane, the

field equations induced on the brane are necessary, equa-
tions with components that deforms the brane generating
then a black hole. As I said, the induced field equations

were deduced by Shiromizu, Maeda, and Sasaki [19].
Such field equations are given by

Gμν ¼
2κ25
3

�
hMμhNνT

ðBÞ
MN þ

�
TðBÞ
MNn

MnN −
TðBÞ

4

�
hμν

�

þ KKμν − Kμ
αKνα −

1

2
hμνðK2 − KαβKαβÞ − Eμν;

ð38Þ

where Gμν is the four-dimensional Einstein tensor, TðBÞ is
the trace of the bulk energy-momentum tensor, and Eμν is
the so-called “electric” part of the five-dimensional Weyl
tensor ðCA

BCDÞ projected onto the brane. Its form is

Eμν ¼ CA
BCDnAnChBμhDν : ð39Þ

It is worth pointing out that Eμ
μ ¼ 0, i.e., it is a traceless

tensor. Therefore, from the metric (16), with the mass
function (18), Eμν reads

Eμνjy→0 ¼
M0E
r3

0
BBB@

−htt
−hrr

hθθ
hϕϕ

1
CCCA; ð40Þ

with

E ¼ ½2 − ð1þ qÞðr0r Þq�
2½1þ ðr0r Þq�

2qþ3
q

: ð41Þ

For r0 ¼ 0, Mðr; 0Þ ¼ mðrÞ ¼ M0 and E ¼ 1, then we
recover the results of Ref. [17]. Moreover, Eμν is also
regular due to the mass function, that is to say,
limr→0 Eμν ¼ 0.
The terms of the gravitational field equations (38) that

contain the extrinsic curvature, with the aid of Eq. (35),
result in

KKμν − Kμ
αKνα −

1

2
hμνðK2 − KαβKαβÞ

¼ 8πGτμν þ κ45

�
πμν −

λ2

12
hμν

�
; ð42Þ

with G ¼ κ45λ=48π ¼ 1 playing the role of the effective
gravitational constant on the brane, and

πμν ¼ −
1

4
τματν

α þ 1

12
ττμν þ

1

8
ταβτ

αβhμν −
τ2

24
hμν: ð43Þ

By using the above results, namely Eqs. (42) and (43),
we are able to rewrite the field equations in terms of an
effective energy-momentum tensor, i.e.,
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Gμν ¼ 8πGðTðeffÞ
μν þ τμνÞ þ κ45

�
πμν −

λ2

12
hμν

�
− Eμν: ð44Þ

It is worth emphasizing that πμν ¼ 0 because, as we saw,
τμν ¼ 0. The above field equations then present an effective
energy-momentum tensor (diagonal tensor) given by

TðeffÞ
μν ¼ 2

3k

�
TðBÞ
μν þ

�
TðBÞ
yy −

TðBÞ

4

�
hμν

�				
y¼0

; ð45Þ

calculated at y ¼ 0. The explicit form of (45) is then

TðeffÞ
μν ¼ 1

κ25k

2
6664
M0

r3

0
BBB@

−T 1htt
−T 1hrr

T 2hθθ
T 2hϕϕ

1
CCCA

þ 3k2hμν

3
7775; ð46Þ

with

T 1 ¼
½12ðr0r Þ2q þ ð11 − qÞðr0r Þq þ 2�

2½1þ ðr0r Þq�
2qþ3
q

; ð47Þ

T 2 ¼ −
½12ðr0r Þ2q − 5ð1þ qÞðr0r Þq − 2�

2½1þ ðr0r Þq�
2qþ3
q

: ð48Þ

Once again, for r0 ¼ 0, T 1 ¼ T 2 ¼ 1, and we recover the
Nakas and Kanti results [17] when the mass parameter is a
positive constant.

B. Four-dimensional regular black hole

The effective energy-momentum tensor (46) is also
regular on the brane. Calculating it, one has

lim
r→0

TðeffÞμ
ν ¼ 3

κ25

�
k −

2M0

kr30

�
; ð49Þ

for all nonzero components. Assuming the field equa-
tions (44) for r → 0, we have Gμ

ν ¼ − 6M0

r3
0

hμν, suggesting

then a de Sitter core, that which prevents the singularity
issue, inside the hole. Thus

ldS ¼
�

r30
2M0

�1
2

; ð50Þ

with ldS playing the role of the de Sitter curvature radius. In
this case, we have a de Sitter core inside the event horizon
like well-known RBHs (as pointed out in Ref. [24]).
As we know, the gravitational field equations can

provide the four-dimensional Einstein tensor. Calculating
the right side of (44), one has

Gμν ¼ −

0
BBBBBB@

2m0ðrÞhtt
r2

2m0ðrÞhrr
r2

m00ðrÞhθθ
r

m00ðrÞhϕϕ
r

1
CCCCCCA
; ð51Þ

which is the same Einstein tensor for a RBH in the general
relativity context with mðrÞ given by Eq. (34). But as
our brane is a vacuum spacetime, the origin or source for
that RBHs comes from the five-dimensional bulk and its
geometrical influence on the brane. With the Einstein
tensor indicated above, we have then well-known RBHs
on the brane, whether the Bardeen RBH (for q ¼ 2) or the
Hayward RBH (for q ¼ 3).

V. FINAL REMARKS

When applied to the gravitational phenomenon, brane-
world models are richer than the Einsteinian context. Like
in the general relativity context, brane RBHs are even
possible. Here a recent approach, due to Nakas and Kanti
[17], was adopted. From the bulk spacetime to the brane
spacetime (calculating the induced gravitational field equa-
tions), the geometries presented here are regular both in
the five-dimensional and on the four-dimensional world,
contrary to the so-called black string or even the Nakas
and Kanti geometries, which are singular on the brane.
Above all, the geometries obtained in this article are five-
dimensional RBHs because their horizons extend to the
extra dimension, and, interestingly, the de Sitter core—that
which precludes the central singularity—is entirely on the
four-dimensional brane.
From the induced field equations on the brane, we saw

that the four-dimensional brane is a vacuum spacetime.
Thus, the source of the RBH on the brane is in the five-
dimensional bulk. Then the bulk influence on the brane is
geometrical one. An important point in this article regards
well-known RBHs in the general relativity context, like the
Bardeen and Hayward RBH, which are found in the brane
context adopted here.
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